

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

A Hybrid Nanoparticle System Integrating Tumor-derived Exosomes and Poly(amidoamine) Dendrimers: Implication for an effective gene delivery platform

Journal:	<i>Chemistry of Materials</i>
Manuscript ID	cm-2022-03705b.R2
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Nair, Ashita; University of Wisconsin Madison, Pharmaceutical Sciences Javious-Jones, Kaila; University of Wisconsin - Madison, Pharmaceutical Sciences Division Bugno, Jason; University of Illinois at Chicago, Poellmann, Michael; University of Wisconsin-Madison, Pharmaceutical Sciences Division Mamidi, Narsimha; University of Wisconsin-Madison, Pharmaceutical Sciences Division (Wisconsin Center for NanoBioSystmes) Kim, In-San; Korea Institute of Science and Technology, Biomedical Research Institute Kwon, Ick Chan; Korea Institute of Science and Technology, Biomedical Research Center Hong, Heejoo; Asan Medical Center Hong, Seungpyo; University of Wisconsin Madison, Pharmaceutical Sciences

SCHOLARONE™
Manuscripts

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A Hybrid Nanoparticle System Integrating Tumor-derived Exosomes and Poly(amidoamine) Dendrimers: Implication for an effective gene delivery platform

Ashita Nair^{[a]†}, Kaila Javius-Jones^{[a]†}, Jason Bugno^[a,b], Michael J. Poellmann^[a], Narsimha Mamidi^[c], In-San Kim^[d], Ick Chan Kwon^[d], Heejoo Hong^[e], and Seungpyo Hong^{[a, b, c, f, g]}*

[a] Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA

[b] Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA

[c] Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison, WI 53705, USA

[d] Biomedical Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea 02792

[e] Department of Clinical Pharmacology & Therapeutics, Asan Medical Center, University of Ulsan, Seoul, Republic of Korea 05505

[f] Department of Pharmacy, Yonsei University, Incheon, Republic of Korea 21983

[g] Lachman Institut for Pharmaceutical Development, University of Wisconsin, Madison, WI 53705, USA

†Denotes the same contribution.

*Address all correspondence to:

Prof. Seungpyo Hong
Pharmaceutical Sciences Division, School of Pharmacy
University of Wisconsin-Madison
7121 Rennebohm Hall
777 Highland Avenue
Madison, WI 53705, USA
email: seungpyo.hong@wisc.edu
phone: (608) 890-0699

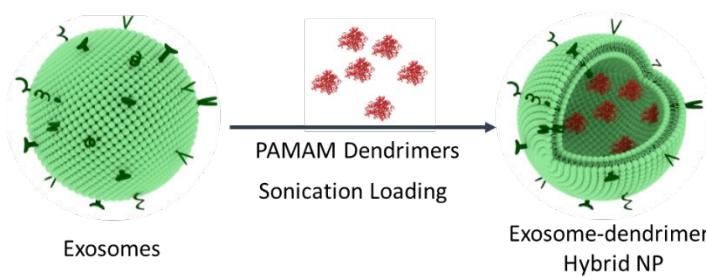
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 ABSTRACT
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Nanoscale drug delivery systems for cancer treatment have demonstrated promising results in enhancing the selectivity of therapeutic agents while reducing their toxic side effects. However, several biological and physical barriers, such as the immunogenicity and undesirable biodistributions of such delivery systems, have hindered their fast translation. To address these issues, we have developed an exosome-dendrimer hybrid nanoparticle (NP) platform to combine the advantageous biological properties of natural exosomes and synthetic dendrimers into a single NP system. The novel hybrid NPs, consisting of exosomes derived from MCF7 cells and functionalized poly(amidoamine) (PAMAM) dendrimers, were prepared using sonication and characterized in terms of loading efficiency, size, cytotoxicity, and cellular interactions. Our results indicate that the loading of dendrimers into exosomes is dependent on dendrimer size and charge. The hybrid NPs inherited the size (~150 nm), surface charge (-10 mV), and surface protein markers (CD81, CD63) of exosomes. Importantly, the hybrid NPs enhanced cellular internalization of amine-terminated PAMAM dendrimers ($p < 0.05$), while exhibiting substantially lower cytotoxicity than the free positively charged dendrimers (113.3% vs. 35.6% of cell viability at 500 nM, $p < 0.05$). These advantageous properties of hybrid NPs were leveraged for use as a gene delivery vehicle, resulting in enhanced oligonucleotide delivery (over 2-fold) to cancer cells, compared to dendrimers alone. Furthermore, hybrid NPs effectively delivered small interfering RNA (siRNA) as well, downregulating programmed death-ligand 1 (PD-L1) expression significantly more (3.8-fold) than dendrimers alone ($p < 0.05$). Our results demonstrate that the individual characteristics of both exosomes and dendrimers can be integrated to generate a multifaceted NP platform, proposing a novel NP design strategy.

1
2
3
4
INTRODUCTION5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Gene therapy allowing precise genetic manipulations, either for promotion or downregulation of target proteins, has long been considered a promising anticancer treatment option.¹⁻⁴ However, currently available anticancer gene therapeutic agents, such as plasmid DNA and RNA interference (RNAi), are afflicted with undesirable biodistribution properties, such as short half-life, degradation by nucleases, and inability to penetrate cells. These issues could be potentially addressed by employing a delivery vehicle that would allow the therapeutic agents to reach the target site in a viable form.^{5,6} A myriad of nanoparticle (NP) delivery vehicles, including viral vectors, liposomes, and polymers, have been extensively studied to improve the stability and efficacy of these therapeutics. However, clinical translation of gene therapy has been disappointingly slow, primarily due to the fact that high gene therapy efficiency can be typically achieved at the cost of increased toxicity.30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
Poly(amidoamine) (PAMAM) dendrimers have been used to deliver genetic molecules for the treatment of various diseases.⁷ These sub-10 nm hyperbranched hydrophilic polymers are characterized by well-defined nanoscale structures and pronounced surface group effects. The size and surface properties can be leveraged to enhance tumor penetration properties as well as support multivalent ligand binding at high density.⁸⁻¹³ Similar to other cationic gene carriers, however, PAMAM dendrimers suffer from undesirable cytotoxicity and non-specificity due to electrostatic interactions with cell membranes.^{14,15} Attempts to reduce cytotoxicity using partial acetylation and PEGylation strategies have resulted in diminished transfection efficiency.¹⁶ Additionally, the small size of PAMAM dendrimers makes them subject to rapid renal elimination from circulation. To reduce the cytotoxicity, facilitate cell entry, and avoid the short

1
2
3 plasma circulation time of cationic PAMAM dendrimers, we have focused on designing novel
4
5 gene delivery platforms through hybridization.
6
7
8

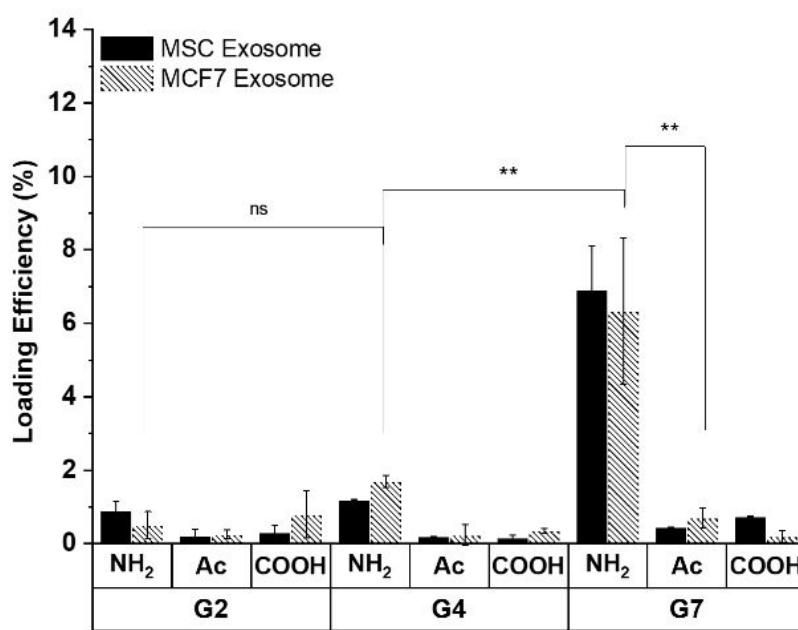

9 Our research group previously developed a hybrid NP design strategy to minimize the
10 shortcomings of a single modality NP by combining two individual NPs such that the
11
12 advantageous characteristics of both NPs are integrated into one system while negating their
13
14 individual drawbacks.¹⁷⁻²⁰ One of the multi-scale hybrid NP systems was prepared by
15
16 encapsulating PAMAM dendrimers into larger poly(ethylene glycol)-b-poly(lactide) (PEG-PLA)
17
18 NPs.¹⁹ Upon encapsulation, we showed that the hybrid NPs (approximately 100 nm in diameter)
19
20 significantly improved biological behaviors of dendrimers, i.e., increased tumor accumulation
21
22 via the enhanced permeability and retention (EPR) effect and prolonged plasma circulation.²⁰
23
24
25
26
27

28 In parallel, similar approaches have been explored by others through hybridizing
29 polymeric NPs with naturally occurring cell membranes such as platelets,²¹ RBCs,²²
30 leukocytes,²³ MSCs,²⁴ and cancer cells.²⁵ Nanoscale extracellular vesicles, including exosomes,
31
32 are also being explored as drug delivery systems.²⁶ Exosomes are secreted by cells and are
33
34 known for their important role in communication among neighboring and distant cells.²⁷
35 Exosomes are implicated in several biological functions such as T-cell stimulation, antigen
36
37 presentation, and tissue repair, by eliciting their responses through direct cell surface receptor
38 binding or by transferring proteins and RNAs.²⁷⁻²⁹ Being a natural messenger of information, the
39 therapeutic potential of exosomes has been exploited both in their innate state (tissue
40
41 regeneration,³⁰ immune modulation³¹) and as a delivery vehicle for small interfering RNA
42 (siRNA),^{32,33} microRNA (miRNA),³⁴ curcumin,³⁵ and doxorubicin.³⁶ Importantly, these
43
44 naturally-occurring extracellular vesicles improved biocompatibility when compared to synthetic
45
46 materials such as PAMAM dendrimers and PEG-PLA polymers.
47
48
49
50
51
52
53
54
55
56
57
58
59
60

In this paper, we have created a novel hybrid NP system to combine the advantageous biological properties of exosomes with the gene delivery potential of PAMAM dendrimers. By encapsulating dendrimers into exosomes, we anticipated the cellular interactions of hybrid NPs will primarily be driven by the exosomal lipid membrane and associated proteins, which would also efficiently mask the cytotoxic, electrostatic interactions of dendrimers with cells. We assessed the following three hypotheses in this study: i) positively charged dendrimers are efficiently hybridized with exosomes through electrostatic interactions; ii) exosomes reduce cytotoxicity of PAMAM dendrimers by masking the surface exposure of their primary amine groups; and iii) exosomes facilitate cell entry of dendrimers by multiple mechanisms of cellular uptake. In confirming these hypotheses, we demonstrate the potential for exosome-dendrimer hybrid NPs in gene delivery applications.

1
2
3
4
5
6
RESULTS7
8
9
10
11
12
13
14
15
16
17
18
19
Characterization of Exosomes and Modified Dendrimers20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
30 Exosomes were isolated using a differential centrifugation method from cell culture media of
31 either human mesenchymal stem cells (MSC) or a breast cancer cell line (MCF7). The isolated
32 exosomes were characterized in terms of size, morphology, membrane potential, and protein
33 markers using transmission electron microscopy (TEM), atomic force microscopy (AFM),
34 nanoparticle tracking analysis (NTA), Zetasizer, and Western Blot analysis (**Figure S1**).
3536 Exosomes derived from MSC and MCF7 cell lines were respectively 139 nm and 156 nm in
37 diameter while having the characteristic negative membrane zeta potential (-10.3 mV for MSC
38 exosomes and -11.1 mV for MCF7 exosomes). Western blotting also revealed the presence of
39 exosome protein markers, such as CD9, CD81, HSP70, and CD63, in both exosomes.³⁷ All these
40 results confirmed that exosomes were successfully isolated from both MSC and MCF7 cultures.
4142
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
50 PAMAM dendrimers of generation 2 (G2, 2.9 nm in theoretical diameter), G4 (4.5 nm),
51 and G7 (8.1 nm) were labeled with rhodamine and modified to have either amine (positively
52 charged, -NH₂), acetyl (neutrally charged, -Ac) or carboxyl (negatively charged, -COOH)
53 surface groups using our previously published protocols.^{11,38} The reaction scheme for the surface
54 group modifications and the characteristic ¹H NMR spectra of modified dendrimers are shown in
55 the supplementary material (**Scheme S1** and **Figures S2, S3, and S4**).
5657
58
59
60
Loading Efficiency of Dendrimers into Exosomes61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
230 To systematically investigate the effect of dendrimer and exosome properties on hybrid NP
231 formulation, we prepared a total of 18 configurations of hybrid NPs by varying the source of the
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
302100
302101
302102
302103
302104
302105
302106
302107
302108
302109
302110
302111
302112
302113
302114
302115
302116
302117
302118
302119
302120
302121
302122
302123
302124
302125
302126
302127
302128
302129
302130
302131
302132
302133
302134
302135
302136
302137
302138
302139
302140
302141
302142
302143
302144
302145
302146
302147
302148
302149
302150
302151
302152
302153
302154
302155
302156
302157
302158
302159
302160
302161
302162
302163
302164
302165
302166
302167
302168
302169
302170
302171
302172
302173
302174
302175
302176
302177
302178
302179
302180
302181
302182
302183
302184
302185
302186
302187
302188
302189
302190
302191
302192
302193
302194
302195
302196
302197
302198
302199
302200
302201
302202
302203
302204
302205
302206
302207
302208
302209
302210
302211
302212
302213
302214
302215
302216
302217
302218
302219
302220
302221
302222
302223
302224
302225
302226
302227
302228
302229
302230
302231
302232
302233
302234
302235
302236
302237
302238
302239
302240
302241
302242
302243
302244
302245
302246
302247
302248
302249
302250
302251
302252
302253
302254
302255
302256
302257
302258
302259
302260
302261
302262
302263
302264
302265
302266
302267
302268
302269
302270
302271
302272
302273
302274
302275
302276
302277
302278
302279
302280
302281
302282
302283
302284
302285
302286
302287
302288
302289
302290
302291
302292
302293
302294
302295
302296
302297
302298
302299
3022100
3022101
3022102
3022103
3022104
3022105
3022106
3022107
3022108
3022109
3022110
3022111
3022112
3022113
3022114
3022115
3022116
3022117
3022118
3022119
3022120
3022121
3022122
3022123
3022124
3022125
3022126
3022127
3022128
3022129
3022130
3022131
3022132
3022133
3022134
3022135
3022136
3022137
3022138
3022139
3022140
3022141
3022142
3022143
3022144
3022145
3022146
3022147
3022148
3022149
3022150
3022151
3022152
3022153
3022154
3022155
3022156
3022157
3022158
3022159
3022160
3022161
3022162
3022163
3022164
3022165
3022166
3022167
3022168
3022169
3022170
3022171
3022172
3022173
3022174
3022175
3022176
3022177
3022178
3022179
3022180
3022181
3022182
3022183
3022184
3022185
3022186
3022187
3022188
3022189
3022190
3022191
3022192
3022193
3022194
3022195
3022196
3022197
3022198
3022199
3022200
3022201
3022202
3022203
3022204
3022205
3022206
3022207
3022208
3022209
3022210
3022211
3022212
3022213
3022214
3022215
3022216
3022217
3022218
3022219
3022220
3022221
3022222
3022223
3022224
3022225
3022226
3022227
3022228
3022229
30222210
30222211
30222212
30222213
30222214
30222215
30222216
30222217
30222218
30222219
30222220
30222221
30222222
30222223
30222224
30222225
30222226
30222227
30222228
30222229
302222210
302222211
302222212
302222213
302222214
302222215
302222216
302222217
302222218
302222219
302222220
302222221
302222222
302222223
302222224
302222225
302222226
302222227
302222228
302222229
3022222210
3022222211
3022222212
3022222213
3022222214
3022222215
3022222216
3022222217
3022222218
3022222219
3022222220
3022222221
3022222222
3022222223
3022222224
3022222225
3022222226
3022222227
3022222228
3022222229
30222222210
30222222211
30222222212
30222222213
30222222214
30222222215
30222222216
30222222217
30222222218
30222222219
30222222220
30222222221
30222222222
30222222223
30222222224
30222222225
30222222226
30222222227
30222222228
30222222229
302222222210
302222222211
302222222212
302222222213
302222222214
302222222215
302222222216
302222222217
302222222218
302222222219
302222222220
302222222221
302222222222
302222222223
302222222224
302222222225
302222222226
302222222227
302222222228
302222222229
3022222222210
3022222222211
3022222222212
3022222222213
3022222222214
3022222222215
3022222222216
3022222222217
3022222222218
3022222222219
3022222222220
3022222222221
3022222222222
3022222222223
3022222222224
3022222222225
3022222222226
3022222222227
3022222222228
3022222222229
30222222222210
30222222222211
30222222222212
30222222222213
30222222222214
30222222222215
30222222222216
30222222222217
30222222222218
30222222222219
30222222222220
30222222222221
30222222222222
30222222222223
30222222222224
30222222222225
30222222222226
30222222222227
30222222222228
30222222222229
302222222222210
302222222222211
302222222222212
302222222222213
302222222222214
302222222222215
302222222222216
302222222222217
302222222222218
302222222222219
302222222222220
302222222222221
302222222222222
302222222222223
302222222222224
302222222222225
302222222222226
302222222222227
302222222222228
302222222222229
3022222222222210
3022222222222211
3022222222222212
3022222222222213
3022222222222214
3022222222222215
3022222222222216
3022222222222217
3022222222222218
3022222222222219
3022222222222220
3022222222222221
3022222222222222
3022222222222223
3022222222222224
3022222222222225
3022222222222226
3022222222222227
3022222222222228
3022222222222229
30222222222222210
30222222222222211
30222222222222212
30222222222222213
30222222222222214
30222222222222215
30222222222222216
30222222222222217
30222222222222218
30222222222222219
30222222222222220
30222222222222221
30222222222222222
30222222222222223
30222222222222224
30222222222222225
30222222222222226
30222222222222227
30222222222222228
30222222222222229
302222222222222210
302222222222222211
302222222222222212
302222222222222213
302222222222222214
302222222222222215
302222222222222216
302222222222222217
302222222222222218
302222222222222219
302222222222222220
302222222222222221
302222222222222222
302222222222222223
302222222222222224
302222222222222225
302222222222222226
302222222222222227
302222222222222228
302222222222222229
3022222222222222210
3022222222222222211
3022222222222222212
3022222222222222213
3022222222222222214
3022222222222222215
3022222222222222216
3022222222222222217
3022222222222222218
3022222222222222219
3022222222222222220
3022222222222222221
3022222222222222222
3022222222222222223
3022222222222222224
3022222222222222225
3022222222222222226
3022222222222222227
3022222222222222228
3022222222222222229
30222222222222222210
30222222222222222211
30222222222222222212
30222222222222222213
30222222222222222214
30222222222222222215
30222222222222222216
30222222222222222217
30222222222222222218
30222222222222222219
30222222222222222220
30222222222222222221
30222222222222222222
30222222222222222223
30222222222222222224
30222222222222222225
30222222222222222226
30222222222222222227
30222222222222222228
30222222222222222229
302222222222222222210
302222222222222222211
302222222222222222212
302222222222222222213
302222222222222222214
302222222222222222215
302222222222222222216
302222222222222222217
30222

1
2
3 exosomes, along with dendrimer size and surface charge. Exosomes and dendrimers were
4
5 hybridized via sonication (**Scheme 1**), a method commonly used to load drugs into exosomes
6 without damaging the vesicle structure and surface proteins.^{39–41} Throughout this paper, the term
7
8 loading capacity was used to indicate the exosome properties, whereas loading efficiency was
9 defined by the amount of dendrimers loaded into exosomes equivalent to 100 µg of exosomal
10
11 proteins.
12
13


18
19
20
21
22
23
24
25
26
27 **Scheme 1.** Exosome hybridization with G2, G4, and G7 PAMAM dendrimers with either
28 positively charged (NH₂), neutrally charged (Ac), or negatively charged (COOH) surface
29 termini.
30
31

32
33
34
35 Loading efficiencies of the prepared dendrimers with various sizes and surface charges
36 into exosomes are demonstrated in **Figure 1A**. Overall, both MCF7- and MSC-derived exosomes
37 did not display any significant differences in terms of their loading capacity. However,
38 significant differences in loading efficiency were observed depending on the size and surface
39 charge of PAMAM dendrimers. The % loading of G7-NH₂, G7-Ac, and G7-COOH with MCF7
40 exosomes were measured to be $6.33 \pm 1.99\%$, $0.69 \pm 0.26\%$, and $0.20 \pm 0.16\%$, respectively.
41
42 This result clearly indicates that amine-terminated dendrimers could exhibit an order of
43 magnitude greater loading into exosomes than acetylated or carboxylated dendrimers. Moreover,
44 the quantity of cationic dendrimers hybridized with exosomes increased as dendrimer generation
45 (size and terminal groups) increased from G2 to G7, given that the % loading of G2-NH₂, G4-
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

NH₂, and G7-NH₂ with MCF7 exosomes was found to be 0.51 ± 0.36%, 1.70 ± 0.16%, and 6.33 ± 1.99%, respectively. Such size-dependent increase, however, was not observed from either acetyl- or carboxyl-terminated dendrimers. These results demonstrate hybridization efficiency, or loading, is largely dependent on the physical properties of dendrimers, yet is independent of the source of exosomes. The hybrid NPs obtained from the positively charged G7-NH₂ and MCF7 exosomes exhibited the most efficient loading at approximately 6.3%.

The fact that the highest loading efficiency was observed from G7-NH₂ among the dendrimers tested indicates the hybridization process is likely dependent on electrostatic interactions between exosomes and dendrimers. To exclude any potential role played by exosomal proteins on the hybridization efficiency, we employed liposomes consisting of either net negative surface charge (anionic liposomes) or net positive surface charge (cationic liposomes), as a simplified model of exosomes. The lipid compositions and the measured zeta potential values of both liposomes are summarized in the supplementary material (**Table S1**). The loading efficiencies of various dendrimers into liposomes were then measured, as shown in **Figure 1B**. As expected, anionic liposomes with a zeta potential of -17.3 mV, which are similar to exosomes in terms of surface charge, showed the highest loading capacity with G7-NH₂ (3.73 ± 0.84 %). In contrast, the cationic liposomes (28.6 mV in zeta potential) exhibited the most efficient loading of G7-COOH (8.04 ± 1.33 %). These results confirm the primary driving force for hybridization between exosomes and dendrimers is charge-based interactions.

A

B

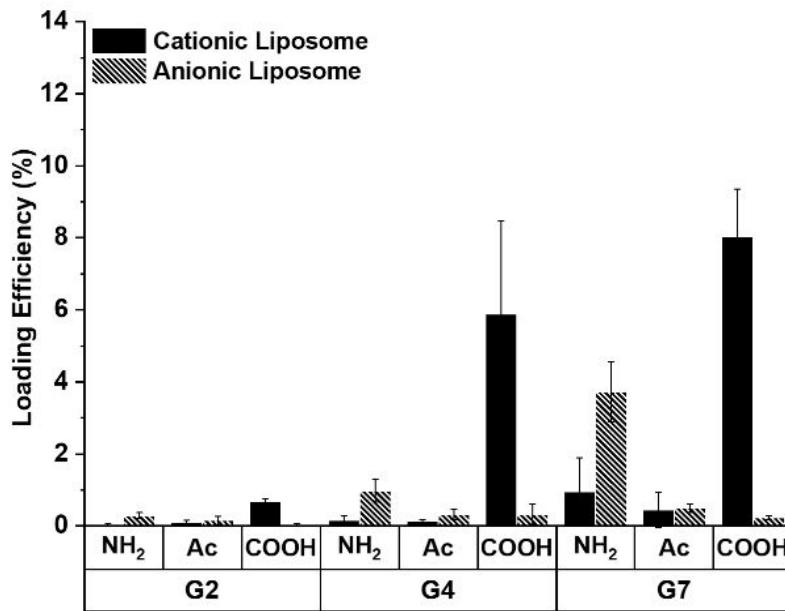
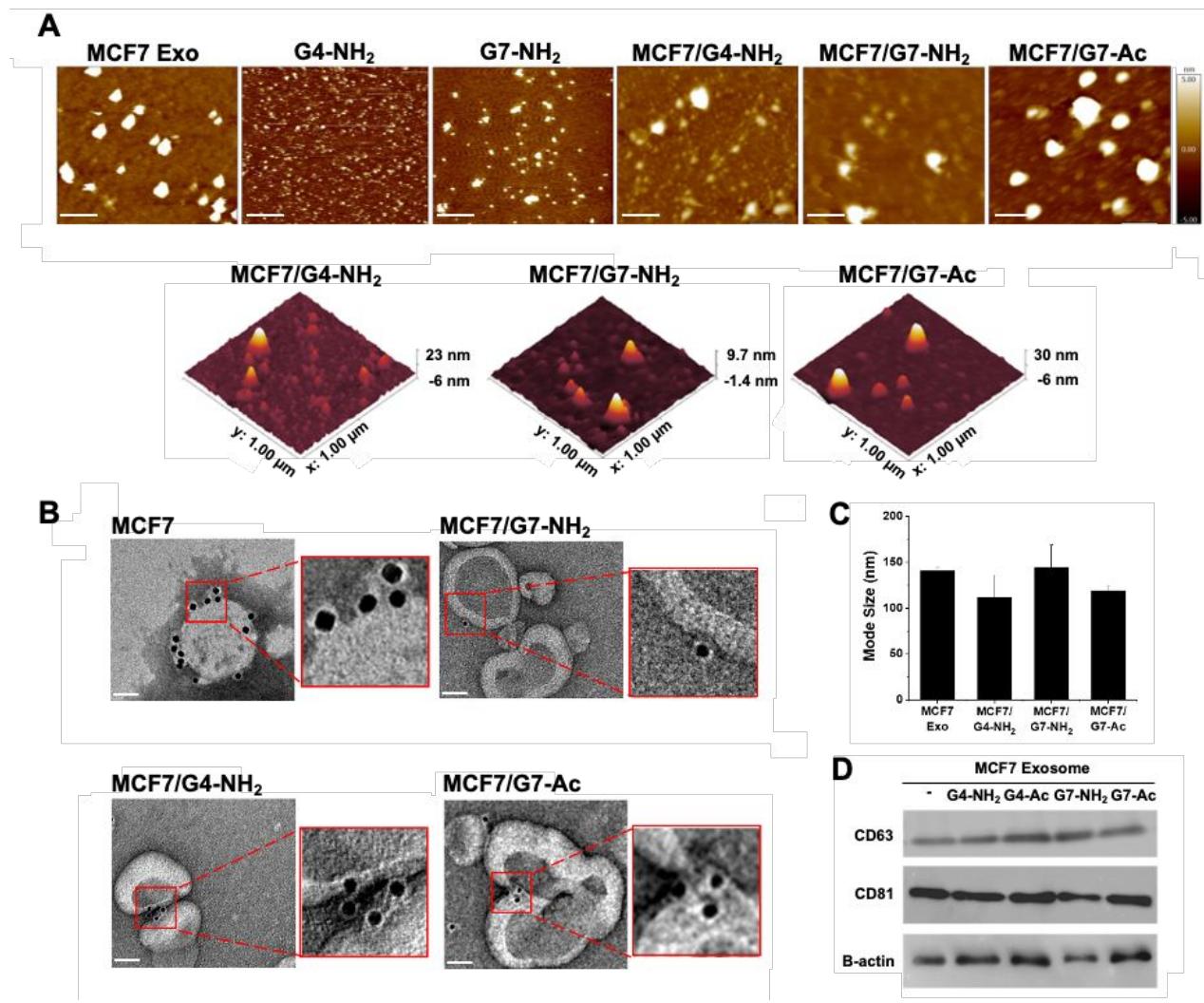


Figure 1. Loading efficiencies of various dendrimers into A) exosomes and B) liposomes. G7-NH₂ exhibits the maximum loading with the negatively charged exosomes at approximately 6.33 ± 1.99%, indicating that the loading efficiency is proportional to the size of dendrimers when


1
2
3 they are positively charged. Similar results obtained using cationic and anionic liposomes
4
5 confirms the dependency of loading efficiency on electrostatic interaction.
6
7
8

9 Characterization of Hybrid NPs 10 11

12 Next, the hybrid NPs (MCF7/G4-NH₂, MCF7/G4-Ac, MCF7/G7-NH₂, and MCF7/G7-Ac) were
13 characterized in terms of their morphology, size, and exosomal protein markers (**Figure 2**). The
14 size and morphology of the hybrid NPs were measured and compared to each of the dendrimers
15 and exosomes using AFM (**Figure 2A**). The hybrid NP system showed similar morphology to
16
17 exosomes without any apparent aggregation. Whereas dendrimers and naïve exosomes presented
18
19 uniform morphologies validating the original dendrimer size, and pure exosomes, respectively.
20
21
22

23 These studies are supported by TEM and NTA analysis. Hybridization of MCF7 exosomes (~148
24 nm in diameter) with all dendrimers, including G4-NH₂ (8 nm), G4-Ac (8 nm), G7-NH₂ (20 nm),
25 and G7-Ac (20 nm), did not result in a noticeable increase in size, generating hybrid NPs with
26 approximately 150 nm in diameter, as measured using NTA (**Figure 2C**). The morphology of the
27 hybrid NPs observed using TEM were consistent to that of free exosomes, and was not altered by
28
29 dendrimer size and surface charge (**Figure 2B**). Furthermore, immunogold labeling of CD63 on
30 hybrid NPs revealed vesicles formed with exosomal membranes in the correct orientation with
31
32 membrane proteins on the external surface. Additionally, the western blot analysis for protein
33 markers CD63 and CD81 confirmed hybrid NPs retained the membrane proteins of the exosome
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 after hybridization (**Figure 2D**). These results collectively indicate the hybrid NPs inherit the
4 morphology, size, and membrane proteins of exosomes.
5
6

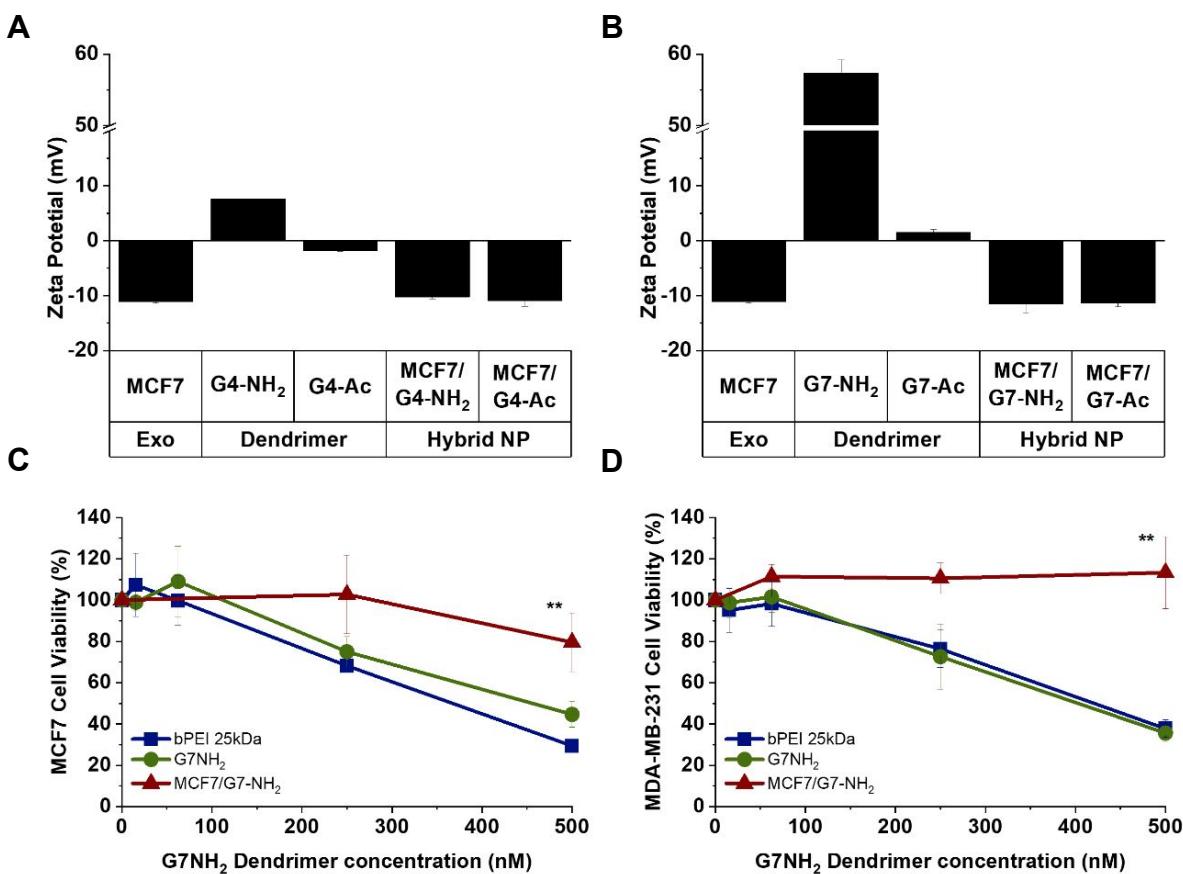


Figure 2. Physicochemical characterization of various nanoparticles used in this study. **A.** AFM images show that hybrid NP shape and diameters are similar to blank MCF7 exosomes, whereas the free dendrimers are significantly smaller. Scale bar: 200 nm. **B.** TEM confirms hybrid NP morphology and size. TEM immunogold staining to CD63 (gold nanoparticle-conjugated CD63 antibodies bound to CD63 proteins of exosomal membranes as shown in figure insets) also shows that the hybrid NPs retain the surface protein on the exosomal membranes. Scale bar: 50 nm. **C.** NTA analysis of the hybrid NPs provides additional confirmation of size. **D.** Western

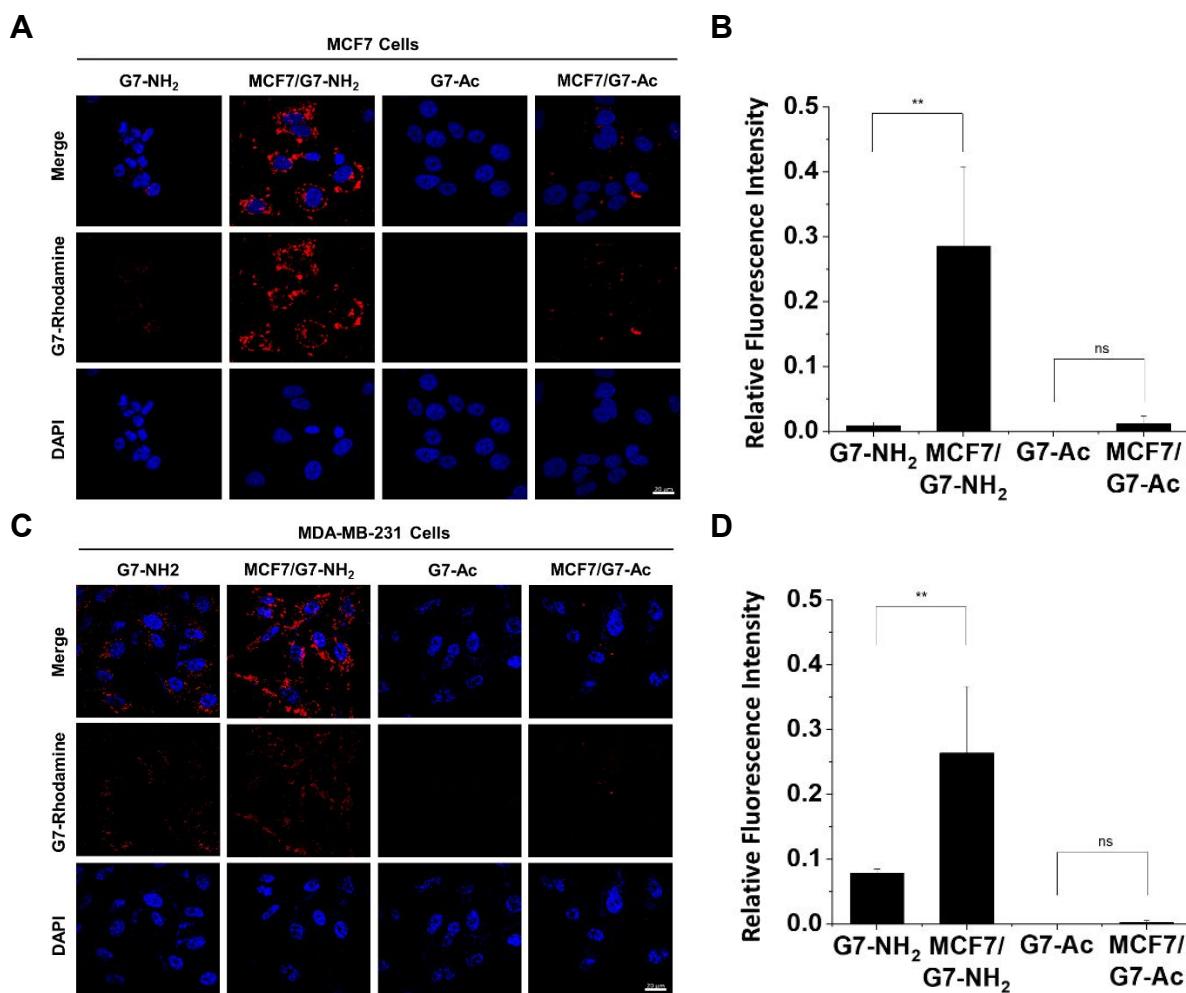
1
2
3 blotting confirms the presence of exosome-enriched protein markers CD63 (26 kDa) and CD81
4
5 (25 kDa) in hybrid NPs.
6
7
8

9 Cytotoxicity of Hybrid NPs 10 11

12 Hybrid NPs inherit the membrane properties of the exosome including the surface charge
13
14 (**Figure 3A, B**). The hybridization of MCF7 exosomes (-10 mV) with G4-NH₂ (7.54 mV) and
15 G4-Ac (-1.85 mV) dendrimers generated hybrid NPs MCF7/G4-NH₂ and MCF7/G4-Ac,
16 respectively, with -10 mV zeta potential. Similarly, hybridizing MCF7 exosomes with G7-NH₂
17 (57.3 mV) or G7-Ac (1.44 mV) generated MCF7/G7-NH₂ and MCF7/G7-Ac hybrid NPs,
18 respectively, with -10 mV zeta potential. These results suggested the primary amines were
19
20 masked in the hybrid NPs. We next examined the cytotoxicity of amine-terminated dendrimers
21 by measuring the viability of MCF7 and MDA-MB-231 cells after 24 h treatment with G7-NH₂
22 and MCF7/G7-NH₂ (**Figure 3C, D**). Hybridization of G7-NH₂ with MCF7 exosomes markedly
23 improved the cell viability of MCF7 ($79.6 \pm 14.1\%$ vs. $44.7 \pm 6.3\%$ at 500 nM, $p < 0.05$) and
24 MDA-MB-231 cells ($113.3 \pm 17.28\%$ vs. $35.6 \pm 4.1\%$ at 500 nM, $p < 0.05$) compared to
25 dendrimer alone. Branched poly(ethyleneimine) (bPEI), a cationic vector commonly used for
26 gene delivery, was used as a positive control with cytotoxicity statistically equivalent to G7-NH₂.
27
28 We concluded that hybridization effectively counters the cytotoxic characteristics of the amine-
29 terminated dendrimers by masking the surface charges, supporting hypothesis ii.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 3. Hybrid NPs exhibit reduced cytotoxicity compared to G7-NH₂. **A.** The net charge of hybrid NPs containing G4-NH₂ or G4-Ac resembles the net charge of exosomes alone rather than either dendrimer. **B.** The net charge of hybrid NPs containing G7-NH₂ or G7-Ac was similarly equal to that of exosomes. **C.** Concentration dependence of MCF7 cytotoxicity. bPEI 25 KDa (■), G7-NH₂ (●), MCF7/G7-NH₂ (▲). **B.** Concentration dependence of MDA-MB-231 cells. Both conditions were quantified by CCK-8 assay after 24 h treatment. **p < 0.05.

Cellular Interaction of Hybrid NPs

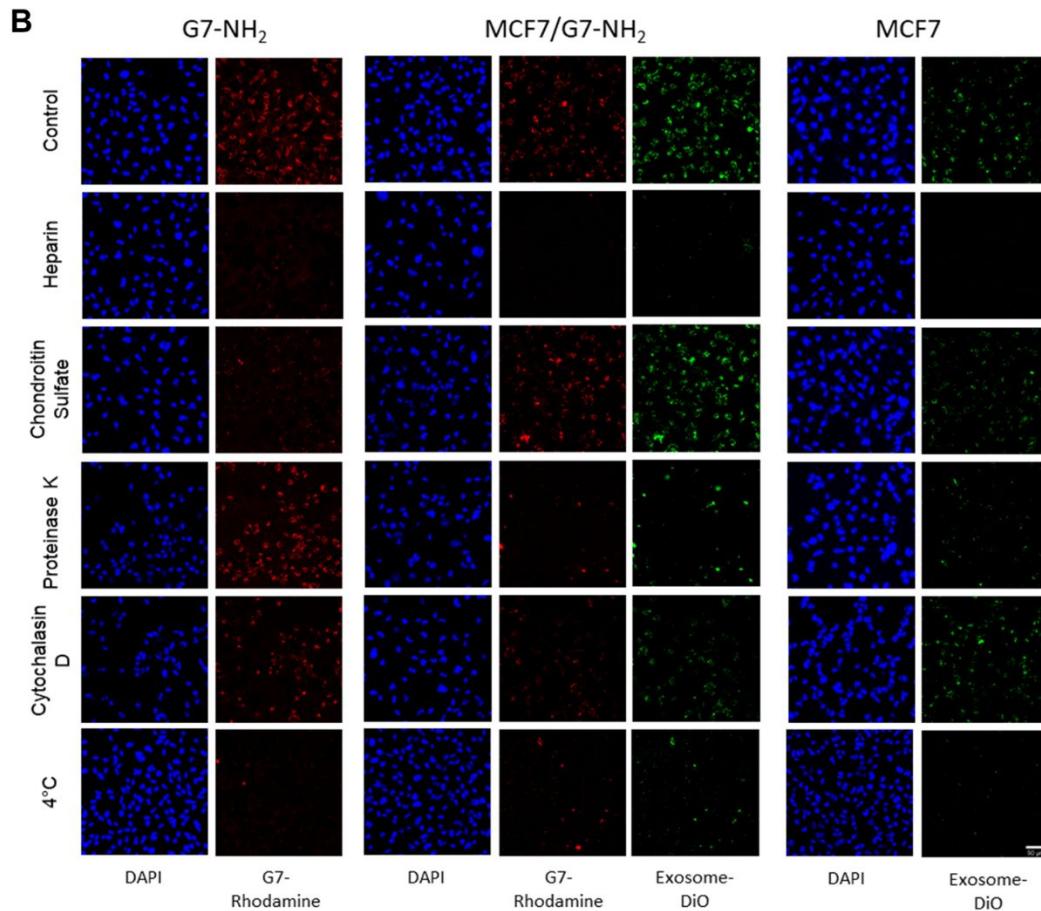
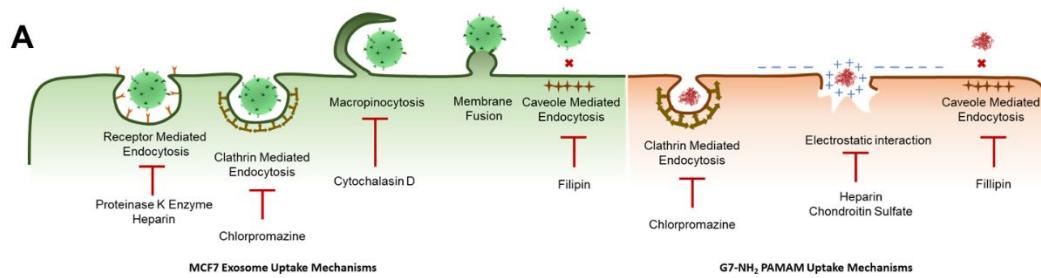

We then investigated cellular interactions of PAMAM dendrimers, exosomes, and hybrid NPs upon incubation with two breast cancer cell lines, MCF7 (**Figure 4A** and **4B**) and MDA-MB-231, using confocal microscopy (**Figure 4C** and **4D**). Rhodamine-conjugated G7-NH₂ and

1
2
3 G7-Ac dendrimers were prepared, followed by hybrid NP formulations using MCF7 exosomes
4 (MCF7/G7-NH₂ and MCF7/G7-Ac) . Based on our previous observations, G7-NH₂ dendrimers
5 are readily taken up by cells.^{11,38} The corresponding hybrid NPs resulted in significantly higher
6 cellular uptake in both cell lines ($p < 0.05$). Interestingly, acetylated dendrimers, which exhibit
7 minimal cellular interactions on their own, were also internalized when formulated as exosome-
8 dendrimer hybrid NPs. Furthermore, differences in loading efficiency of G7-NH₂ (6.33%) and
9 G7-Ac (0.69%) into hybrid NPs translated to the variances observed in cell uptake, as hybrid
10 NPs with higher loading efficiency (MCF7/G7-NH₂) exhibited enhanced cell binding in a 6-hour
11 incubation. The internalization of the dendrimers and hybrid NPs by MDA-MB-231 cells was
12 also validated by acquiring z-stack images of the cells (**Figure S5B**). Moreover, the hybrid NPs
13 appeared to remain intact for up to 48 h as seen by the colocalization of the dendrimer and
14 exosome signals in the microscopy of MDA-MB-231 cells (**Figure S6**). Thus, we could
15 conclude that the promoted cellular uptake of dendrimers was primarily due to the exosomal
16 membranes.

17
18
19 In cancer pathology, exosomes have been implicated in the formation of the premetastatic
20 niche, cancer progression, tumor growth, metastasis and drug resistance.^{28,29,42} Exosomes in
21 cancer not only communicate with neighboring cancer cells to transfer oncogenic signals and
22 promote epithelial-mesenchymal transition (EMT) but also with the endothelial cells and
23 immune cells in the stroma to promote pro-angiogenic, pro-metastatic and immune suppressive
24 tumor microenvironment.⁴³ The role of exosomes in intracellular communication led us to
25 determine if exosomes derived from cancer cells have specificity towards the parent cell line
26 over other cancer cell lines. To test the specificity, hybrid NPs and empty exosomes were
27 incubated with either MCF7 (parent cells, breast cancer cell line), MDA-MB-231 (metastatic
28

1
2
3 breast cancer cell line), or MiaPaCa2 (renal cancer cell line). Hybrid NPs were non-specifically
4 taken up by all cell lines similar to naïve cancer exosomes (**Figure S7**). Consequently, exosome
5 uptake was not specific to the parent cell line and was taken up by all cancer cells tested.
6
7

8 Although hybrid NPs did not demonstrate specificity to parent cell lines, when compared to
9 dendrimer-encapsulating liposomes, hybrid NPs exhibited enhanced cell uptake, indicating the
10 enhanced cell binding by the exosomal membrane (**Figure S8**).
11
12



52 **Figure 4.** Cell uptake of dendrimers and hybrid NPs. The confocal laser scanning microscopy
53 images of cell interaction of rhodamine-labeled dendrimers (G7-NH₂ and G7-Ac) and hybrid NP
54
55
56
57
58
59
60

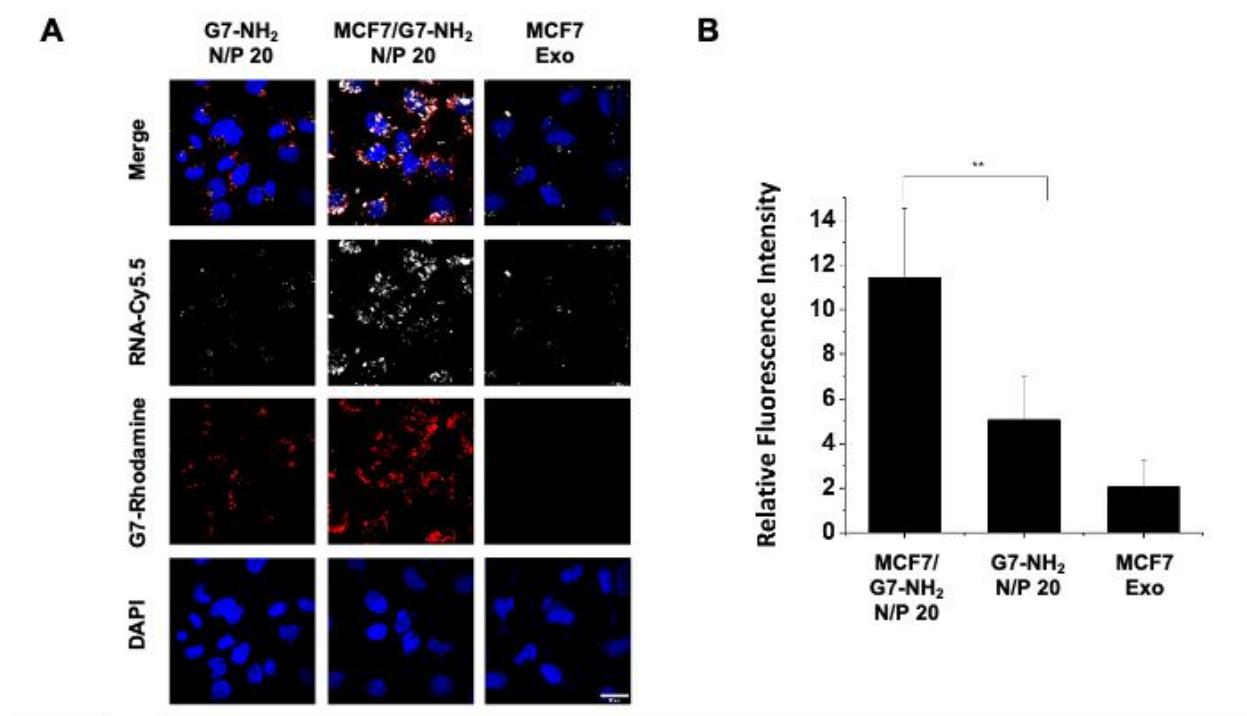
(MCF7/G7-NH₂ and MCF7/G7-Ac) with MCF7 (**A**) and MDA-MB-231 (**C**) cells after 6 hours of treatment show greater cellular uptake in comparison to dendrimers alone. The cell uptake of the dendrimers by MCF7 (**B**) and MDA-MB-231 cells (**D**) was also quantified by their fluorescence intensity using ImageJ. Hybridization with exosomes enhances the cellular uptake of dendrimers in both cell lines. Scale bar: 20 μ m, **p < 0.05, ^{ns}p value not significant.

Cell Uptake Mechanism of Hybrid NPs

Exosomes enter the cell via multiple uptake mechanisms including protein receptor-mediated endocytosis,^{44,45} membrane fusion,⁴⁶ clathrin-mediated endocytosis, macropinocytosis, and lipid-raft mediated endocytosis.⁴⁷ The uptake of cancer exosomes has also shown to be dependent on cell surface heparin sulfate proteoglycan (HSPG).⁴⁸ In contrast, cationic PAMAM dendrimers interact with cellular membranes primarily through electrostatic interaction and, to a smaller extent, through clathrin-mediated endocytosis.^{49,50} The cell uptake mechanisms and their corresponding inhibitors are illustrated in **Figure 5A**. MDA-MB-231 cells were treated with uptake inhibitors prior to treatment with hybrid NPs for 4 hours followed by imaging with fluorescence microscopy (**Figure 5B**). Cellular uptake of G7-NH₂ was inhibited by quenching the surface amine charges with negatively charged polysaccharides heparin and chondroitin sulfate. It was also inhibited by clathrin protein inhibitor, chlorpromazine, and by inhibiting ATP by subjecting the cells to 4°C. The uptake of MCF7 exosomes was inhibited by heparin, an inhibitor of HSPG, or by proteinase K-mediated digesting of the surface proteins necessary for receptor-mediated endocytosis. Blocking the additional pathways of exosome uptake by cytochalasin D, MBCD, chlorpromazine, and treatment at 4°C also led to decreased

internalization of exosomes. Consistent with our third hypothesis, the internalization of hybrid nanoparticles was reduced by the same inhibitors that blocked the uptake of naïve exosomes: heparin, 4°C, proteinase K, and Cytochalasin D (**Figure 5C**). These results showed that the cellular uptake of hybrid NPs was driven by exosomal membrane interaction, rather than by electrostatic mechanisms that drive the uptake of cationic dendrimers.

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


C

Cell Uptake Mechanism	Inhibitor	Inhibition of NP Cell Uptake		
		MCF7 Exosome	G7-NH ₂ PAMAM Dendrimers	MCF7/G7-NH ₂ Hybrid NPs
HSPG Mediated Uptake	Heparin	Yes	Yes	Yes
Electrostatic Interaction	Chondroitin Sulfate	No	Yes	No
Receptor mediated Uptake	Proteinase K Digestion	Yes	No	Yes
Macropinocytosis	Cytochalasin D	Yes	Yes	Yes
Energy Dependent Endocytosis	4°C	Yes	Yes	Yes

1
2
3 **Figure 5.** Cell uptake mechanisms of hybrid NPs. **A.** Illustration of various uptake mechanisms
4 and corresponding inhibitors of exosomes and cationic dendrimers. **B.** Confocal laser scanning
5 microscopy images of cell interaction of rhodamine-labeled dendrimers (G7-NH₂ and G7-Ac),
6 DiO-labeled Hybrid NPs (MCF7/G7-NH₂ and MCF7/G7-Ac), and DiO-labeled MCF7 exosomes
7 with MDA-MB-231 cells after 4 hours of treatment in presence of various cell uptake inhibitors.
8 Scale bar: 50 μ m **C.** Table summarizing the inhibitors affecting cell uptake of tested NPs. The
9 cell uptake of the hybrid NPs is inhibited by heparin, proteinase K, cytochalasin D, and low-
10 temperature treatment whereas chondroitin sulfate treatment did not affect the cell uptake
11 process, similar to that of exosomes.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Gene Delivery Potential of Hybrid NPs

A Cy5-labeled oligonucleotide was used to explore the gene delivery potential of hybrid NPs. The labeled oligonucleotide was complexed with G7-NH₂ dendrimers at a nitrogen-to-phosphate ratio (N/P) of 20 before hybridizing with the exosomes, leading to a 65% loading efficiency. Hybrid NPs had a 5.3-fold increase in loading efficiency, as compared to exosomes alone (**Figure S9**). An N/P ratio of 10 led to a decreased loading efficiency of 30%, as the number of cationic groups post-gene complexation was reduced. We therefore fixed the N/P ratio at 20 for all subsequent experiments in this study. The hybridization of exosomes with G7-NH₂ also contributed to the improved loading of genetic material into exosomes. Compared to dendrimers and exosomes alone, hybrid NPs showed a 2-fold increase in oligonucleotide accumulation in cells as seen by the increased fluorescence intensity (**Figure 6**).

Figure 6. Enhanced gene delivery with hybrid NPs. **A.** Cy5-labeled oligonucleotide using G7-NH₂ PAMAM dendrimer, MCF7/G7-NH₂ hybrid NP at N/P ratio 20 or MCF7 exosomes as a gene delivery vehicle in MDA-MB-231 cells after 6 hours of treatment, visualized with laser scanning confocal microscopy. **B.** Quantified fluorescent signal suggested a 2-fold higher oligonucleotide delivery capacity by hybrid NPs compared to PAMAM dendrimers or exosomes alone. Scale bar: 20 μ m, **p < 0.05.

Next, we tested the transfection potential of the hybrid NPs with siRNA targeting programmed death-ligand 1 (PD-L1). PD-L1, an immune checkpoint inhibitor protein that interacts with programmed cell death protein 1 (PD-1) on immune cells, is frequently overexpressed by aggressive cancer cells and is associated with immune cell evasion for tumor leading to poor prognosis.⁵¹ PD-L1 inhibitors, primarily monoclonal antibodies, block the detrimental PD-1/PD-L1 interaction and promote immune attack against cancer cells. As a gene therapy approach,

1
2
3 siRNA reduces the expression of PD-L1 in cancer cells, thereby decreasing the PD-L1-mediated
4 immune evasion. Following interferon gamma (IFN- γ) treatment to induce the overexpression of
5 PD-L1,⁵² MDA-MB-231 cells were incubated with a 10 nM dose of PD-L1 siRNA delivered
6 either with dendrimers, exosomes (N/P = 20), or hybrid nanoparticles. As shown in **Figure 7**,
7 the delivery of PD-L1 siRNA with MCF7/G7-NH₂ NPs reduced the PD-L1 protein expression at
8 the largest degree (by 59.2%) among the groups ($p < 0.05$), while G7-NH₂ dendrimer reduced
9 expression by 15.6% only. The significant differences in transfection efficiency indicate that the
10 hybrid NPs are less prone to the formation of protein corona that inhibits cellular update of gene-
11 complexed NPs than free dendrimers.⁵³ As a result of the anionic exosomes offering limited
12 interactions with serum proteins, exosomes alone also outcompeted dendrimers, exhibiting a
13 27.6% reduction in PD-L1 expression ($p < 0.05$).
14
15

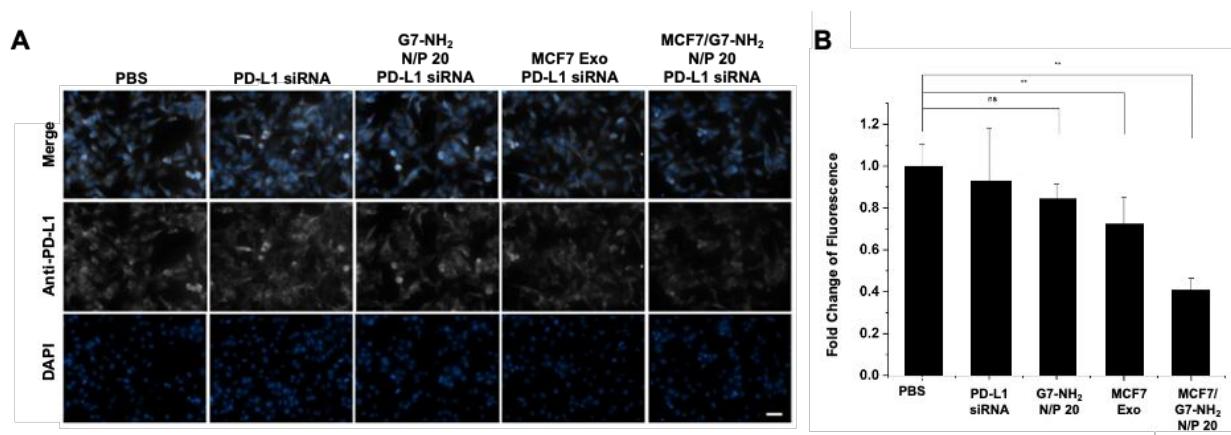


Figure 7: Hybrid NPs downregulate PD-L1 expression by delivering PD-L1 siRNA. **A.** PD-L1 siRNA (10 nM) was complexed with G7-NH₂ PAMAM dendrimer, MCF7 exosomes or MCF7/G7-NH₂ hybrid NP at N/P ratio 20 and incubated with MDA-MB-231 cells for 6 hours of treatment. **B.** Quantified fluorescent signal suggested a 3.8-fold reduction in PD-L1 protein

1
2
3 expression by hybrid NPs compared to dendrimers alone. Scale bar: 50 μ m, **p < 0.05, ^{ns}p value
4
5
6 not significant.
7
8
9
10

11 DISCUSSION 12 13

14 In this study, we have demonstrated that cell entry and gene delivery by PAMAM dendrimers are
15 greatly improved by hybridization with exosomes. We posed three hypotheses to assess the
16 hybrid NPs concerning their cellular interaction and cytotoxicity. The first hypothesis addressed
17 the mechanism of hybridization. Previous studies with cationic PAMAM dendrimers have
18 demonstrated that their interactions with supported lipid bilayers and cell membranes are largely
19 dependent upon the size and degree of the positive charge of the dendrimers.^{15,54} Herein, we
20 measured the hybridization efficiency of dendrimers with different surface charges and sizes
21 with exosomes and liposomes comprised of well-defined lipid mixtures. Both exosomes and
22 negatively charged liposomes hybridized most efficiently with dendrimers with positive surface
23 charge. Larger-generation dendrimers with greater numbers of charged surface groups also
24 hybridized more efficiently than smaller dendrimers with fewer surface charges. Thus, we
25 concluded that the hybridization process was driven mainly by the electrostatic interaction
26 between the terminal amines of the dendrimers and the negatively charged lipids of the bilayer,
27 proving our hypothesis that the higher generation positively charged dendrimer would most
28 efficiently hybridize with the exosomes.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49 The hybridization process did not adversely alter the exosomes' biological properties,
50 such as membrane protein composition or vesicle morphology. The preservation of these
51 features in the hybrid NP provides the biocompatibility and targetability that PAMAM
52
53
54
55
56
57
58
59

1
2
3 dendrimers lack. Our second hypothesis was that hybridization would mitigate cytotoxicity
4 associated with the cationic PAMAM dendrimers. Despite their many advantages in drug and
5 gene delivery, PAMAM dendrimers and similar cationic polymers cause membrane
6 destabilization and cellular necrosis at high doses.⁵⁵ We theorized that hybrid NPs would
7 effectively mask the primary amine groups on G7-NH₂, avoid detrimental interactions with the
8 cell membrane, and ultimately reduce cytotoxicity compared to the dendrimers alone. The
9 hybridization of dendrimers with exosomes indeed quenched the positive surface zeta potential
10 and resulted in the characteristic negative zeta potential of the exosomes. Subsequent in vitro
11 assays confirmed that cytotoxicity was effectively reduced in the hybrid NPs compared to
12 dendrimers alone, indicating that our second hypothesis is valid.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 The cellular interactions of PAMAM dendrimers are largely dependent upon their
28 physical properties, such as size and surface charge.^{15,20,38,56-58} In contrast, exosome interactions
29 with cells are typically dictated by the composition of exosomal membrane proteins and lipids,
30 which is highly dependent on the source of the vesicles.^{59,60} The incorporation of exosome
31 membrane proteins into the hybrid NPs and masking of the amine groups could also alter the
32 cellular interaction of the PAMAM dendrimers. We thus posed our third hypothesis that
33 hybridization would facilitate cellular uptake of PAMAM dendrimers by the same mechanisms
34 as exosomes. Consistent with this hypothesis, we saw an increase in the uptake of the PAMAM
35 dendrimers in the hybridized state and determined that the mechanisms were consistent with
36 exosome uptake pathways. However, as the amine-terminated dendrimers exhibited a greater
37 degree of cell entry than the acetylated dendrimers, the role played by dendrimer surface charge
38 in affecting cell interactions of the hybrid NPs cannot be completely excluded. Instead, it seems
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 that both exosome surfaces and dendrimer charges collectively affect cell entry of the hybrid NPs
4 through multiple mechanisms.
5
6

7
8
9 The ability of cationic dendrimers and exosomes as natural carriers of genetic materials
10 has been utilized individually as a non-viral gene delivery system. In this work, we observed
11 that hybrid NPs proved to be a better gene delivery vehicle than dendrimers alone. Non-viral
12 gene delivery vehicles, such as polyethyleneimine (PEI) or PAMAM dendrimers, depend on
13 their cationic nature to deliver genes to the cell. However, their cationic nature also leads to
14 considerable cytotoxicity. Other approaches to decreasing dendrimer toxicity, such as partial
15 acetylation of the cationic moieties, PEGylation, or modification with lipid chains, have been
16 reported to decrease transfection efficiency.⁶¹ It is therefore noteworthy that we observed higher
17 delivery and transfection efficiency with hybrid NPs with reduced cytotoxicity. Hybrid NPs
18 could ideally exploit the nucleotide complexation capacity of cationic dendrimers with the cell
19 interaction and biodistribution properties of the exosome to deliver therapeutic genes to cancer
20 cells. Additionally, exosome membrane proteins, such as CD47 with the ability to avoid
21 clearance by monocytes, could potentially contribute to improved biodistribution *in vivo*.⁶²
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40 Future work will evaluate the biodistribution and biocompatibility properties of the
41 hybrid NPs. We will also explore the potential of the exosome components to impart these
42 biocompatibility properties to the hybrid system *in vivo*. Because the source of exosomes has a
43 major influence on cellular interactions (as preliminarily shown in **Figure S10**),⁵⁹ we expect to
44 also potentially modulate the biodistribution and uptake profile of hybrid NPs by collecting
45 exosomes generated by different cell types.
46
47
48
49
50
51
52
53
54
55

CONCLUSION

We demonstrated the successful hybridization of exosomes derived from both MSC and MCF7 cells with PAMAM dendrimers to generate multifunctional hybrid NPs. This hybrid NP system offered the advantageous biological merits of exosomes as well as the gene delivery potential of PAMAM dendrimers within a single system. The hybrid MCF7/G7-NH₂ NP system exhibited the highest loading efficiency (~ 6.3%) and the experimental results reveal that charge-based interfaces are the key factors for the generation of a hybrid NPs system. We confirmed three hypotheses related to hybrid NP formations and their behaviors. First, we showed that hybridization was driven by the dendrimer charge. That is, positively charged, G7 PAMAM dendrimers showed the most efficient loading among the nine combinations evaluated. Second, we demonstrated that the hybrid NPs inherited the membrane properties of the exosomes, and as a result, evade the cytotoxicity associated with the positively charged PAMAM dendrimers. Specifically, the hybrid NP system exhibited improved cell viability against MCF7 and MDA-MB-231 cells likely owing to the masked surface charge of amine groups of the PAMAM dendrimer. Finally, we confirmed that the hybrid NPs enter cells via multiple mechanisms, primarily governed by the characteristics of exosomes. To explore the efficiency of the G7-NH₂-exosome hybrid NP system as a gene delivery vehicle, oligonucleotide uptake and siRNA delivery were also observed, resulting in a 2-fold increase in gene delivery potential and a 3.8-fold reduction in PD-L1 expression, compared to dendrimers alone, respectively. The

1
2
3 hybridization of PAMAM dendrimers with exosomes represents a promising approach to
4
5 overcoming biological barriers to targeted therapeutics.
6
7
8
9
10

11 EXPERIMENTAL SECTION 12

13 *Materials* 14

15
16 Polyamidoamine (PAMAM) dendrimers with ethylenediamine core of generation 2, 4, and 7,
17 bovine serum albumin (BSA), cholesterol, cytochalasin D, heparin, proteinase K, and human
18 recombinant insulin were obtained from Millipore Sigma (St. Louis, MO). 5/6-carboxy-
19 tetramethyl-rhodamine succinimidyl ester, mixed isomer (NHS-Rhodamine), 3,3'-
20 dioctadecyloxacarbocyanine perchlorate (DiO), and BCA Assay was purchased from Thermo
21 Fisher Scientific Inc. (Waltham, MA). MCF7 and MiaPaCa2 cells were purchased from the
22 American Type Tissue Collection (ATCC, Manassas, VA) and mesenchymal stem cells (MSC)
23 were purchased from Lonza (Williamsport, PA). MEM Medium, MEM alpha media, DMEM
24 media, penicillin/streptomycin antibiotics, and heat-inactivated fetal bovine serum (FBS) were
25 purchased from Corning Incorporated (USA) (NY, NY). The MDA-MB 231 cells were a gift
26 from Miyamoto lab at the University of Wisconsin-Madison. DOTAP (1,2-dioleoyl-3-
27 trimethylammonium-propane (chloride salt)), DMPC (1,2-dimyristoyl-sn-glycero-3-
28 phosphocholine), DOPE(1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), and DOPS (1,2-
29 dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt)) were purchased from Avanti Polar Lipids
30 Inc. (Alabaster, AL). Chondroitin Sulfate was purchased from Alfa Aesar (Tewksbury, MA).
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Conjugation and Characterization of PAMAM Dendrimers

1
2
3 Dendrimers were conjugated to NHS-Rhodamine, and then surface modified, following the
4 methods previously published.³⁸ Briefly, PAMAM dendrimers (G2-NH₂/9.2×10⁻⁶ mol, G4-
5 NH₂/2.1×10⁻⁶ mol, G7-NH₂/0.26×10⁻⁶ mol) were dissolved in sodium bicarbonate buffer at pH
6 9.0. NHS- Rhodamine (18.4×10⁻⁶ mol for G2, 4.2×10⁻⁶ mol for G4, 2.1×10⁻⁶ mol for G7) was
7 dissolved in DMSO was added dropwise to the dendrimer with constant stirring. The mixture
8 was reacted for 24 hours at room temperature followed by membrane dialysis using a
9 Spectra/Por dialysis membrane with MWCO 500 for G2, MWCO 3500 for G4, and MWCO
10 10,000 for G7 (Spectrum Laboratories Inc., Rancho Dominguez, CA) against water for
11 purification. The purified dendrimers were freeze-dried using Labconco FreeZone 4.5 system
12 (Kansas City, MO) and stored at -20 °C. The conjugation was confirmed using ¹H NMR using a
13 Bruker Avance III HD 400 MHz NMR Spectrometer. Rhodamine-conjugated dendrimers were
14 surface modified to have either a neutral charge by acetylation or a negative charge by
15 carboxylation reactions. For the acetylation process, dendrimers in methanol (10 mg) were
16 reacted with acetic anhydride (1.86×10⁻⁴ mol for G2, 2.10×10⁻⁴ mol for G4, 2.17×10⁻⁴ mol for
17 G7) in presence of triethanolamine (1.25 molar excess of acetic anhydride) for 24 hours at room
18 temperature. For the carboxylation process, the dendrimers in DMSO were reacted with succinic
19 anhydride (1.86×10⁻⁴ mol for G2, 2.10×10⁻⁴ mol for G4, 2.17×10⁻⁴ mol for G7) for 24 hours at
20 room temperature. The surface-modified dendrimers were purified by membrane dialysis,
21 lyophilized and characterized by ¹H NMR as mentioned earlier.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Cell Culture

MCF7, MSC, MDA-MB-231, and MiaPaCa2 cells were cultured as a monolayer at 37°C, 5% CO₂ in complete media. For MCF7 cells, complete media was prepared using MEM Media supplemented with penicillin/streptomycin antibiotics (100 units/ mL), 10% heat-inactivated

1
2
3 fetal bovine serum (FBS), and 0.01 mg/ml human recombinant insulin. For MSC cells, complete
4 media was prepared by supplementing MEM alpha media with penicillin/streptomycin
5 antibiotics (100 units/ mL) and 10% heat-inactivated FBS. For MDA-MB-231 and MiaPaCa2
6 cells, the complete media consisted of DMEM Medium supplemented with
7 penicillin/streptomycin antibiotics (100 units/ mL) and 10% heat-inactivated fetal bovine serum
8 (FBS).
9
10
11
12
13
14
15
16
17

Exosome Isolation

18
19
20
21 Exosomes for all the experiments were isolated from the conditioned cell culture media of
22 cultured MCF7 and MSC cells. To generate the conditioned media, the cells in monolayer were
23 incubated in respective media supplemented with antibiotics and 1% bovine serum albumin for
24 48 hours. The exosome isolation process was carried out using the ultracentrifugation method as
25 described by Thery *et al.*³⁷ Briefly, the collected media were centrifuged at 300 xg for 10
26 minutes to collect dead cells, followed by centrifugation at 12,000 xg for 30 minutes to collect
27 any large cellular debris. The media were then centrifuged at 100,000 xg for 1 hour using a
28 Beckman Type 45 Ti rotor and ultracentrifuge. The collected pellets were then washed with PBS
29 and recentrifuged to remove any remaining media. The pelleted exosomes were resuspended in
30 PBS and stored at -80°C till further use.
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Preparation and Characterization of Hybrid NPs

45
46
47
48 For preparing the exosome-dendrimer hybrid NPs, a sonication process was used based on the
49 exosome loading protocol described by Kim et. al.⁴⁰ Exosomes (50 µg as calculated by the
50 amount of protein) were aliquoted in 500 µl of PBS and mixed with 10% w/w (to the exosome)
51 dendrimer (5 µg). The mixture was sonicated using a QSonica Sonicator (20 kHz) with a 3.2 mm
52
53
54
55
56
57
58
59
60

1
2
3 probe at 20 % amplitude with 10-second on/off pulses for a total of 3 minutes followed by
4
5 incubation at 37°C for 30 minutes for the membranes to reform. To label the exosomes for
6
7 microscopy, DiO Dye was added to the solution during the 37°C incubation step. The free
8
9 dendrimers and dye were isolated from the hybrids by ultracentrifugation at 100,000xg. The
10
11 collected pellet, composed of hybrid NPs and exosomes, was resuspended in PBS and stored at -
12
13 80°C till further use. The amount of dendrimers hybridized with the exosomes in the hybrid NPs
14
15 were calculated using BCA assay and fluorescence intensity measurements with a Synergy
16
17 microplate reader (Biotek). A series of dendrimer concentrations dissolved in a 1:1 solution of
18
19 PBS: DMSO were used to generate a standard curve by measuring the fluorescence intensity of
20
21 the rhodamine-conjugated to the dendrimer using the excitation and emission wavelengths of 540
22
23 nm and 580 nm respectively. Based on the fluorescence intensity of the samples dissolved in 1:1
24
25 PBS: DMSO, the standard curve was used to calculate the amount of dendrimers in the hybrid
26
27 NPs. The amount of exosomes was measured as the amount of proteins estimated using BCA
28
29 assay (Thermo Fisher) as per the manufacturer's protocol. The loading efficiency was calculated
30
31 using the following formula: $Loading\ Efficiency\ (\%) = \frac{Amount\ of\ Dendrimer\ (\mu g)}{Amount\ of\ Exosomal\ Protein\ (\mu g)} \times 100$

32
33
34
35
36
37
38
39 *Liposome preparation*

40
41
42 Liposomes were prepared using the thin film hydration method followed by sonication as
43
44 described previously.⁶³ The anionic liposome was generated by using
45
46 DOPE:DMPC:Cholesterol:DOPS at a ratio 0.34:0.34:0.2:0.12⁶⁴ respectively whereas the cationic
47
48 liposome was generated using DOTAP:DMPC:Cholesterol at a ratio 0.5:0.45:0.05 respectively.
49
50 The respective lipid mixtures were dissolved in chloroform in a round bottom flask. The flask is
51
52 connected to a rotary evaporator at RT for 30 minutes to completely evaporate the chloroform
53
54
55
56
57
58
59

1
2
3 and form a thin film. The dried film was hydrated with 1 ml PBS, followed by vortexing for 15
4 minutes and sonication with a tip sonicator for 1 minute to form either anionic or cationic
5 liposome. Liposome-dendrimer hybrids were prepared using the protocol described in the
6 hybridization process section.
7
8
9
10
11
12

13 *Nanoparticle Tracking Analysis (NTA)*
14
15

16 Diluted solutions of exosome and hybrid NPs were analyzed using the NS300 NTA instrument
17 (Malvern Panalytical Ltd., Worcestershire, UK), with a 532 nm laser. 5 videos of 60 seconds
18 each were collected for all samples and analyzed with Nanosight 3.0 software. The camera level
19 was set at 14 and the detection threshold at 5 during the analysis.
20
21
22
23
24
25
26

27 *Transmission Electron Microscopy (TEM)*
28
29

30 The exosomes were characterized using TEM with negative staining as well as immunogold
31 staining protocol. For the negative staining protocol, fixed exosome samples were adsorbed onto
32 a 300 mesh Formvar/Carbon grid for at least 15 minutes. The grids were washed with water by
33 floating on drops of water to remove PBS and contrasted with 1% uranyl acetate solution dye.
34 These grids were used to validate the isolated exosomes. The immunogold staining procedure
35 was carried out to test the presence of exosomal membrane proteins in hybrid NPs using
36 antibodies against CD63. For immunogold staining, fixed hybrids NPs and exosomes were
37 adsorbed onto a 300 mesh Formvar/Carbon grid and blocked with 0.1% BSA for 30 minutes.
38 The grids were then washed and incubated overnight at 4°C with antibody against CD63
39 (polyclonal anti-CD 63 SC-15363, Santa Cruz). All the grids were rinsed and floated on 10 nm
40 gold conjugated secondary antibody (EM Goat anti-Rabbit IgG: 10nm Gold, BBI Solutions) for
41 1 hour at room temperature. The grids were washed, fixed in 2% glutaraldehyde and contrasted
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 with 1% uranyl acetate solution. The grids were imaged with Tecnai T-12 TEM (FEI, Hillsboro,
4
5 OR) and Gatan Ultrascan CCD camera (Gatan, Pleasanton, CA).
6
7
8

9 *Atomic Force Microscopy (AFM)*
10
11

12 AFM imaging was employed to assess the size of hybrid NPs. The dendrimers, exosomes and
13 hybrid NPs were fixed with 2% glutaraldehyde and adsorbed onto a freshly cleaved mica for 30
14 minutes. The adsorbed samples in PBS were imaged using AC40 Biolever mini probe (Bruker
15 AFM Probes) with nominal spring constant 0.09 N/m and tip radius 8 nm using an Asylum
16 Infinity Biosystem (Oxford Instruments, Santa Barbara, Ca). A scanning area of 5 $\mu\text{m} \times 5 \mu\text{m}$
17 and 1 $\mu\text{m} \times 1 \mu\text{m}$ (256 x 256) was imaged at 1 kHz speed in tapping (AC) mode.
18
19
20
21
22
23
24
25
26

27 *Western Blotting*
28
29

30 The naïve exosomes and hybrid NPs were lysed using RIPA buffer and quantified for protein by
31 BCA Assay. The proteins were resolved on an acrylamide gel and transferred onto a PVDF
32 membrane in wet transfer conditions. The blot was blocked with 5% skim milk for 1 hour
33 followed by overnight incubation in primary antibody against CD63 (polyclonal anti-CD63, SC-
34 15363, Santa Cruz), CD81 (monoclonal anti-CD81 SC-166028, Santa Cruz), CD9 (monoclonal
35 anti-CD81 SC-13118, Santa Cruz) and HSP70 (polyclonal anti-HSP70, EXOAB-Hsp70A-1,
36 System Biosciences) at 4°C. Blots were incubated in secondary antibodies for 1 hour at room
37 temperature and washed. The blots were developed using a chemiluminescent reagent, Clarity
38 Western ECL Substrate (Bio-Rad) and imaged using Syngene G:Box F3 (Syngene, Frederick,
39 MD).
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55 *Cell Uptake and Confocal Microscopy*
56
57
58
59
60

1
2
3 MCF7, MDA-MB-231, and MiaPaca2 cells were seeded in 8-well chamber slides (NuncTM Lab-
4
5 TekTM II Chamber SlideTM System, Thermo Scientific) at a density of 25,000 cells/well and
6
7 incubated for 24 hours. Generation 7 amine dendrimers and generation 7 acetylated dendrimers
8
9 and corresponding MCF7 exosome hybrid NPs were treated at 10 nM dendrimer concentration
10
11 for 6 hours. Following treatment with the dendrimer, hybrid NPs, and exosomes, the cells were
12
13 washed with PBS and then fixed in 4% paraformaldehyde for 10 min at room temperature. The
14
15 fixed cells were washed and stained for the nuclei using a 1 μ g/mL solution of Hoechst dye. The
16
17 stained cells were washed and mounted using Prolong Gold mounting media and coverglass. The
18
19 slides were imaged using Zeiss LSM 710 Confocal Microscope (CLSM, Carl Zeiss, Germany).
20
21
22 The laser lines 405, 488, and 561 nm were used to excite Hoechst (nuclei), DiO (exosome
23
24 membrane), and Rhodamine (dendrimer) respectively. The fluorescence intensity of rhodamine
25
26 in each treatment was assessed from three independent runs using ImageJ software. The cell
27
28 uptake mechanism of the hybrid NPs was carried out with MDA-MB-231 cells using G7-NH₂,
29
30 MCF7 exosomes and MCF7/G7-NH₂ NPs. For receptor-mediated endocytosis inhibition, NPs
31
32 were incubated with proteinase k enzyme at 100 μ g/mL for 30 minutes at 37°C, followed by the
33
34 addition of a protease inhibitor cocktail to inactivate the enzyme. For inhibition of charge-
35
36 mediated cell interaction, the NPs were incubated with heparin or chondroitin sulfate at 10
37
38 μ g/mL for 30 minutes before treating the cells. For inhibition of macropinocytosis and energy-
39
40 dependent uptake process, the cells were treated with Cytochalasin D (5 μ g/mL) or subjected to
41
42 4°C temperature for 30 minutes before treatment with the NPs for 4 hours.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Cytotoxicity Assays

MCF7 cells and MDA-MB-231 cells were seeded in a 96-well plate at a density of 12,000
cells/well and incubated for 24 hours. Cells were treated with branched polyethyleneimine 25

KDa, G7-NH₂, and MCF7/G7-NH₂ NPs at 6 concentrations (1000, 500, 250, 62.5, 15.25 nM) for 24 hours in serum-containing media. After the treatment period, the cell viability was assessed using Cell Counting Kit-8 Assay (CCK-8) (Enzo Life Sciences) as described by the manufacturer. Briefly, 10 μ L of CCK-8 reagent was added to each well after NP treatment and incubated at 37°C for 2 hours. The cell viability was determined by measuring absorbance at 450 nm using a plate reader. The cell viability was expressed normalized to the untreated cells.

Gene Transfection

MDA-MB-231 cells were seeded in 48 well plates. At 80% confluency, the cells were stimulated with IFN- γ at 30 ng/mL for 6 hours to induce PD-L1 expression. The PD-L1 siRNA were complexed with dendrimers at a N/P ratio of 20, based on our previous studies⁶⁵⁻⁶⁶. The complexed dendrimers were treated as is or loaded into exosomes to form hybrid NPs. The hybrid NPs were formed as described in previous sections. The cells were treated with dendrimers, exosomes, or hybrid NPs complexed with PD-L1 siRNA for 6 hours in a complete medium. Post-treatment, media were changed, and cells were incubated for additional 48 hours. PD-L1 protein expression was checked using an immunofluorescence assay. Treated cells were washed with PBS, followed by blocking with 1% BSA solution. The cells were then incubated with primary antibody against PD-L1 (monoclonal anti-B7-H1 156-B7, R&D Systems) in a 1:200 dilution in 0.1% BSA at 4°C for 4 hours. Next, cells were washed and incubated with 4 μ g/mL of secondary antibody conjugated to AF647 (monoclonal anti-Rabbit IgG A-21244, Thermo Scientific) in 0.2% BSA at 4°C overnight. Final step was to mount the cells and image with fluorescence microscopy.

Statistical Analysis

1
2
3 Statistical analysis was performed using OriginPro 8.1 (OriginLab, Northampton, MA). Mean
4
5 cell viabilities were compared using 1-way ANNOVA followed by Tukey's post hoc test at $p <$
6
7 0.05.
8
9

10
11 ASSOCIATED CONTENT
12
13

14
15 **Supporting Information.** TEM and AFM images of isolated exosomes, western blot and ζ
16 potential of exosomes, synthesis scheme and ^1H NMR spectra for modified dendrimers,
17
18 microscopy images of ceullar interactions of various NP formulations, loading efficiency of
19 oligonucleotide into exosomes. This material is available free of charge via the Internet at
20
21 <http://pubs.acs.org>.
22
23

24
25 AUTHOR INFORMATION
26
27

28
29 **Corresponding Author**
30
31

32 *Address all correspondence to:
33
34

35 Prof. Seungpyo Hong
36
37 Pharmaceutical Sciences Division, School of Pharmacy
38
39 University of Wisconsin – Madison
40
41 7121 Rennebohm Hall
42
43 777 Highland Avenue
44
45 Madison, WI 53705, USA
46
47 email: seungpyo.hong@wisc.edu
48
49 phone: (608) 890-0699
50
51

52
53 **Author Contributions**
54
55

1
2
3 SH, HH, ISK, and ICK conceived the idea. SH provided experimental advice and funding
4 support. SH, AN, KJJ, and JB designed the project. AN, KJJ, and MJP performed and interpreted
5 the experiments. AN, KJJ, JB, MJP, NM, HH, and SH wrote the manuscript. All authors have
6
7
8
9
10 approved the final version of the manuscript.
11
12
13

14 **Funding Sources**

15
16

17 This study was partially supported by National Science Foundation (NSF) under grants # DMR-
18
19 1741560 and 1808251 and Milton J Henrichs Chair Fund.
20
21

22 **ACKNOWLEDGMENT**

23

24 The authors would like to thank Profs. J. Johnson, T. Bugni, G. Kwon, A. Bashirullah and M.
25 Taylor in School of Pharmacy at the University of Wisconsin-Madison for their assistance with
26
27 instrument usage. The authors would also like to thank J. Kim and E. Spreings for their
28
29 assistance during the experimental setup.
30
31
32
33
34
35
36
37
38
39
40

41 **REFERENCES:**

- 42 (1) Pecot, C. V.; Calin, G. A.; Coleman, R. L.; Lopez-Berestein, G.; Sood, A. K. RNA
43 Interference in the Clinic: Challenges and Future Directions. *Nat. Rev. Cancer* **2011**, *11*
44 (1), 59–67. <https://doi.org/10.1038/nrc2966>.
- 45 (2) Zuckerman, J. E.; Davis, M. E. Clinical Experiences with Systemically Administered
46 SiRNA-Based Therapeutics in Cancer. *Nat. Rev. Drug Discov.* **2015**, *14* (12), 843–856.
47 <https://doi.org/10.1038/nrd4685>.
- 48 (3) Greaney, S. K.; Algazi, A. P.; Tsai, K. K.; Takamura, K. T.; Chen, L.; Twitty, C. G.;
49 Zhang, L.; Paciorek, A.; Pierce, R. H.; Le, M. H.; Daud, A. I.; Fong, L. Intratumoral
50 Plasmid IL12 Electroporation Therapy in Patients with Advanced Melanoma Induces
51 Systemic and Intratumoral T-Cell Responses. *Cancer Immunol. Res.* **2020**, *8* (2), 246–254.
52 <https://doi.org/10.1158/2326-6066.CIR-19-0359>.
- 53 (4) Duperret, E. K.; Perales-Puchalt, A.; Stoltz, R.; Hiranjith, G. H.; Mandloi, N.; Barlow, J.;
54 Chaudhuri, A.; Sardesai, N. Y.; Weiner, D. B. A Synthetic DNA, Multi-Neoantigen
55
56
57

1
2
3 Vaccine Drives Predominately MHC Class I CD8 β T-Cell Responses, Impacting Tumor
4 Challenge. *Cancer Immunol. Res.* **2019**, *7* (2), 174–182. <https://doi.org/10.1158/2326-6066.CIR-18-0283>.

5 (5) Xin, Y.; Huang, M.; Guo, W. W.; Huang, Q.; Zhang, L. zhen; Jiang, G. Nano-Based
6 Delivery of RNAi in Cancer Therapy. *Mol. Cancer* **2017**, *16* (1), 134.
7 <https://doi.org/10.1186/s12943-017-0683-y>.

8 (6) Pai, S. I.; Lin, Y.-Y.; Macaes, B.; Meneshian, A.; Hung, C.-F.; Wu, T.-C. Prospects of
9 RNA Interference Therapy for Cancer. *Gene Ther.* **2006**, *13* (6), 464–477.
10 <https://doi.org/10.1038/sj.gt.3302694>.

11 (7) Svenson, S.; Tomalia, D. A. Dendrimers in Biomedical Applications—Reflections on the
12 Field. *Adv. Drug Deliv. Rev.* **2005**, *57* (15), 2106–2129.
13 <https://doi.org/https://doi.org/10.1016/j.addr.2005.09.018>.

14 (8) Bugno, J.; Hsu, H.; Hong, S. Tweaking Dendrimers and Dendritic Nanoparticles for
15 Controlled Nano-Bio Interactions: Potential Nanocarriers for Improved Cancer Targeting.
16 *J. Drug Target.* **2015**, *23* (7–8), 642–650.
17 <https://doi.org/10.3109/1061186x.2015.1052077>.

18 (9) Bugno, J.; Hsu, H.; Hong, S. Recent Advances in Targeted Drug Delivery Approaches
19 Using Dendritic Polymers. *Biomater. Sci.* **2015**, *3* (7), 1025–1034.
20 <https://doi.org/10.1039/c4bm00351a>.

21 (10) Hong, S.; Leroueil, P. R.; Majoros, I. J.; Orr, B. G.; Baker, J. R.; Banaszak Holl, M. M.
22 The Binding Avidity of a Nanoparticle-Based Multivalent Targeted Drug Delivery
23 Platform. *Chem. Biol.* **2007**, *14* (1), 107–115.
24 <https://doi.org/https://doi.org/10.1016/j.chembiol.2006.11.015>.

25 (11) Bugno, J.; Hsu, H.-J.; Pearson, R. M.; Noh, H.; Hong, S. Size and Surface Charge of
26 Engineered Poly(Amidoamine) Dendrimers Modulate Tumor Accumulation and
27 Penetration: A Model Study Using Multicellular Tumor Spheroids. *Mol. Pharm.* **2016**, *13*
28 (7), 2155–2163. <https://doi.org/10.1021/acs.molpharmaceut.5b00946>.

29 (12) Jeong, W. jin; Bu, J.; Han, Y.; Drelich, A. J.; Nair, A.; Král, P.; Hong, S. Nanoparticle
30 Conjugation Stabilizes and Multimerizes β -Hairpin Peptides to Effectively Target PD-
31 1/PD-L1 β -Sheet-Rich Interfaces. *J. Am. Chem. Soc.* **2020**, *142* (4), 1832–1837.
32 <https://doi.org/10.1021/jacs.9b10160>.

33 (13) Bu, J.; Nair, A.; Iida, M.; Jeong, W. J.; Poellmann, M. J.; Mudd, K.; Kubiatowicz, L. J.;
34 Liu, E. W.; Wheeler, D. L.; Hong, S. An Avidity-Based PD-L1 Antagonist Using
35 Nanoparticle-Antibody Conjugates for Enhanced Immunotherapy. *Nano Lett.* **2020**, *20*
36 (7), 4901–4909. <https://doi.org/10.1021/acs.nanolett.0c00953>.

37 (14) Halets, I.; Shcharbin, D.; Klajnert, B.; Bryszewska, M. Contribution of Hydrophobicity,
38 DNA and Proteins to the Cytotoxicity of Cationic PAMAM Dendrimers. *Int. J. Pharm.*
39 **2013**, *454* (1), 1–3. <https://doi.org/https://doi.org/10.1016/j.ijpharm.2013.06.061>.

40 (15) Hong, S.; Bielinska, A. U.; Mecke, A.; Keszler, B.; Beals, J. L.; Shi, X.; Balogh, L.; Orr,
41 B. G.; Baker, J. R.; Banaszak Holl, M. M. Interaction of Poly(Amidoamine) Dendrimers
42 with Supported Lipid Bilayers and Cells: Hole Formation and the Relation to Transport.
43 *Bioconjug. Chem.* **2004**, *15* (4), 774–782. <https://doi.org/10.1021/bc049962b>.

44 (16) Fant, K.; Esbjörner, E. K.; Jenkins, A.; Grossel, M. C.; Lincoln, P.; Nordén, B. Effects of
45 PEGylation and Acetylation of PAMAM Dendrimers on DNA Binding, Cytotoxicity and
46 in Vitro Transfection Efficiency. *Mol. Pharm.* **2010**, *7* (5), 1734–1746.
47 <https://doi.org/10.1021/mp1001312>.

48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(17) Sunoqrot, S.; Bae, J. W.; Jin, S.-E.; Pearson, R.; Liu, Y.; Hong, S. Kinetically Controlled Cellular Interactions of Polymer-Polymer and Polymer-Liposome Nanohybrid Systems. *Bioconjug. Chem.* **2011**, *22* (3), 466–474. <https://doi.org/10.1021/bc100484t>.

(18) Sunoqrot, S.; Bae, J. W.; Pearson, R. M.; Shyu, K.; Liu, Y.; Kim, D.; Hong, S. Temporal Control over Cellular Targeting through Hybridization of Folate-Targeted Dendrimers and PEG-PLA Nanoparticles. *Biomacromolecules* **2012**, *13* (4), 1223–1230. <https://doi.org/10.1021/bm300316n>.

(19) Sunoqrot, S.; Liu, Y.; Kim, D. H.; Hong, S. In Vitro Evaluation of Dendrimer-Polymer Hybrid Nanoparticles on Their Controlled Cellular Targeting Kinetics. *Mol. Pharm.* **2013**, *10* (6), 2157–2166. <https://doi.org/10.1021/mp300560n>.

(20) Sunoqrot, S.; Bugno, J.; Lantvit, D.; Burdette, J. E.; Hong, S. Prolonged Blood Circulation and Enhanced Tumor Accumulation of Folate-Targeted Dendrimer-Polymer Hybrid Nanoparticles. *J. Control. Release* **2014**, *191*, 115–122. <https://doi.org/10.1016/j.jconrel.2014.05.006>.

(21) Hu, C.-M. J.; Fang, R. H.; Wang, K.-C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V.; Carpenter, C.; Ramesh, M.; Qu, V.; Patel, S. H.; Zhu, J.; Shi, W.; Hofman, F. M.; Chen, T. C.; Gao, W.; Zhang, K.; Chien, S.; Zhang, L. Nanoparticle Biointerfacing by Platelet Membrane Cloaking. *Nature* **2015**, *526*, 118. <https://doi.org/10.1038/nature15373>.

(22) Gao, W.; Hu, C. M.; Fang, R. H.; Luk, B. T.; Su, J.; Zhang, L. Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes. *Adv Mater* **2013**, *25* (26), 3549–3553. <https://doi.org/10.1002/adma.201300638>.

(23) Parodi, A.; Quattrocchi, N.; van de Ven, A. L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J. O.; Brown, B. S.; Khaled, S. Z.; Yazdi, I. K.; Enzo, M. V.; Isenhart, L.; Ferrari, M.; Tasciotti, E. Synthetic Nanoparticles Functionalized with Biomimetic Leukocyte Membranes Possess Cell-like Functions. *Nat Nanotechnol* **2013**, *8* (1), 61–68. <https://doi.org/10.1038/nnano.2012.212>.

(24) Toledo Furman, N. E.; Lupu-Haber, Y.; Bronshtein, T.; Kaneti, L.; Letko, N.; Weinstein, E.; Baruch, L.; Machluf, M. Reconstructed Stem Cell Nanoghosts: A Natural Tumor Targeting Platform. *Nano Lett.* **2013**, *13* (7), 3248–3255. <https://doi.org/10.1021/nl401376w>.

(25) Sun, H.; Su, J.; Meng, Q.; Yin, Q.; Chen, L.; Gu, W.; Zhang, P.; Zhang, Z.; Yu, H.; Wang, S.; Li, Y. Cancer-Cell-Biomimetic Nanoparticles for Targeted Therapy of Homotypic Tumors. *Adv. Mater.* **2016**, *28* (43), 9581–9588. <https://doi.org/10.1002/adma.201602173>.

(26) El Andaloussi, S.; Mäger, I.; Breakefield, X. O.; Wood, M. J. A. Extracellular Vesicles: Biology and Emerging Therapeutic Opportunities. *Nat. Rev. Drug Discov.* **2013**, *12*, 347. <https://doi.org/10.1038/nrd3978>.

(27) Kowal, J.; Tkach, M.; Thery, C. Biogenesis and Secretion of Exosomes. *Curr Opin Cell Biol* **2014**, *29*, 116–125. <https://doi.org/10.1016/j.ceb.2014.05.004>.

(28) Zhang, Y.; Wang, X.-F. A Niche Role for Cancer Exosomes in Metastasis. *Nat. Cell Biol.* **2015**, *17*, 709. <https://doi.org/10.1038/ncb3181>.

(29) Ruivo, C. F.; Adem, B.; Silva, M.; Melo, S. A. The Biology of Cancer Exosomes: Insights and New Perspectives. *Cancer Res.* **2017**, *77* (23), 6480.

(30) Yeo, R. W.; Lai, R. C.; Zhang, B.; Tan, S. S.; Yin, Y.; Teh, B. J.; Lim, S. K. Mesenchymal Stem Cell: An Efficient Mass Producer of Exosomes for Drug Delivery. *Adv Drug Deliv Rev* **2013**, *65* (3), 336–341. <https://doi.org/10.1016/j.addr.2012.07.001>.

1
2
3 (31) Chaput, N.; Thery, C. Exosomes: Immune Properties and Potential Clinical
4 Implementations. *Semin Immunopathol* **2011**, *33* (5), 419–440.
5 <https://doi.org/10.1007/s00281-010-0233-9>.

6 (32) El Andaloussi, S.; Lakhal, S.; Mäger, I.; Wood, M. J. A. Exosomes for Targeted SiRNA
7 Delivery across Biological Barriers. *Adv. Drug Deliv. Rev.* **2013**, *65* (3), 391–397.
8 <https://doi.org/https://doi.org/10.1016/j.addr.2012.08.008>.

9 (33) Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M. J. A. Delivery of
10 SiRNA to the Mouse Brain by Systemic Injection of Targeted Exosomes. *Nat. Biotechnol.*
11 **2011**, *29* (4), 341–345. <https://doi.org/10.1038/nbt.1807>.

12 (34) Momen-Heravi, F.; Bala, S.; Bukong, T.; Szabo, G. Exosome-Mediated Delivery of
13 Functionally Active MiRNA-155 Inhibitor to Macrophages. *Nanomedicine Nanotechnology, Biol. Med.* **2014**, *10* (7), 1517–1527.
14 <https://doi.org/https://doi.org/10.1016/j.nano.2014.03.014>.

15 (35) Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.;
16 Miller, D.; Zhang, H.-G. A Novel Nanoparticle Drug Delivery System: The Anti-
17 Inflammatory Activity of Curcumin Is Enhanced When Encapsulated in Exosomes. *Mol. Ther.* **2010**, *18* (9), 1606–1614. <https://doi.org/https://doi.org/10.1038/mt.2010.105>.

18 (36) Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G. J.; Wei, J.; Nie, G. A Doxorubicin
19 Delivery Platform Using Engineered Natural Membrane Vesicle Exosomes for Targeted
20 Tumor Therapy. *Biomaterials* **2014**, *35* (7), 2383–2390.
21 <https://doi.org/https://doi.org/10.1016/j.biomaterials.2013.11.083>.

22 (37) Thery, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and Characterization of
23 Exosomes from Cell Culture Supernatants and Biological Fluids. *Curr Protoc Cell Biol*
24 **2006**, Chapter 3, Unit 3.22. <https://doi.org/10.1002/0471143030.cb0322s30>.

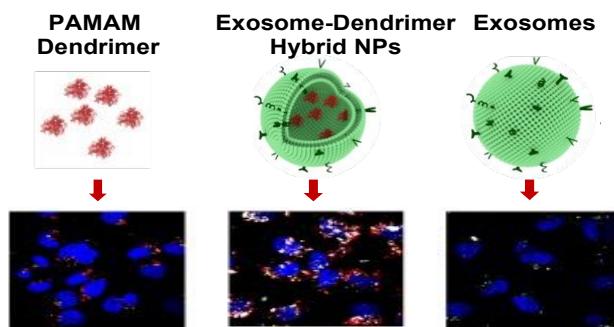
25 (38) Yang, Y.; Sunoqrot, S.; Stowell, C.; Ji, J.; Lee, C. W.; Kim, J. W.; Khan, S. A.; Hong, S.
26 Effect of Size, Surface Charge, and Hydrophobicity of Poly(Amidoamine) Dendrimers on
27 Their Skin Penetration. *Biomacromolecules* **2012**, *13* (7), 2154–2162.
28 <https://doi.org/10.1021/bm300545b>.

29 (39) Haney, M. J.; Klyachko, N. L.; Zhao, Y.; Gupta, R.; Plotnikova, E. G.; He, Z.; Patel, T.;
30 Piroyan, A.; Sokolsky, M.; Kabanov, A. V.; Batrakova, E. V. Exosomes as Drug Delivery
31 Vehicles for Parkinson's Disease Therapy. *J. Control. Release* **2015**, *207* (Supplement C),
32 18–30. <https://doi.org/https://doi.org/10.1016/j.jconrel.2015.03.033>.

33 (40) Kim, M. S.; Haney, M. J.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N. L.; Inskoe, E.;
34 Piroyan, A.; Sokolsky, M.; Okolie, O.; Hingtgen, S. D.; Kabanov, A. V.; Batrakova, E. V.
35 Development of Exosome-Encapsulated Paclitaxel to Overcome MDR in Cancer Cells.
36 *Nanomedicine Nanotechnology, Biol. Med.* **2016**, *12* (3), 655–664.
37 <https://doi.org/https://doi.org/10.1016/j.nano.2015.10.012>.

38 (41) Kim, M. S.; Haney, M. J.; Zhao, Y.; Yuan, D.; Deygen, I.; Klyachko, N. L.; Kabanov, A.
39 V; Batrakova, E. V. Engineering Macrophage-Derived Exosomes for Targeted Paclitaxel
40 Delivery to Pulmonary Metastases: In Vitro and in Vivo Evaluations. *Nanomedicine Nanotechnology, Biol. Med.* **2018**, *14* (1), 195–204.
41 <https://doi.org/https://doi.org/10.1016/j.nano.2017.09.011>.

42 (42) Kalluri, R. The Biology and Function of Exosomes in Cancer. *J Clin Invest* **2016**, *126* (4),
43 1208–1215. <https://doi.org/10.1172/jci81135>.


44 (43) Bebelman, M. P.; Smit, M. J.; Pegtel, D. M.; Baglio, S. R. Biogenesis and Function of
45 Extracellular Vesicles in Cancer. *Pharmacol. Ther.* **2018**, *188*, 1–11.

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 https://doi.org/10.1016/J.PHARMTHERA.2018.02.013.
4 (44) Escrevente, C.; Keller, S.; Altevogt, P.; Costa, J. Interaction and Uptake of Exosomes by
5 Ovarian Cancer Cells. *BMC Cancer* **2011**, *11* (1), 108. <https://doi.org/10.1186/1471-2407-11-108>.
6
7 (45) Christianson, H. C.; Svensson, K. J.; van Kuppevelt, T. H.; Li, J. P.; Belting, M. Cancer
8 Cell Exosomes Depend on Cell-Surface Heparan Sulfate Proteoglycans for Their
9 Internalization and Functional Activity. *Proc Natl Acad Sci U S A* **2013**, *110* (43), 17380–
10 17385. <https://doi.org/10.1073/pnas.1304266110>.
11
12 (46) Parolini, I.; Federici, C.; Raggi, C.; Lugini, L.; Palleschi, S.; De Milito, A.; Coscia, C.;
13 Iessi, E.; Logozzi, M.; Molinari, A.; Colone, M.; Tatti, M.; Sargiacomo, M.; Fais, S.
14 Microenvironmental PH Is a Key Factor for Exosome Traffic in Tumor Cells. *J Biol Chem*
15 **2009**, *284* (49), 34211–34222. <https://doi.org/10.1074/jbc.M109.041152>.
16
17 (47) Svensson, K. J.; Christianson, H. C.; Wittrup, A.; Bourseau-Guilmain, E.; Lindqvist, E.;
18 Svensson, L. M.; Morgelin, M.; Belting, M. Exosome Uptake Depends on ERK1/2-Heat
19 Shock Protein 27 Signaling and Lipid Raft-Mediated Endocytosis Negatively Regulated
20 by Caveolin-1. *J Biol Chem* **2013**, *288* (24), 17713–17724.
21 <https://doi.org/10.1074/jbc.M112.445403>.
22
23 (48) Christianson, H. C.; Svensson, K. J.; Van Kuppevelt, T. H.; Li, J. P.; Belting, M. Cancer
24 Cell Exosomes Depend on Cell-Surface Heparan Sulfate Proteoglycans for Their
25 Internalization and Functional Activity. *Proc. Natl. Acad. Sci. U. S. A.* **2013**, *110* (43),
26 17380–17385. <https://doi.org/10.1073/pnas.1304266110>.
27
28 (49) Vidal, F.; Vásquez, P.; Díaz, C.; Nova, D.; Alderete, J.; Guzmán, L. Mechanism of
29 PAMAM Dendrimers Internalization in Hippocampal Neurons. *Mol. Pharm.* **2016**, *13*
30 (10), 3395–3403. <https://doi.org/10.1021/acs.molpharmaceut.6b00381>.
31
32 (50) Saovapakhiran, A.; D'Emanuele, A.; Attwood, D.; Penny, J. Surface Modification of
33 PAMAM Dendrimers Modulates the Mechanism of Cellular Internalization. *Bioconjug. Chem.* **2009**, *20* (4), 693–701. <https://doi.org/10.1021/bc8002343>.
34
35 (51) Mittendorf, E. A.; Philips, A. V.; Meric-Bernstam, F.; Qiao, N.; Wu, Y.; Harrington, S.;
36 Su, X.; Wang, Y.; Gonzalez-Angulo, A. M.; Akcakanat, A.; Chawla, A.; Curran, M.;
37 Hwu, P.; Sharma, P.; Litton, J. K.; Molldrem, J. J.; Alatrash, G. PD-L1 Expression in
38 Triple-Negative Breast Cancer. *Cancer Immunol. Res.* **2014**, *2* (4), 361–370.
39 <https://doi.org/10.1158/2326-6066.CIR-13-0127>.
40
41 (52) Zhang, J.; Zhang, G.; Zhang, W.; Bai, L.; Wang, L.; Li, T.; Yan, L.; Xu, Y.; Chen, D.;
42 Gao, W.; Gao, C.; Chen, C.; Ren, M.; Jiao, Y.; Qin, H.; Sun, Y.; Zhi, L.; Qi, Y.; Zhao, J.;
43 Liu, Q.; Liu, H.; Wang, Y. Loss of RBMS1 Promotes Anti-Tumor Immunity through
44 Enabling PD-L1 Checkpoint Blockade in Triple-Negative Breast Cancer. *Cell Death Differ.* **2022**, *29* (11), 2247–2261. <https://doi.org/10.1038/s41418-022-01012-0>.
45
46 (53) Bertrand, N.; Grenier, P.; Mahmoudi, M.; Lima, E. M.; Appel, E. A.; Dormont, F.; Lim,
47 J.-M.; Karnik, R.; Langer, R.; Farokhzad, O. C. Mechanistic Understanding of in Vivo
48 Protein Corona Formation on Polymeric Nanoparticles and Impact on Pharmacokinetics.
49 *Nat. Commun.* **2017**, *8* (1), 777. <https://doi.org/10.1038/s41467-017-00600-w>.
50
51 (54) Mecke, A.; Majoros, I. J.; Patri, A. K.; Baker, J. R.; Banaszak Holl, M. M.; Orr, B. G.
52 Lipid Bilayer Disruption by Polycationic Polymers: The Roles of Size and Chemical
53 Functional Group. *Langmuir* **2005**, *21* (23), 10348–10354.
54 <https://doi.org/10.1021/la050629l>.
55
56 (55) Hong, S.; Leroueil, P. R.; Janus, E. K.; Peters, J. L.; Kober, M.-M.; Islam, M. T.; Orr, B.
57
58
59
60

1
2
3 G.; Baker, J. R.; Banaszak Holl, M. M. Interaction of Polycationic Polymers with
4 Supported Lipid Bilayers and Cells: Nanoscale Hole Formation and Enhanced Membrane
5 Permeability. *Bioconjug. Chem.* **2006**, *17* (3), 728–734.
6 https://doi.org/10.1021/bc060077y.
7
(56) Albertazzi, L.; Serresi, M.; Albanese, A.; Beltram, F. Dendrimer Internalization and
8 Intracellular Trafficking in Living Cells. *Mol. Pharm.* **2010**, *7* (3), 680–688.
9 https://doi.org/10.1021/mp9002464.
10
(57) Saovapakhiran, A.; D'Emanuele, A.; Attwood, D.; Penny, J. Surface Modification of
11 PAMAM Dendrimers Modulates the Mechanism of Cellular Internalization. *Bioconjug. Chem.*
12 **2009**, *20* (4), 693–701. https://doi.org/10.1021/bc8002343.
13
(58) Hong, S.; Hessler, J. A.; Banaszak Holl, M. M.; Leroueil, P.; Mecke, A.; Orr, B. G.
14 Physical Interactions of Nanoparticles with Biological Membranes: The Observation of
15 Nanoscale Hole Formation. *J. Chem. Heal. Saf.* **2006**, *13* (3), 16–20.
16 https://doi.org/10.1016/j.chs.2005.09.004.
17
(59) Ferguson, S. W.; Nguyen, J. Exosomes as Therapeutics: The Implications of Molecular
18 Composition and Exosomal Heterogeneity. *J. Control. Release* **2016**, *228*, 179–190.
19 https://doi.org/https://doi.org/10.1016/j.jconrel.2016.02.037.
20
(60) Horibe, S.; Tanahashi, T.; Kawauchi, S.; Murakami, Y.; Rikitake, Y. Mechanism of
21 Recipient Cell-Dependent Differences in Exosome Uptake. *BMC Cancer* **2018**, *18*, 47.
22 https://doi.org/10.1186/s12885-017-3958-1.
23
(61) Yang, J.; Zhang, Q.; Chang, H.; Cheng, Y. Surface-Engineered Dendrimers in Gene
24 Delivery. *Chem. Rev.* **2015**, *115* (11), 5274–5300. https://doi.org/10.1021/cr500542t.
25
(62) Kamerkar, S.; Lebleu, V. S.; Sugimoto, H.; Yang, S.; Ruivo, C. F.; Melo, S. A.; Lee, J. J.;
26 Kalluri, R. Exosomes Facilitate Therapeutic Targeting of Oncogenic KRAS in Pancreatic
27 Cancer. *Nature* **2017**, *546* (7659), 498–503. https://doi.org/10.1038/nature22341.
28
(63) Ko, Y. T.; Bhattacharya, R.; Bickel, U. Liposome Encapsulated Polyethylenimine/ODN
29 Polyplexes for Brain Targeting. *J Control Release* **2009**, *133* (3), 230–237.
30 https://doi.org/10.1016/j.jconrel.2008.10.013.
31
(64) Laulagnier, K.; Motta, C.; Hamdi, S.; Roy, S.; Fauville, F.; Pageaux, J.-F.; Kobayashi, T.;
32 Salles, J.-P.; Perret, B.; Bonnerot, C.; Record, M. Mast Cell- and Dendritic Cell-Derived
33 Exosomes Display a Specific Lipid Composition and an Unusual Membrane Organization.
34 *Biochem. J.* **2004**, *380* (Pt 1), 161–171. https://doi.org/10.1042/bj20031594.
35
(65) Jiang, X.; Bugno, J.; Hu, C.; Yang, Y.; Herold, T.; Qi, J.; Chen, P.; Gurbuxani, S.;
36 Arnovitz, S.; Strong, J.; Ferchen, K.; Ulrich, B.; Weng, H.; Wang, Y.; Huang, H.; Li, S.;
37 Neilly, B. M.; Larson, A. R.; Le Beau, M. M.; Bohlander, K. S.; Jin, J.; Li, Z.; Bradner, J.
38 E.; Hong, S.; Chen, J. Eradication of Acute Myeloid Leukemia with FLT3 Ligand–
39 Targeted miR-150 Nanoparticles. *Cancer Res.* **2016**, *76* (15), 4470–4480.
40 https://doi.org/10.1158/0008-5472.CAN-15-2949.
41
(66) Nair, A.; Bu, J.; Bugno, J.; Rawding, A. P.; Kubiatowicz, J. L.; Jeong, W.J.; Hong, S.
42 Size-Dependent Drug Loading, Gene Complexation, Cell Uptake, and Transfection of a
43 Novel Dendron-Lipid Nanoparticle for Drug/Gene Co-delivery. *Biomacromolecules* **2021**,
44 *22*, 9, 3746–3755. https://doi.org/10.1021/acs.biomac.1c00541.
45
51

TOC Graphic

