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ABSTRACT

We investigate the driving of MHD turbulence by gravitational contraction using simulations of an initially spherical, isothermal,
magnetically supercritical molecular cloud core with transonic and trans-Alfvénic turbulence. We perform a Helmholtz
decomposition of the velocity field, and investigate the evolution of its solenoidal and compressible parts, as well as of the
velocity component along the gravitational acceleration vector, a proxy for the infall component of the velocity field. We find
that (1) In spite of being supercritical, the core first contracts to a sheet perpendicular to the mean magnetic field, and the sheet
itself collapses. (2) The solenoidal component of the turbulence remains at roughly its initial level throughout the simulation,
while the compressible component increases continuously, implying that turbulence does not dissipate towards the centre of the
core. (3) The distribution of simulation cells in the B—p plane occupies a wide triangular region at low densities, bounded below
by the expected trend for fast MHD waves (B o p, applicable for high-local Alfvénic Mach number M, ) and above by the trend
expected for slow waves (B ~ constant, applicable for low local M,). At high densities, the distribution follows a single trend
B o p, with 1/2 < yg < 2/3, as expected for gravitational compression. (4) The mass-to-magnetic flux ratio A increases with
radius r due to the different scalings of the mass and magnetic flux with r. At a fixed radius, A increases with time due to the
accretion of material along field lines. (5) The solenoidal energy fraction is much smaller than the total turbulent component,
indicating that the collapse drives the turbulence mainly compressibly, even in directions orthogonal to that of the collapse.
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1 INTRODUCTION

In recent years, the driving of turbulence by gravitational collapse
at various scales has received considerable attention, in particular in
relation to whether enough gravitational energy is available in the
collapsing material for driving the turbulence in the central accreting
objects, from the scale of accreting galactic discs to molecular clouds
to protostellar discs (Klessen & Hennebelle 2010); whether it can act
as a possible reservoir for the gravitational energy released during
the collapse, so that this energy could be stored in the turbulence
and possibly delay the collapse (e.g. Robertson & Goldreich 2012;
Murray & Chang 2015; Murray et al. 2017; Li 2018; Xu & Lazarian
2020a), and what is its equivalent thermodynamic behaviour (e.g.
Viazquez-Semadeni, Canté & Lizano 1998; Guerrero-Gamboa &
Vézquez-Semadeni 2020).

However, one issue that has not been studied in depth is whether
the random motions driven by collapse really qualify as turbulence,
exhibiting standard turbulence properties. Indeed, the nature of the
driving in the collapse-driven case is significantly different from that
in other, more standard cases. For example, the energy-injection scale
shrinks over time rather than being constant, at least during the pre-
stellar stage of the collapse. In the particular case of the collapse of
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molecular cloud cores (objects of typical densities n ~ 10*cm™3 and

sizes ~0.1 pc), this can be understood because the pre-stellar stage
of collapse in spherical geometry is characterized by a flat-density
central core with a radius of the order of the Jeans length, at which
the largest infall speeds also occur (e.g. Whitworth & Summers
1985; Keto & Caselli 2010; Naranjo-Romero, Vazquez-Semadeni &
Loughnane 2015). Since the central density increases over time, the
Jeans length for the central density decreases over time. Thus, the
energy-injection scale decreases over time, if it is of the order of the
Jeans length, where the infall speed peaks.

In addition, if the energy-injection rate is of the order of the release
rate of gravitational energy at the Jeans length, then it is also expected
to vary over time, as it is given approximately by (Guerrero-Gamboa
& Vazquez-Semadeni 2020)

fy - (B - (1
¢ M,LY)

where L; is the Jeans length at the central density, M, is the mass
contained within a radius R = Lj, and E, ~ GM?(Ly)/Ly is the
gravitational energy of this mass distribution. Therefore, since L;
decreases over time, both E; and Eg increase (in absolute value)
over time (since M is expected to be constant). In summary, both
the energy-injection scale and the energy-injection rate vary over
time during the collapse, thus calling for an examination of whether
the turbulence driven by gravitational contraction maintains the
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properties of turbulence driven at a fixed rate and scale. Indeed,
Guerrero-Gamboa & Véazquez-Semadeni (2020) found that, for the
collapsing case, the turbulent energy appears to approach a ‘pseudo-
virial’ state, in which the kinetic energy is approximately half the
gravitational energy, even though the system is far from equilibrium
and both energies are increasing in time.

In this paper therefore we examine numerically some of the
main features of the MHD turbulence that develops during the pre-
stellar stage of the gravitational collapse of an initially spherical
core, with transonic and trans-Alfvénic initial velocity perturbations,
employing a Helmholtz decomposition for the velocity field into
its solenoidal and compressible parts. The former corresponds to
the turbulence exclusively, while the latter contains the infall plus
the turbulent components. In Section 2, we describe our numerical
simulation; in Section 3, we describe our analysis strategy. Then,
in Section 4, we describe our main results, while in Section 5, we
discuss the interpretation and some implications of our results, and
compare to previous work. Finally, in Section 6, we present our
conclusions.

2 NUMERICAL SIMULATIONS

We perform and analyse three 3D numerical simulations of the
pre-stellar stage of the collapse (i.e. before a singularity—protostar—
forms) using the adaptive mesh refinement (AMR) code FLASH2.5
(Fryxell et al. 2000). The numerical simulations consist of an initial
Gaussian density profile! embedded in a background of uniform
density pg, where the peak of the Gaussian is 2.5p, and the mean
density of the box is (p) = 1.535p,. The simulations are isothermal,
and the density po and sound speed ¢y are set so that the box
length Ly ~ 2.5Ly, where Ly = (wc2/G(p))'/? is the Jeans length
corresponding to the mean density in the numerical box.

Two of the simulations have the same set-up and resolution, except
that one of them is the purely hydrodynamic (HD) simulation turb_08
from Guerrero-Gamboa & Véazquez-Semadeni (2020), while the
other (mhdturb_08) is a magnetohydrodynamic (MHD) simulation,
with the numerical box permeated by a uniform magnetic field
oriented along the z-direction. The field strength By is set so that
¢y = va, Where vy is the Alfvén speed. This condition results in
the choice By = c¢s(47 (p))"?. The third simulation (mhdturb_10) is
identical to (mhdturb_08), except that it has two additional levels of
refinement, and is used to test for convergence in Appendix A.

Since the simulations are isothermal, we can rescale them using
any set of values for which the box contains the same number
of Jeans lengths and the MHD run satisfies the condition ¢, =
va. For reference, we take fiducial physical values for the density,
sound speed, and magnetic field (in the magnetized runs) of ny =
4.86 x 10°cm™3, ¢, = 0.21kms™!, and By = 106 uG, respectively,
and the simulation size is Ly = 0.1 pc per side. These values imply

Note that, the choice of initial density profile is probably not important for
the later evolution of the collapse, since the asymptotic spherical collapse
solutions of Whitworth & Summers (1985) have a well-defined Bonnor—
Ebert-like profile, although the solutions are fully dynamical, and furthermore
Gémez, Vizquez-Semadeni & Palau (2021) have shown that an r~2 density
profile is an attractor for the profile’s logarithmic slope in its outer power-law
part, implying that the spherically averaged density profile will spontaneously
approach this slope as the collapse proceeds, as indeed observed in simulations
with uniform (e.g. Larson 1969) or gaussian initial conditions (e.g. Naranjo-
Romero et al. 2015). Therefore, our gaussian initial profile can be considered
as a ‘generic’ initial condition, representative of a random turbulent density
fluctuation.
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that the mass-to-flux ratio for the whole numerical box in the
magnetic simulations mhdturb_08 and mhdturb_10, normalized to the
critical value, is A & 6, so that these runs are strongly magnetically
supercritical (i.e. not supported by the magnetic field strength).

For the unit of time, we choose the free-fall time 7 for the mean
density of the central Jeans mass in the box at the initial condition.
This is computed as the mean density out to a radius where the mass
internal to it equals the Jeans mass corresponding to the mean density
out to that radius.

The boundary conditions are periodic for the hydrodynamics,
and isolated for the self-gravity. In runs rurb_08 and mhdturb_08,
we use a maximum refinement level of £ = 8, corresponding to a
maximum resolution of 2¢ *2 = 1024 grid cells, of size ~10~* pc, or
~20 au. We refine according to the Jeans per Jeans length in the HD
simulation and 32 for the MHD simulation. The latter value follows
the recommendation of Sur et al. (2010), of using at least 30 cells per
Jeans length in an MHD simulation, in order to properly resolve the
small-scale dynamo. Since increasing the number of cells per Jeans
length in practice requires increasing the maximum resolution level,
in Appendix A, we check that our results do not vary significantly
when increasing the maximum level to £ = 10 in run mhdturb_10.

With these refinement conditions, we can compute the highest
density that is adequately resolved with the combination of the
number of cells per Jeans length and the maximum refinement level
(equation 32 from Federrath et al. 2010),

w2 wc? (2““)2
Pres = T~ > =~ | 77 B (2)
4Gr2, 4G \j:Lo

where G is the gravitational constant, £ is the maximum refinement
level, and j; is the number of cells to resolve the Jeans length. In
Table 1, we summarize the resolution parameters for the various
runs. The density is expressed as a number density, considering n =
p/pmy, where p is the mean molecular weight, which for molecular
gas takes the value u ~ 2.3.

Regions in the simulations with densities larger than n.s are
expected to be affected by numerical dissipation. Moreover, for
densities n > 10'° cm™3, the isothermal assumption may break down,
as these densities correspond to the formation of a first hydrostatic
core (e.g. Larson 1969). In any case, as seen in Fig. 2, these regions
are very small, and failure to fully resolve them or to use a harder
equation of state is unlikely to affect the global results we discuss
here. On the other hand, the effects of numerical dissipation may
indeed affect the results at very high densities, such on the B—p
correlation, although in this case, they may provide an emulation of
the effects of ambipolar or reconnection diffusion processes, as we
discuss in Section 4.3.

We first start the simulations with self-gravity turned off, and stir
the gas with a turbulent forcing module (Price & Federrath 2010) for
roughly one crossing time to introduce perturbations in the velocity,
density, and magnetic fields. The driving is fully solenoidal, and the
energy is injected in a range of scales between 1/8 and 1/32 of the
box. The turbulence generated reaches a transonic value of o ~ 0.8¢;,
consistent with the typically observed turbulence levels at the size
scale of the simulation (~0.1 pc; e.g. Heyer & Brunt 2004). Then,
we turn off the forcing and turn on the self-gravity at r = 0. Collapse
ensues immediately, although initially, it is very slow compared to
the turbulent motions. However, the turbulence decays during the
early stages of the evolution, due to the absence of driving. Thus,
during these stages of the collapse, the infall speed increases, while
the turbulent velocity dispersion decreases, until the infall motions
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Table 1. Simulation parameters.
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Run Effective refinement Cells per Jeans length Maximum resolved density

Ax [pc] Jr Nres [Cm73]
turb_08 9.76 x 1073 12 1.091 x 108
mhdturb_08 9.76 x 1073 32 1.534 x 107
mhdturb_10 2.44 x 1073 32 2.455 x 108
become strong enough to inject energy into the turbulent motions 4 RESULTS

(see Guerrero-Gamboa & Vazquez-Semadeni 2020, for details).

3 METHODOLOGY

3.1 Helmholtz decomposition

In this work, we adopt the Helmholtz theorem used in Hu et al.
(2022) to decompose the velocity field into a solenoidal component
(i.e. Alfvén mode) v and compressive component (i.e. fast and slow
modes) v.:

v = v, + v, 3)

The solenoidal and compressive components satisty divergence free
(V-vy,=0) and curl free (V x v, = 0) conditions, respectively.
Owing to the Helmholtz theorem, v, stems from a scalar potential
¢, i.e. v. = —V¢, and v, stems from a vector potential ®, i.e.
v, =V x .

The two potentials can be calculated from the Green function for
the Laplacian:

-v(r) a3r
o = 47[/ r—r
o) = / D g )
4 Ir —r’|

where r is the position vector and V’ is the nabla operator with
respect to r’. Thus, the decomposition can be rewritten as:

v:—LV V. v(r’)d3, LVX/V’xv(r’)3,, )
4 r—r’| 4 r—r'|

Note that, equation (4) basically is a convolution with Green’s

function (4”177’/‘) It is convenient to solve equation (4) in Fourier

space, and we do that in this work. The Fourier components of the

potential fields are then transformed back to real space to obtain the

two velocity components. We illustrate the result of the Helmholtz

decomposition of the velocity field for one snapshot of the simulation,
corresponding to r = 0.9375¢ in Fig. 1.

3.2 Radial profiles

The radial profiles of magnetic field, velocity, and density are
calculated in two different ways. The first one is shell-averaging,
in which we compute the RMS values of the variables over spherical
shells of thickness ~1 grid cell, centred in the box’s centre. This
allows visualization of how the variables vary as a function of radius.
The second is volume averaging, which computes the average over
the full spherical volume out to the indicated radius. Shell averaging
is used in Figs 3, 4, 5, and 6, while we use volume averaging in
Figs 7, 8, and 10 for the purpose of calculating mass-to-flux ratio.
We use the subscripts ‘shell’ and ‘sph’ to distinguish the two cases.

In what follows, we discuss various aspects of the collapse in
the MHD simulation, and only occasionally refer to the HD sim-
ulation, when comparison to the non-magnetic case is needed.
When no specific reference is made, the MHD case should be
assumed. Also, in order to quantify the contraction, we define
‘the core’ as the region within the radius at which the spherically
averaged (see Section 3.2) infall speed becomes maximum. In
this region, the density field is roughly flat in the absence of
turbulence (e.g. Whitworth & Summers 1985; Naranjo-Romero et al.
2015).

4.1 Anisotropy of gravitational contraction

Fig.2 shows 2D cross-sections of the MHD numerical box over the
z = 0 plane (first and third rows) and over the x = 0 plane (second
and fourth rows; recall the initial magnetic field is parallel to the
z-axis) at different stages of the collapse, from ¢ = 0, i.e. when the
collapse begins, to = f;. The collapse achieves contraction ratios 1,
1/2, 1/4, 1/8, 1/16, and 1/32 at t = 0, 0.8125#, 0.9375¢, 0.97501s,
0.9875t, and t¢, respectively. Starting from ¢ = 0.8125t, the panels
in Fig. 2 show the central collapsing region, of size Ly/2, where L,
is the initial box size at t = 0.

At the onset of the collapse (¢ = 0), the density structure is nearly
isotropic, although, in the x— y plane, i.e. the plane perpendicular
to the mean magnetic field, the magnetic field (shown by the black
lines) is tangled by turbulent motions. As the collapse proceeds,
the turbulent eddies (i.e. the vortex-like structures seen in turbulent
magnetic fields) undergo compression and their sizes decrease with
time. On the other hand, in the y—z plane, the density structure is seen
to become anisotropic, becoming shorter along the direction of the
z-axis, causing the formation of a sheet parallel to the x—y plane. The
collapse in the presence of a mean magnetic field naturally generates
an anisotropy (e.g. Shu, Adams & Lizano 1987), which provides a
magnetic force primarily in the direction perpendicular to the mean
field. At later stages, the density structure has contracted strongly,
and we observe the turbulent perturbation of magnetic fields, but the
anisotropy of magnetic field configuration remains, and an hourglass
morphology gradually forms in the central region.

Fig.3 presents the RMS values of the x, y, and z components of
flow velocity, vy, vy, and v;, as a function of R/Ly, where R is the
radius of a spherical region centred at the centre of our simulation
box. Taking advantage of the approximate spherical symmetry, the
RMS velocity value is averaged over spherical shells of thickness ~1
grid cell, which is denoted as vgy. Initially (at # = 0), v, exhibits a
larger amplitude in the central region (R < 0.4L), while v, and v,
show the opposite trend. This is just the manifestation of the random
initial turbulent velocity field. At later times (¢/t; > 0.9375), however,
v, is seen to be somewhat larger than the other two components,
indicating the unrestricted collapse in this direction. Along the x and
y directions, instead, the collapse is slightly delayed by the magnetic
support.

MNRAS 530, 3431-3444 (2024)
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Figure 1. Illustration of the Helmholtz decomposition of total velocity into compressive (left) and solenoidal (right) components, at t = 0.9375 ;. The
compressive component is dominated by infall motions, with the velocity vectors pointing mainly toward the centre. The solenoidal component contains a
residual contribution from the initial conditions as well as a component driven by the collapse. For clarity, all arrows have the same length, with their colours
representing the velocity amplitude in different ranges of percentile, as indicated by the colour bar. The percentile is calculated for each velocity field, respectively.

At not-too-advanced stages of the collapse (r < 0.9750¢), we see
that, under the effect of gravity, the contraction is faster in the outer
region and decays towards the inner region. This is consistent with the
well-known solution of nonmagnetic spherical pre-stellar collapse,
for which the central parts of the sphere (the region where the density
is nearly flat), the infall speed scales linearly with radius, while in
the outer regions, where the density drops off as 72, the infall speed
becomes constant with radius (e.g. Whitworth & Summers 1985).
According to this solution, the inflection radius at which the speed
changes from linear to constant with radius approaches the centre,
reaching the latter at the moment of formation of the singularity (the
protostar).

The radial variation of the magnetic field strength is presented in
Fig. 4. Due to the presence of an initial large-scale magnetic field
along the z-direction, the anisotropy in magnetic field distribution
persists through the collapse (see Fig. 4), with |B;| > |B,| ~ |B,|.
However, unlike the velocity field, the magnetic field is always
stronger in the inner region than in the outskirts during the collapse
process. Compared to the initial conditions, the mean magnetic field
is amplified via compression by two orders of magnitude in the inner
region, while in the outskirts it stays nearly unchanged.

4.2 Turbulence amplification by the collapse

As discussed in Section 3.1, and illustrated in Fig. 1, we use
a Helmholtz decomposition to separate the velocity field in its
solenoidal and compressive components. The compressive velocity
is seen to be oriented toward the collapsing centre as it is dominated
by the infall motions, but we note that it can also contain turbulent
(non-infall) motions. The solenoidal component, on the other hand,
is randomly oriented, as it corresponds to purely turbulent motions.
As the externally driven initial turbulence decays over roughly one
crossing time, the solenoidal turbulence seen at later times must be
generated by gravitational contraction.

The radial profiles of the RMS values of the solenoidal (vy)
and compressive (v.) velocity components, averaged over spherical
shells, are presented in Fig. 5. At ¢+ = 0, the large solenoidal
component corresponds to the initial solenoidal imposed turbulence,

MNRAS 530, 3431-3444 (2024)

while the compressive component is virtually non-existent, since
the collapse motions have not started yet. However, at the more
advanced times shown in the figure, the compressive component
becomes dominant. The maintenance and moderate increase of the
solenoidal velocity at these later stages of the collapse is accounted
for by the driving by gravity. However, it can be seen that the increase
in the solenoidal component is very mild. In fact, this component
remains almost at the same level throughout all snapshots shown.

The ratio of the solenoidal to compressive velocity components in
the MHD run is presented in the left panel of Fig. 6. A higher ratio
is seen at smaller R due to the slower contraction speed in the inner
region, as shown in Fig. 5. When ¢t > 0.93751, the ratio becomes
less than unity throughout the radial range shown, indicating that
the compressive component becomes dominant over the solenoidal
component almost everywhere in the core.

With our interpretation of the solenoidal modes as the turbulent
component of the total motions, this low-amplification level of the
solenoidal component would imply that the trend towards equaliza-
tion of the eddy turnover rate and the collapse rate predicted by
Robertson & Goldreich (2012), or the significant amplification of
initially subsonic turbulence by gravitational compression observed
in various other studies (e.g. Sur et al. 2012; Hennebelle 2021;
Higashi, Susa & Chiaki 2021), is not realized in our simulations.
Neither is the pseudo-virial state observed by Guerrero-Gamboa &
Vazquez-Semadeni (2020), in which the kinetic energy in the infall
(compressive) motions was roughly twice the kinetic energy in the
turbulent motions. Those authors attributed this regime to the increas-
ing infall kinetic energy, which constituted an increasing driving rate
for the turbulent motions. Instead, in the present simulations, the
solenoidal motions seem to remain almost constant in time, and
uniform in radius.

At face value, this result would suggest an inefficient amplification
of turbulence in our simulations. This could be due to insufficient
resolution. However, in the Appendix, we show that our results do
not vary strongly when increasing the resolution by two additional
refinement levels, suggesting that our results are converged.

Another possibility is that the magnetic tension may also suppress
the amplification of turbulence. Mediated by the large-scale ordered
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Figure 2. Cross-sections through the numerical box along the central x—y plane (first and third rows) and along the central y—z plane (second and fourth rows)
at the indicated times during the gravitational collapse. The colour scale represents density. The black lines indicate magnetic streamlines generated from the
components of the magnetic field in the corresponding plane, while the white vectors represent the component of the velocity on these planes. Note that, the
velocity vectors all have the same length, and only depict the direction of the velocity. Note the changing range of the colour bar as time proceeds. Furthermore,
note that, the density field appears less centrally concentrated at # = 0.8125¢ than at ¢ = 0. This is because the initial condition was a centrally peaked Gaussian
profile. However, at t = 0.8125¢#; a Plummer-like profile has been self-consistently established by the collapse, but the size of its central flat-density part is still
of comparable size to that of the region shown in the image (cf. Fig. 7), and therefore appears less concentrated than at time ¢ = 0. At times ¢ > 0.9375¢, the
central flat part of the Plummer-like profile is already smaller than the region shown, and thus a central peak is noticeable again in the images.

magnetic field threading the collapsing region, the angular momen-
tum of the compressed turbulent eddies may be transferred along
the magnetic field away from the collapsing region, suppressing the
gravity-driven solenoidal motions there.

To examine the magnetic effect on the amplification of turbulence,
we make the comparison with the HD simulation in Fig. 6. We find

that in the HD case, the solenoidal fraction is generally larger than
in the MHD case throughout the radial range, and at all times ¢ >
0, although only mildly, thus not constituting an important effect on
the generation of solenoidal motions by the collapse. On the other
hand, at r = 0, we see that the solenoidal fraction is significantly
lower in the HD case, suggesting that the main role of the magnetic

MNRAS 530, 3431-3444 (2024)
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Figure 4. Similar to Fig. 3, but for the radial profiles of the shell-averaged RMS values of the three components of the magnetic field By, By, and B;.

field at transonic Mach numbers is to prevent the transfer of energy
from the solenoidal to the compressible modes during the pre-
gravity driving stage of our simulation. This result is consistent with
the early finding by Vazquez-Semadeni, Passot & Pouquet (1996),
that the maintenance of solenoidal energy requires the presence of

vorticity-generating forces such as the Lorentz or Coriolis forces.
Nevertheless, the increase of compressible energy in the HD case is
not enough to make a significant difference at later times.

The above tests suggest that the low amplification level of the
solenoidal component is not due to insufficient resolution nor to
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Figure 5. Similar to Fig. 3, but for the radial profiles of the shell-averaged RMS values of the solenoidal, compressible, infall, and turbulent velocity fields.
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Figure 6. Radial profile of the shell-averaged ratio of the RMS solenoidal to compressive components for the MHD (left) and hydrodynamic simulations (right).

the presence of the magnetic field. A third possibility is that a
significant fraction of the turbulent energy generated by the collapse
with our setup is not in the solenoidal modes, but rather in the
compressible ones. Indeed, a measurement of the turbulent energy
fraction using the same method as in Guerrero-Gamboa & Vizquez-
Semadeni (2020), (Guerrero-Gamboa & Vazquez-Semandeni, in
preparation) shows that, although the turbulent energy fraction is
indeed somewhat smaller in the magnetic case, the difference with
the hydrodynamic case is much smaller than our measurements
here would suggest. Since that method takes into account both
the solenoidal and compressible energies in the estimation of the
turbulent fraction, our results here suggest that an important fraction

of the kinetic energy generated by the collapse is in compressible,
rather than solenoidal modes.

To test for this, we define the infall (or gravitational) velocity
as the component of the velocity vector along the direction of the
gravitational acceleration vector:
v =03, ©)
where v is the total velocity vector, g = V¢ is the gravitational
acceleration vector, ¢ is the gravitational potential, and g is the unit
vector along g. Making the approximation that v, is the velocity
driven by the gravitational acceleration, we then define the turbulent
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component as
Vgp =V — Vg (7)

Note that this is only an approximation, as both the truly turbulent
velocity and the solenoidal velocity v are not necessarily perpen-
dicular to the gravitational acceleration vector g. Therefore, the
approximation given by equation (7) may underestimate the true
turbulent velocity.

The shell-averaged RMS values of these two velocities (denoted v,
and vyy) are also shown in the frames corresponding to ¢ > 0.8125#
of Fig. 5, and can be compared to the RMS values of the compressible
and solenoidal components, which we respectively denote by v. and
vs. From that figure, we see that, at late times and/or large radii (i.e.
when the infall speed is large), v. 2 v, in general, implying that there
are compressive motions that do not correspond to infall. Also for late
times/large radii (although not exactly in the same radial ranges as
before), vy, > vy, indicating that there is a non-solenoidal (therefore
compressible) contribution to the turbulent velocity. Both of these
results imply that there is a significant compressible contribution to
the turbulent speed.

However, we also note that, at early times (the frames for 1 =
0.8125¢ and r = 0.93251), there are regions in the inner parts of
the core where v, < vg and/or vy, < vs. This happens because of the
limitation stated above, that our definition of v is contaminated by
a contribution of the turbulent velocity vector in the direction of the
gravitational acceleration. Therefore, at times or radial ranges where
the infall speed is small, this contamination dominates v,. However,
once the infall speed is dominant, the presence of a significant
compressible component in the turbulent velocity is clear.

4.3 B-p correlation

The correlation between the magnetic field strength and the density
is an important aspect of the theory of star formation. However, many
different effects contribute to the scaling between the magnetic field
strength and the density upon compressions, of either turbulent or
gravitational origin.

Under the ideal MHD condition, and in the presence of a weak
field, a spherical core contracts isotropically, maintaining its spheri-
cal geometry. If both the mass, M o pR>, and the magnetic flux, ®
BRZ, are conserved, the field is expected to scale as Boxp?? (e.g. Shu
1992; Ch. 24). On the other hand, when the the field is strong, the
initial contraction mainly takes place along the mean magnetic field,
and the gas settles into a flattened cylindrical structure perpendicular
to the mean field. In the limit of very strong fields, this produces an
increase of the density at constant field strength (e.g. Mestel 1965;
Hartmann, Ballesteros-Paredes & Bergin 2001; Vazquez-Semadeni
et al. 2011). However, if accretion along field lines continues to
increase the gas mass responsible for generating the gravitational
potential (Hartmann et al. 2001; Vazquez-Semadeni et al. 2011), then
the flattened cloud must contract radially to some extent, producing
the well-known hourglass shape. If the thickness is assumed to be
determined by the hydrostatic balance between thermal pressure and
gravity in the direction of the mean field, then B ~ p'"> (Mouschovias
1976; Scott & Black 1980; Crutcher 1999).

However, B « p'? can also be the result of ambipolar diffusion
(Mouschovias 1976; Ciolek & Mouschovias 1994), reconnection
(Santos-Lima et al. 2010; Lazarian, Esquivel & Crutcher 2012; Xu
& Lazarian 2020b, c) or other forms of diffusion of the magnetic field,
which cause the breakdown of flux freezing and partial decorrelation
between B and p.
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On the other hand, in the purely turbulent case without self-gravity,
Passot & Vazquez-Semadeni (2003, hereafter PV03) considered the
scaling of the magnetic pressure (~B2) with density for the various
modes of ‘simple’ (non-linear) MHD waves, showing that each mode
produces a different scaling, without the need to invoke any form of
diffusion or dissipation. Specifically, they showed that, when the slow
mode dominates, a scaling of the form B>=c| —cp emerges, where
¢ and ¢, are positive constants. However, the slow mode disappears
atlarge density, when p > c;/c,. When the fast mode dominates, those
authors showed that a scaling of the form B o p? arises. Finally, they
showed that the pressure for a circularly polarized Alfvén wave is of
the form B? o p’eff, with Vet & 2 at large Alfvénic Mach number
Ma, Yer & 3/2 at moderate My, and y e & 1/2 at low M. From all
these different scalings, PV03 concluded that the B—p correlation is
not unique, and depends on the history of wave passages through a
given location in the flow, rather than simply on the local value of
the density. Nevertheless, the generic form of the B—p scaling is to
be flat at low densities and to increase as some power of p in the
range 1/2 < yer < 1 at high density, in qualitative agreement with
observations (e.g. Crutcher 2012).

With all the above background, we can now proceed to discuss
the B—p correlation in our simulation of magnetized turbulent
gravitational collapse. In Fig. 7, we compare the radial profiles
of volume-averaged density oy, and magnetic field strength By,
within the sphere of radius R (normalized by Lj). As a result of
gravitational collapse, the density and the magnetic field lines are
significantly compressed in the central region. The density can be
compressed up to six orders of magnitude, while the magnetic field
is moderately amplified by three orders of magnitude approximately.
With a similar distribution of o, and By, at different stages of the
gravitational collapse, the amplification of magnetic field strength is
mainly attributed to the compression generated by the contraction.

The correlation between By, and pgp, is presented in Fig. 8. At =
0.8125¢, we find B o p'?, presumably as a result of the anisotropic
contraction within the entire collapsing region (see Fig. 2). However,
already at the panel corresponding to t = 0.9375t;, the slope of the
correlation is very close to 2/3, although, starting from ¢ = 0.975#,
we see a kink in the slope from B o p?? to a shallower value at the
highest densities, beyond which the slope approaches B o p'/2.

The flattening of the B—p scaling at the highest densities (i.e.
toward the central region) can be due either to the mode of collapse
or to the enhancement of diffusion. As mentioned above, in the
spherically collapsing, ideal (non-diffusive) case, the expected value
of the exponent is ~2/3, while, if it occurs first onto a sheet-like
cloud whose thickness is determined by hydrostatic equilibrium, the
expected exponent is ~1/2. On the other hand, in the diffusive case
with spherical collapse, a flattening of the slope from ~2/3 to < 1/2
is expected when diffusion becomes important. If the diffusion is
enhanced in the inner regions because of the larger infall speeds (and
consequently, a larger injection rate) there, then one would expect
the slope to be near 1/2 in the central parts.

As seen in Fig. 8, the logarithmic slope of the B—p curve in our
simulation is ~1/2 at early times (see the panel corresponding to
t = 0.8125t¢), but then transitions to ~2/3 at later times and low
densities, suggesting a transition from a mostly planar collapse at
early times to a roughly spherical one at late times. This is confirmed
by the morphology of the density, velocity, and magnetic fields seen
in the frame corresponding to the y—z plane ¢ = 0.8125¢ in Fig. 2.
In this panel, a horizontal, flattened, intermediate-density sheet is
observed to have formed, and to be contracting radially, as indicated
by the velocity arrows. This is precisely the configuration for which
a slope ~1/2 is expected. Instead, at later times, the central layer
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Figure 8. Evolution of the correlation between the spherically averaged gas density and the magnetic field strength. The shaded area gives the standard deviation
of magnetic field strength averaged over the corresponding spherical volume. The kink in the curve at # = 0.8125¢; is caused by the fact that, due to the turbulent
motions, the collapse is not precisely focused at the centre, and so neither the maximum density nor the maximum field strength occur inside the innermost
spheres used to generate these plots. At later times, this is not noticeable because the collapse is so advanced that the offset from the centre is smaller than the

size of the innermost sphere.

has disappeared, and the collapse appears to be roughly isotropic,
consistent with the slope of 2/3 observed for these times. However,
at the highest densities (n > 10'©m™3) at the later times, a slope
of ~1/2 is observed (see the panel corresponding to ¢ = #), which
can be attributed to reconnection diffusion based on the numerical
diffusion. We conclude that both the geometry and the reconnection
diffusion play arole in the determination of the mean B—p correlation
during the collapse.

Finally, in Fig. 9, we show the magnetic field-density scatter plot,
taking each cell of the simulation as a dot in the plot, and the two-

dimensional probability density (in contours), for t = 0.9375#; (left
panel) and ¢t = # (right panel). The dots are coloured with the value
of the Alfvénic Mach number, |v|v/47n/B in the corresponding
cell, using the magnitude of the velocity. In the contours, we can
distinguish various superposed regimes. First, at low density, the
contours cover an extended area, but they concentrate around a
zero-slope scaling characteristic of the slow mode (indicated by the
orange line), and a scaling with a nearly unit slope characteristic of
the fast mode (blue line). It is also noteworthy that the zero slope
corresponding to the slow mode occurs for large values of B, or,
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Figure 9. Two-dimensional histogram of simulation points in the B— n space at times ¢t = 0.9375¢; (left panel) and ¢ = # (right panel). The dots are coloured
by the corresponding value of the Alfvénic Mach number, Ma = |v|+/47p/|B|. The lines represent slopes of 0, 1/2, 2/3, and 1, as indicated in the inset.

equivalently, for low values of M4, when the inertia of the turbulent
motions is low compared to the magnetic forces. Conversely, the unit
slope corresponding to the fast mode occurs for small values of B,
or, equivalently, for large values of M,, implying that the inertia of
the turbulent motions overwhelms the magnetic forces.

Secondly, at high densities, the scatter is strongly reduced and,
at t+ = 0.9375t%, a single scaling with slope 1/2 is observed,
suggesting that diffusion dominates the scaling. However, at t =
ti, a significant fraction of the high-density points is still close to
the slope of 2/3, suggesting that, at this stage, the collapse is so
fast that diffusion cannot completely erase the signature of spherical
collapse, in agreement with the conclusion of Guerrero-Gamboa
& Vazquez-Semadeni (2020) that, as the collapse accelerates, the
turbulent cascading rate and the dissipation cannot ‘catch up’ with
the energy injection, thus preventing the equipartition levels of
turbulence suggested by Robertson & Goldreich (2012).

4.4 Mass-to-flux ratio

The mass-to-flux ratio, M/®, is considered an important diagnostic
of the energy balance within a core, determining whether it can be
supported by the magnetic field against its self-gravity (Mestel &
Spitzer 1956). Here, we compute it at radius R, normalized to the
critical value for cylindrical geometry, (M /@) = 27+/G (Nakano
& Nakamura 1978), as:

M/ $_pp(x, y, 2)dx?
T i Cy ®

where G is the gravitational constant, r defines the distance from each
grid cell to the center of the simulation box, and B is the magnetic
field strength averaged over a sphere with radius R. When A, > 1,
the core is magnetically supercritical (i.e. the gravitational potential
energy exceeds the magnetic energy), while if . < 1, the core is
subcritical (i.e. its gravitational potential energy is smaller than the
magnetic energy). M/® of the entire box is approximately conserved.

However, as first pointed out by Vazquez-Semadeni et al. (2005,
hereafter VS+-05), and more recently quantified by Gémez et al.
(2021), under ideal MHD conditions, the subregions or fragments of
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a clump or core will in general have a lower value of A, than the
whole clump. VS+05 arrived at this conclusion by considering the
limiting cases that bracket the condition of any fragment of a clump.
On one extreme, if the whole clump contracts to a smaller radius
under ideal MHD conditions (i.e. with no diffusion of the magnetic
field), then the mass-to-flux ratio is conserved, because of the flux-
freezing condition and because the mass is the same. On the other
end, if one considers only a subregion of the original clump, with the
same density and magnetic field strength as the whole clump, then
the mass varies as R>, while the flux varies as R%, and so M/® varies
as R. Therefore, the mass-to-flux ratio of an arbitrary fragment (Ar)
within the cloud is constrained to lie within these two extremes, and
SO we can write

e (B) <o < ©)
c R =AM = Ay

c

where A, and R, are respectively the mass-to-flux ratio and the
radius of the whole clump, and Ry is the radius of the fragment.
In addition, Gémez et al. (2021) analytically showed that, for any
centrally concentrated sphere with a ‘reasonable’ density profile (p
o P, with p < 3) and with the magnetic field scaling with density
as B o« p”, then the mass-to-flux ratio scales as

% oc plp=m (10

In particular, then, for n > (p — 1)/p, M/¢ decreases inwards, and so
there is always a certain inner region that will appear magnetically
subcritical even if it is embedded within a supercritical larger region.

In Fig. 10, we show the radial profiles of the normalized mass-to-
flux ratio out to the indicated radius at various times. In agreement
with the theoretical predictions of VS+405 and Gémez et al. (2021),
we see an outwards increase of A, and a transition from a supercritical
outer region to a subcritical inner region for ¢ < 0.975¢#;. Magnetic
fields are strongly amplified by compression towards the centre (see
Fig. 4).

In addition, the decrease of M/® with decreasing radius is
consistent with the observational finding by Crutcher, Hakobian
& Troland (2009). A supercritical molecular envelope is also seen
in observations (e.g. Ching et al. 2022). Note, however, that the
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Figure 10. Normalized mass to flux ratio M/® over each sphere centering
at the center of the simulation box. M/® > 1 means supercritical condition,
while M/® < 1 is subcritical.

magnetically subcritical inner region shrinks with time as a conse-
quence of the global collapse of the core, which compresses this
inner subcritical region.” At t A ty, the entire range of radii seen in
Fig. 10 is supercritical.

4.5 Effect of the magnetic field on the collapse rate

The result from the previous section, that the inner region of the core
is magnetically subcritical, may suggest that the collapse might be
delayed somewhat by the added magnetic pressure in that region. To
test for this, in Fig. 11, we show the time dependence of the density
peak in both the MHD and the HD runs. Somewhat surprisingly, the
density peak seems to increase at essentially the same rate in the two
simulations, in spite of the existence of the inner subcritical region.
This is understandable because the whole numerical box is strongly
supercritical, with a total mass-to-flux ratio at the outer edge A ~ 6.
Therefore, the inner region is being compressed by the infall of the
envelope, in spite of being locally subcritical.

5 DISCUSSION

5.1 Radial distribution of the turbulent motions. Is the core
‘coherent’?

Our decomposition of the velocity field in its compressive and
solenoidal components allows us to address the question of whether
the core is coherent. This designation has been used to describe a core
in which the velocity dispersion in its inner parts is dominated by the
thermal speed, with turbulent motions being subsonic, and therefore

21t is worth noting, however, that this should not be interpreted as if somehow
the pressure (either thermal or magnetic) in the central part were able to
counteract the collapse of the entire core. Itis not, since the region is increasing
its density (i.e. the core is collapsing). It is simply not collapsing on its own,
but rather just undergoing compression from the infalling outer material.
Moreover, since the velocity profile during the pre-stellar stage is smooth,
no shock develops at the boundary of the core’s inner region during the pre-
stellar stage. The shock appears simultaneously with the formation of the
singularity, at the transition from the pre- to the protostellar stage.
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Figure 11. Evolution of the density maximum for the MHD and HD runs.
The two runs are seen to behave almost indistinguishably.

subdominant in comparison to thermal motions as a source of
pressure (Barranco & Goodman 1998), presumably due to turbulent
dissipation at the core’s centre.

However, our numerical simulation does not support this picture.
Fig. 5 shows the dispersion (standard deviation) of the solenoidal
(blue lines) and compressive (red lines) components of the velocity,
together with the total non-thermal velocity dispersion (green lines)
as a function of radial distance from the centre for various temporal
snapshots. It is seen that the dispersion of the solenoidal component
(which is purely turbulent) maintains a nearly uniform, transonic
value throughout the whole radial extent of the core, and for the
entire duration of the simulation. Instead, the compressive component
increases continuously over time, as the infall speeds increase. So,
in our core, it is not that the (solenoidal) turbulence decreases at the
centre, but rather that it remains roughly constant (albeit it in fact
increases slightly at late times in the inner regions), maintaining a
transonic value. Interestingly, the solenoidal velocity component thus
behaves in a nearly ‘isothermal’ way, in the sense that its dispersion
remains approximately constant.

As mentioned in Section 4.2, this ‘pseudo-isothermal’ behaviour
differs from the approach to equipartition reported in the non-
magnetic case by Robertson & Goldreich (2012) for externally
imposed contraction rates, and from the ‘pseudo-virial’ behaviour
reported by Guerrero-Gamboa & Vazquez-Semadeni (2020) in a
self-consistent simulation of turbulent collapse. In the set-up of the
latter authors, the energy injection rate to the turbulence increases
with time (as the infall speeds increase), and the kinetic energy in
the turbulent component approaches roughly half that in the infall
component.

As also discussed in Section 4.2, the apparent discrepancy between
those previous results and the behaviour of the solenoidal component
in our simulations can be understood if the solenoidal modes
comprise only a moderate fraction of the total turbulent motions,
with a significant part of the latter being in compressible non-infall
turbulent motions. In this case, the solenoidal dispersion shown in
Fig. 5 constitutes only a lower limit to the total turbulent velocity
dispersion. This can be seen, for example, in the inner regions where
the red curve is below the blue curve in the frames corresponding
to times ¢ = 0.8125¢#; and r = 0.9375¢ in Fig. 5. It is important to
note, also, that this solenoidal component is clearly not dissipated
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towards the centre, but instead is continuously driven by the collapse,
as manifested by its nearly constant level over time.

In view of the above, we can conclude that the decrease of the
total turbulent velocity dispersion in the inner parts, as illustrated
by the green lines in all the panels of Fig. 5 for # > 0 is due to the
decrease of the infall speed towards the center in the pre-stellar case,
since the compressible turbulent speed appears to be mostly ‘locked’
to (i.e. is a fixed fraction of) the infall speed. On the other hand, the
solenoidal component, albeit maintaining a nearly radially uniform
amplitude, is in most cases a small fraction of the total turbulent
velocity dispersion. In the few cases where it is not, the total velocity
dispersion departs from the infall speed.

5.2 Comparison to previous work

In a numerical study of the formation and collapse of dense cores in
turbulent, intermediate-size (~5 pc) molecular clouds with various
mean magnetic field strengths, Mocz et al. (2017) also discussed
the B—p scaling, with results in full agreement with ours. At high
densities, they found that B scales approximately as p>3, indicative
of roughly spherical collapse, dominated by gravity, in the weak-
field cases, while they found B ~ p'”?, indicative of planar collapse
guided by the field, in the strong-field cases. Our simulation, on
the other hand, follows the B ~ p'? scaling at first, but later
develops two sequences of points, one of them continuing along
the same B ~ p'? scaling, but the other following a B ~ p??
scaling (right panel of Fig. 9). This suggests that, being transalfvénic,
our simulation can develop both kinds of scalings at different
locations, depending on the local value of the magnetic field, at
late stages of the collapse, when gravity is becoming increasingly
dominant.

On the other hand, at low densities, Mocz et al. (2017) found
that their high-M, simulations developed B—p scalings consistent
with fast-mode dominance, while their low-M, simulations exhib-
ited nearly constant B, consistent with low-mode dominance, in
agreement with our results, in which both modes are present at low
densities (low-density region of both plots in Fig. 9). However, they
did not interpret their results in terms of the dominance of fast or
slow MHD modes.

Finally, Mocz et al. (2017) also reported that the mass-to-flux
ratio in their cores increased beyond the large-scale value as time
progressed, and interpreted this as evidence for the presence of fast
reconnection diffusion. This is analogous to the temporal increase of
the mass-to-flux ratio we observe in our simulation at fixed radius
(Fig. 10). However, here, we have interpreted it as a consequence
of the accumulation of mass inside a given radius, due mostly to
accretion along field lines. This allows an increase of the mass-to-
flux ratio with no need for fast reconnection to operate. To rule
out mass accretion as the cause for the increase of the mass-to-
flux ratio, and thus unequivocally provide evidence for the action of
some diffusion mechanism (reconnection, ambipolar or numerical),
it would be necessary to follow a Lagrangian gas parcel, and show
that its mass-to-flux ratio still increases.

6 SUMMARY AND CONCLUSIONS

In this paper, we have investigated several properties of the MHD
turbulence generated by the gravitational collapse of a nearly spher-
ical core seeded with slightly subsonic solenoidal initial turbulence.
We performed this analysis by decomposing the velocity field in its
compressive and solenoidal components. Our results are as follows
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(i) In spite of the simulation being strongly magnetically supercrit-
ical, the collapse still proceeds significantly anisotropically, forming
first a dense sheet that then collapses along its larger dimensions.
The magnetic field in the central parts of the core is amplified by
roughly two orders of magnitude due to the collapse.

(ii) The collapse amplifies the turbulent motions, but mostly in
the compressible modes. The solenoidal modes remain almost at the
initial level, although this means that they do not decay, either.

(iii) The amplitude of the solenoidal motions is roughly uni-
form with radius at all times, and roughly constant in time, in-
dicating that no decrease of the turbulence occurs towards the
centre nor over time, as would be expected in the scenario that
the turbulence decays inwards (leaving behind a coherent core;
Barranco & Goodman 1998) and over time, allowing the collapse
of the core when turbulent support is lost. Nevertheless, the toral
velocity, including the dominant infall component, does decrease
inwards during the pre-stellar stage investigated in this work, in
agreement with the theoretical prediction from analytical spher-
ical collapse calculations for the pre-stellar stage (Whitworth &
Summers 1985).

(iv) The distribution of the simulation cells in the B—n space shows
a clear superposition of the fast, slow, and Alfvén modes predicted
by PV03, in addition to the effect of gravitational contraction: at low
densities, a wide range range of B values exists at a given density.
This can be understood as a consequence of the slow and fast MHD
modes scaling differently with density, as B = a — bn for the slow
mode (with @ and b constants), and as B o n for the fast mode. On
the other hand, at high densities, the magnetic field scales as n*, with
1/2 < o < 2/3, indicating a domination of gravitational compression
with either spherical or planar geometry.

(v) As predicted by Gomez et al. (2021), the mass-to-magnetic
flux ratio (M/¢) measured out to a certain radius scales (increases)
with radius at all times, and, furthermore, the slope of the M/¢ profile
becomes shallower as time increases. In general, the outer regions
of the core are magnetically supercritical and the inner regions are
subcritical, in agreement with observations by, e.g. Crutcher et al.
(2009) at the scale of the transition from dense molecular core to
its envelope, and by Ching et al. (2022) at the interface between
molecular clouds and their surrounding cold atomic gas.® Moreover,
at any given (fixed) radius R, M/¢ increases with time. This is due
to the accretion of material preferentially along field lines onto the
region inside R.

We conclude that the MHD turbulence driven by gravitational
contraction shares many of the features characterizing standard-
driven turbulence, and moreover, that the driving by the collapse
generates preferentially compressible components of the turbulence,
while the solenoidal components remain at roughly the initial
amplitude, although without decaying, either. The latter result
implies that the turbulence in a collapsing core does not undergo
a transition to coherence by dissipation, but rather the decrease
in the linewidth at the inner, denser parts is due to the inwards
decrease of the infall speed during the pre-stellar stage of the collapse.
Finally, we have confirmed our earlier theoretical predictions that
the mass-to-flux ratio is not expected to remain constant in time
nor uniform in radius when the cores are defined by density
thresholds.

3In this regard, it is important to point out that the apparent subcriticality of the
inner regions of a globally supercritical structure is a scale-free phenomenon
that is expected to occur whenever a density fluctuation arises within a
globally magnetically supercritical medium.
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APPENDIX A: RESOLUTION STUDY

As mentioned in Section 2, the larger number of cells per Jeans length
(i) used in the MHD run mhdturb_08 (with maximum refinement
level £ = 8; see Table 1) requires a higher resolution level £ in order
to preserve the value of the maximum resolved density. Conversely,
at a fixed value of ¢, the maximum resolved density is lower at larger
Jr- Therefore, we have performed a magnetic simulation with ¢ =
10 in order to test whether our results are significantly modified at
higher resolution.

Fig. A1 presents the same plots as Fig. 4, showing the radial profile
of the shell-averaged magnitude of the magnetic field at various
times, for the high-resolution run mhdturb_10. No significant change
in the radial profile of the magnetic field components is seen in
comparison to run mhdturb_08.

Also, Fig. A2 compares the radial profiles of the ratio of the
solenoidal to compressible components in the low- and high-
resolution runs. We notice the ratio at t = 0 in the high-resolution
run is approximately one order of magnitude lower than that of the
low-resolution runs. We found this comes from the fact that the
high-resolution runs at + = 0 have more significant compressive
velocity, while their total velocity and solenoidal velocity are at
similar levels as the low-resolution runs. Since all the simulations
are driven with only solenoidal modes during the pre-gravity driving
stage, we speculate that the higher compressible fraction is due to
a more efficient transfer from the solenoidal to the compressible
modes. Nevertheless, the ratio is still large at all radii at t = 0
and, more importantly, no significant qualitative difference is seen
between the different resolutions at the later snapshots, suggesting
that the results reported in the body of the paper, based on run
mhdturb_08 are not affected by any possible lack of resolution.
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Figure Al. Like Fig. 4, but for the high-resolution run mhdturb_10. No significant qualitative change in the radial profile of the magnetic field components is
seen at the increased resolution.
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Figure A2. Radial profile of the ratio of the RMS values of the solenoidal to compressible parts of the velocity for the low- (left) and high-resolution (right)
simulations.
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