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A B S T R A C T 
We investigate the driving of MHD turbulence by gravitational contraction using simulations of an initially spherical, isothermal, 
magnetically supercritical molecular cloud core with transonic and trans-Alfv ́enic turbulence. We perform a Helmholtz 
decomposition of the velocity field, and investigate the evolution of its solenoidal and compressible parts, as well as of the 
velocity component along the gravitational acceleration vector, a proxy for the infall component of the velocity field. We find 
that (1) In spite of being supercritical, the core first contracts to a sheet perpendicular to the mean magnetic field, and the sheet 
itself collapses. (2) The solenoidal component of the turbulence remains at roughly its initial level throughout the simulation, 
while the compressible component increases continuously, implying that turbulence does not dissipate towards the centre of the 
core. (3) The distribution of simulation cells in the B–ρ plane occupies a wide triangular region at low densities, bounded below 
by the expected trend for f ast MHD w aves ( B ∝ ρ, applicable for high-local Alfv ́enic Mach number M A ) and abo v e by the trend 
expected for slow waves ( B ∼ constant, applicable for low local M A ). At high densities, the distribution follows a single trend 
B ∝ ργeff , with 1/2 < γ eff < 2/3, as expected for gravitational compression. (4) The mass-to-magnetic flux ratio λ increases with 
radius r due to the different scalings of the mass and magnetic flux with r . At a fixed radius, λ increases with time due to the 
accretion of material along field lines. (5) The solenoidal energy fraction is much smaller than the total turbulent component, 
indicating that the collapse drives the turbulence mainly compressibly, even in directions orthogonal to that of the collapse. 
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1  INTRODUCTION  
In recent years, the driving of turbulence by gravitational collapse 
at various scales has received considerable attention, in particular in 
relation to whether enough gravitational energy is available in the 
collapsing material for driving the turbulence in the central accreting 
objects, from the scale of accreting galactic discs to molecular clouds 
to protostellar discs (Klessen & Hennebelle 2010 ); whether it can act 
as a possible reservoir for the gravitational energy released during 
the collapse, so that this energy could be stored in the turbulence 
and possibly delay the collapse (e.g. Robertson & Goldreich 2012 ; 
Murray & Chang 2015 ; Murray et al. 2017 ; Li 2018 ; Xu & Lazarian 
2020a ), and what is its equi v alent thermodynamic behaviour (e.g. 
V ́azquez-Semadeni, Cant ́o & Lizano 1998 ; Guerrero-Gamboa & 
V ́azquez-Semadeni 2020 ). 
Ho we ver, one issue that has not been studied in depth is whether 

the random motions driven by collapse really qualify as turbulence, 
exhibiting standard turbulence properties. Indeed, the nature of the 
driving in the collapse-driven case is significantly different from that 
in other, more standard cases. For example, the energy-injection scale 
shrinks o v er time rather than being constant, at least during the pre- 
stellar stage of the collapse. In the particular case of the collapse of 
$ E-mail: e.vazquez@irya.unam.mx 

molecular cloud cores (objects of typical densities n ∼ 10 4 cm −3 and 
sizes ∼0.1 pc), this can be understood because the pre-stellar stage 
of collapse in spherical geometry is characterized by a flat-density 
central core with a radius of the order of the Jeans length, at which 
the largest infall speeds also occur (e.g. Whitworth & Summers 
1985 ; Keto & Caselli 2010 ; Naranjo-Romero, V ́azquez-Semadeni & 
Loughnane 2015 ). Since the central density increases o v er time, the 
Jeans length for the central density decreases o v er time. Thus, the 
energy-injection scale decreases o v er time, if it is of the order of the 
Jeans length, where the infall speed peaks. 
In addition, if the energy-injection rate is of the order of the release 

rate of gravitational energy at the Jeans length, then it is also expected 
to vary o v er time, as it is given approximately by (Guerrero-Gamboa 
& V ́azquez-Semadeni 2020 ) 
Ė g ≈ −

(
2 | E g | 3 
M L J L 2 J 

)1 / 2 
, (1) 

where L J is the Jeans length at the central density, M L J is the mass 
contained within a radius R = L J , and E g ≈ GM 2 ( L J )/ L J is the 
gravitational energy of this mass distribution. Therefore, since L J 
decreases o v er time, both E g and Ė g increase (in absolute value) 
o v er time (since M J is expected to be constant). In summary, both 
the energy-injection scale and the energy-injection rate vary o v er 
time during the collapse, thus calling for an examination of whether 
the turbulence driven by gravitational contraction maintains the 
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properties of turbulence driven at a fixed rate and scale. Indeed, 
Guerrero-Gamboa & V ́azquez-Semadeni ( 2020 ) found that, for the 
collapsing case, the turbulent energy appears to approach a ‘pseudo- 
virial’ state, in which the kinetic energy is approximately half the 
gravitational energy, even though the system is far from equilibrium 
and both energies are increasing in time. 
In this paper therefore we examine numerically some of the 

main features of the MHD turbulence that develops during the pre- 
stellar stage of the gravitational collapse of an initially spherical 
core, with transonic and trans-Alfv ́enic initial velocity perturbations, 
employing a Helmholtz decomposition for the velocity field into 
its solenoidal and compressible parts. The former corresponds to 
the turbulence e xclusiv ely, while the latter contains the infall plus 
the turbulent components. In Section 2 , we describe our numerical 
simulation; in Section 3 , we describe our analysis strategy. Then, 
in Section 4 , we describe our main results, while in Section 5 , we 
discuss the interpretation and some implications of our results, and 
compare to previous work. Finally, in Section 6 , we present our 
conclusions. 
2  NUMERICAL  SIMULATIONS  
We perform and analyse three 3D numerical simulations of the 
pre-stellar stage of the collapse (i.e. before a singularity–protostar–
forms) using the adaptive mesh refinement (AMR) code FLASH 2.5 
(Fryxell et al. 2000 ). The numerical simulations consist of an initial 
Gaussian density profile 1 embedded in a background of uniform 
density ρ0 , where the peak of the Gaussian is 2.5 ρ0 and the mean 
density of the box is 〈 ρ〉 = 1.535 ρ0 . The simulations are isothermal, 
and the density ρ0 and sound speed c s are set so that the box 
length L 0 ≈ 2.5 L J , where L J = ( πc 2 s /G 〈 ρ〉 ) 1 / 2 is the Jeans length 
corresponding to the mean density in the numerical box. 
Two of the simulations have the same set-up and resolution, except 

that one of them is the purely hydrodynamic (HD) simulation turb 08 
from Guerrero-Gamboa & V ́azquez-Semadeni ( 2020 ), while the 
other ( mhdturb 08 ) is a magnetohydrodynamic (MHD) simulation, 
with the numerical box permeated by a uniform magnetic field 
oriented along the z-direction. The field strength B 0 is set so that 
c s = v A , where v A is the Alfv ́en speed. This condition results in 
the choice B 0 = c s (4 π〈 ρ〉 ) 1/2 . The third simulation ( mhdturb 10 ) is 
identical to ( mhdturb 08 ), except that it has two additional levels of 
refinement, and is used to test for convergence in Appendix A . 
Since the simulations are isothermal, we can rescale them using 

any set of values for which the box contains the same number 
of Jeans lengths and the MHD run satisfies the condition c s = 
v A . For reference, we take fiducial physical values for the density, 
sound speed, and magnetic field (in the magnetized runs) of n 0 = 
4.86 × 10 5 cm −3 , c s = 0.21 km s −1 , and B 0 = 106 µG , respectively, 
and the simulation size is L 0 = 0.1 pc per side. These values imply 
1 Note that, the choice of initial density profile is probably not important for 
the later evolution of the collapse, since the asymptotic spherical collapse 
solutions of Whitworth & Summers ( 1985 ) have a well-defined Bonnor–
Ebert-like profile, although the solutions are fully dynamical, and furthermore 
G ́omez, V ́azquez-Semadeni & Palau ( 2021 ) have shown that an r −2 density 
profile is an attractor for the profile’s logarithmic slope in its outer power-law 
part, implying that the spherically averaged density profile will spontaneously 
approach this slope as the collapse proceeds, as indeed observed in simulations 
with uniform (e.g. Larson 1969 ) or gaussian initial conditions (e.g. Naranjo- 
Romero et al. 2015 ). Therefore, our gaussian initial profile can be considered 
as a ‘generic’ initial condition, representative of a random turbulent density 
fluctuation. 

that the mass-to-flux ratio for the whole numerical box in the 
magnetic simulations mhdturb 08 and mhdturb 10 , normalized to the 
critical value, is λ ≈ 6, so that these runs are strongly magnetically 
supercritical (i.e. not supported by the magnetic field strength). 
For the unit of time, we choose the free-fall time t ff for the mean 

density of the central Jeans mass in the box at the initial condition. 
This is computed as the mean density out to a radius where the mass 
internal to it equals the Jeans mass corresponding to the mean density 
out to that radius. 
The boundary conditions are periodic for the hydrodynamics, 

and isolated for the self-gravity. In runs turb 08 and mhdturb 08 , 
we use a maximum refinement level of & = 8, corresponding to a 
maximum resolution of 2 & + 2 = 1024 grid cells, of size ≈10 −4 pc, or 
≈20 au. We refine according to the Jeans per Jeans length in the HD 
simulation and 32 for the MHD simulation. The latter value follows 
the recommendation of Sur et al. ( 2010 ), of using at least 30 cells per 
Jeans length in an MHD simulation, in order to properly resolve the 
small-scale dynamo. Since increasing the number of cells per Jeans 
length in practice requires increasing the maximum resolution level, 
in Appendix A , we check that our results do not vary significantly 
when increasing the maximum level to & = 10 in run mhdturb 10 . 
With these refinement conditions, we can compute the highest 

density that is adequately resolved with the combination of the 
number of cells per Jeans length and the maximum refinement level 
(equation 32 from Federrath et al. 2010 ), 
ρres = πc 2 s 

4 Gr 2 acc = πc 2 s 
4 G 

(
2 2 + & 
j r L 0 

)2 
, (2) 

where G is the gravitational constant, & is the maximum refinement 
level, and j r is the number of cells to resolve the Jeans length. In 
Table 1 , we summarize the resolution parameters for the various 
runs. The density is expressed as a number density, considering n = 
ρ/ µm H , where µ is the mean molecular weight, which for molecular 
gas takes the value µ ≈ 2.3. 
Regions in the simulations with densities larger than n res are 

expected to be affected by numerical dissipation. Moreover, for 
densities n ! 10 10 cm −3 , the isothermal assumption may break down, 
as these densities correspond to the formation of a first hydrostatic 
core (e.g. Larson 1969 ). In any case, as seen in Fig. 2 , these regions 
are very small, and failure to fully resolve them or to use a harder 
equation of state is unlikely to affect the global results we discuss 
here. On the other hand, the effects of numerical dissipation may 
indeed affect the results at very high densities, such on the B –ρ
correlation, although in this case, they may provide an emulation of 
the effects of ambipolar or reconnection diffusion processes, as we 
discuss in Section 4.3 . 
We first start the simulations with self-gravity turned off, and stir 

the gas with a turbulent forcing module (Price & Federrath 2010 ) for 
roughly one crossing time to introduce perturbations in the velocity, 
density, and magnetic fields. The driving is fully solenoidal, and the 
energy is injected in a range of scales between 1/8 and 1/32 of the 
box. The turbulence generated reaches a transonic value of σ ≈ 0.8 c s , 
consistent with the typically observed turbulence levels at the size 
scale of the simulation ( ∼0.1 pc; e.g. Heyer & Brunt 2004 ). Then, 
we turn off the forcing and turn on the self-gravity at t = 0. Collapse 
ensues immediately, although initially, it is very slow compared to 
the turbulent motions. Ho we ver, the turbulence decays during the 
early stages of the evolution, due to the absence of driving. Thus, 
during these stages of the collapse, the infall speed increases, while 
the turbulent velocity dispersion decreases, until the infall motions 

D
ow
nloaded from

 https://academ
ic.oup.com

/m
nras/article/530/3/3431/7656428 by guest on 06 August 2024



Properties of collapse-driven MHD turbulence 3433 

MNRAS 530, 3431–3444 (2024) 

Table 1. Simulation parameters. 
Run Ef fecti ve refinement Cells per Jeans length Maximum resolved density 

( x [pc] j r n res [cm −3 ] 
turb 08 9.76 × 10 −5 12 1.091 × 10 8 
mhdturb 08 9.76 × 10 −5 32 1.534 × 10 7 
mhdturb 10 2.44 × 10 −5 32 2.455 × 10 8 
become strong enough to inject energy into the turbulent motions 
(see Guerrero-Gamboa & V ́azquez-Semadeni 2020 , for details). 
3  METHODOLOGY  
3.1 Helmholtz decomposition 
In this work, we adopt the Helmholtz theorem used in Hu et al. 
( 2022 ) to decompose the velocity field into a solenoidal component 
(i.e. Alfv ́en mode) v v v s and compressive component (i.e. fast and slow 
modes) v v v c : 
v v v = v v v s + v v v c . (3) 
The solenoidal and compressive components satisfy divergence free 
( ∇ · v v v s = 0) and curl free ( ∇ × v v v c = 0) conditions, respectively. 
Owing to the Helmholtz theorem, v v v c stems from a scalar potential 
φ, i.e. v v v c = −∇φ, and v v v s stems from a vector potential * * * , i.e. 
v v v s = ∇ × * * * . 

The two potentials can be calculated from the Green function for 
the Laplacian: 
φ( r r r ) = 1 

4 π
∫ ∇ ′ · v v v ( r r r ′ ) 

| r r r − r r r ′ | d 3 r r r ′ , 
* * * ( r r r ) = 1 

4 π
∫ ∇ ′ × v v v ( r r r ′ ) 

| r r r − r r r ′ | d 3 r r r ′ , (4) 
where r r r is the position vector and ∇ ′ is the nabla operator with 
respect to r r r ′ . Thus, the decomposition can be rewritten as: 
v v v = − 1 

4 π ∇ ∫ ∇ ′ · v v v ( r ′ r ′ r ′ ) 
| r r r − r ′ r ′ r ′ | d 3 r r r ′ + 1 

4 π ∇ × ∫ ∇ ′ × v v v ( r ′ r ′ r ′ ) 
| r r r − r ′ r ′ r ′ | d 3 r r r ′ , (5) 

Note that, equation ( 4 ) basically is a convolution with Green’s 
function ( 1 

4 π | r r r −r r r ′ | ). It is convenient to solve equation ( 4 ) in Fourier 
space, and we do that in this work. The Fourier components of the 
potential fields are then transformed back to real space to obtain the 
two velocity components. We illustrate the result of the Helmholtz 
decomposition of the velocity field for one snapshot of the simulation, 
corresponding to t = 0.9375 t ff in Fig. 1 . 
3.2 Radial profiles 
The radial profiles of magnetic field, velocity, and density are 
calculated in two different ways. The first one is shell-averaging , 
in which we compute the RMS values of the variables o v er spherical 
shells of thickness ∼1 grid cell, centred in the box’s centre. This 
allows visualization of how the variables vary as a function of radius. 
The second is volume averaging , which computes the average over 
the full spherical volume out to the indicated radius. Shell averaging 
is used in Figs 3 , 4 , 5 , and 6 , while we use v olume a veraging in 
Figs 7 , 8 , and 10 for the purpose of calculating mass-to-flux ratio. 
We use the subscripts ‘shell’ and ‘sph’ to distinguish the two cases. 

4  RESULTS  
In what follows, we discuss various aspects of the collapse in 
the MHD simulation, and only occasionally refer to the HD sim- 
ulation, when comparison to the non-magnetic case is needed. 
When no specific reference is made, the MHD case should be 
assumed. Also, in order to quantify the contraction, we define 
‘the core’ as the region within the radius at which the spherically 
averaged (see Section 3.2 ) infall speed becomes maximum. In 
this region, the density field is roughly flat in the absence of 
turbulence (e.g. Whitworth & Summers 1985 ; Naranjo-Romero et al. 
2015 ). 

4.1 Anisotropy of gravitational contraction 
Fig. 2 shows 2D cross-sections of the MHD numerical box o v er the 
z = 0 plane (first and third rows) and o v er the x = 0 plane (second 
and fourth rows; recall the initial magnetic field is parallel to the 
z-axis) at different stages of the collapse, from t = 0, i.e. when the 
collapse begins, to t = t ff . The collapse achieves contraction ratios 1, 
1/2, 1/4, 1/8, 1/16, and 1/32 at t = 0, 0.8125 t ff , 0.9375 t ff , 0.9750 t ff , 
0.9875 t ff , and t ff , respectively. Starting from t = 0.8125 t ff , the panels 
in Fig. 2 show the central collapsing region, of size L 0 /2, where L 0 
is the initial box size at t = 0. 
At the onset of the collapse ( t = 0), the density structure is nearly 

isotropic, although, in the x– y plane, i.e. the plane perpendicular 
to the mean magnetic field, the magnetic field (shown by the black 
lines) is tangled by turbulent motions. As the collapse proceeds, 
the turbulent eddies (i.e. the vortex-like structures seen in turbulent 
magnetic fields) undergo compression and their sizes decrease with 
time. On the other hand, in the y –z plane, the density structure is seen 
to become anisotropic, becoming shorter along the direction of the 
z-axis, causing the formation of a sheet parallel to the x –y plane. The 
collapse in the presence of a mean magnetic field naturally generates 
an anisotropy (e.g. Shu, Adams & Lizano 1987 ), which provides a 
magnetic force primarily in the direction perpendicular to the mean 
field. At later stages, the density structure has contracted strongly, 
and we observe the turbulent perturbation of magnetic fields, but the 
anisotropy of magnetic field configuration remains, and an hourglass 
morphology gradually forms in the central region. 
Fig. 3 presents the RMS values of the x , y , and z components of 

flow velocity, v x , v y , and v z , as a function of R / L 0 , where R is the 
radius of a spherical region centred at the centre of our simulation 
box. Taking advantage of the approximate spherical symmetry, the 
RMS velocity value is averaged over spherical shells of thickness ≈1 
grid cell, which is denoted as v shell . Initially (at t = 0), v x exhibits a 
larger amplitude in the central region ( R ! 0.4 L 0 ), while v y and v z 
show the opposite trend. This is just the manifestation of the random 
initial turbulent velocity field. At later times ( t / t ff ≥ 0.9375), ho we ver, 
v z is seen to be somewhat larger than the other two components, 
indicating the unrestricted collapse in this direction. Along the x and 
y directions, instead, the collapse is slightly delayed by the magnetic 
support. 
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Figure 1. Illustration of the Helmholtz decomposition of total velocity into compressive (left) and solenoidal (right) components, at t = 0 . 9375 t ff . The 
compressive component is dominated by infall motions, with the velocity vectors pointing mainly toward the centre. The solenoidal component contains a 
residual contribution from the initial conditions as well as a component driven by the collapse. For clarity, all arrows have the same length, with their colours 
representing the velocity amplitude in different ranges of percentile, as indicated by the colour bar. The percentile is calculated for each velocity field, respectively. 
At not-too-advanced stages of the collapse ( t ! 0.9750 t ff ), we see 

that, under the effect of gravity, the contraction is faster in the outer 
region and decays towards the inner region. This is consistent with the 
well-known solution of nonmagnetic spherical pre-stellar collapse, 
for which the central parts of the sphere (the region where the density 
is nearly flat), the infall speed scales linearly with radius, while in 
the outer regions, where the density drops off as r −2 , the infall speed 
becomes constant with radius (e.g. Whitworth & Summers 1985 ). 
According to this solution, the inflection radius at which the speed 
changes from linear to constant with radius approaches the centre, 
reaching the latter at the moment of formation of the singularity (the 
protostar). 
The radial variation of the magnetic field strength is presented in 

Fig. 4 . Due to the presence of an initial large-scale magnetic field 
along the z-direction, the anisotropy in magnetic field distribution 
persists through the collapse (see Fig. 4 ), with | B z | > | B x | ≈ | B y | . 
Ho we v er, unlike the v elocity field, the magnetic field is al w ays 
stronger in the inner region than in the outskirts during the collapse 
process. Compared to the initial conditions, the mean magnetic field 
is amplified via compression by two orders of magnitude in the inner 
region, while in the outskirts it stays nearly unchanged. 
4.2 Turbulence amplification by the collapse 
As discussed in Section 3.1 , and illustrated in Fig. 1 , we use 
a Helmholtz decomposition to separate the velocity field in its 
solenoidal and compressive components. The compressive velocity 
is seen to be oriented toward the collapsing centre as it is dominated 
by the infall motions, but we note that it can also contain turbulent 
(non-infall) motions. The solenoidal component, on the other hand, 
is randomly oriented, as it corresponds to purely turbulent motions. 
As the externally driven initial turbulence decays over roughly one 
crossing time, the solenoidal turbulence seen at later times must be 
generated by gravitational contraction. 
The radial profiles of the RMS values of the solenoidal ( v s ) 

and compressive ( v c ) velocity components, averaged over spherical 
shells, are presented in Fig. 5 . At t = 0, the large solenoidal 
component corresponds to the initial solenoidal imposed turbulence, 

while the compressive component is virtually non-existent, since 
the collapse motions have not started yet. Ho we ver, at the more 
adv anced times sho wn in the figure, the compressive component 
becomes dominant. The maintenance and moderate increase of the 
solenoidal velocity at these later stages of the collapse is accounted 
for by the driving by gravity. Ho we ver, it can be seen that the increase 
in the solenoidal component is very mild. In fact, this component 
remains almost at the same level throughout all snapshots shown. 
The ratio of the solenoidal to compressive velocity components in 

the MHD run is presented in the left panel of Fig. 6 . A higher ratio 
is seen at smaller R due to the slower contraction speed in the inner 
region, as shown in Fig. 5 . When t ≥ 0.9375 t ff , the ratio becomes 
less than unity throughout the radial range shown, indicating that 
the compressive component becomes dominant over the solenoidal 
component almost everywhere in the core. 
With our interpretation of the solenoidal modes as the turbulent 

component of the total motions, this low-amplification level of the 
solenoidal component would imply that the trend towards equaliza- 
tion of the eddy turno v er rate and the collapse rate predicted by 
Robertson & Goldreich ( 2012 ), or the significant amplification of 
initially subsonic turbulence by gravitational compression observed 
in various other studies (e.g. Sur et al. 2012 ; Hennebelle 2021 ; 
Higashi, Susa & Chiaki 2021 ), is not realized in our simulations. 
Neither is the pseudo-virial state observed by Guerrero-Gamboa & 
V ́azquez-Semadeni ( 2020 ), in which the kinetic energy in the infall 
(compressive) motions was roughly twice the kinetic energy in the 
turbulent motions. Those authors attributed this regime to the increas- 
ing infall kinetic energy, which constituted an increasing driving rate 
for the turbulent motions. Instead, in the present simulations, the 
solenoidal motions seem to remain almost constant in time, and 
uniform in radius. 
At face value, this result would suggest an inefficient amplification 

of turbulence in our simulations. This could be due to insufficient 
resolution. Ho we ver, in the Appendix, we show that our results do 
not vary strongly when increasing the resolution by two additional 
refinement levels, suggesting that our results are converged. 
Another possibility is that the magnetic tension may also suppress 

the amplification of turbulence. Mediated by the large-scale ordered 
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Figure 2. Cross-sections through the numerical box along the central x –y plane (first and third rows) and along the central y–z plane (second and fourth rows) 
at the indicated times during the gravitational collapse. The colour scale represents density. The black lines indicate magnetic streamlines generated from the 
components of the magnetic field in the corresponding plane, while the white vectors represent the component of the velocity on these planes. Note that, the 
v elocity v ectors all hav e the same length, and only depict the direction of the velocity. Note the changing range of the colour bar as time proceeds. Furthermore, 
note that, the density field appears less centrally concentrated at t = 0.8125 t ff than at t = 0. This is because the initial condition was a centrally peaked Gaussian 
profile. Ho we ver, at t = 0.8125 t ff a Plummer-like profile has been self-consistently established by the collapse, but the size of its central flat-density part is still 
of comparable size to that of the region shown in the image (cf. Fig. 7 ), and therefore appears less concentrated than at time t = 0. At times t ≥ 0.9375 t ff , the 
central flat part of the Plummer-like profile is already smaller than the region shown, and thus a central peak is noticeable again in the images. 
magnetic field threading the collapsing region, the angular momen- 
tum of the compressed turbulent eddies may be transferred along 
the magnetic field away from the collapsing region, suppressing the 
gravity-driven solenoidal motions there. 
To examine the magnetic effect on the amplification of turbulence, 

we make the comparison with the HD simulation in Fig. 6 . We find 

that in the HD case, the solenoidal fraction is generally larger than 
in the MHD case throughout the radial range, and at all times t > 
0, although only mildly, thus not constituting an important effect on 
the generation of solenoidal motions by the collapse. On the other 
hand, at t = 0, we see that the solenoidal fraction is significantly 
lower in the HD case, suggesting that the main role of the magnetic 
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Figure 3. Radial profiles of the shell-averaged RMS values of the three components of the velocity field v x , v y , and v z , at the indicated timed during the 
collapse, in units of the free-fall time corresponding to the mean density of the central Jeans mass at t = 0. The radius is normalized by the box length, L 0 = 
0.1 pc. 

Figure 4. Similar to Fig. 3 , but for the radial profiles of the shell-averaged RMS values of the three components of the magnetic field B x , B y , and B z . 
field at transonic Mach numbers is to prevent the transfer of energy 
from the solenoidal to the compressible modes during the pre- 
gravity driving stage of our simulation. This result is consistent with 
the early finding by Vazquez-Semadeni, Passot & Pouquet ( 1996 ), 
that the maintenance of solenoidal energy requires the presence of 

vorticity-generating forces such as the Lorentz or Coriolis forces. 
Nevertheless, the increase of compressible energy in the HD case is 
not enough to make a significant difference at later times. 
The abo v e tests suggest that the lo w amplification le vel of the 

solenoidal component is not due to insufficient resolution nor to 
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Figure 5. Similar to Fig. 3 , but for the radial profiles of the shell-averaged RMS values of the solenoidal, compressible, infall, and turbulent velocity fields. 

Figure 6. Radial profile of the shell-averaged ratio of the RMS solenoidal to compressive components for the MHD (left) and hydrodynamic simulations (right). 
the presence of the magnetic field. A third possibility is that a 
significant fraction of the turbulent energy generated by the collapse 
with our setup is not in the solenoidal modes, but rather in the 
compressible ones. Indeed, a measurement of the turbulent energy 
fraction using the same method as in Guerrero-Gamboa & V ́azquez- 
Semadeni ( 2020 ), (Guerrero-Gamboa & V ́azquez-Semandeni, in 
preparation) shows that, although the turbulent energy fraction is 
indeed somewhat smaller in the magnetic case, the difference with 
the hydrodynamic case is much smaller than our measurements 
here would suggest. Since that method takes into account both 
the solenoidal and compressible energies in the estimation of the 
turbulent fraction, our results here suggest that an important fraction 

of the kinetic energy generated by the collapse is in compressible, 
rather than solenoidal modes. 
To test for this, we define the infall (or gravitational ) velocity 

as the component of the velocity vector along the direction of the 
gravitational acceleration vector: 
v g ≡ v · ˆ g , (6) 
where v is the total velocity vector, g ≡ ∇φ is the gravitational 
acceleration vector, φ is the gravitational potential, and ˆ g is the unit 
vector along g . Making the approximation that v g is the velocity 
driven by the gravitational acceleration, we then define the turbulent 
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component as 
v trb ≡ v − v g . (7) 
Note that this is only an approximation, as both the truly turbulent 
velocity and the solenoidal velocity v s are not necessarily perpen- 
dicular to the gravitational acceleration vector g . Therefore, the 
approximation given by equation ( 7 ) may underestimate the true 
turbulent velocity. 
The shell-averaged RMS values of these two velocities (denoted v g 

and v trb ) are also shown in the frames corresponding to t ≥ 0.8125 t ff 
of Fig. 5 , and can be compared to the RMS values of the compressible 
and solenoidal components, which we respectively denote by v c and 
v s . From that figure, we see that, at late times and/or large radii (i.e. 
when the infall speed is large), v c ! v g in general, implying that there 
are compressive motions that do not correspond to infall. Also for late 
times/large radii (although not exactly in the same radial ranges as 
before), v trb > v s , indicating that there is a non-solenoidal (therefore 
compressible) contribution to the turbulent velocity. Both of these 
results imply that there is a significant compressible contribution to 
the turbulent speed. 
Ho we ver, we also note that, at early times (the frames for t = 

0.8125 t ff and t = 0.9325 t ff ), there are regions in the inner parts of 
the core where v c < v g and/or v trb < v s . This happens because of the 
limitation stated abo v e, that our definition of v g is contaminated by 
a contribution of the turbulent velocity vector in the direction of the 
gravitational acceleration. Therefore, at times or radial ranges where 
the infall speed is small, this contamination dominates v g . Ho we ver, 
once the infall speed is dominant, the presence of a significant 
compressible component in the turbulent velocity is clear. 
4.3 B–ρ correlation 
The correlation between the magnetic field strength and the density 
is an important aspect of the theory of star formation. Ho we v er, man y 
dif ferent ef fects contribute to the scaling between the magnetic field 
strength and the density upon compressions, of either turbulent or 
gravitational origin. 
Under the ideal MHD condition, and in the presence of a weak 

field, a spherical core contracts isotropically, maintaining its spheri- 
cal geometry. If both the mass, M ∝ ρR 3 , and the magnetic flux, * ∝ 
BR 2 , are conserved, the field is expected to scale as B ∝ ρ2/3 (e.g. Shu 
1992 ; Ch. 24). On the other hand, when the the field is strong, the 
initial contraction mainly takes place along the mean magnetic field, 
and the gas settles into a flattened cylindrical structure perpendicular 
to the mean field. In the limit of very strong fields, this produces an 
increase of the density at constant field strength (e.g. Mestel 1965 ; 
Hartmann, Ballesteros-Paredes & Bergin 2001 ; V ́azquez-Semadeni 
et al. 2011 ). Ho we ver, if accretion along field lines continues to 
increase the gas mass responsible for generating the gravitational 
potential (Hartmann et al. 2001 ; V ́azquez-Semadeni et al. 2011 ), then 
the flattened cloud must contract radially to some extent, producing 
the well-known hourglass shape. If the thickness is assumed to be 
determined by the hydrostatic balance between thermal pressure and 
gravity in the direction of the mean field, then B ∼ ρ1/2 (Mouschovias 
1976 ; Scott & Black 1980 ; Crutcher 1999 ). 
Ho we ver, B ∝ ρ1/2 can also be the result of ambipolar diffusion 

(Mouschovias 1976 ; Ciolek & Mouschovias 1994 ), reconnection 
(Santos-Lima et al. 2010 ; Lazarian, Esquivel & Crutcher 2012 ; Xu 
& Lazarian 2020b , c ) or other forms of diffusion of the magnetic field, 
which cause the breakdown of flux freezing and partial decorrelation 
between B and ρ. 

On the other hand, in the purely turbulent case without self-gravity, 
Passot & V ́azquez-Semadeni ( 2003 , hereafter PV03 ) considered the 
scaling of the magnetic pressure ( ∼B 2 ) with density for the various 
modes of ‘simple’ (non-linear) MHD waves, showing that each mode 
produces a different scaling, without the need to invoke any form of 
diffusion or dissipation. Specifically, they showed that, when the slow 
mode dominates, a scaling of the form B 2 = c 1 − c 2 ρ emerges, where 
c 1 and c 2 are positive constants. However, the slow mode disappears 
at large density, when ρ > c 1 / c 2 . When the fast mode dominates, those 
authors showed that a scaling of the form B 2 ∝ ρ2 arises. Finally, they 
showed that the pressure for a circularly polarized Alfv ́en wave is of 
the form B 2 ∝ ργeff , with γ eff ≈ 2 at large Alfv ́enic Mach number 
M A , γ eff ≈ 3/2 at moderate M A , and γ eff ≈ 1/2 at low M A . From all 
these different scalings, PV03 concluded that the B –ρ correlation is 
not unique, and depends on the history of wave passages through a 
given location in the flow, rather than simply on the local value of 
the density. Nevertheless, the generic form of the B–ρ scaling is to 
be flat at low densities and to increase as some power of ρ in the 
range 1/2 < γ eff < 1 at high density, in qualitative agreement with 
observations (e.g. Crutcher 2012 ). 
With all the abo v e background, we can now proceed to discuss 

the B–ρ correlation in our simulation of magnetized turbulent 
gravitational collapse. In Fig. 7 , we compare the radial profiles 
of v olume-a veraged density ρsph and magnetic field strength B sph 
within the sphere of radius R (normalized by L 0 ). As a result of 
gravitational collapse, the density and the magnetic field lines are 
significantly compressed in the central region. The density can be 
compressed up to six orders of magnitude, while the magnetic field 
is moderately amplified by three orders of magnitude approximately. 
With a similar distribution of ρsph and B sph at different stages of the 
gravitational collapse, the amplification of magnetic field strength is 
mainly attributed to the compression generated by the contraction. 
The correlation between B sph and ρsph is presented in Fig. 8 . At t = 

0.8125 t ff , we find B ∝ ρ1/2 , presumably as a result of the anisotropic 
contraction within the entire collapsing region (see Fig. 2 ). Ho we ver, 
already at the panel corresponding to t = 0.9375 t ff , the slope of the 
correlation is very close to 2/3, although, starting from t = 0.975 t ff , 
we see a kink in the slope from B ∝ ρ2/3 to a shallo wer v alue at the 
highest densities, beyond which the slope approaches B ∝ ρ1/2 . 
The flattening of the B –ρ scaling at the highest densities (i.e. 

toward the central region) can be due either to the mode of collapse 
or to the enhancement of diffusion. As mentioned abo v e, in the 
spherically collapsing, ideal (non-dif fusi ve) case, the expected value 
of the exponent is ∼2/3, while, if it occurs first onto a sheet-like 
cloud whose thickness is determined by hydrostatic equilibrium, the 
e xpected e xponent is ∼1/2. On the other hand, in the dif fusi ve case 
with spherical collapse, a flattening of the slope from ∼2/3 to ! 1/2 
is expected when diffusion becomes important. If the diffusion is 
enhanced in the inner regions because of the larger infall speeds (and 
consequently, a larger injection rate) there, then one would expect 
the slope to be near 1/2 in the central parts. 
As seen in Fig. 8 , the logarithmic slope of the B –ρ curve in our 

simulation is ∼1/2 at early times (see the panel corresponding to 
t = 0.8125 t ff ), but then transitions to ∼2/3 at later times and low 
densities, suggesting a transition from a mostly planar collapse at 
early times to a roughly spherical one at late times. This is confirmed 
by the morphology of the density , velocity , and magnetic fields seen 
in the frame corresponding to the y –z plane t = 0.8125 t ff in Fig. 2 . 
In this panel, a horizontal, flattened, intermediate-density sheet is 
observed to have formed, and to be contracting radially, as indicated 
by the velocity arrows. This is precisely the configuration for which 
a slope ∼1/2 is expected. Instead, at later times, the central layer 
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Figure 7. Evolution of the radial profiles of volume-averaged ρsph and B sph . 

Figure 8. Evolution of the correlation between the spherically averaged gas density and the magnetic field strength. The shaded area gives the standard deviation 
of magnetic field strength averaged over the corresponding spherical volume. The kink in the curve at t = 0.8125 t ff is caused by the fact that, due to the turbulent 
motions, the collapse is not precisely focused at the centre, and so neither the maximum density nor the maximum field strength occur inside the innermost 
spheres used to generate these plots. At later times, this is not noticeable because the collapse is so advanced that the offset from the centre is smaller than the 
size of the innermost sphere. 
has disappeared, and the collapse appears to be roughly isotropic, 
consistent with the slope of 2/3 observed for these times. Ho we ver, 
at the highest densities ( n ! 10 10 m −3 ) at the later times, a slope 
of ∼1/2 is observed (see the panel corresponding to t = t ff ), which 
can be attributed to reconnection diffusion based on the numerical 
diffusion. We conclude that both the geometry and the reconnection 
diffusion play a role in the determination of the mean B –ρ correlation 
during the collapse. 
Finally, in Fig. 9 , we show the magnetic field-density scatter plot, 

taking each cell of the simulation as a dot in the plot, and the two- 

dimensional probability density (in contours), for t = 0.9375 t ff (left 
panel) and t = t ff (right panel). The dots are coloured with the value 
of the Alfv ́enic Mach number, | v| √ 

4 πn /B in the corresponding 
cell, using the magnitude of the velocity. In the contours, we can 
distinguish various superposed regimes. First, at low density, the 
contours co v er an e xtended area, but the y concentrate around a 
zero-slope scaling characteristic of the slow mode (indicated by the 
orange line), and a scaling with a nearly unit slope characteristic of 
the fast mode (blue line). It is also noteworthy that the zero slope 
corresponding to the slow mode occurs for large values of B , or, 
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Figure 9. Two-dimensional histogram of simulation points in the B– n space at times t = 0.9375 t ff (left panel) and t = t ff (right panel). The dots are coloured 
by the corresponding value of the Alfv ́enic Mach number, M A = | v| √ 

4 πρ/ | B| . The lines represent slopes of 0, 1/2, 2/3, and 1, as indicated in the inset. 
equi v alently, for lo w v alues of M A , when the inertia of the turbulent 
motions is low compared to the magnetic forces. Conversely, the unit 
slope corresponding to the fast mode occurs for small values of B , 
or, equi v alently, for large v alues of M A , implying that the inertia of 
the turbulent motions o v erwhelms the magnetic forces. 
Secondly, at high densities, the scatter is strongly reduced and, 

at t = 0.9375 t ff , a single scaling with slope 1/2 is observed, 
suggesting that diffusion dominates the scaling. Ho we ver, at t = 
t ff , a significant fraction of the high-density points is still close to 
the slope of 2/3, suggesting that, at this stage, the collapse is so 
fast that diffusion cannot completely erase the signature of spherical 
collapse, in agreement with the conclusion of Guerrero-Gamboa 
& V ́azquez-Semadeni ( 2020 ) that, as the collapse accelerates, the 
turbulent cascading rate and the dissipation cannot ‘catch up’ with 
the energy injection, thus preventing the equipartition levels of 
turbulence suggested by Robertson & Goldreich ( 2012 ). 
4.4 Mass-to-flux ratio 
The mass-to-flux ratio, M / * , is considered an important diagnostic 
of the energy balance within a core, determining whether it can be 
supported by the magnetic field against its self-gravity (Mestel & 
Spitzer 1956 ). Here, we compute it at radius R , normalized to the 
critical value for cylindrical geometry, ( M/* ) crit = 2 π√ 

G (Nakano 
& Nakamura 1978 ), as: 
λc ≡ M/* 

( M/* ) crit = 2 π√ 
G ∮ r<R ρ( x , y , z) d x x x 3 

πR 2 B̄ (8) 
where G is the gravitational constant, r defines the distance from each 
grid cell to the center of the simulation box, and B̄ is the magnetic 
field strength averaged over a sphere with radius R . When λc > 1, 
the core is magnetically supercritical (i.e. the gravitational potential 
energy exceeds the magnetic energy), while if λc < 1, the core is 
subcritical (i.e. its gravitational potential energy is smaller than the 
magnetic energy). M / * of the entire box is approximately conserved. 
Ho we ver, as first pointed out by V ́azquez-Semadeni et al. ( 2005 , 

hereafter VS + 05 ), and more recently quantified by G ́omez et al. 
( 2021 ), under ideal MHD conditions, the subregions or fragments of 

a clump or core will in general have a lower value of λc than the 
whole clump. VS + 05 arrived at this conclusion by considering the 
limiting cases that bracket the condition of any fragment of a clump. 
On one extreme, if the whole clump contracts to a smaller radius 
under ideal MHD conditions (i.e. with no diffusion of the magnetic 
field), then the mass-to-flux ratio is conserved, because of the flux- 
freezing condition and because the mass is the same. On the other 
end, if one considers only a subregion of the original clump, with the 
same density and magnetic field strength as the whole clump, then 
the mass varies as R 3 , while the flux varies as R 2 , and so M / * varies 
as R . Therefore, the mass-to-flux ratio of an arbitrary fragment ( λf ) 
within the cloud is constrained to lie within these two extremes, and 
so we can write 
λc (R f 

R c 
)

≤ λf ≤ λc , (9) 
where λc and R c are respectively the mass-to-flux ratio and the 
radius of the whole clump, and R f is the radius of the fragment. 
In addition, G ́omez et al. ( 2021 ) analytically showed that, for any 
centrally concentrated sphere with a ‘reasonable’ density profile ( ρ
∝ r −p , with p < 3) and with the magnetic field scaling with density 
as B ∝ ρη, then the mass-to-flux ratio scales as 
M 
φ

∝ r 1 −p(1 −η) . (10) 
In particular, then, for η > ( p − 1)/ p , M / φ decreases inwards, and so 
there is al w ays a certain inner region that will appear magnetically 
subcritical even if it is embedded within a supercritical larger region. 
In Fig. 10 , we show the radial profiles of the normalized mass-to- 

flux ratio out to the indicated radius at various times. In agreement 
with the theoretical predictions of VS + 05 and G ́omez et al. ( 2021 ), 
we see an outwards increase of λc , and a transition from a supercritical 
outer region to a subcritical inner region for t ≤ 0.975 t ff . Magnetic 
fields are strongly amplified by compression towards the centre (see 
Fig. 4 ). 
In addition, the decrease of M / * with decreasing radius is 

consistent with the observational finding by Crutcher, Hakobian 
& Troland ( 2009 ). A supercritical molecular envelope is also seen 
in observations (e.g. Ching et al. 2022 ). Note, however, that the 
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Figure 10. Normalized mass to flux ratio M / * o v er each sphere centering 
at the center of the simulation box. M / * > 1 means supercritical condition, 
while M / * < 1 is subcritical. 
magnetically subcritical inner region shrinks with time as a conse- 
quence of the global collapse of the core, which compresses this 
inner subcritical region. 2 At t ≈ t ff , the entire range of radii seen in 
Fig. 10 is supercritical. 
4.5 Effect of the magnetic field on the collapse rate 
The result from the previous section, that the inner region of the core 
is magnetically subcritical, may suggest that the collapse might be 
delayed somewhat by the added magnetic pressure in that region. To 
test for this, in Fig. 11 , we show the time dependence of the density 
peak in both the MHD and the HD runs. Somewhat surprisingly, the 
density peak seems to increase at essentially the same rate in the two 
simulations, in spite of the existence of the inner subcritical region. 
This is understandable because the whole numerical box is strongly 
supercritical, with a total mass-to-flux ratio at the outer edge λ ∼ 6. 
Therefore, the inner region is being compressed by the infall of the 
envelope, in spite of being locally subcritical. 
5  DISCUSSION  
5.1 Radial distribution of the turbulent motions. Is the core 
‘coherent’? 
Our decomposition of the velocity field in its compressive and 
solenoidal components allows us to address the question of whether 
the core is coherent . This designation has been used to describe a core 
in which the velocity dispersion in its inner parts is dominated by the 
thermal speed, with turbulent motions being subsonic, and therefore 
2 It is worth noting, ho we ver, that this should not be interpreted as if somehow 
the pressure (either thermal or magnetic) in the central part were able to 
counteract the collapse of the entire core. It is not, since the region is increasing 
its density (i.e. the core is collapsing). It is simply not collapsing on its own , 
but rather just undergoing compression from the infalling outer material. 
Moreo v er, since the v elocity profile during the pre-stellar stage is smooth, 
no shock develops at the boundary of the core’s inner region during the pre- 
stellar stage. The shock appears simultaneously with the formation of the 
singularity, at the transition from the pre- to the protostellar stage. 

Figure 11. Evolution of the density maximum for the MHD and HD runs. 
The two runs are seen to behave almost indistinguishably. 
subdominant in comparison to thermal motions as a source of 
pressure (Barranco & Goodman 1998 ), presumably due to turbulent 
dissipation at the core’s centre. 
Ho we ver, our numerical simulation does not support this picture. 

Fig. 5 shows the dispersion (standard deviation) of the solenoidal 
(blue lines) and compressive (red lines) components of the velocity, 
together with the total non-thermal velocity dispersion (green lines) 
as a function of radial distance from the centre for various temporal 
snapshots. It is seen that the dispersion of the solenoidal component 
(which is purely turbulent) maintains a nearly uniform, transonic 
value throughout the whole radial extent of the core, and for the 
entire duration of the simulation. Instead, the compressive component 
increases continuously o v er time, as the infall speeds increase. So, 
in our core, it is not that the (solenoidal) turbulence decreases at the 
centre, but rather that it remains roughly constant (albeit it in fact 
increases slightly at late times in the inner regions), maintaining a 
transonic value. Interestingly, the solenoidal velocity component thus 
behaves in a nearly ‘isothermal’ way, in the sense that its dispersion 
remains approximately constant. 
As mentioned in Section 4.2 , this ‘pseudo-isothermal’ behaviour 

differs from the approach to equipartition reported in the non- 
magnetic case by Robertson & Goldreich ( 2012 ) for externally 
imposed contraction rates, and from the ‘pseudo-virial’ behaviour 
reported by Guerrero-Gamboa & V ́azquez-Semadeni ( 2020 ) in a 
self-consistent simulation of turbulent collapse. In the set-up of the 
latter authors, the energy injection rate to the turbulence increases 
with time (as the infall speeds increase), and the kinetic energy in 
the turbulent component approaches roughly half that in the infall 
component. 
As also discussed in Section 4.2 , the apparent discrepancy between 

those previous results and the behaviour of the solenoidal component 
in our simulations can be understood if the solenoidal modes 
comprise only a moderate fraction of the total turbulent motions, 
with a significant part of the latter being in compressible non-infall 
turbulent motions. In this case, the solenoidal dispersion shown in 
Fig. 5 constitutes only a lower limit to the total turbulent velocity 
dispersion. This can be seen, for example, in the inner regions where 
the red curve is below the blue curve in the frames corresponding 
to times t = 0.8125 t ff and t = 0.9375 t ff in Fig. 5 . It is important to 
note, also, that this solenoidal component is clearly not dissipated 

D
ow
nloaded from

 https://academ
ic.oup.com

/m
nras/article/530/3/3431/7656428 by guest on 06 August 2024



3442 E. V ́azquez-Semadeni et al. 

MNRAS 530, 3431–3444 (2024) 

towards the centre, but instead is continuously driven by the collapse, 
as manifested by its nearly constant level over time. 
In view of the abo v e, we can conclude that the decrease of the 

total turbulent velocity dispersion in the inner parts, as illustrated 
by the green lines in all the panels of Fig. 5 for t > 0 is due to the 
decrease of the infall speed towards the center in the pre-stellar case, 
since the compressible turbulent speed appears to be mostly ‘locked’ 
to (i.e. is a fixed fraction of) the infall speed. On the other hand, the 
solenoidal component, albeit maintaining a nearly radially uniform 
amplitude, is in most cases a small fraction of the total turbulent 
velocity dispersion. In the few cases where it is not, the total velocity 
dispersion departs from the infall speed. 
5.2 Comparison to previous work 
In a numerical study of the formation and collapse of dense cores in 
turbulent, intermediate-size ( ∼5 pc) molecular clouds with various 
mean magnetic field strengths, Mocz et al. ( 2017 ) also discussed 
the B –ρ scaling, with results in full agreement with ours. At high 
densities, they found that B scales approximately as ρ2/3 , indicative 
of roughly spherical collapse, dominated by gravity, in the weak- 
field cases, while they found B ∼ ρ1/2 , indicative of planar collapse 
guided by the field, in the strong-field cases. Our simulation, on 
the other hand, follows the B ∼ ρ1/2 scaling at first, but later 
develops two sequences of points, one of them continuing along 
the same B ∼ ρ1/2 scaling, but the other following a B ∼ ρ2/3 
scaling (right panel of Fig. 9 ). This suggests that, being transalfv ́enic, 
our simulation can develop both kinds of scalings at different 
locations, depending on the local value of the magnetic field, at 
late stages of the collapse, when gravity is becoming increasingly 
dominant. 
On the other hand, at low densities, Mocz et al. ( 2017 ) found 

that their high- M A simulations developed B –ρ scalings consistent 
with fast-mode dominance, while their low- M A simulations exhib- 
ited nearly constant B , consistent with low-mode dominance, in 
agreement with our results, in which both modes are present at low 
densities (low-density region of both plots in Fig. 9 ). Howev er, the y 
did not interpret their results in terms of the dominance of fast or 
slow MHD modes. 
Finally, Mocz et al. ( 2017 ) also reported that the mass-to-flux 

ratio in their cores increased beyond the large-scale value as time 
progressed, and interpreted this as evidence for the presence of fast 
reconnection diffusion. This is analogous to the temporal increase of 
the mass-to-flux ratio we observe in our simulation at fixed radius 
(Fig. 10 ). Ho we v er, here, we hav e interpreted it as a consequence 
of the accumulation of mass inside a given radius, due mostly to 
accretion along field lines. This allows an increase of the mass-to- 
flux ratio with no need for fast reconnection to operate. To rule 
out mass accretion as the cause for the increase of the mass-to- 
flux ratio, and thus unequivocally provide evidence for the action of 
some diffusion mechanism (reconnection, ambipolar or numerical), 
it would be necessary to follow a Lagrangian gas parcel, and show 
that its mass-to-flux ratio still increases. 
6  SUMMARY  AND  CONCLUSIONS  
In this paper, we hav e inv estigated sev eral properties of the MHD 
turbulence generated by the gravitational collapse of a nearly spher- 
ical core seeded with slightly subsonic solenoidal initial turbulence. 
We performed this analysis by decomposing the velocity field in its 
compressive and solenoidal components. Our results are as follows 

(i) In spite of the simulation being strongly magnetically supercrit- 
ical, the collapse still proceeds significantly anisotropically, forming 
first a dense sheet that then collapses along its larger dimensions. 
The magnetic field in the central parts of the core is amplified by 
roughly two orders of magnitude due to the collapse. 
(ii) The collapse amplifies the turbulent motions, but mostly in 

the compressible modes. The solenoidal modes remain almost at the 
initial level, although this means that they do not decay, either. 
(iii) The amplitude of the solenoidal motions is roughly uni- 

form with radius at all times, and roughly constant in time, in- 
dicating that no decrease of the turbulence occurs towards the 
centre nor o v er time, as would be expected in the scenario that 
the turbulence decays inwards (leaving behind a coherent core; 
Barranco & Goodman 1998 ) and o v er time, allowing the collapse 
of the core when turbulent support is lost. Nevertheless, the total 
velocity, including the dominant infall component, does decrease 
inwards during the pre-stellar stage investigated in this work, in 
agreement with the theoretical prediction from analytical spher- 
ical collapse calculations for the pre-stellar stage (Whitworth & 
Summers 1985 ). 
(iv) The distribution of the simulation cells in the B– n space shows 

a clear superposition of the fast, slow, and Alfv ́en modes predicted 
by PV03 , in addition to the effect of gravitational contraction: at low 
densities, a wide range range of B values exists at a given density. 
This can be understood as a consequence of the slow and fast MHD 
modes scaling differently with density, as B = a − bn for the slow 
mode (with a and b constants), and as B ∝ n for the fast mode. On 
the other hand, at high densities, the magnetic field scales as n α , with 
1/2 < α < 2/3, indicating a domination of gravitational compression 
with either spherical or planar geometry. 
(v) As predicted by G ́omez et al. ( 2021 ), the mass-to-magnetic 

flux ratio ( M / φ) measured out to a certain radius scales (increases) 
with radius at all times, and, furthermore, the slope of the M / φ profile 
becomes shallower as time increases. In general, the outer regions 
of the core are magnetically supercritical and the inner regions are 
subcritical, in agreement with observations by, e.g. Crutcher et al. 
( 2009 ) at the scale of the transition from dense molecular core to 
its envelope, and by Ching et al. ( 2022 ) at the interface between 
molecular clouds and their surrounding cold atomic gas. 3 Moreo v er, 
at an y giv en (fix ed) radius R , M / φ increases with time. This is due 
to the accretion of material preferentially along field lines onto the 
region inside R . 
We conclude that the MHD turbulence driven by gravitational 

contraction shares many of the features characterizing standard- 
driven turbulence, and moreover, that the driving by the collapse 
generates preferentially compressible components of the turbulence, 
while the solenoidal components remain at roughly the initial 
amplitude, although without decaying, either. The latter result 
implies that the turbulence in a collapsing core does not undergo 
a transition to coherence by dissipation, but rather the decrease 
in the linewidth at the inner, denser parts is due to the inwards 
decrease of the infall speed during the pre-stellar stage of the collapse. 
Finally, we have confirmed our earlier theoretical predictions that 
the mass-to-flux ratio is not expected to remain constant in time 
nor uniform in radius when the cores are defined by density 
thresholds. 
3 In this regard, it is important to point out that the apparent subcriticality of the 
inner regions of a globally supercritical structure is a scale-free phenomenon 
that is expected to occur whenever a density fluctuation arises within a 
globally magnetically supercritical medium. 
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APPENDIX  A:  RESOLUTION  STUDY  
As mentioned in Section 2 , the larger number of cells per Jeans length 
( j r ) used in the MHD run mhdturb 08 (with maximum refinement 
level & = 8; see Table 1 ) requires a higher resolution level & in order 
to preserve the value of the maximum resolved density . Conversely , 
at a fixed value of & , the maximum resolved density is lower at larger 
j r . Therefore, we have performed a magnetic simulation with & = 
10 in order to test whether our results are significantly modified at 
higher resolution. 
Fig. A1 presents the same plots as Fig. 4 , showing the radial profile 

of the shell-averaged magnitude of the magnetic field at various 
times, for the high-resolution run mhdturb 10 . No significant change 
in the radial profile of the magnetic field components is seen in 
comparison to run mhdturb 08 . 
Also, Fig. A2 compares the radial profiles of the ratio of the 

solenoidal to compressible components in the low- and high- 
resolution runs. We notice the ratio at t = 0 in the high-resolution 
run is approximately one order of magnitude lower than that of the 
low-resolution runs. We found this comes from the fact that the 
high-resolution runs at t = 0 have more significant compressive 
velocity, while their total velocity and solenoidal velocity are at 
similar levels as the low-resolution runs. Since all the simulations 
are driven with only solenoidal modes during the pre-gravity driving 
stage, we speculate that the higher compressible fraction is due to 
a more efficient transfer from the solenoidal to the compressible 
modes. Nevertheless, the ratio is still large at all radii at t = 0 
and, more importantly, no significant qualitati ve dif ference is seen 
between the different resolutions at the later snapshots, suggesting 
that the results reported in the body of the paper, based on run 
mhdturb 08 are not affected by any possible lack of resolution. 
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Figure A1. Like Fig. 4 , but for the high-resolution run mhdturb 10 . No significant qualitative change in the radial profile of the magnetic field components is 
seen at the increased resolution. 

Figure A2. Radial profile of the ratio of the RMS values of the solenoidal to compressible parts of the velocity for the low- (left) and high-resolution (right) 
simulations. 
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