of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 527, 11240-11255 (2024)
Advance Access publication 2024 January 03

https://doi.org/10.1093/mnras/stad3766

Probing three-dimensional magnetic fields: II — an interpretable
Convolutional Neural Network

Yue Hu “,"?* A. Lazarian,”* Yan Wu® and Chengcheng Fu*

' Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
2Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706, USA

3 Computer Vision Lab, ETH Zurich CH-8092, Switzerland

4College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China

Accepted 2023 December 3. Received 2023 November 22; in original form 2023 October 19

ABSTRACT

Observing 3D magnetic fields, including orientation and strength, within the interstellar medium is vital but notoriously difficult.
However, recent advances in our understanding of anisotropic magnetohydrodynamic (MHD) turbulence demonstrate that MHD
turbulence and 3D magnetic fields leave their imprints on the intensity features of spectroscopic observations. Leveraging these
theoretical frameworks, we propose a novel Convolutional Neural Network (CNN) model to extract this embedded information,
enabling the probe of 3D magnetic fields. This model examines the plane-of-the-sky magnetic field orientation (¢), the magnetic
field’s inclination angle (y ) relative to the line-of-sight, and the total magnetization level (M, l) of the cloud. We train the model
using synthetic emission lines of '*CO (J = 1-0) and C'®0 (J = 1-0), generated from 3D MHD simulations that span conditions
from sub-Alfvénic to super-Alfvénic molecular clouds. Our tests confirm that the CNN model effectively reconstructs the 3D
magnetic field topology and magnetization. The median uncertainties are under 5° for both ¢ and y, and less than 0.2 for My in
sub-Alfvénic conditions (M =~ 0.5). In super-Alfvénic scenarios (M ~ 2.0), they are under 15° for ¢ and y, and 1.5 for M.
We applied this trained CNN model to the L1478 molecular cloud. Results show a strong agreement between the CNN-predicted
magnetic field orientation and that derived from Planck 353 GHz polarization. The CNN approach enabled us to construct the

3D magnetic field map for L1478, revealing a global inclination angle of ~76° and a global M, of ~1.07.

Key words: turbulence —ISM: general — ISM: magnetic field —ISM: structure.

1 INTRODUCTION

In the vast interstellar medium (ISM), magnetic fields are pervasive
powers that significantly influence various astrophysical phenomena.
These fields serve as invisible balancers against gravitational forces
within the ISM, intricately maintaining its equilibrium (Wurster &
Li 2018; Abbate et al. 2020). They are instrumental in directing
gas flows towards galactic nuclei, playing a crucial role in their
sustenance and the dynamic processes unfolding therein (Kim &
Stone 2012; Roche et al. 2018; Busquet 2020; Whittingham et al.
2021; Hu et al. 2022c). Magnetic fields also govern the trajectories of
cosmic rays, affecting the energy distribution and overall dynamics
of ISM (Fermi 1949; Jokipii 1966; Yan & Lazarian 2002, 2004;
Ferrand & Marcowith 2010; Xu & Yan 2013; Xu & Lazarian 2020;
Hopkins et al. 2021; Hu, Lazarian & Xu 2022b). Furthermore,
they are deeply involved in the star formation processes within
molecular clouds, influencing both the rate and nature of star births
(Mestel 1965; Mac Low & Klessen 2004; McKee & Ostriker 2007;
Federrath & Klessen 2012; Lazarian, Esquivel & Crutcher 2012;
Hu, Lazarian & Stanimirovi¢ 2021b). Despite their pivotal roles, our
understanding of these magnetic fields remains far from complete.
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Our primary challenge lies in the formidable task of probing a
three-dimensional (3D) magnetic field in 3D spatial space. Current
approaches — such as polarized dust emission (Lazarian 2007;
Andersson, Lazarian & Vaillancourt 2015; Planck Collaboration
et al. 2015; Fissel et al. 2016; Planck Collaboration et al. 2020b;
Li et al. 2021; Liu, Hu & Lazarian 2023a), polarized synchrotron
emission (Xiao et al. 2008; Planck Collaboration et al. 2016; Guan
et al. 2021), provide 2D measurements of the plane-of-sky (POS)
magnetic field direction, while Zeeman splitting (Crutcher 2004,
2012) and Faraday rotation (Haverkorn 2007; Taylor, Stil & Sunstrum
2009; Oppermann et al. 2012; Xu & Zhang 2016; Tahani et al.
2019) provide line-of-sight (LOS) components of the magnetic field.
Yielding valuable insights, these techniques probe into distinct and
typically different regions of the multiphase ISM. Thus, despite their
individual strengths, merging these insights into a coherent, full 3D
magnetic field vector, which includes both the 3D orientation and
total strength, presents a non-trivial task.

A significant advance in probing the 3D magnetic fields in molec-
ular clouds has been made by leveraging polarized dust emission,
drawing on the depolarization effect induced by different magnetic
field orientations (see Chen et al. 2019) and by accounting for the
properties of turbulent magnetic fields Hu & Lazarian 2023a, ¢). As
a separate development, Tahani et al. (2019, 2022) has succeeded
in employing the synergy of Faraday rotation and dust polarization
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to infer a helical 3D magnetic field topology across the Orion A,
Orion B, Perseus, and California clouds. Subsequently, Hu, Xu &
Lazarian (2021a) and Hu, Lazarian & Xu (2021c) proposed the use of
anisotropic properties of magnetohydrodynamic (MHD) turbulence,
inherited by young stellar objects (Ha et al. 2022) and spectroscopic
lines (Lazarian & Pogosyan 2000; Kandel, Lazarian & Pogosyan
2016; Hu et al. 2023), to obtain the LOS and POS components of the
magnetic field’s orientation and total magnetization simultaneously.

Importantly, the underlying theory of Hu, Lazarian & Xu (2021c)’s
approach demonstrates that spectroscopic observations embody the
anisotropy of MHD turbulence (Lazarian & Pogosyan 2000; Kandel,
Lazarian & Pogosyan 2016; Hu et al. 2023), i.e. turbulent eddies
elongate along the 3D direction of the magnetic field (Goldreich &
Sridhar 1995; Lazarian & Vishniac 1999). The spatial features
presented in these observations imprint the anisotropy and thus
carry detailed information about the magnetic fields. This implies
that, given an extensive amount of training data, machine learning
algorithms have the potential to capture these features and produce
accurate measurements. This strategy has been employed to map the
2D POS magnetic field orientation using velocity channel maps from
spectroscopic observations (Xu, Law & Tan 2023). The theoretical
basis remains the anisotropy of the MHD turbulence, a principle
previously utilized to trace magnetic fields via velocity gradients
(Hu, Yuen & Lazarian 2018; Lazarian & Yuen 2018; Alina et al.
2022; Liu, Hu & Lazarian 2022a; Hu et al. 2022¢; Schmaltz, Hu &
Lazarian 2023). However, Hu, Lazarian & Xu (2021c¢) made the
crucial discovery that anisotropy in velocity channel maps harbours
not only information about the POS magnetic field orientation, but
also the total magnetization and the magnetic field’s inclination angle
with respect to the LOS. This additional information paves the way
for constructing the full 3D magnetic field vector from spectroscopic
observations.

By leveraging the capabilities of Convolutional Neural Networks
(CNN; LeCun et al. 1998) — a type of deep learning model excelling
in image and signal processing — we aspire to develop a novel
method that can probe the 3D magnetic field. Earlier studies of
the CNN explored the possibility to distinguish sub-Alfvénic and
super-Alfvénic turbulence (Peek & Burkhart 2019) and predict
the POS magnetic field orientation (Xu, Law & Tan 2023). Our
study, however, targets the simultaneous extraction of LOS and
POS magnetic field orientations and the total magnetization. The
foundation of our CNN model is the anisotropic MHD turbulence
exhibited in spectroscopic observations (Lazarian & Pogosyan 2000;
Kandel, Lazarian & Pogosyan 2016; Hu et al. 2023), a theoretical
underpinning that allows us to interpret the CNN model accurately.
In other words, it enables us to discern the specific features that
convey information about the magnetic field, the reasons why they
are informative, and their underlying physical meanings. The effec-
tiveness of training a CNN is highly dependent on the availability
of comprehensive numerical simulations that accurately represent
realistic ISM. In this research, we employ 3D MHD supersonic
simulations that portray a range of ISM environments, spanning
sub-Alfvénic scenarios (i.e. strong magnetic field), trans-Alfvénic,
and super-Alfvénic conditions (i.e. weak magnetic field). We further
post-process these simulations by incorporating the radiative transfer
effect, which enables us to generate mock emission lines of '*CO
and C'30 from diffuse molecular clouds. Through this trained CNN
model, we present the 3D magnetic field map of the molecular cloud
L1478.

This paper is organized as follows. In Section 2, we briefly review
the basic concepts of MHD turbulence anisotropy in spectroscopic
observations and their correlation with 3D magnetic field orientation
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and total magnetization. In Section 3, we give details of the 3D MHD
simulations and mock observations used in this work, as well as our
CNN model. We use mock observations to train the CNN model
and present the results of numerical testing in Section 4. We further
apply the trained CNN model to predict the 3D magnetic field in the
molecular cloud L1478. In Section 5, we discuss the uncertainty and
prospects of the machine learning approach, as well as implications
for various astrophysical problems. We summarize our results in
Section 6.

2 THEORETICAL CONSIDERATION

2.1 Anisotropy of MHD turbulence: revealing magnetic field
orientation and magnetization

The earliest model of MHD turbulence was proposed to be isotropic
(Iroshnikov 1963; Kraichnan 1965). However, this model underwent
subsequent revisions through a series of theoretical and numerical
studies, revealing that MHD turbulence exhibits anisotropy under
sub-Alfvénic conditions and isotropy at large-scale, super-Alfvénic
conditions (Montgomery & Turner 1981; Shebalin, Matthaeus &
Montgomery 1983; Higdon 1984; Montgomery & Matthaeus 1995).

A significant advance in this field was the introduction of the
‘critical balance’ condition, i.e. equating the cascading time (k, v;)~!
and the wave periods (kjva)~!, proposed by Goldreich & Sridhar
(1995), hereafter GS95. Here, k| and k, represent the components
of the wavevector parallel and perpendicular to the magnetic field,
respectively, while v; denotes the turbulent velocity at scale /, and
va = B/+/4mp represents the Alfvén speed. Here, B is the magnetic
field strength and p is the gas mass density.

Taking into account Kolmogorov-type turbulence, i.e. v;
the GS95 anisotropy scaling can be straightforwardly derived.

173
e,

k” X kiﬂ, (1)

which reveals the anisotropic nature of turbulence eddies, implying
that the eddies are elongated along the magnetic fields. However, it
should be noted that the considerations of GS95 are based on a global
reference frame, where the direction of the wavevectors is defined
relative to the mean magnetic field.

Scale-dependent anisotropy was later introduced via the study of
fast turbulent reconnection by Lazarian & Vishniac 1999 (hereafter
LV99), which proposed a local reference frame. This frame is defined
relative to the magnetic field passing through an eddy at scale
l. According to LV99, the motion of eddies perpendicular to the
direction of the local magnetic field adheres to the Kolmogorov law
(e v, lll/ 3), since this is the direction in which the magnetic field
offers minimal resistance. Applying the ‘critical balance’ condition
in the local reference frame: v;, MII ~ vAl[', the scale-dependent
anisotropy scaling is then given by:

2
3
Iy = Lin (i) MR My <1, )
Liy;
where [, and /| represent the perpendicular and parallel scales of
eddies with respect to the local magnetic field, respectively. Lip
denotes the turbulence injection scale and M = viyj/v4 is the Alfvén
Mach number. M;l gives magnetization level of the medium.
Equation 2 provides two critical insights: (1) Turbulent eddies
stretch along the local magnetic field (i.e. /) > [, ), and (2) the de-
gree of anisotropy, defined as /| /I . , depends on the magnetization
M. As we illustrated in Fig. 1, this indicates that eddies become
increasingly anisotropic in a strongly magnetized medium. For the
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Figure 1. Illustration of how the observed intensity structures in channel map regulated by M and y. Within all three panels, these intensity structures elongate
along the POS magnetic field direction where /| > [, . Structures 1 and 2, depicted in panels (a) and (b), are projected onto the POS with identical inclination
angles y1 = y2, yet exhibit different magnetizations with M;vll > Mglz. Notably, the anisotropy observed, represented as [/l , in the weakly magnetized
Structure 2 is less pronounced than in Structure 1. Structure 2 is less streiightened because the weak magnetic field has more fluctuations. The curvature of the
observed magnetic structures is suggested for magnetization studies by Yuen & Lazarian (2020). Comparatively, Structures 1 and 3, showcased in panels (a) and
(c), possess equivalent magnetizations M;,ll = M/;g, but divergent inclination angles with ¥ > y 3. The observed anisotropy decreases with smaller y, though
it is crucial to note that the straightness of Structure 3 remains unaffected by this projection. It should be noted that, here, the projection effect is simplified. The
intensity structures are predominantly created by the velocity caustics effect due to MHD turbulence. The projection effect is applied to the velocity field and

then subsequent intensity structures in velocity channels.

case where M, > 1, turbulence is essentially isotropic due to the
predominance of hydrodynamic turbulence. However, the essence
of turbulence lies in the cascading of energy from larger injection
scales to smaller ones, which leads to a decrease in turbulent velocity.
Eventually, at the transition scale [, = Li,j/M i, the strength of the
magnetic field becomes comparable to the turbulence (i.e. the Alfvén
Mach number at /, is unity, see Lazarian 2006), and anisotropy starts
to manifest.

Furthermore, (3) changes in M, are distinctly reflected in the
magnetic field topology. Within a strongly magnetized medium, the
magnetic field lines exhibit minimal variation due to the presence
of weaker fluctuations, resulting in more straightened field lines. In
contrast, in the context of a weaker magnetic field, which corresponds
to a larger value of My, fluctuations in the magnetic field direction
intensify significantly. This leads to the field lines adopting a more
curved configuration (Yuen & Lazarian 2020). As turbulent eddies
extend along the local magnetic field, the topological changes
induced by M, become evidently imprinted within these eddies.

2.2 Obtaining velocity information from spectroscopic
observation

The anisotropy outlined in equation (2) pertains to turbulent velocity
fluctuations, and the turbulent eddy refers to velocity fluctuation
contour. This suggests that anisotropy manifests in turbulent velocity
fields. Such anisotropic velocity can be obtained from the velocity
channel map of spectroscopic observations, due to the velocity
caustics effect (Lazarian & Pogosyan 2000). We briefly review this
concept.

In position—position—velocity (PPV) space, the observed intensity
distribution of a given spectral line is determined by both the
density of emitters and their velocity distribution along the LOS.

MNRAS 527, 11240-11255 (2024)

If coherent velocity shear — for instance, from galactic rotation — can
be disregarded.‘, the LOS velocity component, v, becomes the sum
of the turbulent velocity, vy, (x, ¥y, z), and the residual component
attributable to thermal motions. This residual thermal velocity, v —
vur(X, Y, ), has a Maxwellian distribution, ¢(v, x, y, z). For emissivity
proportional to density, it provides PPV emission density p,(x, y, z)
as (Lazarian & Pogosyan 2004):

ps(x!y’v)=K/p(x7ysz)¢(v!x’yvz)dZs (3)

@

— 2
v, x,7,2) = < [_M

e ,
271c2 2¢?

S
where « is a constant that correlates the number of emitters to the
observed intensities. ¢ = +/y.kgT /m is the sound speed, with m
being the mass of atoms or molecules, y, the adiabatic index, kg
being the Boltzmann constant, and 7 the temperature, which can
vary from point to point if the emitter is not isothermal. However,
the variation of temperature has only a marginal contribution to the
distribution of p,(x, y, v) (see Hu et al. 2023). By integrating ps(x,
¥, v) over a defined velocity range or channel width Av, we obtain a
velocity channel:

v+Av/2
peryo = [ p . )
v—Av/2
By separating the 3D density into the mean density and zero-mean
fluctuations, p(x, y, z) = p + pd(x, y, z), the channel intensity can
be represented as the sum of two terms, p(x, y, v) = py.(x, ¥, v) +
Pac(x, ¥, v)(Hu et al. 2023):

IThe impact of galactic rotation on velocity caustics was explored by
Lazarian & Pogosyan (2000). It demonstrated that its effects are insignficant
(Hu et al. 2023).
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The first term, p,., encompasses the mean intensity in the channel
and carries fluctuations exclusively produced by velocity, called the
velocity caustics effect (Lazarian & Pogosyan 2000). The second
term, pqy., reflects the inhomogeneities in the real 3D density.

The relative importance of p,. and p4. depends on the channel
width (Lazarian & Pogosyan 2000; Kandel, Lazarian & Pogosyan
2016; Hu et al. 2023). The narrower the channel width, the greater
the contribution from p,.. When the channel width Av is less
than the velocity dispersion 1/8(v2) of the turbulent eddies under
investigation, that is, Av < 4/38(v?), the intensity fluctuation in
such a thin channel is predominantly due to velocity fluctuation.
Consequently, p(x, y, v) inherits the anisotropy of MHD turbulence.
The intensity structures within p(x, y, v) elongate along the POS
magnetic fields, and their corresponding anisotropy degree, as well
as the topology, is correlated with the magnetization and inclination
angle. On the other hand, the dominance of p,. ensures that the
morphology of intensity fluctuation within p(x, y, v) is less sensitive
to M, because the anisotropy in MHD turbulence’s velocity field is
not affected by M, (Kowal & Lazarian 2010).

Itis important to note that Clark, Peek & Miville-Deschénes (2019)
questioned the validity of velocity caustics in the presence of thermal
broadening in multiphase H1 gas and suggested that the thin velocity
channel is dominated by density fluctuations from cold filaments. The
nature of the striations in channel maps was tested in Hu et al. (2023),
by explicitly evaluating velocity and density contributions in velocity
channels obtained from multiphase H1 simulations and GALFA-H1
observations. This study confirmed that the velocity caustics were
responsible for the observed striation.

2.3 Anisotropy in thin velocity channels: dependence on the
inclination angle of magnetic fields

The anisotropy of the observed intensity in a PPV channel, repre-
sented by p(x, y, v), is also affected by the inclination angle y of
the magnetic field with respect to the LOS, due to the projection
effect (Hu, Lazarian & Xu 2021c). For example, as illustrated in
Fig. 1, we consider two magnetized structures (or eddies), s;, and
53, both having identical magnetization. Although these unprojected
structures have the same anisotropy degree, their projections differ.
Specifically, a projection with a smaller inclination angle results in a
lower anisotropy degree by reducing the scale parallel to the magnetic
fields. When y = 0, the parallel scale of the eddy aligns with the
LOS, making the anisotropy unobservable on the POS.

However, as previously mentioned, the degree of anisotropy is
also controlled by magnetization. As shown in Fig. 1, although
two magnetized structures (s; and s,) share identical inclination
angles, the projection of the weakly magnetized s, shows less
anisotropy. Importantly, the topology of s, is further changed being
less straightened. This is because a weak magnetic field has more
deviations and exhibits significant curvature in terms of its POS
orientation (Yuen & Lazarian 2020). Consequently, the observed
structure, as well as the structure’s topology, in p(x, y, v) is governed
by both M, and y (Hu, Lazarian & Xu 2021c).

To summarize succinctly, the thin channel maps p(x, y, v) from
spectroscopic observations capture the anisotropy of MHD turbu-
lence. This leads to the following important implications:
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(i) The intensity structures in p(x, y, v) align with the POS
magnetic field.

(ii) The degree of anisotropy observed in these intensity structures
is influenced by two distinct factors: M, and y. These factors
contribute to the anisotropy: (a) y introduces a projection effect
that consequently decreases the anisotropy. (b) M, defines the
magnetization level of the medium. A larger M, represents a weaker
magnetic field, resulting in less pronounced anisotropy.

(iii) Additionally, changes in M, alter the topology of the
magnetic field lines, as well as the observed intensity structure,
manifesting itself as significant curvature.

The interconnection between magnetic field topology and M, is
vital to extracting accurate 3D magnetic fields. A subtle change in
the degree of anisotropy responds sensitively to variations in both
M, and y, leading to a degeneracy. This degeneracy necessitates the
introduction of an additional feature that is sensitive to M, or y to
solve for these parameters, and the topology of the magnetic field
conveniently provides this required information.

Additionally, it is crucial to acknowledge that relying solely on
anisotropy does not offer a clear distinction regarding the magnetic
field’s orientation along the LOS, specifically whether the field is
directed towards or away from our observation point. Consequently,
the value of y is inherently restricted to a limited range between O
and 90°.

3 NUMERICAL METHOD

3.1 Convolutional neural network (CNN)

To construct a deep neural network for the purpose of tracing the
3D magnetic field from a spectroscopic map, we adopt a CNN-
based (LeCun et al. 1998) architecture. CNNs have demonstrated
significant success in processing multidimensional data. The typical
CNN architecture, as illustrated in Fig. 2, consists of initial layers
comprising a stack of convolutional layers followed by pooling
layers. To facilitate faster convergence during the network training
process using backpropagation of the loss and enhance the stability
of learning, we introduce a batch normalization layer following
each convolution layer. After several iterations of convolution and
pooling layers, we extract a compressed image feature, which is then
processed by the fully connected layers to predict the desired prop-
erties. In the following, we introduce the core modules in the CNN
architecture as well as the training procedure for the CNN network.

3.2 Convolutional layer

Serving as the fundamental component of a CNN, the convolutional
layer processes input data to produce feature maps (LeCun et al.
1989). In this layer, each neuron connects to a local region of the
input feature map. This connection is achieved by applying a 2D
convolutional kernel w; to the input feature map. This process can
be mathematically described as follows:

ar =o(w;x hi_y + by), (8)

where h; _ | and @; are the input and output feature map for the /-th
convolutional layer, respectively, and w; is the learnable convolution
kernel, and * indicates the convolution operation. In addition, a learn-
able bias b, is applied to the input feature map. To be more concrete,

k k

a,y) =0 | > > wili, Dha(x =i,y = HFbix,y) | . )

i=—k j=—k
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Figure 2. Architecture of the CNN-model. The input image is a 22 x 22 pixel map cropped from the thin velocity channel map. The network outputs the

prediction of ¢, y, or M.

By applying the 2D convolution kernel w; € R#TDx@+D o the
input feature map h;_; € R4 %" we yield the output feature map
with size (@™ — k — 1) x (@™ — k — 1). Here, 4™ denotes the size
of the input feature map and 2k + 1 is the size of the convolution
kernel. The resulting locally-weighted sum, once added to the
learned bias, undergoes a non-linear transformation via the ReLU
activation function o ().

To constrain the number of parameters that need to be learned in
our network, we generally use small kernel sizes. While each layer
has a limited receptive field focusing on local features through the
utilization of small convolutional kernels, stacking multiple layers
allows for the gradual expansion of this receptive field. Consequently,
the network becomes capable of capturing global features within the
image as the depth increases.

3.3 Batch normalization layer

It is a technique frequently utilized in neural networks, playing
a pivotal role in stabilizing them and hastening the convergence
of the training loss during the backpropagation process (loffe &
Szegedy 2015). During each training iteration, it functions on a
mini-batch of data. The layer normalizes each feature within the
input data by centring its values around the mean and scaling
based on the feature’s standard deviation within the given batch.
This normalization process is instrumental in mitigating the internal
covariate shift — a phenomenon where the distribution of inputs at
each layer undergoes changes during training — facilitating a more
stable and efficient training process.

Following the normalization, batch normalization introduces two
learnable parameters per feature: a scaling parameter and a shifting
parameter. These parameters allow the network to learn the optimal
scale and shift for the normalized values autonomously, providing
the model with the flexibility to modify the normalization if it
learns that such reversal or adjustment is beneficial for its predictive
performance. These dynamic adjustments, enabled by the introduced
parameters, imbue the network with a degree of adaptability, allowing
it to fine-tune the transformations applied to the features as needed
during the training.

3.4 Pooling layer

Following the detection of local features in the input feature maps
by the convolution layer, a pooling layer is typically employed to
merge similar local features into a singular feature (Sermanet et al.
2013). One common variant of the pooling layer is the Max Pooling
Layer. This layer works by calculating the maximum value within a
local patch of neurons and then outputting this maximum value as a
single neuron. Importantly, the patches of input neurons for adjacent

MNRAS 527, 11240-11255 (2024)

pooling units are shifted by more than one row or column, which
effectively reduces the dimensionality of the feature representation.
This process imparts the network with a degree of invariance to minor
shifts and distortions in the input data, as it condenses the information
in the feature maps while retaining the most salient features. This
reduction not only helps in making the detection of features invariant
to scale and orientation changes but also enhances computational
efficiency by reducing the number of parameters and computations
in the network.

3.5 Fully connected layer

After sequential operations that involve multiple convolutional
layers and aggregation, the network derives a lower-dimensional
compressed image feature map. Subsequently, this 2D feature
map undergoes a transformation, being flattened into a 1D vector.
The fully connected layer then processes this vector (Goodfellow,
Bengio & Courville 2016). The role of the layer is critical, as it
integrates the high-level reasoning of the features extracted and
flattened previously. The mechanism involves applying learned
weights and biases to this flattened vector to predict the final output.
Mathematically, this operation can be represented as:

y = o(Wh +b), (10)

In this equation, h € R% represents the flattened, compressed image
feature vector, and y € R« symbolizes the predicted result. Here,
W € Réwxdin and b € R%uw denote the learnable weights and biases
for the fully connected layer, respectively. d° represents the size
of the output feature map. These weights and biases are integral
to the layer’s functionality, providing the means for it to learn and
adapt during the training phase, ultimately allowing for the accurate
prediction of the desired output from the input images.

3.6 Network training

The trainable parameters within the CNN are optimized by adhering
to a conventional neural network training methodology, where the
mean-squared error of the 3D magnetic field prediction serves as
the training loss for backpropagation, as outlined in the seminal
work by Rumelhart, Hinton & Williams (1986). During the training
process, we implement a strategy designed to enrich the diversity
of the training data set and consequently enhance the generalization
capabilities of the deep neural network. Specifically, this involves
augmenting the input images by subjecting them to random cropping
operations, resulting in smaller patches of size 22 x 22 cells. Such
augmentation introduces variability and randomness into the training
data, which is instrumental in refining the network’s ability to
generalize from the training data to unseen data, thereby bolstering its
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Table 1. Mg and M4 are the sonic Mach number and the Alfvénic Mach number calculated from
the global injection velocity, respectively. Mjfb and Mi“b are determined using the local velocity
dispersion calculated along each LOS in a 22 x 22 cell subfield. The expressions ‘min{. .. }” and
‘max{. ..} denote the minimum and maximum value averaged over each 22 x 22 cell subfield

within the corresponding simulation.

Run M My min{MZ‘lb} rnax{Mf;‘b} min{Mé“b} rnax{Mi”b}
A0 5.33 0.20 0.03 0.28 2.97 7.84
Al 5.38 0.41 0.10 0.81 2.90 7.24
A2 5.40 0.61 0.21 1.00 3.15 7.33
A3 5.20 0.79 0.29 1.37 3.10 6.55
A4 5.23 0.95 0.30 1.99 3.00 7.18
A5 5.12 1.13 0.32 2.49 3.17 6.80
A6 5.38 1.09 0.41 3.37 3.13 6.96
A7 5.23 1.39 0.40 4.13 3.19 7.41
A8 5.16 1.46 0.39 4.94 3.21 6.76
A9 5.08 1.43 0.48 6.06 2.87 7.10

predictive accuracy and robustness. In total, we generated ~1.7 x 107
input 22 x 22-cell maps, with 20 percent of them serving as a
validation set, for each molecular species.

3.7 MHD simulations

The numerical simulations used in this study were executed using the
ZEUS-MP/3D code (Hayes et al. 2006). We performed an isothermal
simulation of a 10 pc cloud by solving the ideal MHD equations in
an Eulerian frame under periodic boundary conditions:

0p/0t +V - (pv) =0,

B? BBT
A(pv)/ot + V- {pva + (63/4*)1 - } =f,
8 47t

0B/0t —V x(vxB)=0,
V-B=0, (11)

where f represents the stochastic forcing term used to drive turbu-
lence. p, v, and B are mass density, velocity, and magnetic field,
respectively. Given the isothermal equation of state, the sound speed
¢ was held constant at approximately 187 ms~!, corresponding to
a gas temperature of 10K. Purely turbulent scenarios were also
considered, excluding the impact of self-gravity. Kinetic energy was
solenoidally (i.e. the forcing term is divergence-free) injected at the
wavenumber k = 277/l ~ 2 (in the unit of 27/Ly.x, Where Ly is the
length of simulation box) in Fourier space, where [ is the length-
scale in real space, producing a Kolmogorov-like power spectrum.
Turbulence was continuously stimulated until it reached a state of
statistical saturation. The simulation was solved on a regular grid of
7923 cells and the turbulence was numerically dissipated at scales of
approximately 10-20 cells.

The simulations were initialized with a uniform density field and
a magnetic field, with the initial mean magnetic field oriented along
the y-axis. Furthermore, we rotated the simulation cubes so that the
mean angle of inclination with respect to the LOS (or z-axis) reached
90°, 60°, and 30°. The sonic Mach number, M = vi,j/c, and the
Alfvénic Mach number, M5 = vj,j/va, characterize MHD turbulence
simulations. To model different ISM conditions, we used a typical
mean number density of 300cm™ and varied the initial uniform
magnetic field and the injected kinetic energy to obtain a range of
M, and M values. In this paper, we refer to the simulations in
Table 1 by their model name or key parameters.

3.8 Emission lines of *CO and C'*0

We generate synthetic emission lines for two CO isotopologues:
13CO (1-0) and C'30 (1-0), following the procedures used in Hu &
Lazarian (2021). This was achieved using the SPARX radiative
transfer code (Hsieh et al. 2019). SPARX solves the radiative transfer
equation (RTE) for finite cells, which means that it considers the
emission from a homogeneous finite element. The equation of statis-
tical equilibrium for molecular levels takes into account molecular
self-emission, stimulated emission, and collisions with gas particles.
Information on the distribution of molecular gas density with mean
density ~300cm~3 and LOS velocity was extracted from the MHD
simulations mentioned above.

The fractional abundances of the CO isotopologues '*CO(1-0) and
C'30(1-0) were set at 2 x 107 and 1.7 x 1077, respectively. We
derive the '2CO-to-H, ratio of 1 x 10~ from the cosmic value of C/H
=3 x 10~* and the assumption that 15 per cent of C is in molecular
form. The abundance of '3CO is determined using a '3CO/'2CO ratio
of 1/69, as indicated by Wilson (1999), giving a 3CO/H, ratio of
approximately 2 x 107°. Using a 2CO/C!'®0 ratio of 500, as given
by Wilson, Rohlfs & Hiittemeister (2013), we obtained a C'80-to-H,
ratio of 1.7 x 10~7. When generating these synthetic emission lines,
we specifically focused on the lowest-transition J = 1-0 of the CO
isotopologues, with the Local Thermodynamic Equilibrium (LTE)
satisfied.

3.9 Training images

Our training input is a thin velocity channel map, p(x, y, vg), derived
from either the '3CO (1-0) or C'*0 (1-0) line, calculated from:

vo+Av/2
peryw = [Ty o, (12)
vo—Av/2
where v is the velocity associated with the line’s central peak, 7.
is the emission line’s intensity, and Av = 1/8(v?). Here, \/8(v?) is
the velocity dispersion derived from the moment-1 map (velocity
centroid map). The '>CO line, a common diffuse cloud tracer,
is not used in this work due to numerical limitations related
to the saturation of the intensity of '2CO in the channel cen-
tring at vo, which obliterates the spatial features of that channel
(Hsieh et al. 2019). However, the CNN method could be extended
to include wing channels centring at |[v| < vy to bypass this
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Figure 3. An numerical illustration of the anisotropy in >CO (top) and C'8O channel map. The red streamlines represent the POS magnetic field orientation.
Panel (a): Ma = 0.20, y = 90°. Panel (b): Ms = 1.43, y = 90°. Panel (c): Mp = 0.20, y = 60°.

numerical saturation, a possibility we might explore in future
work.?

We generate p(x, y, vg) for the full cloud, a region of 792 x 792
cells, then randomly segment p(x, y, vp) into 22 x 22-cell subfields
for input into the CNN model. The choice of 22 x 22-cell avoids that
the features fall into the numerical dissipation range, in which the
anisotropy of MHD turbulence is distorted by numerical diffusivity.
In observation, the inertial range of MHD turbulence is much longer,
and the velocity channel map is not affected by the dissipation. The
size of the subfield, thus, could be smaller to achieve higher reso-
lution. For each subfield, we also generate corresponding projected
maps of ¢**°, "' M5 and M as per the following:

[ By(x, y,z)dz)
[ Bi(x,y,2)dz
fBz(x’Y7Z)dZ)

¢*"(x, y) = arctan (

sub

(x, y) = arccos (

[ B(x,y,2)dz
Msub _ vil::js\/ 47T<p>los
A (B)los '
los
M = (13)
Cs
where B = , /B + BZ + BZ is the total magnetic field strength, and

By, By, and B; are its x, y, and z components. (p)j,s and (B)jos are
the gas mass density and magnetic field strength averaged along the
LOS. M and M3 are defined using the local velocity dispersion for
each LOS (i.e. v}“jf) rather than the global turbulent injection velocity
Vinj used to characterize the full simulation. The ranges of Mﬁfb and

2The use of wing channels has its own advantages through increasing the
ratio of velocity to density fluctuations (Yuen, Ho & Lazarian 2021; Hu et al.
2023).
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M averaged over the subfield in each simulation with different y
are listed in Table 1, while y**® spans from 0 to 90°. These values
of ME™®, M, and y**® cover typical physical conditions of diffuse
molecular clouds (Hu & Lazarian 2023c).

4 RESULTS

4.1 Numerical training and tests

Fig. 3 provides a visualization detailing the influence of M4 and y on
the anisotropy of intensity structures within thin velocity channels.
In scenarios where both M, and y values are small, the intensity
structures distinctly manifest as slender strips, extending in alignment
with the POS magnetic fields. These structures are produced pre-
dominantly by the turbulent velocity (Lazarian & Pogosyan 2000),
as demonstrated in Hu et al. (2023). As M, increases, representing
a weakening in the magnetic field, the MHD turbulence begins to
more closely resemble isotropic hydrodynamical turbulence. This
shift brings about a marked change in the topology of intensity
structures, making them less anisotropic. Alternatively, when dealing
with smaller values of y, which imply that magnetic fields are
oriented more proximally to the LOS, the inherent anisotropy is
subdued due to the projection effect. Comparing '*CO and C'30,
C'80 is more sensitive to denser gas, so its associated intensity
structures exhibit distinct characteristics. Despite these differences,
the underlying physical principle of anisotropic MHD turbulence
remains the same, suggesting M, and y continue to shape the
observed structural formations.

Fig. 4 provides a comparative visualization between the actual 3D
magnetic fields and those predicted through the utilization of the
trained CNN model with '3CO. This comparison is framed within
two distinct conditions: sub-Alfvénic (simulation with (M) ~ 0.5
and (y) &~ 90°) and super-Alfvénic (simulation with (M) ~ 2.0 and
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Figure 4. An comparison of the CNN-predicted 3D magnetic fields using '3CO in sub-Alfvén (top, (Ma) ~ 0.5 and (y) ~ 90°) and super-Alfvén (bottom,
(M) ~ 2.0 and (y) =~ 30°) conditions. Each magnetic field segment is constructed by the POS magnetic field’s position angle (i.e. ¢) and the inclination angle
y. Note that the magnetic field obtained is the projection along the LOS and averaged over 132 x 132 pixels for visualization purposes. The third axis of the
LOS is for 3D visualization purposes and does not provide distance information here. The total intensity map / is placed on the POS, i.e. the x—y plane.

(y) =~ 30°). Within these settings, the mean projected total Alfvén
Mach number on the POS is given as (M) ~ 0.5 for sub-Alfvénic
conditions and (M) =~ 2.0 for super-Alfvénic ones.

The visual segment displayed in Fig. 4 is constructed from the POS
magnetic field’s position angle, ¢, and the inclination angle, y, with
a superimposed colour representation signifying the projected Mx.
Upon comparison with the intrinsic magnetic field embedded within
the simulation, a noteworthy observation is the alignment between
the orientations of the CNN-predicted 3D magnetic field and the
actual field, evident under both sub-Alfvénic and super-Alfvénic
conditions. In the sub-Alfvénic case, the CNN-predicted M, is
slightly larger (by ~0.1-0.2) than the actual values. Conversely, in
the super-Alfvénic scenario, the predicted value is somewhat smaller,
with a deviation ranging from ~0.5-1.0. Another example with
(Ma) =~ 0.15 and (y) = 60° is presented in Appendix A. Although
this simulation shows an anisotropy degree similar to the case with
(Ma) ~ 0.5 and (y) =~ 90°, the CNN model effectively resolves
the degeneracy in the correlation of the anisotropy degree with y
and M, (see Section 2), successfully recovering the 3D magnetic
field (see Fig. Al). It should be noted that the predicted My is still
overestimated by approximately 0.1-0.2.

Fig. 5 offers a similar visual comparison but focuses on the C'*0
line. This line is generally recognized as denser tracers compared
to 13CO. Despite these differences in tracer density, the CNN

predictions for C'80 lines maintain a general alignment with the
actual 3D magnetic fields observed within the simulations. Moreover,
there is less significant overestimation and underestimation in the
CNN-predicted M.

Figs 6 and 7 present 2D histograms illustrating the correspon-
dence between CNN predictions — NN, N and MSYN — and
actual values obtained from two test simulations, A2 and A6.
In sub-Alfvénic cases for both '3CO and C'®0 molecules, we
observe a close alignment between the CNN predictions and the
real values. The scatter of the predictions, which includes ¢™N,
y NN and M§Y, demonstrates a small deviation from the actual
values, tightly congregating near the one-to-one reference line. This
minimal deviation suggests that the CNN model offers a high degree
of accuracy and reliability when operating under sub-Alfvéénic
conditions.

However, the scenario is a bit different in super-Alfvénic cases.
Here, the scatter is noticeably more widespread, indicating that
deviations from the real values increase in these conditions. The ¢ NN
predictions, in particular, show a tendency for both overestimation
and underestimation. In contrast, the y "N predictions are primarily
characterized by overestimations, a trend that is especially prominent
in cases involving C'80 molecules. Meanwhile, the scatter related
to the M{™ predictions is distributed more uniformly around the
reference line.
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Figure 6. 2D histogram of the '>CO CNN-predictions, i.e. $NN (left), y NN (middle), and MXNN (right), and the corresponding actual values in simulation
(Top: sub-Alfvén, (M) ~ 0.5 and (y) ~ 90°. Bottom: super-Alfvén, (M) ~ 2.0 and (y) &~ 30°). The dashed reference line represents the ideal scenario, where
the predicted values and actual values match perfectly.
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Figure 7. Same as Fig. 6, but for C'80.

This suggests predicting the 3D magnetic field under super-
Alfvénic conditions is more challenging with higher uncertainty.
In these environments, the magnetic field exerts a weaker influence,
and the turbulence observed more closely resembles that of hydro-
dynamic turbulence, thereby complicating the prediction process.
Enhancing prediction accuracy is feasible through two strategies.
First, it is possible to further refine and optimize the CNN model to
improve its adaptability and responsiveness to the unique features
of super-Alfvénic MHD turbulence. For instance, Peek & Burkhart
(2019) put forth a CNN model designed specifically to differentiate
between sub-Alfvénic and super-Alfvénic turbulence. This model,
with its specialized focus, offers a promising avenue for enhancing
the accuracy of predictions in super-Alfvénic environments. Second,
enrich the data set to train the CNN model. By incorporating a broader
and more diverse range of images, the model can be exposed to a
wider array of scenarios and conditions, thereby reducing uncertainty
and improving its ability to make accurate predictions across different
environments and conditions.

Figs 8 and 9 plot the histograms of the deviation between the
CNN-predicted and the actual 3D magnetic field. We calculate the
absolute difference between ¢“NN and ¢, between y“™N and y, and
between MS™N and M, respectively. These differences are denoted
as 04, 04, and oy, . In the sub-Alfvénic scenarios, we observed that
the distributions of o4 and o, are relatively condensed, primarily
falling within the 0 to 20° range. This concentration indicates a close
alignment between the CNN predictions and the actual values in sub-
Alfvénic environments, suggesting that the CNN model performs
with high precision in these conditions. However, as (M) increases,
the distributions of oy and o, broaden, spanning a more extensive
range from O to 60°. This dispersion is indicative of larger deviations
between predicted and actual values under these conditions, implying
that the CNN model may face challenges in accurately capturing the
magnetic field dynamics when (M, ) increases.

Examining specific molecules, for '*CO under sub-Alfvénic
conditions, the median deviation values are relatively low: o4 =
3.26°, 0, = 2.98°, and oy, = 0.16. In contrast, under super-

Alfvénic conditions, these values increase to 12.32°, 9.08°, and
1.1, respectively, highlighting an increase in prediction deviation as
the environment transitions from sub- to super-Alfvénic. Similarly,
for C'80, the median deviation values are 2.22°, 3.20°, and 0.16
under sub-Alfvénic conditions and 12.08°, 13.60°, and 1.36 under
super-Alfvénic scenarios, underlining a consistent trend of increased
deviation in super-Alfvénic environments across different molecules.

4.2 Observational prediction

For the observational tests, our target is the nearby L1478 cloud. We
utilized '*CO spectral line from a previous study Lewis et al. (2021).
The data has a beam resolution of 38 arcmin and was regrid to a
pixel resolution of 10 arcsec, while achieving a velocity resolution
of 0.3kms~!. The 1D velocity dispersion o, of the *CO line
was reported within the range of 0.40-0.70kms~' (Lewis et al.
2021). Assuming an isotropic velocity dispersion in 3D and uniform
temperature of 10K (corresponding to an isothermal sound speed
of ¢ ~ 0.187kms™!, see Hu, Lazarian & Stanimirovi¢ 2021b), we
find the sonic Mach number M = /30, /cs ranges from 3.69 to 6.45,
falling into the parameter regimes in our numerical simulations. With
these refined data, we applied our adeptly trained CNN model to the
3CO channel map, aiming to predict the key 3D magnetic field
parameters, denoted as ¢“NN, y NN A NN,

For the purpose of validating the results yielded through our
CNN application, we engaged in a comparative analysis with POS
magnetic field orientations as predicted through Planck 353 GHz
polarization data. The data harnessed for this comparative process
was drawn from the third Public Data Release (DR3), provided by
Planck’s High-Frequency Instrument (Planck Collaboration et al.
2020a). The POS magnetic field orientation was inferred from Stokes
parameters Q and U converted to IAU convention from HEALPix
using the equation: ¢P*** = Ltan~!(—U, Q) + m/2. To enhance
the signal-to-noise ratio, we smoothed the Stokes parameter maps
from an angular resolution of 5 to 10arcmin using a Gaussian
kernel.
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Figure 10. Comparison of the POS magnetic fields predicted by CNN-!3CO (red segment) for the L1478 cloud and inferred from Planck polarization (blue

segment). The background image is the integrated '*CO intensity map.

As presented in Fig. 10, a remarkable alignment between
the magnetic field orientations as predicted by both the CNN
model and the Planck polarization data is observed, while we
notice the difference is apparent in the north-east clump (see
the zoom-in plot in Fig. 10). To quantify the agreement be-
tween CNN-prediction and polarization, we utilize the Alignment
Measure (AM; Gonzdlez-Casanova & Lazarian 2017), expressed
as:

AM = (cos(26,)), 14)

here 6, is the relative angle between the two measurements. An
AM value of ~0.94 confirms the CNN-prediction has an excellent

MNRAS 527, 11240-11255 (2024)

agreement with Planck polarization®, corresponding to an overall
deviation of ~10°.

A noteworthy advantage of our CNN model over traditional
polarization methodologies is its ability to trace the 3D magnetic
fields. This is achieved through the model’s predictions regarding
y and M. These predictions are summarized in histograms within
Fig. 11. According to the histograms, the median y and My of the
L1478 cloud are estimated at ~76° and ~1.07, respectively. These
measurements suggest that the L.1478 is a trans-Alfvénic could. In
this state, there is an equilibrium between magnetic and turbulent

3AM = 1 implies a perfect parallel alignment, while —1 indicates perpen-
dicularity.
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Figure 12. An visulization of the CNN-predicted 3D magnetic fields using
13CO for the L1478 cloud. Each magnetic field segment is constructed by
the position angle of the POS magnetic field (i.e. ¢) and the inclination angle
y. Note that the magnetic field obtained is the projection along the LOS
and averaged over 12 x 12 pixels for visualization purposes. The third axis
of the LOS is for 3D visualization purposes and does not provide distance
information here. The total intensity map / is placed on the POS, i.e. the [-b
plane.

kinetic energies within the cloud. The parameters derived from the
CNN application have been instrumental in creating the first-ever 3D
magnetic field map for L1478, which can be viewed in Fig. 12.

5 DISCUSSION

5.1 Comparison with earlier studies

The realm of exploring magnetic fields within the ISM through CNN
is experiencing swift advancements. As a pilot study presented by
Xu, Law & Tan (2023), the Convolutional Approach to Structure
Identification-3D (CASI-3D) model was employed to map the 2D
POS magnetic field orientation. This is achieved similarly by using
the velocity channel maps obtained from spectroscopic observations.
The underlying physics principle is still founded on the anisotropic
MHD turbulence. The training process underpinning this approach
uses the emission lines of '2CO and 3CO (J = 1-0), generated
through the RADMC-3D code (Dullemond et al. 2012).

In this study, we introduce a new CNN model. This advanced
model is designed with the aim of predicting not merely the
orientation ¢ of the POS magnetic field but extends to encompass
the angle of field inclination, y, as well as the total Alfvén Mach

number M. This approach allows the construction of 3D magnetic
field vectors. For training the CNN model, we have utilized emission
lines from '3CO and C'80 (J = 1-0), with data generated from the
SPARX code (Hsieh et al. 2019).

We quantify the uncertainty of our CNN-predicted ¢ and y. We
found that the median value and the dispersion of uncertainty for
C'80 are approximately ~2.22° and ~3.20° under sub-Alfv’enic
conditions ((M4) =~ 0.5). These values shift to ~12.08° and ~13.60°
under super-Alfvénic conditions ((Ma) ~ 2.0). When compared to
the CASI-3D model, our CNN model demonstrates higher accuracy,
as CASI-3D exhibits a median uncertainty of ~6.2° and ~18.4°
under comparable sub-Alfvénic and super-Alfvénic conditions, re-
spectively. Through the application of our CNN model to the L.1478
molecular cloud, we successfully constructed the first 3D magnetic
field map. The corresponding CNN-predicted POS magnetic field
orientation shows remarkable alignment with that inferred from
Planck 353 GHz polarization data.

It is crucial to acknowledge that despite the differences inherent
between the CNN models used by Xu, Law & Tan (2023) and this
study, the fundamental concept of utilizing spectroscopic channel
maps for magnetic field investigation remains the same: (1) the in-
tensity distribution observable in thin channel maps is predominantly
influenced by turbulent velocity statistics, as outlined in (Lazarian &
Pogosyan 2000; Kandel, Lazarian & Pogosyan 2016; Hu et al. 2023);
and (2) these channel maps capture the anisotropy intrinsic to MHD
turbulence, thereby revealing the orientation of the POS magnetic
field (Lazarian & Yuen 2018; Hu et al. 2023). A crucial insight
was provided by Hu, Lazarian & Xu (2021c), highlighting that the
degree of anisotropy in channel maps, as well as the magnetic field
topology, is regulated by both the y and the M. These are parameters
that can be extracted efficiently using the CNN approach.* Thus,
drawing upon these foundational theoretical studies, we propose the
use of the CNN model as an efficient tool for tracing 3D magnetic
fields, providing convincing physical reasons for interpreting its
feasibility.

5.2 Synergy with other methods

Our newly proposed CNN model stands as a powerful complement
to existing methodologies in the field. One notable technique, which
involves utilizing polarized dust emission, has proven effective in

“#Note that while the anisotropy and magnetic field topology, that are sensitive
to y and the My, are the most apparent features in channel maps, it is also
possible the CNN extracts additional features to facilitate the prediction.
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tracing the 3D magnetic field orientation within diffuse clouds,
where dust grains are perfectly aligned with magnetic fields (Chen
et al. 2019; Hu & Lazarian 2023a,c). However, this technique
may encounter limitations within dense cloud environments, for
example, those observed through tracing by C'80, where dust grains
might not maintain perfect alignment (Lazarian 2007; Andersson,
Lazarian & Vaillancourt 2015). This loss of alignment, resulting in
a phenomenon known as the polarization hole (Pattle et al. 2019;
Seifried et al. 2019; Hoang et al. 2021), introduces uncertainties
when tracing 3D magnetic fields through polarized dust emission
techniques.

Unlike these traditional approaches, the CNN approach remains
immune to the effects of the polarization hole. When the CNN model
is supplied with emission lines from dense tracers like C'80, HNC,
and NH3, it proves highly adept at probing the 3D magnetic fields
present within dense clouds effectively. Nonetheless, it’s important
to consider that within these dense cloud environments, the forces
of self-gravity can become a significant factor. This gravitational
influence might induce alterations in the anisotropy observed within
channel maps (Hu, Lazarian & Yuen 2020b). Therefore, it becomes
imperative to input the CNN model with carefully selected numerical
simulations before applying it to observational data to ensure accurate
and reliable results.

Furthermore, it should be noted that the inclination angle predicted
by the CNN model is inherently limited to the range of [0, 90°]. This
limitation arises because the anisotropy within channel maps alone
cannot definitively discern whether the magnetic field is oriented
towards or away from the observer. However, recent advancements
in the field, particularly in Faraday rotation measurements within
molecular clouds (Tahani et al. 2019, 2022), offer promising avenues
to resolve this degeneracy.

Another relevant method worth discussing is the Velocity Gradient
Technique (VGT; Gonzélez-Casanova & Lazarian 2017; Hu, Yuen &
Lazarian 2018; Lazarian & Yuen 2018). Like our proposed CNN
approach, the VGT is a technique that traces magnetic fields using
spectroscopic observations. Importantly, both the CNN approach
and VGT share a foundational physical principle: they rely on the
anisotropy of MHD turbulence observed within thin channel maps.
With VGT having undergone extensive and rigorous testing (Hu et al.
2019; Lu, Lazarian & Pogosyan 2020; Hu, Lazarian & Stanimirovié
2021b; Alina et al. 2022; Liu, Hu & Lazarian 2022a; Schmaltz,
Hu & Lazarian 2023; Tram et al. 2023; Hu & Lazarian 2023b;
Liu et al. 2023b), it is established as an excellent benchmark for
evaluating the accuracy of CNN models, especially in situations
where polarization measurements are not readily available. This
benchmarking is crucial when CNNs are deployed for tracing
3D Galactic Magnetic Fields, highlighting the important compar-
ative and complementary roles these techniques play in advanc-
ing our understanding of magnetic fields in various astrophysical
contexts.

5.3 Prospects of the CNN method

In the present study, we introduced a CNN model adept at predicting
3D magnetic fields within molecular clouds, utilizing spectroscopic
observations of molecular gas. However, the potential applications
of this CNN method extend far beyond, encompassing various
astrophysical environments and contexts, including neutral hydrogen
(H1) regions, ionized gas, the Central Molecular Zone (CMZ),
external galaxies, and supernova remnants. In the following sections,
we outline several promising applications of this methodology.

MNRAS 527, 11240-11255 (2024)

5.3.1 3D Galactic Magnetic Fields

A deep and comprehensive understanding of the 3D Galactic Mag-
netic Field (GMF; Jansson & Farrar 2012) is paramount for ad-
dressing a host of astrophysical inquiries. These include identifying
the origins of ultra-high energy cosmic rays (Farrar 2014; Farrar &
Sutherland 2019) and refining models of Galactic foreground polar-
ization (Kovetz & Kamionkowski 2015; Planck Collaboration et al.
2016).

Recent research indicates that thin channel maps of H1 success-
fully capture the anisotropy inherent in MHD turbulence (Lazarian &
Pogosyan 2000; Lazarian & Yuen 2018; Lu, Lazarian & Pogosyan
2020; Hu et al. 2023). Consequently, applying the CNN to HI
channel maps constitutes a viable strategy for mapping 3D GMFs.
Past efforts aimed at modelling the foreground polarization with H1
primarily focused on mapping the POS magnetic field orientation
(Clark & Hensley 2019; Lu, Lazarian & Pogosyan 2020; Hu, Yuen &
Lazarian 2020a). These endeavours largely neglected the crucial
depolarization factor, the inclination angle. However, the advent of
sophisticated multiphase H 1 simulations (Ho, Yuen & Lazarian 2021)
has made it possible to train the CNN model for accurate predictions
of 3D GMFs, yielding more realistic models of the foreground
polarization.

Our primary goal in this paper is to explore the magnetic fields of
molecular clouds, for which the isothermal approximation is applica-
ble. Multiphase H I requires separate training of the neural network.
For multiphase H1, where cooling and heating play a significant
role, our general approach remains valid: intensity features/striations
within channel maps continue to elongate along the POS magnetic
field orientation. This is supported by several studies Lazarian &
Yuen (2018); Clark & Hensley (2019); Lu, Lazarian & Pogosyan
(2020); Hu, Yuen & Lazarian (2020a); Hu et al. (2023). These
intensity features/striations are also regulated by the Alfvén Mach
number (M4 ) and the projection effect associated with the inclination
angle. However, additional physics, such as thermal instability, could
modify the observed anisotropy, for instance, potentially leading to a
smaller aspect ratio (Ho, Yuen & Lazarian 2023). The corresponding
study employing our approach for multiphase H1 will be provided
elsewhere.

5.3.2 3D magnetic fields in CMZ and external galaxies

Understanding the magnetic fields within cold molecular gas is
essential for deciphering the processes of formation and fueling of
Seyfert nuclei. Recent measurements of magnetic fields within the
CMZ and in other Seyfert galaxies have been conducted using various
techniques. These include far-infrared polarization observations from
instruments like SOFIA/HAWC + (Lopez-Rodriguez et al. 2021),
JCMT (Pattle et al. 2021), and ALMA (Lopez-Rodriguez et al. 2020),
as well as employing the VGT (Hu, Lazarian & Wang 2022a; Hu
et al. 2022c; Liu et al. 2023b). However, these approaches primarily
yield the POS magnetic field orientation, falling short of provid-
ing a comprehensive 3D perspective. Nevertheless, the successful
application of VGT confirms the viability of using anisotropy in
molecular emission channel maps as a tracer for magnetic fields in
these environments. For instance, Hu, Lazarian & Wang (2022a)
derived a POS magnetic field map surrounding Sgr A% using the
[Ne 11] emission line and Paschen-« image observed with the Hubble
Space Telescope (HST). Given these advances, extending the CNN
methodology to incorporate optical/near-infrared observations from
instruments like the HST and the JWST is a feasible and promising
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approach for predicting 3D magnetic fields in both the Galactic
Centre and external galaxies.

5.4 Obtaining the full 3D magnetic field vector

3D magnetic fields, encompassing both orientation and strength, play
apivotal role in comprehending key astrophysical phenomena. These
include processes such as star formation (Mestel 1965; Mac Low &
Klessen 2004; McKee & Ostriker 2007; Federrath & Klessen 2012;
Lazarian, Esquivel & Crutcher 2012; Hu, Lazarian & Stanimirovié
2021b), the effects of stellar feedback (Pattle et al. 2022; Liu, Hu &
Lazarian 2023a), as well as the acceleration and propagation of
cosmic rays (Fermi 1949; Jokipii 1966; Yan & Lazarian 2002;
Xu & Yan 2013; Xu & Lazarian 2020; Beattie et al. 2022; Hu,
Lazarian & Xu 2022b; Lazarian & Xu 2023). Traditionally, to obtain
the strength of these fields, the Davis—Chandrasekhar—Fermi (DCF)
method is employed, which typically combines dust polarimetry with
spectroscopic observations (see Davis 1951; Chandrasekhar & Fermi
1953). However, this often proves insufficient. the DCF method gives
only the POS magnetic field strength, while the component along the
LOS is missing. Other limitations of the DCF method have also been
thoroughly dissected in the literature (Skalidis et al. 2021; Chen et al.
2022; Lazarian, Yuen & Pogosyan 2022; Liu, Qiu & Zhang 2022b).
In light of this, an alternative approach has been proposed: the use
of the Alfvén Mach number M, with the sonic Mach number M
to derive the magnetic field’s strength (Lazarian, Yuen & Pogosyan
2020). This method, aptly termed MM2, can be used to obtain the
total strength, particularly since the vital term M is readily available
with the CNN approach proposed in this study. The sonic Mach
number M, can be procured either directly via spectroscopic line
broadening or by leveraging a CNN approach similar to our current
study. Coupled with the 3D magnetic field orientation, this equips us
with the necessary tools to construct a 3D magnetic field vector.

6 SUMMARY

In this study, a CNN model was designed for the intricate task of
probing 3D magnetic fields within molecular clouds. This model is
not confined to determining the POS magnetic field orientation but
extends its capabilities to accurately ascertain the field’s inclination
angle and the total Alfvén Mach number, offering a more compre-
hensive understanding of the magnetic field in the observed regions.
We summarize our major results below:

(i) We developed a CNN model for probing the 3D magnetic fields,
including the POS magnetic field orientation, inclination angle, and
total Alfvén Mach number.

(ii) The CNN model was trained using synthetic '*CO and C'30
(J/ = 1-0) emission lines, encompassing a range of conditions
from sub-Alfvénic to super-Alfvénic. We quantified the uncertainties
associated with the trained CNN model’s predictions. Our findings
revealed that the uncertainties are less than 5° for both ¢ and y,
and are smaller than 0.2 for M, under sub-Alfvénic conditions (with
My = 0.5). Under super-Alfvénic conditions (with M, =~ 2.0), the
uncertainties increased slightly but remained below 15° for ¢ and y,
and were around 1.5 for M4.

(iii) We implemented our trained CNN model to analyse the
molecular cloud L1478. The CNN-predicted POS magnetic field
orientation exhibited remarkable agreement with orientations in-
ferred from Planck 353 GHz polarization data, with a marginal global
difference of approximately 10°.

Probing 3D magnetic fields with CNN 11253

(iv) This study facilitated the construction of the first 3D magnetic
field map for the L1478 cloud. Through our analysis, we found that
the cloud’s global inclination angle is approximately 76°, while the
global total Alfvén Mach number is close to 1.07.

(v) We discussed the potential applications and future prospects
of the CNN approach. Particularly, we discussed the feasibility and
potential of utilizing the CNN model for predicting 3D GMFs. We
also considered its application for understanding 3D magnetic fields
in the CMZ and external galaxies.
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APPENDIX A: ANISOTROPY’S DEGENERACY ON y AND M,

As we discussed in Section 2, the degree of observed anisotropy is intricately modulated by both y and M,, resulting in a degeneracy.
However, it is expected that the CNN model has the capacity to extract additional information, such as changes in the magnetic field topology,
to simultaneously determine both y and M,. Figs 4 and A1 present a test for this.
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Figure A1. Same as Fig. 4, but for a different simulation with (M4) ~ 0.15 and (y) ~ 60°.

The simulation deployed in Fig. 4 maintains average conditions of (M) ~ 0.5 and (y) ~ 90°, while Fig. A1 operates under (M,) ~ 0.15
and (y) ~ 60°. Both simulations are expected to exhibit comparable degrees of anisotropy on the POS. We can see in both cases, the CNN
model adeptly reconstructs the 3D magnetic fields. This reconstruction is achieved through accurate predictions of both the POS magnetic
field orientation and the value of y. However, the CNN-predicted M, is approximately 0.1 to 0.2 larger than the actual M,, indicating an
overestimation. This testifies that the CNN model is capable of solving the anisotropy degree’s degeneracy. The overestimation in M, might
be addressed through possible solutions, as discussed in Section 4.
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