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A B S T R A C T 

Observing 3D magnetic fields, including orientation and strength, within the interstellar medium is vital but notoriously difficult. 
Ho we ver, recent adv ances in our understanding of anisotropic magnetohydrodynamic (MHD) turbulence demonstrate that MHD 

turbulence and 3D magnetic fields leave their imprints on the intensity features of spectroscopic observ ations. Le veraging these 
theoretical frameworks, we propose a no v el Convolutional Neural Network (CNN) model to extract this embedded information, 
enabling the probe of 3D magnetic fields. This model examines the plane-of-the-sky magnetic field orientation ( φ), the magnetic 
field’s inclination angle ( γ ) relative to the line-of-sight, and the total magnetization level ( M 

−1 
A 

) of the cloud. We train the model 
using synthetic emission lines of 13 CO ( J = 1–0) and C 

18 O ( J = 1–0), generated from 3D MHD simulations that span conditions 
from sub-Alfv ́enic to super-Alfv ́enic molecular clouds. Our tests confirm that the CNN model ef fecti vely reconstructs the 3D 

magnetic field topology and magnetization. The median uncertainties are under 5 
◦ for both φ and γ , and less than 0.2 for M A in 

sub-Alfv ́enic conditions ( M A ≈ 0.5). In super-Alfv ́enic scenarios ( M A ≈ 2.0), they are under 15 
◦ for φ and γ , and 1.5 for M A . 

We applied this trained CNN model to the L1478 molecular cloud. Results show a strong agreement between the CNN-predicted 

magnetic field orientation and that derived from Planck 353 GHz polarization. The CNN approach enabled us to construct the 
3D magnetic field map for L1478, revealing a global inclination angle of ≈76 

◦ and a global M A of ≈1.07. 
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 INTRODUCTION  

n the vast interstellar medium (ISM), magnetic fields are perv asi ve
owers that significantly influence various astrophysical phenomena.
hese fields serve as invisible balancers against gravitational forces
ithin the ISM, intricately maintaining its equilibrium (Wurster &
i 2018 ; Abbate et al. 2020 ). They are instrumental in directing
as flows towards galactic nuclei, playing a crucial role in their
ustenance and the dynamic processes unfolding therein (Kim &
tone 2012 ; Roche et al. 2018 ; Busquet 2020 ; Whittingham et al.
021 ; Hu et al. 2022c ). Magnetic fields also go v ern the trajectories of
osmic rays, affecting the energy distribution and o v erall dynamics
f ISM (Fermi 1949 ; Jokipii 1966 ; Yan & Lazarian 2002 , 2004 ;
errand & Marcowith 2010 ; Xu & Yan 2013 ; Xu & Lazarian 2020 ;
opkins et al. 2021 ; Hu, Lazarian & Xu 2022b ). Furthermore,

hey are deeply involved in the star formation processes within
olecular clouds, influencing both the rate and nature of star births

Mestel 1965 ; Mac Low & Klessen 2004 ; McKee & Ostriker 2007 ;
ederrath & Klessen 2012 ; Lazarian, Esquivel & Crutcher 2012 ;
u, Lazarian & Stanimirovi ́c 2021b ). Despite their pivotal roles, our
nderstanding of these magnetic fields remains far from complete. 
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Our primary challenge lies in the formidable task of probing a
hree-dimensional (3D) magnetic field in 3D spatial space. Current
pproaches – such as polarized dust emission (Lazarian 2007 ;
ndersson, Lazarian & Vaillancourt 2015 ; Planck Collaboration

t al. 2015 ; Fissel et al. 2016 ; Planck Collaboration et al. 2020b ;
i et al. 2021 ; Liu, Hu & Lazarian 2023a ), polarized synchrotron
mission (Xiao et al. 2008 ; Planck Collaboration et al. 2016 ; Guan
t al. 2021 ), provide 2D measurements of the plane-of-sky (POS)
agnetic field direction, while Zeeman splitting (Crutcher 2004 ,

012 ) and Faraday rotation (Haverkorn 2007 ; Taylor, Stil & Sunstrum
009 ; Oppermann et al. 2012 ; Xu & Zhang 2016 ; Tahani et al.
019 ) provide line-of-sight (LOS) components of the magnetic field.
ielding valuable insights, these techniques probe into distinct and

ypically different regions of the multiphase ISM. Thus, despite their
ndividual strengths, merging these insights into a coherent, full 3D

agnetic field vector, which includes both the 3D orientation and
otal strength, presents a non-trivial task. 

A significant advance in probing the 3D magnetic fields in molec-
lar clouds has been made by leveraging polarized dust emission,
rawing on the depolarization effect induced by different magnetic
eld orientations (see Chen et al. 2019 ) and by accounting for the
roperties of turbulent magnetic fields Hu & Lazarian 2023a , c ). As
 separate development, Tahani et al. ( 2019 , 2022 ) has succeeded
n employing the synergy of Faraday rotation and dust polarization
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
.0/ ), which permits unrestricted reuse, distribution, and reproduction in any 

medium, provided the original work is properly cited. 
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o infer a helical 3D magnetic field topology across the Orion A,
rion B, Perseus, and California clouds. Subsequently, Hu, Xu & 

azarian ( 2021a ) and Hu, Lazarian & Xu ( 2021c ) proposed the use of
nisotropic properties of magnetohydrodynamic (MHD) turbulence, 
nherited by young stellar objects (Ha et al. 2022 ) and spectroscopic
ines (Lazarian & Pogosyan 2000 ; Kandel, Lazarian & Pogosyan 
016 ; Hu et al. 2023 ), to obtain the LOS and POS components of the
agnetic field’s orientation and total magnetization simultaneously. 
Importantly, the underlying theory of Hu, Lazarian & Xu ( 2021c )’s

pproach demonstrates that spectroscopic observations embody the 
nisotropy of MHD turbulence (Lazarian & Pogosyan 2000 ; Kandel, 
azarian & Pogosyan 2016 ; Hu et al. 2023 ), i.e. turbulent eddies
longate along the 3D direction of the magnetic field (Goldreich & 

ridhar 1995 ; Lazarian & Vishniac 1999 ). The spatial features 
resented in these observations imprint the anisotropy and thus 
arry detailed information about the magnetic fields. This implies 
hat, giv en an e xtensiv e amount of training data, machine learning
lgorithms have the potential to capture these features and produce 
ccurate measurements. This strategy has been employed to map the 
D POS magnetic field orientation using velocity channel maps from 

pectroscopic observations (Xu, Law & Tan 2023 ). The theoretical 
asis remains the anisotropy of the MHD turbulence, a principle 
reviously utilized to trace magnetic fields via velocity gradients 
Hu, Yuen & Lazarian 2018 ; Lazarian & Yuen 2018 ; Alina et al.
022 ; Liu, Hu & Lazarian 2022a ; Hu et al. 2022c ; Schmaltz, Hu &
azarian 2023 ). Ho we ver, Hu, Lazarian & Xu ( 2021c ) made the
rucial disco v ery that anisotropy in velocity channel maps harbours
ot only information about the POS magnetic field orientation, but 
lso the total magnetization and the magnetic field’s inclination angle 
ith respect to the LOS. This additional information paves the way 

or constructing the full 3D magnetic field vector from spectroscopic 
bservations. 
By leveraging the capabilities of Convolutional Neural Networks 

CNN; LeCun et al. 1998 ) – a type of deep learning model excelling
n image and signal processing – we aspire to develop a novel 
ethod that can probe the 3D magnetic field. Earlier studies of

he CNN explored the possibility to distinguish sub-Alfv ́enic and 
uper -Alfv ́enic turb ulence (Peek & Burkhart 2019 ) and predict
he POS magnetic field orientation (Xu, Law & Tan 2023 ). Our
tudy, ho we ver, targets the simultaneous extraction of LOS and 
OS magnetic field orientations and the total magnetization. The 
oundation of our CNN model is the anisotropic MHD turbulence 
xhibited in spectroscopic observations (Lazarian & Pogosyan 2000 ; 
andel, Lazarian & Pogosyan 2016 ; Hu et al. 2023 ), a theoretical
nderpinning that allows us to interpret the CNN model accurately. 
n other words, it enables us to discern the specific features that
onv e y information about the magnetic field, the reasons why they
re informative, and their underlying physical meanings. The effec- 
iveness of training a CNN is highly dependent on the availability 
f comprehensive numerical simulations that accurately represent 
ealistic ISM. In this research, we employ 3D MHD supersonic 
imulations that portray a range of ISM environments, spanning 
ub-Alfv ́enic scenarios (i.e. strong magnetic field), trans-Alfv ́enic, 
nd super-Alfv ́enic conditions (i.e. weak magnetic field). We further 
ost-process these simulations by incorporating the radiative transfer 
ffect, which enables us to generate mock emission lines of 13 CO
nd C 

18 O from diffuse molecular clouds. Through this trained CNN 

odel, we present the 3D magnetic field map of the molecular cloud
1478. 
This paper is organized as follows. In Section 2 , we briefly review

he basic concepts of MHD turbulence anisotropy in spectroscopic 
bservations and their correlation with 3D magnetic field orientation 
nd total magnetization. In Section 3 , we give details of the 3D MHD
imulations and mock observations used in this work, as well as our
NN model. We use mock observations to train the CNN model
nd present the results of numerical testing in Section 4 . We further
pply the trained CNN model to predict the 3D magnetic field in the
olecular cloud L1478. In Section 5 , we discuss the uncertainty and

rospects of the machine learning approach, as well as implications 
or various astrophysical problems. We summarize our results in 
ection 6 . 

 THEORETICAL  CONSIDERATION  

.1 Anisotropy of MHD turbulence: revealing magnetic field 
rientation and magnetization 

he earliest model of MHD turbulence was proposed to be isotropic
Iroshnikov 1963 ; Kraichnan 1965 ). Ho we ver, this model underwent
ubsequent revisions through a series of theoretical and numerical 
tudies, revealing that MHD turbulence exhibits anisotropy under 
ub-Alfv ́enic conditions and isotropy at large-scale, super-Alfv ́enic 
onditions (Montgomery & Turner 1981 ; Shebalin, Matthaeus & 

ontgomery 1983 ; Higdon 1984 ; Montgomery & Matthaeus 1995 ).
A significant advance in this field was the introduction of the

critical balance’ condition, i.e. equating the cascading time ( k ⊥ v l ) −1 

nd the wave periods ( k � v A ) −1 , proposed by Goldreich & Sridhar
 1995 ), hereafter GS95. Here, k � and k ⊥ represent the components
f the wav ev ector parallel and perpendicular to the magnetic field,
espectively, while v l denotes the turbulent velocity at scale l , and
 A = B/ 

√ 

4 πρ represents the Alfv ́en speed. Here, B is the magnetic
eld strength and ρ is the gas mass density. 
Taking into account Kolmogorov-type turbulence, i.e. v l ∝ l 1/3 , 

he GS95 anisotropy scaling can be straightforwardly derived. 

 ‖ ∝ k 
2 / 3 
⊥ 

, (1) 

hich reveals the anisotropic nature of turbulence eddies, implying 
hat the eddies are elongated along the magnetic fields. Ho we ver, it
hould be noted that the considerations of GS95 are based on a global
eference frame, where the direction of the wav ev ectors is defined
elative to the mean magnetic field. 

Scale-dependent anisotrop y w as later introduced via the study of
ast turbulent reconnection by Lazarian & Vishniac 1999 (hereafter 
V99), which proposed a local reference frame. This frame is defined
elative to the magnetic field passing through an eddy at scale
 . According to LV99, the motion of eddies perpendicular to the
irection of the local magnetic field adheres to the Kolmogorov law
i.e. v l, ⊥ ∝ l 

1 / 3 
⊥ 

), since this is the direction in which the magnetic field
ffers minimal resistance. Applying the ‘critical balance’ condition 
n the local reference frame: v l, ⊥ l 

−1 
⊥ 

≈ v A l 
−1 
‖ , the scale-dependent

nisotropy scaling is then given by: 

 ‖ = L inj 

(
l ⊥ 

L inj 

) 2 
3 

M 

−4 / 3 
A , M A ≤ 1 , (2) 

here l ⊥ and l � represent the perpendicular and parallel scales of
ddies with respect to the local magnetic field, respectively. L inj 

enotes the turbulence injection scale and M A = v inj / v A is the Alfv ́en
ach number. M 

−1 
A gives magnetization level of the medium. 

Equation 2 provides two critical insights: (1) Turbulent eddies 
tretch along the local magnetic field (i.e. l � � l ⊥ ), and (2) the de-
r ee of anisotr opy, defined as l � / l ⊥ , depends on the magnetization
M 

−1 
A . As we illustrated in Fig. 1 , this indicates that eddies become

ncreasingly anisotropic in a strongly magnetized medium. For the 
MNRAS 527, 11240–11255 (2024) 
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M

Figure 1. Illustration of how the observed intensity structures in channel map regulated by M A and γ . Within all three panels, these intensity structures elongate 
along the POS magnetic field direction where l � > l ⊥ . Structures 1 and 2, depicted in panels (a) and (b), are projected onto the POS with identical inclination 
angles γ 1 = γ 2 , yet exhibit different magnetizations with M 

−1 
A , 1 > M 

−1 
A , 2 . Notably, the anisotropy observed, represented as l � / l ⊥ , in the weakly magnetized 

Structure 2 is less pronounced than in Structure 1. Structure 2 is less straightened because the weak magnetic field has more fluctuations. The curvature of the 
observed magnetic structures is suggested for magnetization studies by Yuen & Lazarian ( 2020 ). Comparatively, Structures 1 and 3, showcased in panels (a) and 
(c), possess equi v alent magnetizations M 

−1 
A , 1 = M 

−1 
A , 3 , but divergent inclination angles with γ 1 > γ 3 . The observed anisotropy decreases with smaller γ , though 

it is crucial to note that the straightness of Structure 3 remains unaffected by this projection. It should be noted that, here, the projection effect is simplified. The 
intensity structures are predominantly created by the velocity caustics effect due to MHD turbulence. The projection effect is applied to the velocity field and 
then subsequent intensity structures in velocity channels. 
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ase where M A 	 1, turbulence is essentially isotropic due to the
redominance of hydrodynamic turbulence. Ho we ver, the essence
f turbulence lies in the cascading of energy from larger injection
cales to smaller ones, which leads to a decrease in turbulent velocity.
ventually, at the transition scale l a = L inj /M 

3 
A , the strength of the

agnetic field becomes comparable to the turbulence (i.e. the Alfv ́en
ach number at l a is unity, see Lazarian 2006 ), and anisotropy starts

o manifest. 
Furthermore, (3) changes in M A are distinctly reflected in the
agnetic field topology. Within a strongly magnetized medium, the
agnetic field lines exhibit minimal variation due to the presence

f weaker fluctuations, resulting in more straightened field lines. In
ontrast, in the context of a weaker magnetic field, which corresponds
o a larger value of M A , fluctuations in the magnetic field direction
ntensify significantly. This leads to the field lines adopting a more
urved configuration (Yuen & Lazarian 2020 ). As turbulent eddies
xtend along the local magnetic field, the topological changes
nduced by M A become evidently imprinted within these eddies. 

.2 Obtaining velocity information from spectroscopic 
bser v ation 

he anisotropy outlined in equation ( 2 ) pertains to turbulent velocity
uctuations, and the turbulent eddy refers to velocity fluctuation
ontour. This suggests that anisotropy manifests in turbulent velocity
elds. Such anisotropic velocity can be obtained from the velocity
hannel map of spectroscopic observations, due to the velocity
austics effect (Lazarian & Pogosyan 2000 ). We briefly re vie w this
oncept. 

In position–position–velocity (PPV) space, the observed intensity
istribution of a given spectral line is determined by both the
ensity of emitters and their velocity distribution along the LOS.
NRAS 527, 11240–11255 (2024) 
f coherent velocity shear – for instance, from galactic rotation – can
e disregarded. 1 , the LOS velocity component, v, becomes the sum
f the turbulent velocity, v tur ( x , y , z), and the residual component
ttributable to thermal motions. This residual thermal velocity, v −
 tur ( x , y , z), has a Maxwellian distribution, φ( v, x , y , z). For emissivity
roportional to density, it provides PPV emission density ρs ( x , y , z)
s (Lazarian & Pogosyan 2004 ): 

s ( x , y , v) = κ

∫ 
ρ( x , y , z) φ( v, x , y , z ) d z , (3) 

( v, x, y, z) ≡ 1 √ 

2 πc 2 s 

exp 

[
− [ v − v tur ( x, y, z)] 2 

2 c 2 s 

]
, (4) 

here κ is a constant that correlates the number of emitters to the
bserved intensities. c s = 

√ 

γa k B T /m is the sound speed, with m
eing the mass of atoms or molecules, γ a the adiabatic index, k B 
eing the Boltzmann constant, and T the temperature, which can
ary from point to point if the emitter is not isothermal. However,
he variation of temperature has only a marginal contribution to the
istribution of ρs ( x , y , v) (see Hu et al. 2023 ). By integrating ρs ( x ,
 , v) o v er a defined velocity range or channel width �v, we obtain a
elocity channel: 

( x , y , v) = 

∫ v + �v / 2 

v −�v / 2 
ρs ( x , y , v 

′ ) d v ′ . (5) 

By separating the 3D density into the mean density and zero-mean
uctuations, ρ( x , y , z) = ρ̄ + ρ̄δ( x , y , z), the channel intensity can
e represented as the sum of two terms, p ( x , y , v) = p vc ( x , y , v) +
 dc ( x , y , v)(Hu et al. 2023 ): 
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 vc ≡
∫ v + �v / 2 

v −�v / 2 
d v ′ 

∫ 
ρ̄φ( v ′ , x, y, z) d z, (6) 

 dc ≡
∫ v + �v / 2 

v −�v / 2 
d v ′ 

∫ 
ρ̄δ( x , y , z) φ( v ′ , x , y , z ) d z . (7) 

he first term, p vc , encompasses the mean intensity in the channel
nd carries fluctuations e xclusiv ely produced by velocity, called the 
elocity caustics effect (Lazarian & Pogosyan 2000 ). The second 
erm, p dc , reflects the inhomogeneities in the real 3D density. 

The relative importance of p vc and p dc depends on the channel 
idth (Lazarian & Pogosyan 2000 ; Kandel, Lazarian & Pogosyan 
016 ; Hu et al. 2023 ). The narrower the channel width, the greater
he contribution from p vc . When the channel width �v is less
han the velocity dispersion 

√ 

δ( v 2 ) of the turbulent eddies under 
nvestigation, that is, �v < 

√ 

δ( v 2 ) , the intensity fluctuation in 
uch a thin channel is predominantly due to velocity fluctuation. 
onsequently, p ( x , y , v) inherits the anisotropy of MHD turbulence.
he intensity structures within p ( x , y , v) elongate along the POS
agnetic fields, and their corresponding anisotropy degree, as well 

s the topology, is correlated with the magnetization and inclination 
ngle. On the other hand, the dominance of p vc ensures that the
orphology of intensity fluctuation within p ( x , y , v) is less sensitive

o M s , because the anisotropy in MHD turbulence’s velocity field is
ot affected by M s (Kowal & Lazarian 2010 ). 
It is important to note that Clark, Peek & Miville-Desch ̂ enes ( 2019 )

uestioned the validity of velocity caustics in the presence of thermal 
roadening in multiphase H I gas and suggested that the thin velocity
hannel is dominated by density fluctuations from cold filaments. The 
ature of the striations in channel maps was tested in Hu et al. ( 2023 ),
y explicitly e v aluating velocity and density contributions in velocity 
hannels obtained from multiphase H I simulations and GALFA-H I 

bservations. This study confirmed that the velocity caustics were 
esponsible for the observed striation. 

.3 Anisotropy in thin velocity channels: dependence on the 
nclination angle of magnetic fields 

he anisotropy of the observed intensity in a PPV channel, repre- 
ented by p ( x , y , v), is also affected by the inclination angle γ of
he magnetic field with respect to the LOS, due to the projection
ffect (Hu, Lazarian & Xu 2021c ). For example, as illustrated in
ig. 1 , we consider two magnetized structures (or eddies), s 1 , and
 3 , both having identical magnetization. Although these unprojected 
tructures have the same anisotropy degree, their projections differ. 
pecifically, a projection with a smaller inclination angle results in a 

ower anisotropy degree by reducing the scale parallel to the magnetic 
elds. When γ = 0, the parallel scale of the eddy aligns with the
OS, making the anisotropy unobservable on the POS. 
Ho we ver, as pre viously mentioned, the degree of anisotropy is

lso controlled by magnetization. As shown in Fig. 1 , although 
wo magnetized structures ( s 1 and s 2 ) share identical inclination 
ngles, the projection of the weakly magnetized s 2 shows less 
nisotropy . Importantly , the topology of s 2 is further changed being
ess straightened. This is because a weak magnetic field has more 
eviations and exhibits significant curvature in terms of its POS 

rientation (Yuen & Lazarian 2020 ). Consequently, the observed 
tructure, as well as the structure’s topology, in p ( x , y , v) is go v erned
y both M A and γ (Hu, Lazarian & Xu 2021c ). 
To summarize succinctly, the thin channel maps p ( x , y , v) from

pectroscopic observations capture the anisotropy of MHD turbu- 
ence. This leads to the following important implications: 
(i) The intensity structures in p ( x , y , v) align with the POS
agnetic field. 
(ii) The degree of anisotropy observed in these intensity structures 

s influenced by two distinct f actors: M A and γ . These f actors
ontribute to the anisotropy: (a) γ introduces a projection effect 
hat consequently decreases the anisotropy. (b) M A defines the 

agnetization level of the medium. A larger M A represents a weaker
agnetic field, resulting in less pronounced anisotropy. 
(iii) Additionally, changes in M A alter the topology of the 
agnetic field lines, as well as the observed intensity structure, 
anifesting itself as significant curvature. 

The interconnection between magnetic field topology and M A is 
ital to extracting accurate 3D magnetic fields. A subtle change in
he degree of anisotropy responds sensitively to variations in both 
 A and γ , leading to a de generac y. This de generac y necessitates the

ntroduction of an additional feature that is sensitive to M A or γ to
olve for these parameters, and the topology of the magnetic field
onv eniently pro vides this required information. 

Additionally, it is crucial to acknowledge that relying solely on 
nisotropy does not offer a clear distinction regarding the magnetic 
eld’s orientation along the LOS, specifically whether the field is 
irected towards or away from our observation point. Consequently, 
he value of γ is inherently restricted to a limited range between 0
nd 90 ◦. 

 NUMERICAL  METHOD  

.1 Convolutional neural network (CNN) 

o construct a deep neural network for the purpose of tracing the
D magnetic field from a spectroscopic map, we adopt a CNN-
ased (LeCun et al. 1998 ) architecture. CNNs have demonstrated 
ignificant success in processing multidimensional data. The typical 
NN architecture, as illustrated in Fig. 2 , consists of initial layers
omprising a stack of convolutional layers followed by pooling 
ayers. To f acilitate f aster convergence during the netw ork training
rocess using backpropagation of the loss and enhance the stability 
f learning, we introduce a batch normalization layer following 
ach convolution layer. After several iterations of convolution and 
ooling layers, we extract a compressed image feature, which is then
rocessed by the fully connected layers to predict the desired prop-
rties. In the following, we introduce the core modules in the CNN
rchitecture as well as the training procedure for the CNN network. 

.2 Conv olutional lay er 

erving as the fundamental component of a CNN, the convolutional 
ayer processes input data to produce feature maps (LeCun et al.
989 ). In this layer, each neuron connects to a local region of the
nput feature map. This connection is achieved by applying a 2D
onvolutional kernel w l to the input feature map. This process can
e mathematically described as follows: 

 l = σ ( w l ∗ h l−1 + b l ) , (8) 

here h l − 1 and a l are the input and output feature map for the l -th
on volutional layer , respectively, and w l is the learnable convolution
ernel, and ∗ indicates the convolution operation. In addition, a learn- 
ble bias b l is applied to the input feature map. To be more concrete, 

 l ( x , y ) = σ

⎛ 

⎝ 

k ∑ 

i=−k 

k ∑ 

j=−k 

w l ( i , j ) h l−1 ( x − i , y − j ) + b l ( x , y ) 

⎞ 

⎠ . (9) 
MNRAS 527, 11240–11255 (2024) 
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M

Figure 2. Architecture of the CNN-model. The input image is a 22 × 22 pixel map cropped from the thin velocity channel map. The network outputs the 
prediction of φ, γ , or M A . 
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y applying the 2D convolution kernel w l ∈ R 
(2 k + 1) ×(2 k + 1) to the

nput feature map h l−1 ∈ R 
d in ×d in , we yield the output feature map

ith size ( d in − k − 1) × ( d in − k − 1). Here, d in denotes the size
f the input feature map and 2 k + 1 is the size of the convolution
ernel. The resulting locally-weighted sum, once added to the
earned bias, undergoes a non-linear transformation via the ReLU
cti v ation function σ ( ·). 

To constrain the number of parameters that need to be learned in
ur network, we generally use small kernel sizes. While each layer
as a limited receptive field focusing on local features through the
tilization of small convolutional kernels, stacking multiple layers
llows for the gradual expansion of this receptive field. Consequently,
he network becomes capable of capturing global features within the
mage as the depth increases. 

.3 Batch normalization layer 

t is a technique frequently utilized in neural networks, playing
 pivotal role in stabilizing them and hastening the convergence
f the training loss during the backpropagation process (Ioffe &
zegedy 2015 ). During each training iteration, it functions on a
ini-batch of data. The layer normalizes each feature within the

nput data by centring its values around the mean and scaling
ased on the feature’s standard deviation within the given batch.
his normalization process is instrumental in mitigating the internal
ovariate shift – a phenomenon where the distribution of inputs at
ach layer undergoes changes during training – facilitating a more
table and efficient training process. 

Following the normalization, batch normalization introduces two
earnable parameters per feature: a scaling parameter and a shifting
arameter. These parameters allow the network to learn the optimal
cale and shift for the normalized values autonomously, providing
he model with the flexibility to modify the normalization if it
earns that such reversal or adjustment is beneficial for its predictive
erformance. These dynamic adjustments, enabled by the introduced
arameters, imbue the network with a degree of adaptability, allowing
t to fine-tune the transformations applied to the features as needed
uring the training. 

.4 Pooling layer 

ollowing the detection of local features in the input feature maps
y the convolution layer, a pooling layer is typically employed to
erge similar local features into a singular feature (Sermanet et al.

013 ). One common variant of the pooling layer is the Max Pooling
ayer . This layer works by calculating the maximum value within a

ocal patch of neurons and then outputting this maximum value as a
ingle neuron. Importantly, the patches of input neurons for adjacent
NRAS 527, 11240–11255 (2024) 
ooling units are shifted by more than one row or column, which
f fecti vely reduces the dimensionality of the feature representation.
his process imparts the network with a degree of invariance to minor
hifts and distortions in the input data, as it condenses the information
n the feature maps while retaining the most salient features. This
eduction not only helps in making the detection of features invariant
o scale and orientation changes but also enhances computational
fficiency by reducing the number of parameters and computations
n the network. 

.5 Fully connected layer 

fter sequential operations that involve multiple convolutional
ayers and aggregation, the network derives a lower-dimensional
ompressed image feature map. Subsequently, this 2D feature
ap undergoes a transformation, being flattened into a 1D vector.
he fully connected layer then processes this vector (Goodfellow,
engio & Courville 2016 ). The role of the layer is critical, as it

nte grates the high-lev el reasoning of the features extracted and
attened previously. The mechanism involves applying learned
eights and biases to this flattened vector to predict the final output.
athematically, this operation can be represented as: 

   = σ ( W W W h h h + b b b ) , (10) 

n this equation, h h h ∈ R 
d in represents the flattened, compressed image

eature vector, and y y y ∈ R 
d out symbolizes the predicted result. Here,

   ∈ R 
d out ×d in and b b b ∈ R 

d out denote the learnable weights and biases
or the fully connected layer, respectively. d out represents the size
f the output feature map. These weights and biases are integral
o the layer’s functionality, providing the means for it to learn and
dapt during the training phase, ultimately allowing for the accurate
rediction of the desired output from the input images. 

.6 Network training 

he trainable parameters within the CNN are optimized by adhering
o a conventional neural network training methodology, where the
ean-squared error of the 3D magnetic field prediction serves as

he training loss for backpropagation, as outlined in the seminal
ork by Rumelhart, Hinton & Williams ( 1986 ). During the training
rocess, we implement a strategy designed to enrich the diversity
f the training data set and consequently enhance the generalization
apabilities of the deep neural network. Specifically, this involves
ugmenting the input images by subjecting them to random cropping
perations, resulting in smaller patches of size 22 × 22 cells. Such
ugmentation introduces variability and randomness into the training
ata, which is instrumental in refining the network’s ability to
eneralize from the training data to unseen data, thereby bolstering its
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Table 1. M s and M A are the sonic Mach number and the Alfv ́enic Mach number calculated from 

the global injection v elocity, respectiv ely. M 
sub 
A and M 

sub 
s are determined using the local velocity 

dispersion calculated along each LOS in a 22 × 22 cell subfield. The expressions ‘min { . . . } ’ and 
‘max { . . . } ’ denote the minimum and maximum value av eraged o v er each 22 × 22 cell subfield 
within the corresponding simulation. 

Run M s M A min { M 
sub 
A } max { M 

sub 
A } min { M 

sub 
s } max { M 

sub 
s } 

A0 5.33 0.20 0.03 0.28 2.97 7.84 
A1 5.38 0.41 0.10 0.81 2.90 7.24 
A2 5.40 0.61 0.21 1.00 3.15 7.33 
A3 5.20 0.79 0.29 1.37 3.10 6.55 
A4 5.23 0.95 0.30 1.99 3.00 7.18 
A5 5.12 1.13 0.32 2.49 3.17 6.80 
A6 5.38 1.09 0.41 3.37 3.13 6.96 
A7 5.23 1.39 0.40 4.13 3.19 7.41 
A8 5.16 1.46 0.39 4.94 3.21 6.76 
A9 5.08 1.43 0.48 6.06 2.87 7.10 
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redictiv e accurac y and robustness. In total, we generated ≈1.7 × 10 7 

nput 22 × 22-cell maps, with 20 per cent of them serving as a
alidation set, for each molecular species. 

.7 MHD simulations 

he numerical simulations used in this study were e x ecuted using the
EUS-MP/3D code (Hayes et al. 2006 ). We performed an isothermal 
imulation of a 10 pc cloud by solving the ideal MHD equations in
n Eulerian frame under periodic boundary conditions: 

∂ ρ/ ∂ t + ∇ · ( ρv v v ) = 0 , 

∂ ( ρv v v ) / ∂ t + ∇ ·
[
ρv v v v v v T + 

(
c 2 s ρ+ 

B 
2 

8 π

)
I I I − B B B B B B 

T 

4 π

]
= f f f , 

∂ B B B / ∂ t − ∇ × ( v v v × B B B ) = 0 , 

∇ · B B B = 0 , (11) 

here f f f represents the stochastic forcing term used to drive turbu- 
ence. ρ, v v v , and B B B are mass density, velocity, and magnetic field, 
especti vely. Gi ven the isothermal equation of state, the sound speed
 s was held constant at approximately 187 m s −1 , corresponding to
 gas temperature of 10 K. Purely turbulent scenarios were also 
onsidered, excluding the impact of self-gravity. Kinetic energy was 
olenoidally (i.e. the forcing term is divergence-free) injected at the 
avenumber k = 2 π / l ≈ 2 (in the unit of 2 π / L box , where L box is the

ength of simulation box) in Fourier space, where l is the length-
cale in real space, producing a Kolmogorov-like power spectrum. 
urbulence was continuously stimulated until it reached a state of 
tatistical saturation. The simulation was solved on a regular grid of
92 3 cells and the turbulence was numerically dissipated at scales of
pproximately 10–20 cells. 

The simulations were initialized with a uniform density field and 
 magnetic field, with the initial mean magnetic field oriented along 
he y -axis. Furthermore, we rotated the simulation cubes so that the
ean angle of inclination with respect to the LOS (or z -axis) reached

0 ◦, 60 ◦, and 30 ◦. The sonic Mach number, M s = v inj / c s , and the
lfv ́enic Mach number, M A = v inj / v A , characterize MHD turbulence

imulations. To model different ISM conditions, we used a typical 
ean number density of 300 cm 

−3 and varied the initial uniform 

agnetic field and the injected kinetic energy to obtain a range of
 A and M s values. In this paper, we refer to the simulations in 

able 1 by their model name or key parameters. 
.8 Emission lines of 13 CO and C 
18 O 

e generate synthetic emission lines for two CO isotopologues: 
3 CO (1–0) and C 

18 O (1–0), following the procedures used in Hu &
azarian ( 2021 ). This was achieved using the SPARX radiative

ransfer code (Hsieh et al. 2019 ). SPARX solves the radiative transfer
quation (RTE) for finite cells, which means that it considers the
mission from a homogeneous finite element. The equation of statis- 
ical equilibrium for molecular levels takes into account molecular 
elf-emission, stimulated emission, and collisions with gas particles. 
nformation on the distribution of molecular gas density with mean 
ensity ∼300 cm 

−3 and LOS velocity was extracted from the MHD
imulations mentioned abo v e. 

The fractional abundances of the CO isotopologues 13 CO(1–0) and 
 
18 O(1–0) were set at 2 × 10 −6 and 1.7 × 10 −7 , respectively. We
erive the 12 CO-to-H 2 ratio of 1 × 10 −4 from the cosmic value of C/H
 3 × 10 −4 and the assumption that 15 per cent of C is in molecular

orm. The abundance of 13 CO is determined using a 13 CO/ 12 CO ratio
f 1/69, as indicated by Wilson ( 1999 ), giving a 13 CO/H 2 ratio of
pproximately 2 × 10 −6 . Using a 12 CO/C 

18 O ratio of 500, as given
y Wilson, Rohlfs & H ̈uttemeister ( 2013 ), we obtained a C 

18 O-to-H 2 

atio of 1.7 × 10 −7 . When generating these synthetic emission lines,
e specifically focused on the lowest-transition J = 1–0 of the CO

sotopologues, with the Local Thermodynamic Equilibrium (LTE) 
atisfied. 

.9 Training images 

ur training input is a thin velocity channel map, p ( x , y , v 0 ), derived
rom either the 13 CO (1–0) or C 

18 O (1–0) line, calculated from: 

( x , y , v 0 ) = 

∫ v 0 + �v/ 2 

v 0 −�v/ 2 
T e ( x , y , v ) d v , (12) 

here v 0 is the velocity associated with the line’s central peak, T e 
s the emission line’s intensity, and �v = 

√ 

δ( v 2 ) . Here, 
√ 

δ( v 2 ) is
he velocity dispersion derived from the moment-1 map (velocity 
entroid map). The 12 CO line, a common diffuse cloud tracer, 
s not used in this work due to numerical limitations related
o the saturation of the intensity of 12 CO in the channel cen-
ring at v 0 , which obliterates the spatial features of that channel
Hsieh et al. 2019 ). Ho we v er, the CNN method could be e xtended
o include wing channels centring at | v| < v 0 to bypass this
MNRAS 527, 11240–11255 (2024) 
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M

Figure 3. An numerical illustration of the anisotropy in 13 CO (top) and C 
18 O channel map. The red streamlines represent the POS magnetic field orientation. 

Panel (a): M A = 0.20, γ = 90 ◦. Panel (b): M A = 1.43, γ = 90 ◦. Panel (c): M A = 0.20, γ = 60 ◦. 
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umerical saturation, a possibility we might explore in future
ork. 2 

We generate p ( x , y , v 0 ) for the full cloud, a region of 792 × 792
ells, then randomly segment p ( x , y , v 0 ) into 22 × 22-cell subfields
or input into the CNN model. The choice of 22 × 22-cell a v oids that
he features fall into the numerical dissipation range, in which the
nisotropy of MHD turbulence is distorted by numerical dif fusi vity.
n observation, the inertial range of MHD turbulence is much longer,
nd the velocity channel map is not affected by the dissipation. The
ize of the subfield, thus, could be smaller to achieve higher reso-
ution. For each subfield, we also generate corresponding projected
aps of φsub , γ sub , M 

sub 
A , and M 

sub 
s as per the following: 

φsub ( x , y ) = arctan 

(∫ 
B y ( x , y , z) d z ∫ 
B x ( x , y , z) d z 

)
, 

γ sub ( x , y ) = arccos 

(∫ 
B z ( x , y , z) d z ∫ 
B( x , y , z) d z 

)
, 

M 
sub 
A = 

v los 
inj 

√ 

4 π〈 ρ〉 los 

〈 B〉 los 
, 

M 
sub 
s = 

v los 
inj 

c s 
, (13) 

here B = 

√ 

B 
2 
x + B 

2 
y + B 

2 
z is the total magnetic field strength, and

 x , B y , and B z are its x , y , and z components. 〈 ρ〉 los and 〈 B 〉 los are
he gas mass density and magnetic field strength averaged along the
OS. M 

sub 
A and M 

sub 
s are defined using the local velocity dispersion for

ach LOS (i.e. v los 
inj ), rather than the global turbulent injection velocity

 inj used to characterize the full simulation. The ranges of M 
sub 
A and
NRAS 527, 11240–11255 (2024) 

 The use of wing channels has its own advantages through increasing the 
atio of velocity to density fluctuations (Yuen, Ho & Lazarian 2021 ; Hu et al. 
023 ). 

 

m  

t  

t  

a  
 
sub 
s av eraged o v er the subfield in each simulation with different γ

re listed in Table 1 , while γ sub spans from 0 to 90 ◦. These values
f M 

sub 
A , M 

sub 
s , and γ sub co v er typical physical conditions of diffuse

olecular clouds (Hu & Lazarian 2023c ). 

 RESULTS  

.1 Numerical training and tests 

ig. 3 provides a visualization detailing the influence of M A and γ on
he anisotropy of intensity structures within thin velocity channels.
n scenarios where both M A and γ values are small, the intensity
tructures distinctly manifest as slender strips, extending in alignment
ith the POS magnetic fields. These structures are produced pre-
ominantly by the turbulent velocity (Lazarian & Pogosyan 2000 ),
s demonstrated in Hu et al. ( 2023 ). As M A increases, representing
 weakening in the magnetic field, the MHD turbulence begins to
ore closely resemble isotropic hydrodynamical turbulence. This

hift brings about a marked change in the topology of intensity
tructures, making them less anisotropic. Alternatively, when dealing
ith smaller values of γ , which imply that magnetic fields are
riented more proximally to the LOS, the inherent anisotropy is
ubdued due to the projection effect. Comparing 13 CO and C 

18 O,
 
18 O is more sensitive to denser gas, so its associated intensity

tructures exhibit distinct characteristics. Despite these differences,
he underlying physical principle of anisotropic MHD turbulence
emains the same, suggesting M A and γ continue to shape the
bserved structural formations. 
Fig. 4 provides a comparative visualization between the actual 3D
agnetic fields and those predicted through the utilization of the

rained CNN model with 13 CO. This comparison is framed within
wo distinct conditions: sub-Alfv ́enic (simulation with 〈 M A 〉 ≈ 0.5
nd 〈 γ 〉 ≈ 90 ◦) and super-Alfv ́enic (simulation with 〈 M A 〉 ≈ 2.0 and
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Figure 4. An comparison of the CNN-predicted 3D magnetic fields using 13 CO in sub-Alfv ́en (top, 〈 M A 〉 ≈ 0.5 and 〈 γ 〉 ≈ 90 ◦) and super-Alfv ́en (bottom, 
〈 M A 〉 ≈ 2.0 and 〈 γ 〉 ≈ 30 ◦) conditions. Each magnetic field segment is constructed by the POS magnetic field’s position angle (i.e. φ) and the inclination angle 
γ . Note that the magnetic field obtained is the projection along the LOS and averaged over 132 × 132 pixels for visualization purposes. The third axis of the 
LOS is for 3D visualization purposes and does not provide distance information here. The total intensity map I is placed on the POS, i.e. the x –y plane. 
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 γ 〉 ≈ 30 ◦). Within these settings, the mean projected total Alfv ́en
ach number on the POS is given as 〈 M A 〉 ≈ 0.5 for sub-Alfv ́enic

onditions and 〈 M A 〉 ≈ 2.0 for super-Alfv ́enic ones. 
The visual segment displayed in Fig. 4 is constructed from the POS
agnetic field’s position angle, φ, and the inclination angle, γ , with 
 superimposed colour representation signifying the projected M A . 
pon comparison with the intrinsic magnetic field embedded within 

he simulation, a noteworthy observation is the alignment between 
he orientations of the CNN-predicted 3D magnetic field and the 
ctual field, evident under both sub-Alfv ́enic and super-Alfv ́enic 
onditions. In the sub-Alfv ́enic case, the CNN-predicted M A is 
lightly larger (by ≈0.1–0.2) than the actual values. Conversely, in 
he super-Alfv ́enic scenario, the predicted value is somewhat smaller, 
ith a deviation ranging from ≈0.5–1.0. Another example with 
 M A 〉 ≈ 0.15 and 〈 γ 〉 ≈ 60 ◦ is presented in Appendix A . Although
his simulation shows an anisotropy degree similar to the case with 
 M A 〉 ≈ 0.5 and 〈 γ 〉 ≈ 90 ◦, the CNN model ef fecti v ely resolv es
he de generac y in the correlation of the anisotropy degree with γ
nd M A (see Section 2 ), successfully reco v ering the 3D magnetic
eld (see Fig. A1 ). It should be noted that the predicted M A is still
 v erestimated by approximately 0.1–0.2. 
Fig. 5 offers a similar visual comparison but focuses on the C 

18 O
ine. This line is generally recognized as denser tracers compared 
o 13 CO. Despite these differences in tracer density, the CNN 
redictions for C 
18 O lines maintain a general alignment with the

ctual 3D magnetic fields observed within the simulations. Moreover, 
here is less significant o v erestimation and underestimation in the
NN-predicted M A . 
Figs 6 and 7 present 2D histograms illustrating the correspon- 

ence between CNN predictions – φCNN , γ CNN , and M 
CNN 
A – and 

ctual values obtained from two test simulations, A2 and A6. 
n sub-Alfv ́enic cases for both 13 CO and C 

18 O molecules, we
bserve a close alignment between the CNN predictions and the 
eal values. The scatter of the predictions, which includes φCNN , 
CNN , and M 

CNN 
A , demonstrates a small deviation from the actual

alues, tightly congregating near the one-to-one reference line. This 
inimal deviation suggests that the CNN model offers a high degree

f accuracy and reliability when operating under sub-Alfv ́e ́enic 
onditions. 

Ho we ver, the scenario is a bit different in super-Alfv ́enic cases.
ere, the scatter is noticeably more widespread, indicating that 
eviations from the real values increase in these conditions. The φCNN 

redictions, in particular, show a tendency for both o v erestimation
nd underestimation. In contrast, the γ CNN predictions are primarily 
haracterized by o v erestimations, a trend that is especially prominent
n cases involving C 

18 O molecules. Meanwhile, the scatter related 
o the M 

CNN 
A predictions is distributed more uniformly around the 
MNRAS 527, 11240–11255 (2024) 
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M

Figure 5. Same as Fig. 4 , but for C 
18 O. 

Figure 6. 2D histogram of the 13 CO CNN-predictions, i.e. φCNN (left), γ CNN (middle), and M 
CNN 
A (right), and the corresponding actual values in simulation 

(Top: sub-Alfv ́en, 〈 M A 〉 ≈ 0.5 and 〈 γ 〉 ≈ 90 ◦. Bottom: super-Alfv ́en, 〈 M A 〉 ≈ 2.0 and 〈 γ 〉 ≈ 30 ◦). The dashed reference line represents the ideal scenario, where 
the predicted values and actual values match perfectly. 
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Figure 7. Same as Fig. 6 , but for C 
18 O. 
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This suggests predicting the 3D magnetic field under super- 
lfv ́enic conditions is more challenging with higher uncertainty. 

n these environments, the magnetic field e x erts a weaker influence,
nd the turbulence observed more closely resembles that of hydro- 
ynamic turbulence, thereby complicating the prediction process. 
nhancing prediction accuracy is feasible through two strategies. 
irst, it is possible to further refine and optimize the CNN model to

mpro v e its adaptability and responsiveness to the unique features 
f super -Alfv ́enic MHD turb ulence. For instance, Peek & Burkhart
 2019 ) put forth a CNN model designed specifically to differentiate
etween sub-Alfv ́enic and super-Alfv ́enic turbulence. This model, 
ith its specialized focus, offers a promising avenue for enhancing 

he accuracy of predictions in super-Alfv ́enic environments. Second, 
nrich the data set to train the CNN model. By incorporating a broader
nd more diverse range of images, the model can be exposed to a
ider array of scenarios and conditions, thereby reducing uncertainty 

nd improving its ability to make accurate predictions across different 
nvironments and conditions. 

Figs 8 and 9 plot the histograms of the deviation between the
NN-predicted and the actual 3D magnetic field. We calculate the 
bsolute difference between φCNN and φ, between γ CNN and γ , and 
etween M 

CNN 
A and M A , respectively. These differences are denoted 

s σφ , σγ , and σM A . In the sub-Alfv ́enic scenarios, we observed that
he distributions of σφ and σγ are relatively condensed, primarily 
alling within the 0 to 20 ◦ range. This concentration indicates a close
lignment between the CNN predictions and the actual values in sub-
lfv ́enic environments, suggesting that the CNN model performs 
ith high precision in these conditions. Ho we ver, as 〈 M A 〉 increases,

he distributions of σφ and σγ broaden, spanning a more e xtensiv e 
ange from 0 to 60 ◦. This dispersion is indicative of larger deviations
etween predicted and actual values under these conditions, implying 
hat the CNN model may face challenges in accurately capturing the 

agnetic field dynamics when 〈 M A 〉 increases. 
Examining specific molecules, for 13 CO under sub-Alfv ́enic 

onditions, the median deviation values are relatively low: σφ = 

.26 ◦, σγ = 2.98 ◦, and σM = 0 . 16. In contrast, under super-
A 
lfv ́enic conditions, these values increase to 12.32 ◦, 9.08 ◦, and
.1, respectively, highlighting an increase in prediction deviation as 
he environment transitions from sub- to super-Alfv ́enic. Similarly, 
or C 

18 O, the median deviation values are 2.22 ◦, 3.20 ◦, and 0.16
nder sub-Alfv ́enic conditions and 12.08 ◦, 13.60 ◦, and 1.36 under
uper-Alfv ́enic scenarios, underlining a consistent trend of increased 
eviation in super-Alfv ́enic environments across different molecules. 

.2 Obser v ational prediction 

or the observational tests, our target is the nearby L1478 cloud. We
tilized 13 CO spectral line from a previous study Lewis et al. ( 2021 ).
he data has a beam resolution of 38 arcmin and was regrid to a
ixel resolution of 10 arcsec, while achieving a velocity resolution 
f 0.3 km s −1 . The 1D velocity dispersion σ v of the 13 CO line
as reported within the range of 0.40–0.70 km s −1 (Lewis et al.
021 ). Assuming an isotropic velocity dispersion in 3D and uniform
emperature of 10 K (corresponding to an isothermal sound speed 
f c s ∼ 0.187 km s −1 , see Hu, Lazarian & Stanimirovi ́c 2021b ), we
nd the sonic Mach number M s = 

√ 

3 σv /c s ranges from 3.69 to 6.45,
alling into the parameter regimes in our numerical simulations. With 
hese refined data, we applied our adeptly trained CNN model to the
3 CO channel map, aiming to predict the key 3D magnetic field
arameters, denoted as φCNN , γ CNN , M 

CNN 
A . 

For the purpose of validating the results yielded through our 
NN application, we engaged in a comparative analysis with POS 

agnetic field orientations as predicted through Planck 353 GHz 
olarization data. The data harnessed for this comparative process 
as drawn from the third Public Data Release (DR3), provided by
lanck’s High-Frequency Instrument (Planck Collaboration et al. 
020a ). The POS magnetic field orientation was inferred from Stokes
arameters Q and U converted to IAU convention from HEALPix 
sing the equation: φPlanck = 

1 
2 tan −1 ( −U, Q ) + π/ 2. To enhance

he signal-to-noise ratio, we smoothed the Stokes parameter maps 
rom an angular resolution of 5 to 10 arcmin using a Gaussian
ernel. 
MNRAS 527, 11240–11255 (2024) 
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M

Figure 8. Histograms of difference in CNN-predicted φCNN (left), γ CNN (middle), and M 
CNN 
A (right), and the actual values in simulations using 13 CO. 

Figure 9. Same as Fig. 8 , but for C 
18 O. 

Figure 10. Comparison of the POS magnetic fields predicted by CNN- 13 CO (red segment) for the L1478 cloud and inferred from Planck polarization (blue 
segment). The background image is the integrated 13 CO intensity map. 
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As presented in Fig. 10 , a remarkable alignment between
he magnetic field orientations as predicted by both the CNN
odel and the Planck polarization data is observed, while we

otice the difference is apparent in the north-east clump (see
he zoom-in plot in Fig. 10 ). To quantify the agreement be-
ween CNN-prediction and polarization, we utilize the Alignment

easure (AM; Gonz ́alez-Casanova & Lazarian 2017 ), expressed
s: 

M = 〈 cos (2 θr ) 〉 , (14) 

ere θ r is the relative angle between the two measurements. An
M value of ≈0.94 confirms the CNN-prediction has an excellent
NRAS 527, 11240–11255 (2024) 
greement with Planck polarization 3 , corresponding to an o v erall
eviation of ≈10 ◦. 
A note worthy adv antage of our CNN model o v er traditional

olarization methodologies is its ability to trace the 3D magnetic
elds. This is achieved through the model’s predictions regarding
and M A . These predictions are summarized in histograms within

ig. 11 . According to the histograms, the median γ and M A of the
1478 cloud are estimated at ≈76 ◦ and ≈1.07, respectively. These
easurements suggest that the L1478 is a trans-Alfv ́enic could. In

his state, there is an equilibrium between magnetic and turbulent
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Figure 11. Histograms of CNN-predicted (as well as Planck measured) φCNN (left), defined east from the north, γ CNN (middle), and M 
CNN 
A (right). 

Figure 12. An visulization of the CNN-predicted 3D magnetic fields using 
13 CO for the L1478 cloud. Each magnetic field segment is constructed by 
the position angle of the POS magnetic field (i.e. φ) and the inclination angle 
γ . Note that the magnetic field obtained is the projection along the LOS 
and av eraged o v er 12 × 12 pix els for visualization purposes. The third axis 
of the LOS is for 3D visualization purposes and does not provide distance 
information here. The total intensity map I is placed on the POS, i.e. the l –b 
plane. 

k
C
m

5

5

T
i
X  

I
P
t
T
M
u  

t

m
o
t  

n  

fi  

l  

S

f  

C
c
u  

t
a
u
s  

m
fi
o
P

b  

s
m  

t
i
P  

a  

t
fi  

w  

d  

t  

t
d
u  

fi
f

5

O
t
i  

4 Note that while the anisotropy and magnetic field topology, that are sensitive 
to γ and the M A , are the most apparent features in channel maps, it is also 
possible the CNN extracts additional features to facilitate the prediction. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/4/11240/7505778 by guest on 06 August 2024
inetic energies within the cloud. The parameters derived from the 
NN application have been instrumental in creating the first-ever 3D 

agnetic field map for L1478, which can be viewed in Fig. 12 . 

 DISCUSSION  

.1 Comparison with earlier studies 

he realm of exploring magnetic fields within the ISM through CNN 

s experiencing swift advancements. As a pilot study presented by 
u, Law & Tan ( 2023 ), the Convolutional Approach to Structure

dentification-3D (CASI-3D) model w as emplo yed to map the 2D 

OS magnetic field orientation. This is achieved similarly by using 
he velocity channel maps obtained from spectroscopic observations. 
he underlying physics principle is still founded on the anisotropic 
HD turbulence. The training process underpinning this approach 

ses the emission lines of 12 CO and 13 CO ( J = 1–0), generated
hrough the RADMC-3D code (Dullemond et al. 2012 ). 

In this study, we introduce a new CNN model. This advanced 
odel is designed with the aim of predicting not merely the 

rientation φ of the POS magnetic field but extends to encompass 
he angle of field inclination, γ , as well as the total Alfv ́en Mach
umber M A . This approach allows the construction of 3D magnetic
eld v ectors. F or training the CNN model, we have utilized emission

ines from 
13 CO and C 

18 O ( J = 1–0), with data generated from the
PARX code (Hsieh et al. 2019 ). 
We quantify the uncertainty of our CNN-predicted φ and γ . We 

ound that the median value and the dispersion of uncertainty for
 
18 O are approximately ∼2.22 ◦ and ∼3.20 ◦ under sub-Alfv’enic 
onditions ( 〈 M A 〉 ≈ 0.5). These values shift to ∼12.08 ◦ and ∼13.60 ◦

nder super-Alfv ́enic conditions ( 〈 M A 〉 ≈ 2.0). When compared to
he CASI-3D model, our CNN model demonstrates higher accuracy, 
s CASI-3D exhibits a median uncertainty of ∼6.2 ◦ and ∼18.4 ◦

nder comparable sub-Alfv ́enic and super-Alfv ́enic conditions, re- 
pectively. Through the application of our CNN model to the L1478
olecular cloud, we successfully constructed the first 3D magnetic 
eld map. The corresponding CNN-predicted POS magnetic field 
rientation shows remarkable alignment with that inferred from 

lanck 353 GHz polarization data. 
It is crucial to acknowledge that despite the differences inherent 

etween the CNN models used by Xu, Law & Tan ( 2023 ) and this
tudy, the fundamental concept of utilizing spectroscopic channel 
aps for magnetic field investigation remains the same: (1) the in-

ensity distribution observable in thin channel maps is predominantly 
nfluenced by turbulent velocity statistics, as outlined in (Lazarian & 

ogosyan 2000 ; Kandel, Lazarian & Pogosyan 2016 ; Hu et al. 2023 );
nd (2) these channel maps capture the anisotropy intrinsic to MHD
urbulence, thereby revealing the orientation of the POS magnetic 
eld (Lazarian & Yuen 2018 ; Hu et al. 2023 ). A crucial insight
as provided by Hu, Lazarian & Xu ( 2021c ), highlighting that the
egree of anisotropy in channel maps, as well as the magnetic field
opology, is regulated by both the γ and the M A . These are parameters
hat can be extracted efficiently using the CNN approach. 4 Thus, 
rawing upon these foundational theoretical studies, we propose the 
se of the CNN model as an efficient tool for tracing 3D magnetic
elds, providing convincing physical reasons for interpreting its 
easibility. 

.2 Synergy with other methods 

ur newly proposed CNN model stands as a powerful complement 
o existing methodologies in the field. One notable technique, which 
nvolves utilizing polarized dust emission, has pro v en ef fecti ve in
MNRAS 527, 11240–11255 (2024) 
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racing the 3D magnetic field orientation within diffuse clouds,
here dust grains are perfectly aligned with magnetic fields (Chen

t al. 2019 ; Hu & Lazarian 2023a , c ). Ho we ver, this technique
ay encounter limitations within dense cloud environments, for
 xample, those observ ed through tracing by C 

18 O, where dust grains
ight not maintain perfect alignment (Lazarian 2007 ; Andersson,
azarian & Vaillancourt 2015 ). This loss of alignment, resulting in
 phenomenon known as the polarization hole (Pattle et al. 2019 ;
eifried et al. 2019 ; Hoang et al. 2021 ), introduces uncertainties
hen tracing 3D magnetic fields through polarized dust emission

echniques. 
Unlike these traditional approaches, the CNN approach remains

mmune to the effects of the polarization hole. When the CNN model
s supplied with emission lines from dense tracers like C 

18 O, HNC,
nd NH 3 , it pro v es highly adept at probing the 3D magnetic fields
resent within dense clouds ef fecti vely. Nonetheless, it’s important
o consider that within these dense cloud environments, the forces
f self-gravity can become a significant factor. This gravitational
nfluence might induce alterations in the anisotropy observed within
hannel maps (Hu, Lazarian & Yuen 2020b ). Therefore, it becomes
mperative to input the CNN model with carefully selected numerical
imulations before applying it to observational data to ensure accurate
nd reliable results. 

Furthermore, it should be noted that the inclination angle predicted
y the CNN model is inherently limited to the range of [0, 90 ◦]. This
imitation arises because the anisotropy within channel maps alone
annot definitively discern whether the magnetic field is oriented
ow ards or aw ay from the observer. Ho we ver, recent adv ancements
n the field, particularly in Faraday rotation measurements within
olecular clouds (Tahani et al. 2019 , 2022 ), offer promising avenues

o resolve this degeneracy. 
Another rele v ant method worth discussing is the Velocity Gradient

echnique (VGT; Gonz ́alez-Casanova & Lazarian 2017 ; Hu, Yuen &
azarian 2018 ; Lazarian & Yuen 2018 ). Like our proposed CNN
pproach, the VGT is a technique that traces magnetic fields using
pectroscopic observations. Importantly, both the CNN approach
nd VGT share a foundational physical principle: they rely on the
nisotropy of MHD turbulence observed within thin channel maps.
ith VGT having undergone extensive and rigorous testing (Hu et al.

019 ; Lu, Lazarian & Pogosyan 2020 ; Hu, Lazarian & Stanimirovi ́c
021b ; Alina et al. 2022 ; Liu, Hu & Lazarian 2022a ; Schmaltz,
u & Lazarian 2023 ; Tram et al. 2023 ; Hu & Lazarian 2023b ;
iu et al. 2023b ), it is established as an excellent benchmark for
 v aluating the accuracy of CNN models, especially in situations
here polarization measurements are not readily available. This
enchmarking is crucial when CNNs are deployed for tracing
D Galactic Magnetic Fields, highlighting the important compar-
tive and complementary roles these techniques play in advanc-
ng our understanding of magnetic fields in various astrophysical
ontexts. 

.3 Prospects of the CNN method 

n the present study, we introduced a CNN model adept at predicting
D magnetic fields within molecular clouds, utilizing spectroscopic
bservations of molecular gas. However, the potential applications
f this CNN method extend far beyond, encompassing various
strophysical environments and contexts, including neutral hydrogen
H I ) regions, ionized gas, the Central Molecular Zone (CMZ),
xternal galaxies, and supernova remnants. In the following sections,
e outline several promising applications of this methodology. 
NRAS 527, 11240–11255 (2024) 
.3.1 3D Galactic Magnetic Fields 

 deep and comprehensive understanding of the 3D Galactic Mag-
etic Field (GMF; Jansson & Farrar 2012 ) is paramount for ad-
ressing a host of astrophysical inquiries. These include identifying
he origins of ultra-high energy cosmic rays (Farrar 2014 ; Farrar &
utherland 2019 ) and refining models of Galactic foreground polar-

zation (Ko v etz & Kamionkowski 2015 ; Planck Collaboration et al.
016 ). 
Recent research indicates that thin channel maps of H I success-

ully capture the anisotropy inherent in MHD turbulence (Lazarian &
ogosyan 2000 ; Lazarian & Yuen 2018 ; Lu, Lazarian & Pogosyan
020 ; Hu et al. 2023 ). Consequently, applying the CNN to H I

hannel maps constitutes a viable strategy for mapping 3D GMFs.
ast efforts aimed at modelling the foreground polarization with H I

rimarily focused on mapping the POS magnetic field orientation
Clark & Hensley 2019 ; Lu, Lazarian & Pogosyan 2020 ; Hu, Yuen &
azarian 2020a ). These endea v ours largely neglected the crucial
epolarization factor, the inclination angle. Ho we v er, the adv ent of
ophisticated multiphase H I simulations (Ho, Yuen & Lazarian 2021 )
as made it possible to train the CNN model for accurate predictions
f 3D GMFs, yielding more realistic models of the foreground
olarization. 
Our primary goal in this paper is to explore the magnetic fields of
olecular clouds, for which the isothermal approximation is applica-

le. Multiphase H I requires separate training of the neural network.
or multiphase H I , where cooling and heating play a significant
ole, our general approach remains valid: intensity features/striations
ithin channel maps continue to elongate along the POS magnetic
eld orientation. This is supported by several studies Lazarian &
uen ( 2018 ); Clark & Hensley ( 2019 ); Lu, Lazarian & Pogosyan
 2020 ); Hu, Yuen & Lazarian ( 2020a ); Hu et al. ( 2023 ). These
ntensity features/striations are also regulated by the Alfv ́en Mach
umber ( M A ) and the projection effect associated with the inclination
ngle. Ho we ver, additional physics, such as thermal instability, could
odify the observed anisotropy, for instance, potentially leading to a

maller aspect ratio (Ho, Yuen & Lazarian 2023 ). The corresponding
tudy employing our approach for multiphase H I will be provided
lsewhere. 

.3.2 3D magnetic fields in CMZ and external galaxies 

nderstanding the magnetic fields within cold molecular gas is
ssential for deciphering the processes of formation and fueling of
eyfert nuclei. Recent measurements of magnetic fields within the
MZ and in other Seyfert galaxies have been conducted using various

echniques. These include far-infrared polarization observations from
nstruments like SOFIA/HAWC + (Lopez-Rodriguez et al. 2021 ),
CMT (Pattle et al. 2021 ), and ALMA (Lopez-Rodriguez et al. 2020 ),
s well as employing the VGT (Hu, Lazarian & Wang 2022a ; Hu
t al. 2022c ; Liu et al. 2023b ). Ho we ver, these approaches primarily
ield the POS magnetic field orientation, falling short of provid-
ng a comprehensive 3D perspectiv e. Nev ertheless, the successful
pplication of VGT confirms the viability of using anisotropy in
olecular emission channel maps as a tracer for magnetic fields in

hese environments. For instance, Hu, Lazarian & Wang ( 2022a )
erived a POS magnetic field map surrounding Sgr A ∗ using the
Ne II ] emission line and P aschen- α image observ ed with the Hubble
pace Telescope ( HST ). Given these advances, extending the CNN
ethodology to incorporate optical/near-infrared observations from

nstruments like the HST and the JWST is a feasible and promising
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pproach for predicting 3D magnetic fields in both the Galactic 
entre and external galaxies. 

.4 Obtaining the full 3D magnetic field vector 

D magnetic fields, encompassing both orientation and strength, play 
 pivotal role in comprehending key astrophysical phenomena. These 
nclude processes such as star formation (Mestel 1965 ; Mac Low &
lessen 2004 ; McKee & Ostriker 2007 ; Federrath & Klessen 2012 ;
azarian, Esquivel & Crutcher 2012 ; Hu, Lazarian & Stanimirovi ́c 
021b ), the effects of stellar feedback (Pattle et al. 2022 ; Liu, Hu &
azarian 2023a ), as well as the acceleration and propagation of
osmic rays (Fermi 1949 ; Jokipii 1966 ; Yan & Lazarian 2002 ;
u & Yan 2013 ; Xu & Lazarian 2020 ; Beattie et al. 2022 ; Hu,
azarian & Xu 2022b ; Lazarian & Xu 2023 ). Traditionally, to obtain

he strength of these fields, the Davis–Chandrasekhar–Fermi (DCF) 
ethod is employed, which typically combines dust polarimetry with 

pectroscopic observations (see Davis 1951 ; Chandrasekhar & Fermi 
953 ). Ho we ver, this often proves insufficient. the DCF method gives
nly the POS magnetic field strength, while the component along the 
OS is missing. Other limitations of the DCF method have also been

horoughly dissected in the literature (Skalidis et al. 2021 ; Chen et al.
022 ; Lazarian, Yuen & Pogosyan 2022 ; Liu, Qiu & Zhang 2022b ). 
In light of this, an alternative approach has been proposed: the use

f the Alfv ́en Mach number M A with the sonic Mach number M s 

o derive the magnetic field’s strength (Lazarian, Yuen & Pogosyan 
020 ). This method, aptly termed MM2, can be used to obtain the
otal strength, particularly since the vital term M A is readily available 
ith the CNN approach proposed in this study. The sonic Mach 
umber M s can be procured either directly via spectroscopic line 
roadening or by leveraging a CNN approach similar to our current 
tudy. Coupled with the 3D magnetic field orientation, this equips us
ith the necessary tools to construct a 3D magnetic field vector. 

 SUMMARY  

n this study, a CNN model was designed for the intricate task of
robing 3D magnetic fields within molecular clouds. This model is 
ot confined to determining the POS magnetic field orientation but 
xtends its capabilities to accurately ascertain the field’s inclination 
ngle and the total Alfv ́en Mach number, offering a more compre-
ensive understanding of the magnetic field in the observed regions. 
e summarize our major results below: 

(i) We developed a CNN model for probing the 3D magnetic fields, 
ncluding the POS magnetic field orientation, inclination angle, and 
otal Alfv ́en Mach number. 

(ii) The CNN model was trained using synthetic 13 CO and C 
18 O 

 J = 1–0) emission lines, encompassing a range of conditions 
rom sub-Alfv ́enic to super-Alfv ́enic. We quantified the uncertainties 
ssociated with the trained CNN model’s predictions. Our findings 
evealed that the uncertainties are less than 5 ◦ for both φ and γ ,
nd are smaller than 0.2 for M A under sub-Alfv ́enic conditions (with
 A ≈ 0.5). Under super-Alfv ́enic conditions (with M A ≈ 2.0), the 

ncertainties increased slightly but remained below 15 ◦ for φ and γ , 
nd were around 1.5 for M A . 

(iii) We implemented our trained CNN model to analyse the 
olecular cloud L1478. The CNN-predicted POS magnetic field 

rientation exhibited remarkable agreement with orientations in- 
erred from Planck 353 GHz polarization data, with a marginal global 
ifference of approximately 10 ◦. 
(iv) This study facilitated the construction of the first 3D magnetic 
eld map for the L1478 cloud. Through our analysis, we found that

he cloud’s global inclination angle is approximately 76 ◦, while the
lobal total Alfv ́en Mach number is close to 1.07. 
(v) We discussed the potential applications and future prospects 

f the CNN approach. Particularly, we discussed the feasibility and 
otential of utilizing the CNN model for predicting 3D GMFs. We
lso considered its application for understanding 3D magnetic fields 
n the CMZ and external galaxies. 
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Figure A1. Same as Fig. 4 , but for a different simulation with 〈 M A 〉 ≈ 0.15 and 〈 γ 〉 ≈ 60 ◦. 

The simulation deployed in Fig. 4 maintains average conditions of 〈 M A 〉 ≈ 0.5 and 〈 γ 〉 ≈ 90 ◦, while Fig. A1 operates under 〈 M A 〉 ≈ 0.15 
and 〈 γ 〉 ≈ 60 ◦. Both simulations are expected to exhibit comparable degrees of anisotropy on the POS. We can see in both cases, the CNN 

model adeptly reconstructs the 3D magnetic fields. This reconstruction is achieved through accurate predictions of both the POS magnetic 
field orientation and the value of γ . Ho we ver, the CNN-predicted M A is approximately 0.1 to 0.2 larger than the actual M A , indicating an 
o v erestimation. This testifies that the CNN model is capable of solving the anisotropy de gree’s de generac y. The o v erestimation in M A might 
be addressed through possible solutions, as discussed in Section 4 . 

This paper has been typeset from a T E 
X/L A T E 

X file prepared by the author. 

© 2024 The Author(s). 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( https://
creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/4/11240/7505778 by guest on 06 August 2024

https://

	1 INTRODUCTION
	2 THEORETICAL CONSIDERATION
	3 NUMERICAL METHOD
	4 RESULTS
	5 DISCUSSION
	6 SUMMARY
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: Anisotropys degeneracy on and MA

