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Abstract—Mobile edge computing has emerged as a prevalent
computing paradigm to support applications that demand low
latency and high computational capacity. Hardware reconfigurable
accelerators exhibit high energy efficiency and low latency com-
pared to general-purpose servers, making them ideal for integra-
tion into mobile edge computing systems. This article investigates
the problem of joint task offloading, access point selection, and
resource allocation in heterogeneous edge environments for latency
minimization. Given the heterogeneity of edge computing devices
and the interdependence of the decisions required for offloading,
access point selection, and resource allocation, it is challenging to
optimize over them simultaneously. We decomposed the proposed
problem into two disjoint subproblems and developed algorithms
for each of them. The first subproblem is to jointly determine
access point selection and communication resource allocation de-
cisions, for which we have proposed an algorithm with a provable
approximation ratio of 2.62/(1 − 8λ), where λ is a tunable pa-
rameter balancing the approximation ratio and time complexity.
Additionally, we offer a faster variant of the algorithm with an

approximation ratio of (
√

3 + 1)2. The second subproblem is to
determine offloading and computing resource allocation decisions
jointly and is NP-hard, where we developed algorithms based on
relaxation and rounding. We conducted comprehensive numerical
simulations to evaluate the proposed algorithms, and the results
demonstrated that our algorithms outperformed existing baselines
and achieved near-optimal performance across various settings.

Index Terms—Heterogeneous edge environments, latency
minimization, mobile edge computing.

I. INTRODUCTION

T
HE advent of information technology has brought forth

numerous novel applications that demand ultra-low re-

sponse times, including augmented reality, virtual reality, the

Internet of Things, and autonomous vehicles [1], [2], [3]. How-

ever, wireless devices face several constraints, such as limited

computing capability and high energy consumption, that prevent
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them from fulfilling the low latency requirements of the appli-

cations, such as tasks that might include deep neural network

inference, complex data analytics, or real-time video processing.

Meanwhile, cloud computing cannot provide low latency either,

given its susceptibility to network congestion and the substantial

physical distances involved. To address this issue, offloading

tasks from wireless devices to edge servers is gaining traction as

a prevailing computing paradigm for these applications, owing

to the proximity of edge servers to end-users and their potent

computing power.

The development of Field Programmable Gate Arrays (FP-

GAs) has led to the widespread adoption of FPGA-based recon-

figurable accelerators for diverse tasks [4]. Utilizing FPGAs for

specific tasks has proven highly efficient in terms of computing

time and energy consumption. For instance, an AlexNet accel-

erator with a 16-bit fixed point implemented on Xilinx Virtex-7

outperforms the ARM Cortex A15 by being 62 times faster and

consuming 22 times less energy [5], [6]. Typically, FPGAs are

coupled with a CPU in conventional computing systems, serving

as powerful auxiliary components. Recently, a more advanced

architecture has been proposed, where FPGAs can be connected

to networks as standalone computing resources, adhering to

existing Infrastructure as a Service (IaaS) mechanisms [7], [8].

This approach allows for greater scalability, flexibility, and ease

of maintenance.

Previous research on task offloading and resource manage-

ment in edge computing has mainly targeted homogeneous

systems equipped with either general-purpose processors or

FPGAs. In contrast, our study delves into a heterogeneous

edge computing system encompassing both FPGAs and general-

purpose servers. Wireless devices (WDs) communicate with

computing devices through access points (APs) such as base

stations. Four categories of decisions exist in such systems:

offloading, access point selection, computing resource manage-

ment, and communication resource management, all of which

jointly determine the system’s overall latency. The objective is

to minimize the average latency for all wireless devices. The

objective of the system is to minimize the average latency for

all wireless devices.

Although edge computing and the incorporation of standalone

FPGAs offer numerous advantages, simultaneously selecting

offloading, AP selection, computing resource management, and

communication resource management decisions presents sig-

nificant challenges. First, the system’s computing devices are

heterogeneous, making them suitable for distinct tasks. For
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instance, some tasks achieve significant acceleration on FPGAs,

while others result in less pronounced latency improvements.

Moreover, tasks from different WDs demand varying resource

amounts when executed on FPGAs. As a result, offloading

decisions must be judiciously determined to optimally utilize the

finite FPGAs and delegate tasks to the most suitable computing

devices. Second, the computing resources of general-purpose

servers are finite and necessitate allocation among multiple

WDs [9]. Resource allocation among WDs must be balanced to

guarantee the minimum overall latency. Third, WDs can com-

municate with edge computing devices via different APs, where

the channel conditions between the APs and WDs may differ.

As a result, the AP selections for WDs need to be orchestrated

to minimize their collective latencies. Lastly, communication

bandwidth is limited and must be distributed among WDs in an

optimally cooperative manner. Existing methods are inadequate

in providing a comprehensive solution to these challenges, while

this work investigates the joint task offloading, AP selection, and

resource management problem in heterogeneous edge environ-

ments.

Our main contributions are summarized as follows.
� We formulate the Joint task Offloading, AP selection, and

resource Management problem (JOAM) in heterogeneous

edge environments, which we demonstrate to be NP-hard.

The JOAM problem can be divided into two separate

NP-hard problems, namely Joint AP selection and com-

munication resource Management problem (JAM) for min-

imizing communication latency and Joint task Offloading

and computing resource Management problem ( JOM)

for minimizing computing latency, (see Section III-E for

details).
� For the first subproblem (JAM), we derive the closed-form

optimal communication resource allocation decision and

introduce a game-theoretic algorithm, denoted as Con-

gestion Game-Based Algorithm (CGBA), for making AP

selection decisions. The algorithm has an approximation

ratio of 2.62
(1−8λ) and converges in at most O( I

λ
log(P0

P ∗ ))
iterations, where λ is an adjustable parameter that balances

time complexity and approximation ratio. That is, the com-

munication latency under the proposed CGBA algorithm,

with parameter λ, is no more than 2.62
(1−8λ) times the optimal

latency. We also propose a faster variant of CGBA, named

FCGBA, which converges in I iterations and exhibits a

relatively higher approximation ratio of (
√
3 + 1)2.

� For the second subproblem (JOM) minimizing computing

latency, we first derive the optimal computing resource

allocation decision under any given offloading decision.

In addition, we show that there is no polynomial-time

approximation algorithm for choosing offloading deci-

sions. Consequently, we develop a semidefinite relaxation-

based algorithm to make offloading decisions. We also

propose a faster quadratic relaxation-based offloading

algorithm.
� We evaluate the algorithms by extensive simulations. The

results highlight that the proposed algorithms outperform

popular baselines and are near-optimal, with an average

latency only 1.5% higher than the optimal value.

The remainder of this paper is structured as follows: Sec-

tion II reviews related works; Section III presents the problem

formulation; Sections IV and V propose algorithms for problems

JAM and JOM, respectively; Section VI demonstrates the per-

formance evaluation of the proposed algorithms; and Section VII

concludes the paper.

II. RELATED WORKS

A large number of works of task offloading with various pur-

poses and settings in edge computing systems are well-studied,

e.g., [9], [10], [11], [12], [13], [14]. In [11], Xu et al. consider

a problem of service caching and task offloading to minimize

computational latency under a time-average energy consump-

tion constraint, which does not account for communication

latency. The authors propose a Gibbs sampling-based algorithm

to make decisions. In [13], Sun et al. formulate and investigate a

task offloading problem and define a metric called computation

efficiency. However, the paper does not consider the processing

latency of tasks. The authors propose an iterative algorithm

based on gradient descent methods, which efficiently minimizes

computation efficiency. In [14], Shuwaili et al. investigate the

joint uplink and downlink optimization problem of minimizing

energy consumption under latency constraints, which does not

account for system heterogeneity, and the proposed problem

is solved using successive convex approximation techniques.

In [15], Liu et al. focus on the problem of cost-aware online

task offloading and resource management. They use the drift-

plus-penalty approach to balance the energy cost and the system

latency. In addition, some papers focus on offloading partial

tasks [16], [17], [18], [19]. In [16], Pavlos et al. investigate

a risk-aware heterogeneous multi-MEC system and propose

a game-theoretic-based algorithm with low time complexity.

In [17] and [18], Pavlos et al. focus on the problem of risk-aware

data offloading in multi-server multi-access and propose a non-

cooperative game-theoretic-based distributed low-complexity

algorithm. In [19], Pavlos et al. study the satisfaction-aware data

offloading problem in surveillance systems. None of the studies

above studies integrate hardware reconfigurable accelerators

into their systems.

Some works are based on deep reinforcement learning.

In [12], Liu et al. formulate and study the multi-objective

problem of task offloading and resource scheduling and propose

a double deep Q network-based approach converging quickly.

In [2], Shi et al. consider a vehicle-to-vehicle (V2V) task offload-

ing problem in blockchain-enabled vehicular edge computing

systems, and a deep reinforcement learning-based algorithm

is proposed. In [1], Huang et al. consider the computation

offloading problem in wireless-powered mobile edge computing

networks and propose a deep reinforcement learning method to

make binary offloading decisions. In [20], Wang et al. study

the joint edge trans-coding and client enhancement problem

in multi-tier mobile edge computing networks with the goal

of maximizing the quality of experience of mobile users and

a deep reinforcement learning method is proposed to make

computing decisions. In [21], Liu et al. investigate the task

offloading and resource allocation in edge environments, and a
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deep learning-assisted approach is proposed. Again, none of the

studies account for hardware reconfigurable accelerators in their

systems. We can extend our algorithms proposed in this paper to

an online scheme by incorporating the above deep reinforcement

learning methods in the future.

Several studies employ game-theoretic-based algorithms in

their research. For instance, two papers, [9] and [10], investigate

task offloading and resource allocation, where the allocation of

computing resources to wireless devices can be adjusted. In [9],

Jošilo et al. tackle the problem of distributing wireless and com-

puting resources to wireless devices within an edge computing

system to minimize latency, proposing an algorithm with a prov-

able approximation ratio. In [10], Jošilo et al. expand upon the

model in [9] by incorporating network slicing. Both [9] and [10]

allow adjustable computing resource allocation for wireless

devices. However, this paper includes standalone FPGAs, and

the amount of FPGA resources assigned to FPGAs cannot be al-

tered to adjust processing latency (see Section III-D for details).

The distinct characteristics of computing latencies for general-

purpose servers and FPGAs contribute to the complexity of the

latency minimization problem, rendering existing methods in the

literature insufficient for addressing the problem considered in

this paper. In [22], Liu et al. develop and analyze the joint service

function chain deployment and resource allocation problem

within edge environments to minimize overall system delay,

without considering input/output data uploading/downloading

latency. The authors present a congestion game-theoretic-based

algorithm with a provable approximation ratio. The algorithm

proposed in Section IV can resolve the issues in [9], [10],

[22], where our algorithm converges in polynomial steps while

their algorithms may require exponential steps. Some research

assumes adjustable computing resources for tasks, such as in [9],

[10] and [22], while other studies, like [11], consider fixed

resource amounts for tasks. This paper, an extended version

of our conference paper [23], examines a more general case

in which the resource allocation for tasks on general-purpose

servers is adjustable, and that for tasks on FPGAs remains fixed.

III. SYSTEM MODEL

In this section, we formulate the problem of joint task offload-

ing, AP selection, and resource allocation in heterogeneous edge

environments with the goal of minimizing the system latency.

Table I presents some main notations.

A. Edge Task Offloading System

1) System Components: We consider an edge system con-

sisting of wireless end devices (WDs), access points (APs), and

edge computing devices. There are I WDs in the system, and

I = [I] � {1, 2, . . . , I} denotes the set of WDs. There are K
APs in the system, andK = [K] � {1, 2, . . . ,K} represents the

set of APs. For each AP k ∈ K, it has an uplink bandwidth of

Bk bits/s and a downlink bandwidth of Bk bits/s. There are

two types of edge computing devices, namely general-purpose

servers and FPGAs. We use N = [N ] � {1, 2, . . . , N} to de-

note the set of general-purpose servers where N is the number

of servers. Similarly, M = [M ] represents the set of FPGAs

TABLE I
IMPORTANT NOTATIONS

where M is the number of FPGAs. We use Fn to represent

the computing capability of server n, such as the number of

floating-point operations per second (FLOP/s). For each m ∈
M, Am = {Am,1, Am,2, . . . , Am,L} is the vector representing

the amounts ofLdifferent resources of FPGAm, i.e., the number

of configurable logic blocks (CLBs), Flip-Flops, DSPs, RAMs

and so on [24]. L = {1, 2, . . . , L} denotes the set the L types of

resources. Multiple applications can share the resources of an

FPGA simultaneously [25], [26].

2) Network Topology: WDs communicate with edge com-

puting devices via APs. Each AP k ∈ K has a coverage area,

and a WD can be covered by more than one AP. We use Ki to

represent the set of APs covering the location of WD i, where

Ki ⊆ K. APs communicate with edge computing devices by

wired links [27], e.g., cellular base stations using fiber optic

cables with a speed of up to 200 Gbps and wireless routers

using twisted pair cables with a speed of up to 10 Gbps. Around

95 percent of buildings in the United States have fiber-optic

infrastructures within 1.5 km, and most of the base stations

are connected by fibers [27]. Therefore, compared with the
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Fig. 1. Example of an edge computing system with N = 3,M = 2,K = 3

and I = 7. WD 3 uses AP 1 and AP 2 for uploading and downloading data,
respectively.

wireless links between WDs and APs, the latency of the wired

links between APs and edge computing devices is negligible,

which is a typical assumption in the literature [9], [10]. In

addition, the algorithms proposed in this paper can be adapted

to accommodate situations where the latency between APs and

computing devices is not negligible. Fig. 1 shows an example of

the network topology.

3) Tasks: WDs generate computing tasks periodically under

a given frequency [28]. Each task of WD i has an input data size

of ci bits and an output data size of ci bits. Each WD i offloads

its tasks to either a server or an FPGA. If WD i offloads its tasks

on a server, it takes fi FLOPs to complete a task. When WD i
offloads its tasks on FPGA m, let ai,m = {ai,m,1, . . . , ai,m,L}
represent the necessary resources to implement WD i’s function,

and the completion time is denoted by ti,m. ti,m and ai,m,l

can be different across FPGAs. Specifically, experiments in [29]

demonstrated that function completion time and resource con-

sumption vary across families of Xilinx, Altera, Actel, and Quick

Logic FPGAs.

B. AP Selection and Wireless Resource Management

1) AP Selection Decisions: Each WD i ∈ I has to choose an

AP ki ∈ Ki for uploading input data. Similarly, each WD i ∈ I
has to choose an AP ki ∈ Ki for downloading output data. We

use variable zi,k ∈ {0, 1} and variable zi,k ∈ {0, 1} to represent

whether WD i choose APk as its uploading AP and downloading

AP, respectively. Let zi = {zi,k|k ∈ K} ∪ {zi,k|k ∈ K} be the

collection of AP selection decisions of WD i. There are two

constraints for the AP selection decisions of each WD i as

follows:
∑

k∈Ki

zi,k = 1 and
∑

k∈Ki

zi,k = 1 for i ∈ I. (1)

In addition, z = {zi,k|i ∈ I, k ∈ K} ∪ {zi,k|i ∈ I, k ∈ K} is

the set of all AP selection decisions. For each AP k ∈ K, let

Ok(z) be the collection of WDs using AP k as their uploading

AP under decision z. WDs in Ok(z) share the uplink bandwidth

of AP k. Similarly, let Ok(z) be the collection of WDs using

AP k as their downloading AP.

2) Wireless Channel Conditions: For each i ∈ I and k ∈ K,

there is a bandwidth utilization, denoted by γi,k ≥ 0, associated

with WD i and AP k, which reflects the condition of the wireless

condition between WD i and AP k. γi,k is given in advance,

which is affected by the distance between WD i and AP k, the

noise power of the channel between WD i and AP k, and so on.

In particular, we set γi,k = 0 if WD i is not covered by AP k,

i.e., γi,k = 0 if k /∈ Ki.

3) Wireless Bandwidth Allocation: If WD i ∈ Ok(z), there

is a continuous variable, βi,k, representing the proportion of the

uplink bandwidth of AP k allocated to WD i. Similarly, if WD

i ∈ Ok(z), βi,k
represents the proportion of the downlink band-

width of AP k allocated to WD i. The system can employ the Or-

thogonal Frequency Division Multiplexing (OFDMA) scheme,

where bandwidth allocation corresponds to the allocation of

Resource Units (RUs). Since the total bandwidth allocated to

WDs can not exceed the total bandwidth of AP k, we have two

constraints as follows:
∑

i∈I
zi,kβi,k =

∑

i∈Ok(z)

βi,k ≤ 1

∑

i∈I
zi,kβi,k

=
∑

i∈Ok(z)

β
i,k

≤ 1. (2)

For the sake of simplicity, we use β to denote the collection

of all communication resource management variables, i.e., β =
{βi,k, βi,k

|i ∈ I, k ∈ K}.

We distinguish the uplink and downlink bandwidth to handle

the case that uplink and downlink use different frequency bands,

e.g., frequency division multiplexing (FDD) protocols [30].

Our algorithm can handle the case that there is no distinction

between uplink and downlink bandwidth, i.e, each AP k has only

one bandwidth constraint
∑

i∈Ok(z)
βi,k +

∑

i∈Ok(z)
β
i,k

≤ 1,

which is a degenerated case.

C. Task Offloading and Computing Resource Management

1) Offloading to Server: For each WD i ∈ I and server

n ∈ N , there is a variable xi,n ∈ {0, 1}. In particular, xi,n = 1
if WD i offloads its tasks on server n, and xi,n = 0 otherwise.

xn = (x1,n;x2,n; . . . ;xI,n) denotes the collection of xi,n re-

lated to server n. In addition, x denotes the collection of xi,n

for i ∈ I, n ∈ N . On(x) is the set of WDs that place their

tasks on server n, i.e., xi,n = 1 if i ∈ On(x). If WD i offloads

its tasks on server n, i.e., i ∈ On(x), we use αi,n to denote

the proportion of computing capability of server n allocated to

WD i. Note that the server can be not only a CPU but also a

GPU because the Multi-Process Service (MPS) scheme allows

different tasks running on different address spaces of a GPU [31].

Specifically, MPS enables multiple CUDA applications to share

a GPU simultaneously. In this setup, GPU resources, such as

address space and memory, are allocated non-uniformly across

these applications. There is a constraint limiting that the amount
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of computing capability allocated to WDs in On(x) can not

exceed the total computing capability of server n as follows:

∑

i∈I
xi,nαi,n =

∑

i∈On(x)

αi,n ≤ 1. (3)

For simplicity, we use α = {αi,n|i ∈ I, n ∈ N} to denote the

collection of all computing resource management variables.

2) Suitability Between Servers and Tasks: Since different

servers may be equipped with different amounts of CPUs, GPUs,

etc., certain servers are more suitable for executing specific types

of tasks. For each WD i and server n, there is a suitability

δi,n ∈ [0, 1] [22]. δi,n ∈ [0, 1] depicts how well a server n is

fitting for running tasks of WD i. The larger δi,n, the better the

suitability of offloading tasks of WD i to server n.

3) Offloading to FPGAs: For each WD i ∈ I and FPGA

m ∈ M, there is a decision variable yi,m ∈ {0, 1}. In particular,

yi,m = 1 if WD i places its tasks on FPGAm, and yi,m = 0 oth-

erwise. y is the collection of yi,m for i ∈ I,m ∈ M. Moreover,

Om(y) represents the set of WDs that place their tasks on FPGA

m, i.e., i ∈ Om(y) if yi,m = 1. There is a constraint limiting the

total amounts of resources required by WDs in Om(y) can not

exceed the resource amounts of FPGA m as follows:
∑

i∈I
yi,mai,m,l �

∑

i∈Om(y)

ai,m,l ≤ Am,l for m ∈ M, l ∈ L.

(4)

4) Constraint of Offloading Decision: The collection of of-

floading decisions is (x,y). Since each WD i offloads its tasks

on either a server n ∈ N or an FPGA m ∈ M, we have the

following constraint regarding (x,y):
∑

n∈N
xi,n +

∑

m∈M
yi,m = 1 for i ∈ I. (5)

D. Goal of the System

The goal of the system is to minimize the summation of

latency of all WDs. The latency of each WD i consists of two

parts, namely processing latencyTP
i and communication latency

TC
i .

1) Processing Latency: If WD i places its task on server n,

the average processing latency can be expressed as a function of

the amount of computing capability allocated to WD i [9], i.e.,

TP
i = xi,n

fi
Fnδi,nαi,n

if i ∈ On(x) (6)

where δi,n is a fixed parameter reflecting the suitability of

running tasks of WD i on server n. For example, δi,n is different

in two cases where the server is a CPU and a GPU. We can tune

the above latency by varying αi,n [9], [31]. On the other hand,

if WD i offloads its tasks on FPGA m, the processing latency of

WD i is ti,m, i.e.,

TP
i = yi,mti,m if i ∈ Om(y). (7)

Different from the latencies of tasks on servers, latencies of

tasks on FPGAs can not be decreased by increasing the number

of configurable logic blocks for the following reasons. First, the

functions running on FPGAs are described by hardware descrip-

tion language in advance. Once the hardware description code

is given and an FPGA is specified, the resource consumption

and the latency are also fixed. Second, it is wasteful and time-

consuming to develop different versions of FPGA implemen-

tation. Last and most importantly, varying the implementation

(reprogramming FPGA) takes time, e.g., hundreds of ms up to

tens of seconds, which is fatal to applications requiring extra-low

latency.

From (6) and (7), the processing latency is a function of

(x,y, α), and we use TP (x,y, α) to denote the summation of

processing latency of all WDs, i.e.,

TP (x,y, α) =
∑

i∈I

(

∑

n∈N

xi,nfi
Fnδi,nαi,n

+
∑

m∈M
yi,mti,m

)

.

(8)

2) Communication Latency: Since we focus on edge com-

puting systems, the WDs and APs are in close vicinity; there-

fore, the propagation delay is negligible, and we only need to

consider the transmission delay. The transmission latency of

WD i consists of input data uploading latency and output data

downloading latency. The uploading transmission delay of WD

i is denoted by T
C

i . In particular,

T
C

i =
∑

k∈K

zi,kci

γi,k ·Bk · βi,k

. (9)

Similarly, the downloading transmission delay of WD i is de-

noted by TC
i , and we have

TC
i =

∑

k∈K

zi,kci
γi,k ·Bk · β

i,k

. (10)

Let TC
i be the average communication latency of WD i, i.e.,

TC
i = T

C

i + TC
i . The summation of communication latencies

of all WDs is a function of (z, β) as follows:

TC(z, β) =
∑

i∈I
TC
i (z, β) =

∑

i∈I

(

T
C

i + TC
i

)

. (11)

E. Problem Formulation

Next, we formally state the problem that we formulated above

as an optimization problem, and we refer to the problem as

JOAM which is short for Joint task Offloading, AP selection,

and resource Management. JOAM is as follows:

min
x,y,z,α,β

TP (x,y, α) + TC(z, β) (JOAM)

s.t. (1)–(5)

xi,n ∈ {0, 1} for i ∈ I and n ∈ N (12)

yi,m ∈ {0, 1} for i ∈ I and m ∈ M (13)

αi,n ∈ [0, 1] for i ∈ On(x) and n ∈ N (14)

zi,k, zi,k ∈ {0, 1} for i ∈ I and k ∈ K (15)

βi,k ∈ [0, 1] for i ∈ Ok(z) and k ∈ K (16)

β
i,k

∈ [0, 1] for i ∈ Ok(z) and k ∈ K. (17)
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The decision variables of JOAM can be partitioned into two

sets, namely (x,y, α) and (z, β). There is no coupling between

(x,y, α) and (z, β) in the constraints. In addition, communica-

tion latency TC is merely determined by (z, β), and processing

latencyTP is merely determined by (x,y, α). Therefore, JOAM

can be divided into two disjoint subproblems, namely the Joint

task Offloading and computing resource Management problem

(JOM) of minimizing TP over (x,y, α) and the Joint AP

selection and communication resource Management problem

(JAM) of minimizing TC over variables (z, β). The two disjoint

subproblems are as follows:

min
x,y,α

TP (x,y, α) (JOM)

s.t. (3)–(5), (12)–(14)

min
z,β

TC(z, β) (JAM)

s.t. (1)–(2), (15)–(17)

In what follows, we show the NP-hardness of JOAM. Actually,

both JOM and JAM are NP-hard.

Theorem 1: JOAM is NP-hard.

Proof: JOM is a special version of JOAM. To be more spe-

cific, JOM is equivalent to JOAM if there is only one AP covering

all WDs and having infinite uplink and downlink bandwidth.

JOAM is NP-hard because JOM, a special version of JOM, is

NP-hard. The NP-hardness of JOM is shown in Theorem 6. �

IV. ALGORITHM DESIGN FOR AP SELECTION AND

COMMUNICATION RESOURCE MANAGEMENT

First, we show the hardness of JAM in Theorem 2.

Theorem 2: The JAM problem is NP-hard.

The proof of Theorem 2 is similar to that of Theorem 1 in [10],

so we omit it.

A. Communication Resource Management

We first consider finding the continuous communication re-

source management variables β under any given AP selection

decision z. If z is given, JAM is equivalent to the following

problem.

min
β

∑

i∈I

(

T
C

i (z, β) + TC
i (z, β)

)

s.t.
∑

i∈Ok(z)

βi,k ≤ 1,
∑

i∈Ok(z)

β
i,k

≤ 1 for k ∈ K

βi,k ∈ [0, 1] for i ∈ Ok(z) and k ∈ K
β
i,k

∈ [0, 1] for i ∈ Ok(z) and k ∈ K. (18)

We use β∗(z) = {β∗
i,k|k ∈ K, i ∈ Ok(z)} ∪ {β∗

i,k
|k ∈ K, i ∈

Ok(z)} to denote the optimal solution of (18) under AP selection

decision z. The optimal communication resource management

decision β∗(z) is shown in Lemma 1.

Lemma 1: For any feasible z, optimal communication re-

source management decision β∗(z) is as follows:

β
∗
i,k =

√

ci
γi,k

∑

j∈Ok(z)

√

cj
γj,k

for k ∈ K, i ∈ Ok(z), (19)

β∗
i,k

=

√

ci
γi,k

∑

j∈Ok(z)

√

cj
γj,k

for k ∈ K, i ∈ Ok(z). (20)

The proof of Lemma 1 is omitted due to space limitations.

The main idea of Lemma 1 is to derive the optimal solution by

exploiting KKT conditions.

Substituting β∗ into (18), the optimal communication latency

under any feasible AP selection decision z is equal to

∑

i∈I

(

T
C

i + TC
i

)

=
∑

k∈K

∑

i∈Ok(z)

T
C

i +
∑

k∈K

∑

i∈Ok(z)

TC
i

=
∑

k∈K

1

Bk

∑

i∈Ok(z)

√

ci
γi,k

⎛

⎝

∑

j∈Ok(z)

√

cj
γj,k

⎞

⎠

+
∑

k∈K

1

Bk

∑

i∈Ok(z)

√

ci
γi,k

⎛

⎝

∑

j∈Ok(z)

√

cj
γj,k

⎞

⎠ . (21)

B. Algorithm Design for AP Selection

For convenience, we introduce some short-formed terms and

interpret the problem as a weighted congestion game. Let R �
{(k, upload), (k, download)|k ∈ K}, where each element in

set R is a tuple representing a kind of communication re-

source. For example, (k, upload) and (k, download) represent

the uploading and downloading bandwidth resources of AP k,

respectively. For each resource r ∈ R, there is a weight mr

associated with it. In particular, mr = 1
Bk

if r = (k, upload)

and mr = 1
Bk

if r = (k, download). For each WD i, let Zi be

the set of all feasible zi. In particular, from the constraints of

JAM, we have

Zi=

⎧

⎨

⎩

zi

∣

∣

∣

∣

∣

∣

∑

k∈K
zi,k = 1,

∑

k∈K
zi,k = 1, and zi,k, zi,k ∈ {0, 1}

⎫

⎬

⎭

.

(22)

For any given zi ∈ Zi, zi decides the uploading AP and the

downloading AP of WD i, and we use Ri(zi) to denote re-

sources that WD i chooses. For example, if WD i chooses AP

k1 and AP k2 as its uploading and downloading APs respec-

tively, we have Ri(zi) = {(k1, upload), (k2, download)}. Let

pir(zi) be a value corresponding with the pair of WD i and

resources r, which represents the congestion value that WD i
contributed to resource r under decision zi. In particular, for
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TABLE II
NOTATION TABLE

r ∈ {(k, upload)|k ∈ K},

pir(zi) =

{

√

ci/γi,k, if zi,k = 1

0, otherwise.
(23)

Similarly, for r = (k, downloading) and k ∈ K,

pir(zi) =

{

√

ci/γi,k, if zi,k = 1

0, otherwise.
(24)

In addition, for each r ∈ R and each feasible z, we define the

congestion value of resource r under decision z, denoted by

pr(z), which is a function of z as follows:

pr(z) =
∑

i∈I
pir(zi). (25)

We summarize the notation defined above in Table II.

Next, by substituting (21) and the terms defined above into

JAM, we have that JAM is equivalent to P1 as follows:

min
z

∑

i∈I
TC
i (z) =

∑

i∈I

∑

r∈Ri(zi)

mrp
i
r(zi)pr(z)

s.t. zi ∈ Zi, i ∈ I. (P1)

P1 can be interpreted as a weighted congestion game as

follows, where I is the set of players, and TC
i (z) =

∑

r∈Ri(zi)
mrp

i
r(zi)pr(z) is the cost of player i under decision

z. The problem is equivalent to finding the strategy profile of all

players, which minimizes the total cost of all players.

Next, we propose an algorithm, called Congestion Game

Based Algorithm (CGBA), for P1 in Algorithm 1. CGBA has

a parameter λ ≥ 0 that we can tune. We use CGBA(λ) to denote

CGBA with parameter λ. CGBA(λ) starts by randomly selecting

a feasible decision for each WD i (Line 1). At the beginning of

each iteration, the algorithm checks whether there exists a WD i
that can reduce its latency to less than (1− λ) times its previous

latency by changing its own decision. In particular, let ∆i(zi) =
TC
i (zi, z−i)−minz̄i∈Zi

TC
i (z̄i, z−i) represent the maximum

decrease in the cost of WD i that can be achieved by changing

only zi. J is defined as the set of WDs such that i ∈ J if and

only if WD i can decrease its cost by changing only zi to a

value that is less than (1− λ)TC
i (z). In addition, ∆J represents

∑

i∈J ∆i. Line 4–Line 20 computeJ ,∆i and∆J . IfJ is empty

or∆J /TC(z) is less than parameter λ, the algorithm terminates.

If J is not empty, the algorithm selects the WD i� (Line 24),

where i� = argmax∆i. Afterward, WD i� updates its decision

by selecting the option that minimizes its cost.

We use ẑ to denote the AP selection decision made by Al-

gorithm 1, and use z∗ = (z∗1, . . . , z
∗
I) to denote the optimal AP

selection decision. In addition, z−i represents the decision of all

WDs except WD i, i.e., z = (z−i, zi).

Algorithm 1: CGBA(λ)

In what follows, we analyze the performance of CGBA(λ).

First, we show that P1 is an exact potential game, as shown in

Lemma 2.

Lemma 2: P1 is an exact potential game where the potential

function is

P (z) �
∑

i∈I

∑

r∈Ri(zi)

(

mr

i
∑

j=1

pjr(zj)

)

pir(zi). (26)

For all feasible zi, z
′
i, and z−i, we have

TC
i (zi, z−i)− TC

i (z′i, z−i) = P (zi, z−i)− P (z′i, z−i). (27)

In addition, TC(z) > P (z) > 0 holds for all feasible z.

The proof of Lemma 2 can be found in [32], [33], so we omit

it. Based on Lemma 2, we have the performance guarantee for

CGBA(0) as shown in the following theorem.

Theorem 3: CGBA(0) terminates at a decision ẑ with 2.62 ·
TC(z∗) ≥ TC(ẑ) after a finite number of iterations, where z∗ is

the optimal decision.

Proof: Part A: Proof of CGBA(0) terminates in finite steps

Since Lemma 2 holds, the value of the potential function will

keep decreasing under CGBA(0). That is, there is no cycle in the

path of z under CGBA(0). Also, the number of feasible z is finite.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: JOINT TASK OFFLOADING AND RESOURCE ALLOCATION IN HETEROGENEOUS EDGE ENVIRONMENTS 7325

Therefore, CGBA(0) will terminate after a finite number of iter-

ations. Assume CGBA(0) terminates in ẑ = (ẑ1, ẑ2, . . . , ẑK).
From Line 2 of CGBA(0), there is no i with TC

i (zi, z−i) >
minz̄i∈Zi

TC
i (z̄i, z−i). That is, each i in I can not decrease

its own cost by changing only its own strategy, which is the

definition of Nash equilibrium.

Part B: Proof of CGBA(0)’s Approximation Ratio

ẑ = (ẑ1, ẑ2, . . . , ẑI) represents the AP selection decision got by

CGBA(0). z = (z1, z2, . . . , zI) can be any feasible AP selection

decision. From the part A, we have that ẑ is a pure Nash

equilibrium. For any i ∈ I, because ẑ is a Nash equilibrium,

we have

TC
i (ẑi, ẑ−i) ≤ TC

i (zi, ẑ−i)

=
∑

r∈Ri(zi)

mrp
i
r(zi)pr(zi, ẑ−i)

≤
∑

r∈Ri(zi)

mrp
i
r(zi)

(

pr(ẑ) + pir(zi)
)

. (28)

Summing (28) up for i ∈ I, we have

TC(ẑ) ≤
∑

i∈I

∑

r∈Ri(zi)

mrp
i
r(zi)

(

pr(ẑ) + pir(zi)
)

. (29)

Interchanging the order of the double summation in (29), we

have

TC(ẑ) ≤
∑

i∈I

∑

r∈Ri(zi)

mrp
i
r(zi)

(

pr(ẑ) + pir(zi)
)

=
∑

r∈R
mr

∑

i∈I
pir(zi)

(

pr(ẑ) + pir(zi)
)

. (30)

The equation in (30) holds because we have pir(zi) = 0 if r /∈
Ri(zi) from the definition of pir(zi). Since

∑

i∈I(p
i
r(zi))

2 ≤
(
∑

i∈I p
i
r(zi))

2 = (pr(z))
2 and (30) holds, we have

TC(ẑ) ≤
∑

r∈R
mr

∑

i∈I
pir(zi)pr(ẑ) +

∑

r∈R
mr (pr(z))

2

=
∑

r∈R
mr

∑

i∈I
pir(zi)pr(ẑ) + TC(z)

=
∑

r∈R
mrpr(z)pr(ẑ) + TC(z). (31)

Then, applying Cauchy–Schwarz inequality to (31), we have

TC(ẑ) ≤
∑

r∈R
mrpr(z)pr(ẑ) + TC(z)

≤
√

∑

r∈R
mr(pr(z))2

∑

r∈R
mr (pr(ẑ))

2 + TC(z)

=
√

TC(z)TC(ẑ) + TC(z). (32)

From (32), we have
TC(ẑ)
TC(z)

≤
√

TC(ẑ)
TC(z)

+ 1. Solving the above

inequation, we have
TC(ẑ)
TC(z)

≤ 3+
√
5

2 ≈ 2.62. Since z can be any

feasible strategy profile, the approximation ratio of CGBA(0) is

2.62, which proves Theorem 3. �

Theorem 3 shows that CGBA(0) is a 2.62-approximation

algorithm. Simulation results show that the time complexity of

CGBA(0) is linear to I , and the average cost under CGBA(0) is

around 1.013× the optimum.

In what follows, we show the main result of this section, i.e.,

the performance guarantee for CGBA(λ), in Theorem 4. Theo-

rem 4 indicates that CGBA(λ) with λ ∈ (0, 1/8) can generate an

approximate solution in polynomial time. In addition, we can

tune parameter λ to balance the approximation ratio and time

complexity.

Theorem 4: For λ ∈ (0, 1
8 ), CGBA(λ) terminates at a decision

ẑ with TC(ẑ) ≤ 2.62
1−8λ

TC(z∗) in at most O( I
λ
log(P0

P ∗ )) itera-

tions, and each iteration takes O(I2 K2) steps.

Proof: The prove the theorem, we first prove Claim 1 as

follows:

Claim 1: Let z∗ be the optimal decision. For any feasible

decision z, we have
∑

i∈I T
C
i (z∗i , z−i) ≤

√

TC(z)TC(z∗) +
TC(z∗).

The proof of Claim 1 is as follows. For each i ∈ I, we have

TC
i (z∗i , z−i) =

∑

r∈Ri(z∗
i
)

mrp
i
r(z

∗
i )pr(z

∗
i , z−i)

≤
∑

r∈Ri(z∗
i
)

mrp
i
r(z

∗
i )(pr(z) + pir(z

∗
i ))

=
∑

r∈Ri(z∗
i
)

mrp
i
r(z

∗
i )pr(z)+

∑

r∈Ri(z∗
i
)

mr(p
i
r(z

∗
i ))

2.

(33)

Summing the above equation up for i ∈ I, we have

∑

i∈I
TC
i (z∗i , z−i)

≤
∑

i∈I

∑

r∈Ri(z∗
i
)

mrp
i
r(z

∗
i )pr(z) +

∑

i∈I

∑

r∈Ri(z∗
i
)

mr(p
i
r(z

∗
i ))

2

=
∑

r∈R
mrpr(z

∗)pr(z) +
∑

r∈R
mr

∑

i∈I
(pir(z

∗
i ))

2

≤
√

∑

r∈R
mr(pr(z∗))2

∑

r∈R
mr(pr(z))2

+
∑

r∈R
mr(pr(z))

2

=
√

TC(z)TC(z∗) + TC(z∗), (34)

which proves Claim 1.

Let z′i be the best response of WD i given profile z−i, then

we have

∑

i∈I
TC
i (z′i, z−i) ≤

∑

i∈I
TC
i (z∗i , z−i). (35)

Thus, we have

TC(z)−
∑

i∈I
TC
i (z∗i , z−i) ≤ TC(z)−

∑

i∈I
TC
i (z′i, z−i). (36)
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Combining the above equation and Claim 1, we have

TC(z) ≤
√

TC(z)TC(z∗) + TC(z∗)

+

(

TC(z)−
∑

i∈I
TC(z′i, z−i)

)

. (37)

Let x2 = TC(z)
TC(z∗) and y =

(TC(z)−∑
i∈I T

C(z′
i,z−i))

TC(z∗) . The above

equation can be rewritten as x2 ≤ x+ 1 + y. For coordinates

(x,y) with x > 0 and y > 0, the area defined by the inequality

x2 ≤ x+ 1 + y is a subset of the area defined by x2 ≤ 2.62 +
2y. Thus, we have x2 ≤ 2.62 + 2y. That is, we have

TC(z) ≤ 2.62 TC(z∗) + 2

(

TC(z)−
∑

i∈I
TC(z′i, z−i)

)

.

(38)

For any profile z, let ∆i(z) � TC
i (z)− TC

i (z′i, z−i) and

∆(z) �
∑

i∈I ∆i(z) where z′i is the best response of WD

i. Also, for any I ′ ∈ I, ∆I ′(z) �
∑

i∈I ′ ∆i(z). Define z

is a ε-approximate λ-equilibria if ∆J (z) ≤ (λ + ε)TC(z),
where J is the set of WDs with (1− λ)TC

i (zi, z−i) >
minz̄i∈Zi

TC
i (z̄i, z−i). Then, we have

∆J̄ ≤ λ

∑

i∈J̄
TC
i (z) for i ∈ J̄ � I \ J (39)

∆J (z) ≤ (λ + ε)TC(z) for i ∈ J . (40)

Thus, if z is a ε-approximate λ-equilibria, we have

∆(z) = ∆J̄ (z) + ∆J (z) ≤ 2(λ + ε)TC(z). (41)

For any state z, let ε(z) = ∆J (z)
TC(z)

. From the definition of

ε-approximate λ-equilibria, z is ε(z)-approximate λ-equilibria

because

∆J (z) =
∆J (z)

TC(z)
TC(z) = ε(z)TC(z)

≤ (ε(z) + λ)TC(z). (42)

Next, let zt be the z at the t-th iteration of CGBA(λ), we consider

two cases as follows.

Case 1: ε(zt) ≤ λ. From (41), we have

∆(zt) = ∆J̄ (z
t) + ∆J (z

t)

≤ 2(λ + ε(zt))TC(zt) ≤ 4λTC(zt). (43)

Then, from (38) and (43), we have

TC(zt) ≤ 2.62 TC(z∗) + 2∆(zt)

≤ 2.62 TC(z∗) + 8λTC(zt). (44)

That is,

TC(zt) ≤ 2.62 TC(z∗)

(1− 8λ)
. (45)

Case 2: ε(zt) > λ. Under Case 2, we have ∆J (zt) > λTC(zt).
That is, there exists i such that

∆i(z
t) >

λ

I
TC(zt) >

λ

I
P (zt). (46)

Let i� be the player that changes its decision at iteration t. That

is,∆i�(z
t) = maxi∈I ∆i(z

t) > λ

I
P (zt). LetPt be the potential

value at iteration t. From Lemma 2, we have Pt − Pt+1 =
∆i�(z

t) ≥ λ

I
P (zt) = λ

I
Pt.

Let P0 and P ∗ be the initial and the minimum value of the

potential function P (z), respectively, and both P0 and P ∗ are

finite positive values. Let

t′ =
log(P ∗/P0)

log(1− λ/I)
= O

(

I

λ
log

(

P0

P ∗

))

. (47)

If there exists t ≤ t′ such zt is of case 1, the theorem holds.

Otherwise, zt is of case 2 for t ≤ t′. Then, we have Pt′ <
P0(1− λ

I
)t

′
= P ∗, which contradicts to the fact that P ∗ is the

minimum value of the potential function. Thus, the algorithm

will terminates in at most O( I
λ
log(P0

P ∗ )) iterations.

We now analyze the time complexity of each iteration (from

Line 2 to Line 28). From the objective function of P1, computing

TC
i (z) involves a double summation of total |Ri(zi)| × I terms.

As each WD i chooses two resources, i.e., |Ri(zi)| = 2, the

time complexity of computing TC
i (z) is O(I). Next, we focus

on the time complexity of the for loop (from Line 4 to Line 20),

which iterates for I times. In addition, the time complexity of

Line 5 to Line 7 is O(I). From the definition of Zi, we know

that set Zi has K2 members. Therefore, the time complexity

of the for loop (from Line 8 to Line 14) is O(I)×K2 =
O(IK2). The time complexity of Line 15 to Line 19 is O(1).

Thus, the time complexity of the for loop (Line 4-Line 20)

is I × (O(IK) +O(IK2) +O(1)) = O(I2 K2). In addition,

the time complexity of Line 21 to Line 27 is dominated by that

of Line 24, which is equivalent to O(I). As a result, the time

complexity of each iteration of the while loop is equal to the

time complexity of Line 4-Line 20 plus the time complexity of

Line 21-Line 27, i.e., O(I2 K2) +O(I) = O(I2 K2). �
Next we consider a variant of CGBA(λ) named FCGBA, repre-

senting fast CGBA. FCGBA converges in I iteration. At iteration

i, WD i chooses its best responses without considering WDs

i+ 1, i+ 2, . . . , I . FCGBA is formally stated in Algorithm 2.

Theorem 5: FCGBA has an approximation ratio of (
√
3 + 1)2

and converges in O(I2 K2) steps.

Proof: Use z̄i to denote the decision of WD i made at the

i-th iteration, where i ∈ I. Let z̄i = (z̄1, . . . , z̄i, ∅, . . . , ∅) be the

decision profile of WDs after i iterations. The communication

latency of users in [i] under decision z̄i is denoted asTC
≤i(z̄

i). Let

z = (z1, z2, . . . , zI) be any feasible decision. Then, we have

TC
≤i(z̄

i) =
i
∑

j=1

∑

r∈Ri(z̄i)

(

mr

i
∑

j=1

pjr(z̄j)

)

pir(z̄i)

=
∑

r∈R
mrpr(z̄

i)pr(z̄
i). (48)
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Algorithm 2: FCGBA

By partitioning set R to R \Ri(z̄i) and Ri(z̄i), we have

TC
≤i(z̄

i) =
∑

r∈R\Ri(z̄i)

mrpr(z̄
i−1)pr(z̄

i−1)

+
∑

r∈Ri(z̄i)

mr(pr(z̄
i−1) + pir(z̄i))

2

≤
∑

r∈R
mrpr(z̄

i−1)pr(z̄
i−1)

+
∑

r∈Ri(z̄i)

2mrp
i
r(z̄i)(pr(z̄

i−1) + pir(z̄i))

(a)

≤
∑

r∈R
mrpr(z̄

i−1)pr(z̄
i−1)

+
∑

r∈Ri(zi)

2mrp
i
r(zi)(pr(z̄

i−1) + pir(zi))

= TC
≤i−1(z̄

i−1)

+
∑

r∈Ri(zi)

2mrp
i
r(zi)(pr(z̄

i−1) + pir(zi)). (49)

Inequality (a) holds because z̄i minimizes the latency of WD

i, i.e.,
∑

r∈Ri(zi)
mrp

i
r(zi)(pr(z̄

i−1) + pir(zi)). From (49), we

have

TC(z̄I) = TC
≤I(z̄

I) ≤ TC
≤I−1(z̄

I)

+
∑

r∈RI(zI)

2mrp
I
r(zI)(pr(z̄

I−1)+pIr(zI))

≤ · · · ≤
I
∑

i=1

∑

r∈Ri(zi)

2mrp
i
r(zi)(pr(z̄

i−1) + pir(zi)).

(50)

Then, we have

TC(z̄I) ≤ 2
∑

i∈I

∑

r∈Ri(zi)

mrp
i
r(zi)(pr(z̄

I) + pir(zi))

= 2
∑

r∈R

∑

i∈I
mrp

i
r(zi)(pr(z̄

I) + pir(zi))

≤ 2
∑

r∈R
mrpr(z̄

I)pr(z) + 2
∑

r∈R
mrpr(z)pr(z)

≤ 2

√

∑

r∈R
mr(pr(z̄I))2

∑

r∈R
mr (pr(z))

2

+ 2 TC(z)

= 2
√

TC(z̄I)TC(z) + 2 TC(z). (51)

From (51), we have

TC(z̄I)

TC(z)
≤ 2

√

TC(z̄I)

TC(z)
+ 2. (52)

Solving the above inequation, we have

TC(z̄I) ≤ (1 +
√
3)2TC(z), (53)

which proves the approximation ratio part of the theorem.

We now analyze the time complexity of FCGBA. The first for

loop (Line 2–Line 12) of Algorithm 2 runs for I times. From

the proof of Theorem 4, the time complexity of second for loop

(Line 4–Line 10) isO(IK2). Thus, we have the time complexity

of FCGBA is I ×O(IK2) = O(I2 K2). �

V. ALGORITHM DESIGN FOR TASK OFFLOADING AND

COMPUTING RESOURCE MANAGEMENT

This section focuses on designing algorithms for JOM. We

first show the hardness of JOM.

Theorem 6: JOM is NP-hard, and no polynomial-time ap-

proximation algorithm is possible unless there are some addi-

tional assumptions.

The main idea of the proof is to show a special version of JOM

is equivalent to the Generalized Assignment Problem (GAP)

defined in Chapter 48 of [34]. Under the special version of JOM,

there is no general-purpose server and only one type of resource

constraint, i.e., N = 0 and L = 1. Detailed proof of Theorem 6

is omitted due to space limitations.

A. Computing Resource Management

Next, we address the problem of determining the optimal

computing resource management decision α under any given

offloading decision (x,y). For WDs placing their tasks on re-

configurable accelerators, their latencies are fixed. Therefore, if

(x,y) is given, JOM is equivalent to minimizing the summation

of TP
i for i ∈ ∪

n∈N
On(x) over α as follows:

min
α

∑

n∈N

∑

i∈On(x)

fi
Fnδi,nαi,n

s.t. αi,n ∈ [0, 1] for n ∈ N , i ∈ On(x)
∑

i∈On(x)

αi,n ≤ 1 for n ∈ N . (54)
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We use α∗(x) = {α∗
i,n

∣

∣n ∈ N , i ∈ On(x)} to denote the opti-

mal solution of (54) under offloading decision x. The optimal

computing resource management decision α∗(x) is shown in

Lemma 3.

Lemma 3: For any given x, α∗(x) is as follows:

α∗
i,n=

√

fi
δi,n

∑

j∈On(x)

√

fj
δj,n

for n ∈ N , i ∈ On(x). (55)

The proof of Lemma 3 is omitted due to space limitations.

The main idea of the proof is to exploit the KKT conditions.

Substituting α∗ into (8) and changing the order in the double

sum, the optimal processing latency under offloading decision

(x,y) is equal to

TP =
∑

i∈I

∑

n∈N
xi,n

fi
Fn · α∗

i,n

+
∑

i∈I

∑

m∈M
yi,mti

=
∑

i∈I

∑

n∈N
xi,n

√
fi
∑

j∈On(x)

√

fj

Fn

+
∑

i∈I

∑

m∈M
yi,mti

=
∑

n∈N

∑

i∈I

∑

j∈I

xi,nxj,n

Fn

√

fifj
δi,nδj,n

+
∑

i∈I

∑

m∈M
yi,mti,m.

(56)

That is, by substituting α∗ into JOM, JOM is equivalent to P2

as follows:

min
x,y

∑

n∈N

1

Fn

∑

i∈I

∑

j∈I
xi,nxj,n

√

fifj
δi,nδj,n

+
∑

i∈I

∑

m∈M
yi,mti,m

s.t.
∑

i∈Om(y)

ai,m,l ≤ Am,l for m ∈ M, l ∈ L

∑

n∈N
xi,n +

∑

m∈M
yi,m = 1 for i ∈ I

xi,n, yi,m ∈ {0, 1} for i ∈ I, n ∈ N ,m ∈ M. (P2)

We use (x∗,y∗) to denote the optimal solution of P2. Accord-

ingly, (x∗,y∗, α∗(x∗)) is the optimal solution of JOM. Since we

have the optimal solution α∗(x) under any given (x,y), we then

focus on choosing (x,y), i.e., solving P2.

B. Semidefinite Programming Relaxation for Task Offloading

Despite eliminating variable α, P2 remains NP-hard, and

no polynomial-time approximation algorithm exists for it. The

proof is akin to that of Theorem 6, and we omit it. Semidefinite

relaxation for P2 provides a practical method to find a feasible

solution close to the optimal one in polynomial time. Conse-

quently, we concentrate on developing a semidefinite program-

ming (SDP) relaxation approach for P2.

First, we restructure P2 into the standard binary quadratic

programming (BQP) form. Let u be the column vec-

tor of all variables of P2, i.e., x and y. In particular,

we have u = (x1;x2; . . . ;xN ;y1;y2; . . . ;yM ) where xn =
(x1,n; . . . ;xI,n) and yn = (y1,m; y2,m; . . . ; yI,m). J = (M +
N)I is the number of binary variables of P2. By introducing a

TABLE III
NOTATION TABLE

new variable U = u · uT , we can reformulate P2 as:

min
u,U

Tr(PU) + qTu

s.t. hT
i u = 1 for i ∈ I

dTm,lu ≤ Am,l for m ∈ M, l ∈ L

U = u · uT . (57)

P is a J × J matrix corresponding to the quadratic terms in

the objective function of P2. q, hi, dm,l are column vectors of

length J . Since P can be written in the form of
∑

i QiQ
T
i ,

P is positive semidefinite, i.e., P � 0. The only non-convex

constraint in (57) is U = u · uT . By relaxing U = u · uT to

U � u · uT and adding constraint uj(1− uj) ≥ 0, (57) can be

relaxed to a convex optimization problem as follows:

min
u,U

Tr(PU) + qTu

s.t. hT
i u = 1 for i ∈ I,

dTm,lu ≤ Am,l for m ∈ M, l ∈ L,
diag(U) ≤ u,
[

U u

uT 1

]

� 0. (58)

The last constraint in (58) holds if and only if U � 0 and

U − u · uT � 0, which can be proved by exploiting the Schur

complement. Let (u∗, U ∗) be the optimal solution to (58). Since

(58) is a relaxation of P2, the optimal objective value of (58) is

a natural lower bound of the minimum value of P2.

In what follows, we provide a physical interpretation of the

semidefinite relaxation in (58). Let v be a J-dimensional joint

normal random vector. Let μ and Σ be the mean and covariance

matrix of v, respectively. That is, v is drawn from distribution

N (μ,Σ). Then, from [35], if constraint diag(U) ≤ u is not

in (58), μ = u∗ and Σ = U ∗ − μ · μT minimizes the following

problem:

min E
[

vTPv + qT v
]

s.t. E
[

hT
i v
]

= 1 for i ∈ I

E
[

dTm,lv
]

≤ Am,l for m ∈ M, l ∈ L. (59)

Intuitively, v drawn from N (μ,Σ) under μ = u∗ and Σ =
U ∗ − μ · μT has a cost close to the optimal objective value of

(58). We can draw a number of samples from N (μ,Σ) with

μ = u∗ and Σ = U ∗ − μ · μT , round each of them to a feasible

decision, and choose the feasible decision with the lowest cost.
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Algorithm 3: SDPR.

Let round be the operator rounding u to a feasible solution to

P2. A specific rounding algorithm is proposed in Section V-D.

We then formally state the proposed algorithm, named SDPR,

for P2 in Algorithm 3.

In step 2 of Algorithm 3 (SDPR), we can solve (58)

by the interior point method with the time complexity of

O(J7 log(ε−1)) [36], where ε represents the desired level of

precision. The time complexity for solving (58) plus the time

complexity of the rounding process is the time complexity of

Algorithm 3. The time complexity of the rounding process is

much lower than solving (58), which is validated by numerical

simulations.

C. Linearly Constrained Quadratic Programming Relaxation

for Task Offloading

In Section V-B, we relax P2 to an SDP problem. In particular,

the nonconvex constraintU = u · uT is substituted with the SDP

constraint, i.e., the last constraint in (58). This relaxation, how-

ever, results in a longer numerical solution time. In this section,

we relax P2 to a linearly constrained quadratic programming

(QP) problem, which can be solved more efficiently. Similar to

that in Section V-B, we use u to denote the set of all decision

variables. Then, P2 can be rewritten as follows:

min
u

uTPu+ qTu

s.t. hT
i u = 1 for i ∈ I

dTm,lu ≤ Am,l for m ∈ M, l ∈ L

u ∈ {0, 1}J . (60)

The last constraint in (60) is non-convex. By relaxing it di-

rectly tou ∈ {0, 1}J , we have the following linearly constrained

Algorithm 4: Round (Rounding Algorithm).

quadratic programming (QP) problem:

min
u

uTPu+ qTu

s.t. hT
i u = 1 for i ∈ I

dTm,lu ≤ Am,l for m ∈ M, l ∈ L

u ∈ [0, 1]J . (61)

Next, we introduce an algorithm similar to SDPR, which we

name the Quadratic Programming Relaxation and Rounding
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(abbreviated as QPR) algorithm. The main idea of QPR is to first

solve (61), obtaining a continuous decision, and subsequently

rounding this decision to its binary form using the round algo-

rithm in Section V-D. For brevity, we will not delve into the

detailed description of the QPR algorithm.

D. Rounding Algorithm Design

Next, we propose a rounding algorithm that rounds vector

u of length J to a feasible solution (x,y) for P2, where u is

the continuous solution of Problem (58) or (61), and (x,y) is

binary. Before the rounding process, we unzip u to (xc,yc). In

particular, xc
i,n = v(n−1)·I+i for i ∈ I and n ∈ N and yci,m =

v(N+m−1)·I+i for i ∈ I and m ∈ M. The rounding algorithm

is formally stated in Algorithm 4.

We first consider rounding yc to a feasible y, where y is an

I-by-M binary matrix,ym is themth column ofy. We sort WDs

I by the value ofmax
m

yci,m in descending order. WDs in the order

take turns to round{yci,m ∈ [0, 1]}m∈M to{yi,m ∈ {0, 1}}m∈M.

In particular, WD i set yi,m = 1 if m = argmax
m′

yci,m′ and ai is

no greater then the available space of FPGA m, and yi,m =
0 otherwise. Let IF be the set of WDs offloading its tasks to

M, i.e., i ∈ IF if and only if
∑

m∈M yi,m = 1. Then, since

we have the constraint that
∑

m∈M yi,m +
∑

n∈N xi,n = 1, we

have xi,n = 0 for i ∈ IF . That is, we only need to consider xi,n

for i ∈ IS � I \ IF in the following.

In what follows, we consider rounding xc
i,n to binary for i ∈

IS andn ∈ N . First, letxi � {xi,n|n ∈ N} and define function

Ci(x) as follows:

Ci(x) =
∑

n∈N

xi,n

Fn

√

fi
δi,n

⎛

⎝

∑

j∈IS
xj,n

√

fj
δj,n

⎞

⎠ . (62)

If y is fixed, P2 is equivalent to the optimization problem as

follows:

min
xi,i∈IS

∑

i∈IS
Ci(x)

s.t. xi ∈ Xi, i ∈ IS

Xi �

{

xi ∈ {0, 1}N |
∑

n∈N
xi,n = 1

}

. (63)

Problem (63) can be interpreted as a congestion game similar

to P1. Then, we can choose x by an algorithm similar to Al-

gorithm 1 as follows. At the beginning, each WD i sets xi,n

to 1 if n = argmax
n′

xc
i,n′ and sets xi,n to 0 otherwise. Then,

WDs in IS take turns adjusting their decisions. To be more

specific, if xi,n = 1 and there exists n̄ ∈ N such that moving

WD i from n to n̄ can lower the latency of WD i given other

WDs’ decisions, WD i resets xi,n̄ = 1 and xi,n = 0 for n �= n̄.

We can set a maximum number of iterations for WDs to adjust

their decisions. In fact, if there is no limit for maximum iteration,

it can be proved that the decision adjustment process for WDs

in IS will terminate after a finite number of iterations, as shown

in the following theorem.

Theorem 7. If IterNum is set to ∞, Algorithm 4 termi-

nates in finite steps, and TP (xb,yb) ≤ 2.62 · TP (x,yb) for any

feasible x.

The proof of Theorem 7 is omitted because the main idea of the

proof is similar to that of Theorem 3. Note that Theorem 7 does

not mean the proposed algorithm has an approximation ratio.

Theorem 7 means that TP (xb,yb) ≤ 2.62 · TP (x,yb) for any

x, where yb may not necessarily be the optimal y. The time

complexity of the rounding algorithm is polynomial. Since the

proof is standard, we omit it.

VI. NUMERICAL EVALUATION

In this section, we assess the performance of the proposed

algorithms across various scenarios. Our simulations are im-

plemented using Python 3.10 on a DELL Alienware desktop

equipped with 32 GB RAM and an AMD Ryzen7 2700X Eight-

Core Processor running Windows 10 OS.

A. Simulation Setup

The computing capability of each server is measured by

floating-point operations per second (FLOPS), and the capacity

of each server i is set to the real-world FLOPS of EC2 instances

from [37]. We consider a system with N = 10 general-purpose

servers (servers) andM = 5 FPGAs. Task size of WDs fi, i ∈ I
are drawn from the real-world computing complexity (in terms

of floating-point operations (FLOPs)) of 6 neural network mod-

els, the first six entries of Table V in [38]. Similar to [22],

δi,n is drawn from [0.5, 1]. We set the numbers of CLBs and

DSP slices are the two bottleneck resources, i.e., L = 2, and

set Am,1,m ∈ M and Am,2,m ∈ M to real-world values of

different types of FPGAs [39]. The number of CLBs required

for implementing a fuzzy neural network varies with network

size, where the numbers of CLBs required for implementing

fuzzy neural networks with 60 input neurons, 10 to 18 neurons

in the hidden layer, and three output neurons are in the range

from 5000 to 6000 [40]. We drew the number of CLBs required

of WDs from [4000, 8000] and the number of DSP slices of WDs

from [20, 40]. From [5], [6], ti,m, i ∈ I,m ∈ M are set to 10

to 60 times faster than the optimal average latencies of WDs on

servers under the case that I = 100 and M = 0. The number of

WDs varies in different simulations and will be specified in the

following.

We assume WDs are located in a square area of 1km× 1 km,

similar to that used in [9]. We divide the 1km× 1 km area into

six 1/3km× 1/2 km subareas, and there are 6 5 G base stations

(APs) located in the center of the 6 subareas. WD i and an AP

k can communicate if the distance between them, denoted by

di,k, is less than 0.5 km. For convenience, we set the bandwidth

of APs to the maximum achievable speed rather than its true

physical bandwidth. We randomly draw the uplink bandwidth

Bk and the downlink bandwidthBk from the set of 50–100 MHz.

ci, i ∈ [N ] and ci, i ∈ [N ] are randomly drawn from [0.4, 1]
and [0.2, 0.5] Megabits, respectively [10]. The parameter of
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Fig. 2. Communication latency versus the number of WDs.

bandwidth utilization ratio γi,k corresponding to WD i and AP

k is randomly chosen 15-50 bps/Hz [41].

B. Baselines

We use three baselines for comparison with SDPR. The first

baseline, named by MCMC, which is similar to the algorithm

proposed in [42]. MCMC is short for Monte Carlo Markov Chain

technique and is similar to the simulated annealing technique.

MCMC randomly chooses initial states (x,y) and z for JOM

and JAM, respectively. Then, at each iteration, MCMC chooses

a neighbor of the previous decision and moves to the neighbor

with a probability related to the cost difference of the decisions.

Details of MCMC can be found in Algorithm 1 of [42]. The

second baseline is named HEAL (short for HEuristic ALgo-

rithm), similar to the baseline used in [22]. For JOM, HEAL

first chooses y by a greedy algorithm similar to the greedy

algorithm [43] for the knapsack problem. In particular, HEAL

sorts WDs in ascending order of ti,m, and WDs in the order

take turns to be placed on an FPGA until there is no sufficient

space available. Then, HEAL chooses x for WDs that are not

placed on M. In particular, HEAL chooses the best server n for

each i under the assumption that there is no other WD. HEAL

chooses the optimal computing resource allocation decisions

under the selected (x,y). For JAM, HEAL chooses the best

uplink and downlink AP for each i under the assumption that

there is no other WD and chooses the optimal communication

resource allocation decisions under the selected z. Moreover,

we also compare the performance of our algorithms and that of

the third baseline, i.e., the optimal solution by the commercial

Gurobi solver.

C. Simulation Results

We first evaluate the performance of the proposed CGBA(λ)

and FCGBA for P1. Fig. 2 shows the communication latency

(in ms) of CGBA(0), FCGBA, MCMC, HEAL and the optimal

latency under the number of WDs I = {80, 90, . . . , 120}. The

results shown in Fig. 2 represent the average values obtained

from 10 independent simulations. As we can see from Fig. 2, the

communication latency of CGBA(0) (Algorithm 1) is lower than

that of FCGBA, MCMC and HEAL under all different settings of

I . In addition, the communication latency of CGBA(0) is around

1.013 times the optimal latency on average, and the communica-

tion latency of FCGBA is around 1.05 times the optimal latency

Fig. 3. Communication latency and execution time versus parameter λ.

Fig. 4. Communication latency and execution time versus number of WDs.

Fig. 5. Processing latency versus the number of WDs.

on average. As the number of WDs I increases, the average

communication latencies under all the algorithms increase due

to congestion. Then, we evaluate the performance of CGBA(λ)

under different λ. Fig. 3 shows the performance of CGBA(λ)

under λ ∈ {0, 0.02, . . . , 0.12} and that of FCGBA. There is a

trade-off between the time complexity and the objective value

(communication latency) ofCGBA(λ). As λ increases, the time

complexity decreases, and the communication latency increases,

which matches the statement in Theorem 4. From Theorem 4

and Theorem 5, the time complexity of FCGBA is equivalent to

one iteration of CGBA(λ). Although CGBA(λ) has higher

time complexity, it outperforms FCGBA in terms of objec-

tive value for λ ∈ {0, 0.02, 0.04, 0.06}. FCGBA outperforms

CGBA(λ) in both time complexity and approximation ratio for

λ ∈ {0.08, 0.1, 0.12}. Fig. 4 shows the communication latency

and time complexity of CGBA(0) and CGBA(0.125). As the

system scale increases, both the latencies and time complexities

under CGBA(0) and CGBA(0.125) increase linearly.

We then evaluate the performance of the proposed SDPR and

QPR for P2. Fig. 5 shows the average processing latency (in

ms) of SDPR and QPR, MCMC, HEAL and the optimal latency
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Fig. 6. Overall approximation ratio versus the number of WDs.

Fig. 7. Overall execution time versus the number of WDs

under the number of WDs I = {80, 90, . . . , 120}. We set the

maximum iteration number to be 20, i.e., the IterNum of SDPR

is 20. In addition, since Theorem 7 holds, the maximum iteration

number of the rounding algorithm (Algorithm 4) is set to ∞.

The proposed SDPR and QPR outperform MCMC and HEAL

under all the settings of I . From Fig. 5, the average ratio of

the processing latencies under SDPR and QPR to the optimal

value are around 1.017 and 1.021, respectively. As the number

of WDs I increases, the average processing latency increases

due to congestion. In addition, simulation results show that the

execution time of SDPR and QPR is linear to I , demonstrating

the good scalability of the proposed algorithms.

Next, we evaluate the total system latency and execution time

of the proposed algorithms. Figs. 6 and 7 respectively illustrate

the approximation ratio and execution time using various com-

binations of the proposed algorithms. Different combinations of

the proposed algorithms yield varying approximation ratios and

execution times, allowing users to select based on their precision

and delay requirements, e.g., applications requiring low execu-

tion time can use the combination of FCGBA and QPR with

the lowest time complexity, while applications requiring high

precision can choose the combination of CGBA(0) and SDPR

with the lowest approximation ratio. The execution time for the

combinations of the proposed algorithms increases linearly with

I , demonstrating the good scalability of our proposed approach.

VII. CONCLUSION

In this article, we have studied the joint task offloading, AP

selection, and resource allocation problem (JOAM) in heteroge-

neous edge environments to minimize the overall system latency.

We decomposed JOAM into two subproblems, namely JOM

and JAM. We proposed a 2.62-approximation algorithm named

CGBA for JAM. We demonstrated a trade-off between the ap-

proximation ratio and time complexity of CGBA and additionally

offered a faster variant of the algorithm. In addition, we designed

two algorithms, SDPR and QPR, for JOM based on convex

relaxation and rounding. Simulation results have shown that

the proposed algorithms outperform the popular baselines and

are near-optimal. In particular, the average processing latency

under SDPR is around 1.017 times the optimum, and the average

communication latency under CGBA is around 1.013 times the

optimum. In our future work, we aim to explore energy-aware

online task offloading, AP selection, and resource allocation.

Our emphasis will be on reducing system latency while adhering

to energy consumption constraints, and on the development of

algorithms optimized for swift decision-making.
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