7318

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

Joint Task Offloading and Resource Allocation in
Heterogeneous Edge Environments

Yu Liu
Fan Ye

Abstract—Mobile edge computing has emerged as a prevalent
computing paradigm to support applications that demand low
latency and high computational capacity. Hardware reconfigurable
accelerators exhibit high energy efficiency and low latency com-
pared to general-purpose servers, making them ideal for integra-
tion into mobile edge computing systems. This article investigates
the problem of joint task offloading, access point selection, and
resource allocation in heterogeneous edge environments for latency
minimization. Given the heterogeneity of edge computing devices
and the interdependence of the decisions required for offloading,
access point selection, and resource allocation, it is challenging to
optimize over them simultaneously. We decomposed the proposed
problem into two disjoint subproblems and developed algorithms
for each of them. The first subproblem is to jointly determine
access point selection and communication resource allocation de-
cisions, for which we have proposed an algorithm with a provable
approximation ratio of 2.62/(1 — 81), where X is a tunable pa-
rameter balancing the approximation ratio and time complexity.
Additionally, we offer a faster variant of the algorithm with an
approximation ratio of (/3 4 1)2. The second subproblem is to
determine offloading and computing resource allocation decisions
jointly and is NP-hard, where we developed algorithms based on
relaxation and rounding. We conducted comprehensive numerical
simulations to evaluate the proposed algorithms, and the results
demonstrated that our algorithms outperformed existing baselines
and achieved near-optimal performance across various settings.

Index Terms—Heterogeneous edge environments,
minimization, mobile edge computing.

latency

I. INTRODUCTION

HE advent of information technology has brought forth
T numerous novel applications that demand ultra-low re-
sponse times, including augmented reality, virtual reality, the
Internet of Things, and autonomous vehicles [1], [2], [3]. How-
ever, wireless devices face several constraints, such as limited
computing capability and high energy consumption, that prevent

Manuscript received 12 April 2023; revised 25 October 2023; accepted 10
November 2023. Date of publication 28 November 2023; date of current version
7 May 2024. This work was supported in part by the National Science Foundation
under Grants 1730291, 1717731, 2230620, 2046444, 2146909, 2106027, and
2214980. Recommended for acceptance by C. Assi. (Corresponding author: Yu
Liu.)

Yu Liu, Yingling Mao, Fan Ye, and Yuanyuan Yang are with the Department of
Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY
11794 USA (e-mail: yu.liu.3 @stonybrook.edu; yingling.mao @stonybrook.edu;
fan.ye @stonybrook.edu; yuanyuan.yang @stonybrook.edu).

Zhenhua Liu is with the Department of Applied Mathematics and Statis-
tics, Stony Brook University, Stony Brook, NY 11794 USA (e-mail: zhen-
hua.liu@stonybrook.edu).

Digital Object Identifier 10.1109/TMC.2023.3335198

, Graduate Student Member, IEEE, Yingling Mao
, Senior Member, IEEE, and Yuanyuan Yang

, Graduate Student Member, IEEE, Zhenhua Liu"?,
, Fellow, IEEE

them from fulfilling the low latency requirements of the appli-
cations, such as tasks that might include deep neural network
inference, complex data analytics, or real-time video processing.
Meanwhile, cloud computing cannot provide low latency either,
given its susceptibility to network congestion and the substantial
physical distances involved. To address this issue, offloading
tasks from wireless devices to edge servers is gaining traction as
a prevailing computing paradigm for these applications, owing
to the proximity of edge servers to end-users and their potent
computing power.

The development of Field Programmable Gate Arrays (FP-
GAs) has led to the widespread adoption of FPGA-based recon-
figurable accelerators for diverse tasks [4]. Utilizing FPGAs for
specific tasks has proven highly efficient in terms of computing
time and energy consumption. For instance, an AlexNet accel-
erator with a 16-bit fixed point implemented on Xilinx Virtex-7
outperforms the ARM Cortex A15 by being 62 times faster and
consuming 22 times less energy [5], [6]. Typically, FPGAs are
coupled with a CPU in conventional computing systems, serving
as powerful auxiliary components. Recently, a more advanced
architecture has been proposed, where FPGAs can be connected
to networks as standalone computing resources, adhering to
existing Infrastructure as a Service (IaaS) mechanisms [7], [8].
This approach allows for greater scalability, flexibility, and ease
of maintenance.

Previous research on task offloading and resource manage-
ment in edge computing has mainly targeted homogeneous
systems equipped with either general-purpose processors or
FPGAs. In contrast, our study delves into a heterogeneous
edge computing system encompassing both FPGAs and general-
purpose servers. Wireless devices (WDs) communicate with
computing devices through access points (APs) such as base
stations. Four categories of decisions exist in such systems:
offloading, access point selection, computing resource manage-
ment, and communication resource management, all of which
jointly determine the system’s overall latency. The objective is
to minimize the average latency for all wireless devices. The
objective of the system is to minimize the average latency for
all wireless devices.

Although edge computing and the incorporation of standalone
FPGAs offer numerous advantages, simultaneously selecting
offloading, AP selection, computing resource management, and
communication resource management decisions presents sig-
nificant challenges. First, the system’s computing devices are
heterogeneous, making them suitable for distinct tasks. For

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TASK OFFLOADING AND RESOURCE ALLOCATION IN HETEROGENEOUS EDGE ENVIRONMENTS

instance, some tasks achieve significant acceleration on FPGAs,

while others result in less pronounced latency improvements.

Moreover, tasks from different WDs demand varying resource

amounts when executed on FPGAs. As a result, offloading

decisions must be judiciously determined to optimally utilize the
finite FPGAs and delegate tasks to the most suitable computing
devices. Second, the computing resources of general-purpose
servers are finite and necessitate allocation among multiple

WDs [9]. Resource allocation among WDs must be balanced to

guarantee the minimum overall latency. Third, WDs can com-

municate with edge computing devices via different APs, where
the channel conditions between the APs and WDs may differ.

As a result, the AP selections for WDs need to be orchestrated

to minimize their collective latencies. Lastly, communication

bandwidth is limited and must be distributed among WDs in an
optimally cooperative manner. Existing methods are inadequate
in providing a comprehensive solution to these challenges, while
this work investigates the joint task offloading, AP selection, and
resource management problem in heterogeneous edge environ-
ments.
Our main contributions are summarized as follows.
® We formulate the Joint task Offloading, AP selection, and
resource Management problem (JOAM) in heterogeneous
edge environments, which we demonstrate to be NP-hard.
The JOAM problem can be divided into two separate
NP-hard problems, namely Joint AP selection and com-
munication resource Management problem (JAM) for min-
imizing communication latency and Joint task Offloading
and computing resource Management problem (JOM)
for minimizing computing latency, (see Section III-E for
details).
¢ For the first subproblem (JAM), we derive the closed-form
optimal communication resource allocation decision and
introduce a game-theoretic algorithm, denoted as Con-
gestion Game-Based Algorithm (CGBA), for making AP
selection decisions. The algorithm has an approximation
ratio of (12;%2/\) and converges in at most O(% log(£2))
iterations, where A is an adjustable parameter that balances
time complexity and approximation ratio. That is, the com-
munication latency under the proposed CGBA algorithm,
with parameter A, is no more than % times the optimal
latency. We also propose a faster variant of CGBA, named
FCGBA, which converges in [iterations and exhibits a
relatively higher approximation ratio of (v/3 + 1)2.

e For the second subproblem (JOM) minimizing computing
latency, we first derive the optimal computing resource
allocation decision under any given offloading decision.
In addition, we show that there is no polynomial-time
approximation algorithm for choosing offloading deci-
sions. Consequently, we develop a semidefinite relaxation-
based algorithm to make offloading decisions. We also
propose a faster quadratic relaxation-based offloading
algorithm.

® We evaluate the algorithms by extensive simulations. The
results highlight that the proposed algorithms outperform
popular baselines and are near-optimal, with an average
latency only 1.5% higher than the optimal value.

7319

The remainder of this paper is structured as follows: Sec-
tion II reviews related works; Section III presents the problem
formulation; Sections IV and V propose algorithms for problems
JAM and JOM, respectively; Section VI demonstrates the per-
formance evaluation of the proposed algorithms; and Section VII
concludes the paper.

II. RELATED WORKS

A large number of works of task offloading with various pur-
poses and settings in edge computing systems are well-studied,
e.g., [9], [10], [11], [12], [13], [14]. In [11], Xu et al. consider
a problem of service caching and task offloading to minimize
computational latency under a time-average energy consump-
tion constraint, which does not account for communication
latency. The authors propose a Gibbs sampling-based algorithm
to make decisions. In [13], Sun et al. formulate and investigate a
task offloading problem and define a metric called computation
efficiency. However, the paper does not consider the processing
latency of tasks. The authors propose an iterative algorithm
based on gradient descent methods, which efficiently minimizes
computation efficiency. In [14], Shuwaili et al. investigate the
joint uplink and downlink optimization problem of minimizing
energy consumption under latency constraints, which does not
account for system heterogeneity, and the proposed problem
is solved using successive convex approximation techniques.
In [15], Liu et al. focus on the problem of cost-aware online
task offloading and resource management. They use the drift-
plus-penalty approach to balance the energy cost and the system
latency. In addition, some papers focus on offloading partial
tasks [16], [17], [18], [19]. In [16], Pavlos et al. investigate
a risk-aware heterogeneous multi-MEC system and propose
a game-theoretic-based algorithm with low time complexity.
In [17] and [18], Pavlos et al. focus on the problem of risk-aware
data offloading in multi-server multi-access and propose a non-
cooperative game-theoretic-based distributed low-complexity
algorithm. In [19], Pavlos et al. study the satisfaction-aware data
offloading problem in surveillance systems. None of the studies
above studies integrate hardware reconfigurable accelerators
into their systems.

Some works are based on deep reinforcement learning.
In [12], Liu et al. formulate and study the multi-objective
problem of task offloading and resource scheduling and propose
a double deep Q network-based approach converging quickly.
In[2], Shi et al. consider a vehicle-to-vehicle (V2V) task offload-
ing problem in blockchain-enabled vehicular edge computing
systems, and a deep reinforcement learning-based algorithm
is proposed. In [1], Huang et al. consider the computation
offloading problem in wireless-powered mobile edge computing
networks and propose a deep reinforcement learning method to
make binary offloading decisions. In [20], Wang et al. study
the joint edge trans-coding and client enhancement problem
in multi-tier mobile edge computing networks with the goal
of maximizing the quality of experience of mobile users and
a deep reinforcement learning method is proposed to make
computing decisions. In [21], Liu et al. investigate the task
offloading and resource allocation in edge environments, and a

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

7320

deep learning-assisted approach is proposed. Again, none of the
studies account for hardware reconfigurable accelerators in their
systems. We can extend our algorithms proposed in this paper to
an online scheme by incorporating the above deep reinforcement
learning methods in the future.

Several studies employ game-theoretic-based algorithms in
their research. For instance, two papers, [9] and [10], investigate
task offloading and resource allocation, where the allocation of
computing resources to wireless devices can be adjusted. In [9],
Josilo et al. tackle the problem of distributing wireless and com-
puting resources to wireless devices within an edge computing
system to minimize latency, proposing an algorithm with a prov-
able approximation ratio. In [10], JoSilo et al. expand upon the
model in [9] by incorporating network slicing. Both [9] and [10]
allow adjustable computing resource allocation for wireless
devices. However, this paper includes standalone FPGAs, and
the amount of FPGA resources assigned to FPGAs cannot be al-
tered to adjust processing latency (see Section III-D for details).
The distinct characteristics of computing latencies for general-
purpose servers and FPGAs contribute to the complexity of the
latency minimization problem, rendering existing methods in the
literature insufficient for addressing the problem considered in
this paper. In [22], Liu et al. develop and analyze the joint service
function chain deployment and resource allocation problem
within edge environments to minimize overall system delay,
without considering input/output data uploading/downloading
latency. The authors present a congestion game-theoretic-based
algorithm with a provable approximation ratio. The algorithm
proposed in Section IV can resolve the issues in [9], [10],
[22], where our algorithm converges in polynomial steps while
their algorithms may require exponential steps. Some research
assumes adjustable computing resources for tasks, such asin [9],
[10] and [22], while other studies, like [11], consider fixed
resource amounts for tasks. This paper, an extended version
of our conference paper [23], examines a more general case
in which the resource allocation for tasks on general-purpose
servers is adjustable, and that for tasks on FPGAs remains fixed.

III. SYSTEM MODEL

In this section, we formulate the problem of joint task offload-
ing, AP selection, and resource allocation in heterogeneous edge
environments with the goal of minimizing the system latency.
Table I presents some main notations.

A. Edge Task Offloading System

1) System Components: We consider an edge system con-
sisting of wireless end devices (WDs), access points (APs), and
edge computing devices. There are / WDs in the system, and
T =[I]2{1,2,...,I} denotes the set of WDs. There are K
APsiin the system, and K = [K] £ {1,2, ..., K} represents the
set of APs. For each AP k € I, it has an uplink bandwidth of
B}, bits/s and a downlink bandwidth of B, bits/s. There are
two types of edge computing devices, namely general-purpose
servers and FPGAs. We use N = [N] £ {1,2,..., N} to de-
note the set of general-purpose servers where N is the number
of servers. Similarly, M = [M] represents the set of FPGAs

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

TABLE I
IMPORTANT NOTATIONS

T set of wireless devices

N set of general-purpose servers

M set of reconfigurable accelerators

K set of access points
Tin offloading decision related to server n (binary)

x {zinli € Z,n € N'}
Yi,m offloading decision related to FPGA m (binary)

y {yi,mli € Z,m € M}

fi task size (FLOP) of WD 14

Fy computing capability (FLOP/s) of server n
A, resource capacity (e.g., CLBs, memory) of FPGA m
a; ., | resource sizes required by computing task i on FPGA m
Qi computing resource allocation decision (continuous)

a {ainli € Z,n e N'}

Oin suitability between WD 4 and server n

5 {6inli € Z,n € N}

Zik uplink AP selection decision (binary)
Zi 1 downlink AP selection decision (binary)
[uploading data length (bit) of WD 4
c; downloading data length (bit) of WD ¢
z {Zik,zipli €T,k €K}
Bi’ E uplink bandwidth allocation decision (continuous)
gi’ & downlink bandwidth allocation decision (continuous)
B {Bix: B, li €T,k € K}
Vi, k wireless channel condition (bps/Hz)
Y {vixli €L,k € K}
TZ.P processing latency of WD 4 (second)
TF overall processing latency (second)
TiC communication latency of WD ¢ (second)
¢ overall communication latency (second)

where M is the number of FPGAs. We use F), to represent
the computing capability of server n, such as the number of
floating-point operations per second (FLOP/s). For each m €
M, A, ={An1,Am2, ..., A, 1} is the vector representing
the amounts of L different resources of FPGA m, i.e., the number
of configurable logic blocks (CLBs), Flip-Flops, DSPs, RAMs
andsoon [24]. £ = {1,2,..., L} denotes the set the L types of
resources. Multiple applications can share the resources of an
FPGA simultaneously [25], [26].

2) Network Topology: WDs communicate with edge com-
puting devices via APs. Each AP k € K has a coverage area,
and a WD can be covered by more than one AP. We use K; to
represent the set of APs covering the location of WD ¢, where
K; € K. APs communicate with edge computing devices by
wired links [27], e.g., cellular base stations using fiber optic
cables with a speed of up to 200 Gbps and wireless routers
using twisted pair cables with a speed of up to 10 Gbps. Around
95 percent of buildings in the United States have fiber-optic
infrastructures within 1.5 km, and most of the base stations
are connected by fibers [27]. Therefore, compared with the

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TASK OFFLOADING AND RESOURCE ALLOCATION IN HETEROGENEOUS EDGE ENVIRONMENTS

GS: General- Purpose Server : Wireless Device

RA: Reconfigurable Accelerator § : Base Station

@: Switch

BBU: Baseband Unit

WD1 wp2 wna WD4 WD5 WDG WD7

Fig. 1. Example of an edge computing system with N =3, M =2, K =3
and I = 7. WD 3 uses AP 1 and AP 2 for uploading and downloading data,
respectively.

wireless links between WDs and APs, the latency of the wired
links between APs and edge computing devices is negligible,
which is a typical assumption in the literature [9], [10]. In
addition, the algorithms proposed in this paper can be adapted
to accommodate situations where the latency between APs and
computing devices is not negligible. Fig. 1 shows an example of
the network topology.

3) Tasks: WDs generate computing tasks periodically under
a given frequency [28]. Each task of WD 4 has an input data size
of ¢; bits and an output data size of ¢; bits. Each WD 7 offloads
its tasks to either a server or an FPGA. If WD i offloads its tasks
on a server, it takes f; FLOPs to complete a task. When WD 4
offloads its tasks on FPGA m, let a; ,, = {@im,1,---+0im,L}
represent the necessary resources to implement WD ¢’s function,
and the completion time is denoted by ¢; ,,. &, and a;m
can be different across FPGAs. Specifically, experiments in [29]
demonstrated that function completion time and resource con-
sumption vary across families of Xilinx, Altera, Actel, and Quick
Logic FPGAs.

B. AP Selection and Wireless Resource Management

1) AP Selection Decisions: Each WD ¢ € 7 has to choose an
AP k; € K; for uploading input data. Similarly, each WD i € T
has to choose an AP k; € KC; for downloading output data. We
use variable Z; 5, € {0, 1} and variable 2, ;, € {0, 1} to represent
whether WD i choose AP k as its uploadihg AP and downloading
AP, respectively. Let z; = {Z; x|k € K} U {z; x|k € K} be the
collection of AP selection decisions of WD <. There are two
constraints for the AP selection decisions of each WD ¢ as

follows:
Z Zir = 1 and Z

kek; kek;

In addition, z = {Z; x|i € Z,k € K} U{z,; x|i € T,k € K} is
the set of all AP selection decisions. For each AP k € IC, let

7321

O (z) be the collection of WDs using AP k as their uploading
AP under decision z. WDs in Oy (z) share the uplink bandwidth
of AP k. Similarly, let O, (z) be the collection of WDs using
AP £ as their downloading AP.

2) Wireless Channel Conditions: Foreachi € ZTand k € I,
there is a bandwidth utilization, denoted by ; > 0, associated
with WD 7 and AP k, which reflects the condition of the wireless
condition between WD ¢ and AP k. -, ; is given in advance,
which is affected by the distance between WD ¢ and AP k, the
noise power of the channel between WD ¢ and AP k, and so on.
In particular, we set v; , = 0 if WD 1 is not covered by AP £k,
ie., vk =0ifk ¢ K;.

3) Wireless Bandwidth Allocation: 1f WD i € Oy,(z), there
is a continuous variable, B@ 1> representing the proportion of the
uplink bandwidth of AP k allocated to WD :. Similarly, if WD
i€ Oy(z), B, ,, represents the proportion of the downlink band-
width of AP k; allocated to WD . The system can employ the Or-
thogonal Frequency Division Multiplexing (OFDMA) scheme,
where bandwidth allocation corresponds to the allocation of
Resource Units (RUs). Since the total bandwidth allocated to
WDs can not exceed the total bandwidth of AP k, we have two
constraints as follows:

Z Bir <1

Zz@kgi,k =

i€l i€y (z)
Zéi»kfi,k = Z Bip=1 @)
i€l €0, (z)

For the sake of simplicity, we use 3 to denote the collection
of all communication resource management variables, i.e., 5 =
{Biw B, ,li €T,k eK}.

We dlstlngulsh the uplink and downlink bandwidth to handle
the case that uplink and downlink use different frequency bands,
e.g., frequency division multiplexing (FDD) protocols [30].
Our algorithm can handle the case that there is no distinction
between uplink and downlink bandwidth, i.e, each AP k has only
one bandwidth constraint 3 2.5, () Bik + 2ico, () B,), <
which is a degenerated case.

C. Task Offloading and Computing Resource Management

1) Offloading to Server: For each WD ¢ € 7 and server
n € N, there is a variable z; ,, € {0, 1}. In particular, z; , = 1
if WD 7 offloads its tasks on server n, and x; , = 0 otherwise.
Xp = (T1,n;T2.n; ... ;21,n) denotes the collection of x; ,, re-
lated to server n. In addition, x denotes the collection of x; j,
for i € Z,n € N. O,(x) is the set of WDs that place their
tasks on server n, i.e., z; , = 1if i € O, (x). If WD ¢ offloads
its tasks on server n, ie., i € O,(x), we use ¢, to denote
the proportion of computing capability of server n allocated to
WD i. Note that the server can be not only a CPU but also a
GPU because the Multi-Process Service (MPS) scheme allows
different tasks running on different address spaces of a GPU [31].
Specifically, MPS enables multiple CUDA applications to share
a GPU simultaneously. In this setup, GPU resources, such as
address space and memory, are allocated non-uniformly across
these applications. There is a constraint limiting that the amount

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

7322

of computing capability allocated to WDs in O,,(x) can not
exceed the total computing capability of server n as follows:

Z-ri,nai,n = Z A n <1 3)

el €0, (x)

For simplicity, we use « = {e; »|i € Z,n € N'} to denote the
collection of all computing resource management variables.

2) Suitability Between Servers and Tasks: Since different
servers may be equipped with different amounts of CPUs, GPUs,
etc., certain servers are more suitable for executing specific types
of tasks. For each WD 4 and server n, there is a suitability
din € [0,1] [22]. 6;,, € [0,1] depicts how well a server n is
fitting for running tasks of WD i. The larger §; ., the better the
suitability of offloading tasks of WD i to server n.

3) Offloading to FPGAs: For each WD ¢ € 7 and FPGA
m € M, there is a decision variable y; ,,, € {0, 1}. In particular,
Yi,m = 1if WD places its tasks on FPGA m, and y; ,,, = 0 oth-
erwise. y is the collection of y; ,, fori € Z, m € M. Moreover,
O, (y) represents the set of WDs that place their tasks on FPGA
m,ie.,i € Op(y)ifyim = 1. Thereis a constraint limiting the
total amounts of resources required by WDs in O,,,(y) can not
exceed the resource amounts of FPGA m as follows:

Zyzmazml Z azml<Amlf0rm€Ml€£

i€l 1€0m (y)

“

4) Constraint of Offloading Decision: The collection of of-
floading decisions is (x,y). Since each WD ¢ offloads its tasks
on either a server n € N or an FPGA m € M, we have the
following constraint regarding (x,y):

> Timt > yim=1foricT. (5)

neN meM

D. Goal of the System

The goal of the system is to minimize the summation of
latency of all WDs. The latency of each WD 7 consists of two
parts, namely processing latency 7'f’ and communication latency
TC.

1) Processing Latency: If WD ¢ places its task on server n,
the average processing latency can be expressed as a function of

the amount of computing capability allocated to WD i [9], i.e.,

fi

TF —J
F 61 ’I’Lal n

L =g ifi € O,(x) (6)
where 0;,, is a fixed parameter reflecting the suitability of
running tasks of WD ¢ on server n. For example, §; , is different
in two cases where the server is a CPU and a GPU. We can tune
the above latency by varying «; ,, [9], [31]. On the other hand,
if WD ¢ offloads its tasks on FPGA m, the processing latency of

WD i is t; , L€,
TF = yimmtim if i € Op(y). (7

Different from the latencies of tasks on servers, latencies of
tasks on FPGAs can not be decreased by increasing the number
of configurable logic blocks for the following reasons. First, the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

functions running on FPGAs are described by hardware descrip-
tion language in advance. Once the hardware description code
is given and an FPGA is specified, the resource consumption
and the latency are also fixed. Second, it is wasteful and time-
consuming to develop different versions of FPGA implemen-
tation. Last and most importantly, varying the implementation
(reprogramming FPGA) takes time, e.g., hundreds of ms up to
tens of seconds, which is fatal to applications requiring extra-low
latency.

From (6) and (7), the processing latency is a function of
(x,y,), and we use T¥(x,y, a) to denote the summation of
processing latency of all WDs, i.e.,

x'ln/fl
"B (S Do)
®)

2) Communication Latency: Since we focus on edge com-
puting systems, the WDs and APs are in close vicinity; there-
fore, the propagation delay is negligible, and we only need to
consider the transmission delay. The transmission latency of
WD i consists of input data uploading latency and output data
downloading latency. The uploading transmission delay of WD

¢ is denoted by Tf

TF(x,y, @)

. In particular,
(RS G — ©)
jex Yisk B Big

Similarly, the downloading transmission delay of WD ¢ is de-
noted by IZ-C, and we have

Z 24 kCi
ik By By,

kel

Tf = (10)

Let Tf be the average communication latency of WD 1, i.e.,

T =T, + T¢. The summation of communication latencies
of all WDs is a function of (z,) as follows:

ZTCZB Z(Tf-&-IZC)

i€l i€l

TC(z,3) = (1)

E. Problem Formulation

Next, we formally state the problem that we formulated above
as an optimization problem, and we refer to the problem as
JOAM which is short for Joint task Offloading, AP selection,
and resource Management. JOAM is as follows:

x;lzigﬁ TP (x,y,0a) + T%(z, B) (JOAM)
s.t. (1)-(5)
Zin €{0,1} fori € Zandn € N (12)
Yim € {0,1} fori € Z and m € M (13)
;p €10,1] fori € Op(x)andn e N (14)
Zikr2ip €{0,1} fori € Zandk € £ (15)
Bir€l0,1]fori € O(z) andk € K (16)
B, , €10, 1] fori€ Oy(z)and k € K. (17)

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TASK OFFLOADING AND RESOURCE ALLOCATION IN HETEROGENEOUS EDGE ENVIRONMENTS

The decision variables of JOAM can be partitioned into two
sets, namely (x,y, «) and (z, 8). There is no coupling between
(x,y, @) and (z, 3) in the constraints. In addition, communica-
tion latency 7°¢ is merely determined by (z, 3), and processing
latency 7' is merely determined by (x, y,). Therefore, JOAM
can be divided into two disjoint subproblems, namely the Joint
task Offloading and computing resource Management problem
(JOM) of minimizing 7T over (x,y,a) and the Joint AP
selection and communication resource Management problem
(JAM) of minimizing T'“ over variables (z, 3). The two disjoint
subproblems are as follows:

min TP (x,y,a) (JOM)
X,y,«x

S.t. 3)-(5), (12)—(14)

miﬁn Tz, B) (JAM)
s.t. (DH)=(2), (15)—(17)

In what follows, we show the NP-hardness of JOAM. Actually,
both JOM and JAM are NP-hard.

Theorem 1: JOAM is NP-hard.

Proof: JOM is a special version of JOAM. To be more spe-
cific,JOMis equivalent to JOAM if there is only one AP covering
all WDs and having infinite uplink and downlink bandwidth.
JOAM is NP-hard because JOM, a special version of JOM, is
NP-hard. The NP-hardness of JOM is shown in Theorem 6. [

IV. ALGORITHM DESIGN FOR AP SELECTION AND
COMMUNICATION RESOURCE MANAGEMENT

First, we show the hardness of JAM in Theorem 2.

Theorem 2: The JAM problem is NP-hard.

The proof of Theorem 2 is similar to that of Theorem 1 in [10],
SO we omit it.

A. Communication Resource Management

We first consider finding the continuous communication re-
source management variables J under any given AP selection
decision z. If z is given, JAM is equivalent to the following
problem.

mln Z (

€T

s.t. Z Bix <1, Z gi,kglforkelC

i€0y (z) i€0,(z)
& €[0,1] fori € Op(z) and k € K
€ [0,1] fori € O, (z) and k € K.

B)+1If(z.5))

(18)

& =l

ik

We use 3(z) = {B; 4|k € K,i € Op(z)} U{B; [k €K, ie
O,.(z) } to denote the optimal solution of (18) under AP selection

7323

decision z. The optimal communication resource management
decision 3*(z) is shown in Lemma 1.

Lemma 1: For any feasible z, optimal communication re-
source management decision 3*(z) is as follows:

B s Tk fork € K,i € Ox(z), (19)
2 je0n(a) \ 7
B = Tk fork € K,i € Oy(z). (20)

- Z Cj
7€0L(2) \/).k

The proof of Lemma 1 is omitted due to space limitations.
The main idea of Lemma 1 is to derive the optimal solution by
exploiting KKT conditions.

Substituting 5* into (18), the optimal communication latency
under any feasible AP selection decision z is equal to

Z(Tf+zf) STy Y 1¢

1€ keK 0y, (z) keK i€Q, (z)
-y =¥ > =
Yi,k = ik
e B k i (2) €0 () i

2n

/' 7‘7
DY ol U DRV o
kek By i€0, () bk \jeo (@) V1

B. Algorithm Design for AP Selection

For convenience, we introduce some short-formed terms and
interpret the problem as a weighted congestion game. Let R £
{(k, upload), (k, download)|k € K}, where each element in
set R is a tuple representing a kind of communication re-
source. For example, (k, upload) and (k, download) represent
the uploading and downloading bandwidth resources of AP k,
respectively. For each resource r € R, there is a weight m,.
associated with it. In particular, m, = 7}6 if r = (k, upload)

and m, = B—k if r = (k, download). For each WD i, let Z; be
the set of all feasible z;. In particular, from the constraints of
JAM, we have

Zi=Szi|Y Fin=1,) z =landZ 2z, €{0,1}
kek kek
(22)

For any given z; € Z;, z; decides the uploading AP and the
downloading AP of WD ¢, and we use R;(z;) to denote re-
sources that WD ¢ chooses. For example, if WD ¢ chooses AP
k1 and AP ks as its uploading and downloading APs respec-
tively, we have R;(z;) = {(k1, upload), (k2, download)}. Let
pi(z;) be a value corresponding with the pair of WD 4 and
resources r, which represents the congestion value that WD i
contributed to resource r under decision z;. In particular, for

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

7324
TABLE II
NOTATION TABLE
r €R | resource r € R £ {(k,upload), (k,download)|k € K}
pi(z;) congestion value that player ¢ contributed to resource r
pr(2z) congestion value of resource 7
Ri(zi) set of resources that player (WD) ¢ chooses

r € {(k,upload)|k € K},

i ViV, ifZip=1

Z;) = ’ R 23

P (i) { 0, otherwise. 23)
Similarly, for r = (k, downloading) and k € IC,
i \/Qi/’yika ifz;, =1

’ i) = ’ ’ 24

Py (2:) {O, otherwise. 24

In addition, for each r € R and each feasible z, we define the
congestion value of resource r under decision z, denoted by
pr(2z), which is a function of z as follows:

pr(z) = 3 pl(z).

i€l

(25)

We summarize the notation defined above in Table II.
Next, by substituting (21) and the terms defined above into
JAM, we have that JAM is equivalent to P1 as follows:

mzin ZTiC(Z):Z Z m..p;.(2:)pr(2)

i€l €L reR;(2z;)

stz € ZiieT. (P1)

P1 can be interpreted as a weighted congestion game as
follows, where Z is the set of players, and 7% (z) =
DoreRs(2:) m,.pt.(z;)p,(z) is the cost of player i under decision
z. The problem is equivalent to finding the strategy profile of all
players, which minimizes the total cost of all players.

Next, we propose an algorithm, called Congestion Game
Based Algorithm (CGBA), for P1 in Algorithm 1. CGBA has
a parameter A > (that we can tune. We use CGBA()) to denote
CGBA with parameter L. CGBA(A) starts by randomly selecting
a feasible decision for each WD ¢ (Line 1). At the beginning of
each iteration, the algorithm checks whether there exists a WD ¢
that can reduce its latency to less than (1 — A) times its previous
latency by changing its own decision. In particular, let A;(z;) =
Tic(zi, Z_;) — ming cz, Tic(ii7 z_;) represent the maximum
decrease in the cost of WD i that can be achieved by changing
only z,. J is defined as the set of WDs such that 7 € 7 if and
only if WD i can decrease its cost by changing only z; to a
value that is less than (1 — A)T.° (z). In addition, A 7 represents
> _icy Ai.Line4-Line 20 compute J, A; and A 7. If J is empty
or A7 /T (z) is less than parameter A, the algorithm terminates.
If J is not empty, the algorithm selects the WD ¢* (Line 24),
where i* = arg max A;. Afterward, WD ¢* updates its decision
by selecting the option that minimizes its cost.

We use z to denote the AP selection decision made by Al-
gorithm 1, and use z* = (z7,...,z7}) to denote the optimal AP
selection decision. In addition, z_; represents the decision of all
WDs except WD 4, i.e., z = (z_;,2;).

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

Algorithm 1: CGBA(})

Input: By, B,, for k € K, ¢, ¢, fori € T,
Yig fori €T, ke K
Output: A feasible solution to P1: z
1 Initialization: choose z; from Z; randomly for k € I;
2 while True do

3 j:@,TZO,AJZO;

4 for i € 7 do

5 Tiold = TiC(Zi, Z,i);

6 T:=T+ Tfld;

7 T 1= oo

8 for z, € Z do

9 Ttemp = Tic(ziy Z—i);
10 if Ty < T then
1 zﬂinew = Ttemp;

12 z, 1= Z;;

13 end

14 end

15 AL = T’Z_old _ Tinew;

16 if A;/T?'% > X then

17 J:=JU{i};

18 Ay =A7+A;

19 end
20 end
21 if (7==20)]| (Az7/T <) then
2 | break;
23 else

24 1* = argmax A}

i€l

25 Zir 1= Zhes

26 Z = (2,2);
27 end
28 end

29 Return z = z;

In what follows, we analyze the performance of CGBA(X).
First, we show that P1 is an exact potential game, as shown in
Lemma 2.

Lemma 2: P1 is an exact potential game where the potential
function is

HOEDDS (mripi(zj)>Pi(Zi)- (26)

€L reR;(z;)
For all feasible z;, z}, and z_;, we have
T’ic(zi7z—i) - T’iC(Z;a Z—’L') = P(Z’ia Z—i) - P(Z;,Z_i). (27)

In addition, 7 (z) > P(z) > 0 holds for all feasible z.

The proof of Lemma 2 can be found in [32], [33], so we omit
it. Based on Lemma 2, we have the performance guarantee for
CGBA(0) as shown in the following theorem.

Theorem 3: CGBA(0) terminates at a decision z with 2.62 -
TC(z*) > T (2) after a finite number of iterations, where z* is
the optimal decision.

Proof: Part A: Proof of CGBA(0) terminates in finite steps
Since Lemma 2 holds, the value of the potential function will
keep decreasing under CGBA(0). That is, there is no cycle in the
path of z under CGBA(0). Also, the number of feasible z is finite.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TASK OFFLOADING AND RESOURCE ALLOCATION IN HETEROGENEOUS EDGE ENVIRONMENTS

Therefore, CGBA(0) will terminate after a finite number of iter-
ations. Assume CGBA(0) terminates in z = (21,22, e 7K.
From Line 2 of CGBA(0), there is no i with T (zl,) >
ming, ez, T (z;,z_;). That is, each i in Z can not decrease
its own cost by changing only its own strategy, which is the
definition of Nash equilibrium.
Part B: Proof of CGBA(0)’s Approximation Ratio

z = (21,29, ...,2s) represents the AP selection decision got by
CGBA(0).z = (21,2, ..., 2z) can be any feasible AP selection
decision. From the part A, we have that z is a pure Nash
equilibrium. For any i € Z, because z is a Nash equilibrium,
we have

T (2i,2-) < T (24,2-5)
> e (z)pr(zi,2-)

reR;(z;)
Y meni(z) (pr(2) +pi(zi) . (28)
reRi(2:)
Summing (28) up for i € Z, we have
@)<Y > mepi(z) (pr(2) +pi(zi) . (29)

1€L reR;(2;)

Interchanging the order of the double summation in (29), we
have

TC@) < > Y meph(z) (pr(2) + pl(zi))

i€ 7eR;(z;)

= my Y ph(z)

reR €T

2)+pi(z:). (30)

The equation in (30) holds because we have pi(z;) = 0if r ¢
Ri(z;) from the definition of pi(z;). Since Y, 7(p'(z;))* <
(XYierpi(z:))? = (pr(2))? and (30) holds, we have

U2) < me Y phz)pe(2) + > my (pr(2))”

reR i€l reR

= Zmrzpr Z; pr +Tc()
reR i€l

= D mepr(2)pr(2) + T(2). (31)
reR

Then, applying Cauchy—Schwarz inequality to (31), we have

<> mepe(2)pe(2) + T (2)
rer
\/Z my pr Zmr pr +TC(Z)
reR reR
=\/TC(2)T%(2) + T (2). (32)

§§§3 + 1. Solving the above
inequation, we have (Z) < 3+\F ~ 2.62. Since z can be any
feasible strategy proﬁle t e approx1mat10n ratio of CGBA(0) is
2.62, which proves Theorem 3. OJ

From (32), we have TCE:% <

7325

Theorem 3 shows that CGBA(0) is a 2.62-approximation
algorithm. Simulation results show that the time complexity of
CGBA(0) is linear to I, and the average cost under CGBA(0) is
around 1.013x the optimum.

In what follows, we show the main result of this section, i.e.,
the performance guarantee for CGBA(A), in Theorem 4. Theo-
rem 4 indicates that CGBA(A) with & € (0, 1/8) can generate an
approximate solution in polynomial time. In addition, we can
tune parameter A to balance the approximation ratio and time
complexity.

Theorem 4: For A € (0, &), CGBA()) terminates at a decision
2 with 7¢(2) < Z827C(z*) in at most O(% log(£2)) itera-
tions, and each 1terat10n takes O (1% K?) steps.

Proof: The prove the theorem, we first prove Claim 1 as
follows:

Claim 1: Let z* be the optimal decision. For any feasible
decision z, we have Y, ;T (z},2_;) < \/T€(2)TC(z*) +
TC(z").

The proof of Claim 1 is as follows. For each 7 € Z, we have

Y mep(z))p, (2], 7-)

reR;(z;)

> mp(z)

reR;(z;)

= Y moE)p()+ Y me(p)()*.

reR;(z}) reRi(z};)

T (2),2-0) =

IN

(pr(2) + py(27))

(33)
Summing the above equation up for ¢ € Z, we have
> T (=
i€l
<> D mpi(z

1€ reRq(z})

= Z m'rpr(z

reR

<X el @Y, me o))
+ Z my(pr (Z))2

reR

Z)+Z Z mr(pi*(z

1€Z reRq(z])

2)+ Y me Y (pi(2))?

reR i€l

= \/T@)TC(2*) + T°(2"), (34)
which proves Claim 1.

Let z, be the best response of WD ¢ given profile z_;, then
we have

Z TE (2, 2_;) < Z T (z (35)
i€l icT
Thus, we have
)= Tz, 2-) <T(2) = > TF (2 . (36)
i€l €L

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

7326

Combining the above equation and Claim 1, we have

TC(z) < \/TC(2)TC (z*) + T (z*)

- <TC (z) = Y Tz zi)> . (37

icT
Sz C(2)-,., TC (2, ,z_;
;c(()) (I~ (=) ZI:JCEEZT) (z;)). The above

equation can be rewritten as 2 < x + 1 + y. For coordinates
(x,y) with z > 0 and y > 0, the area defined by the inequality
22 <+ 1+ y is a subset of the area defined by 22 < 2.62 +
2y. Thus, we have 22 < 2.62 + 2y. That is, we have

z) — ZTC(ZQ, zl)> :

€T
(38)

Let z2

and y =

T¢(z) <2.62T(z") + 2 (TC

For any profile z, let A;(z) 27T (z) — T (z,,z_;) and
A(z) £ 3,.; Ai(z) where z is the best response of WD
i. Also, for any I' € T, Azp(z) £, Ai(z). Define z
is a e-approximate A-equilibria if Az(z) < (A +€)T%(z),
where J is the set of WDs with (1 —A)TC(z;,2_;) >
ming, ez, T (2i,z_;). Then, we have

Az <1 T (z) foric J2T\J (39
icd
As(z) < (A4)T (z) fori € J. (40)
Thus, if z is a e-approximate A-equilibria, we have
A(z) = As(z) + Ags(z) <20 +e)T%2). (@)

For any state z, let e(z) = 7 Ay E z)

From the definition of

e-approximate A-equilibria, z is e(z) -approximate A-equilibria
because

= ¢(2)T%(2)

< (e(z) + 1)T%(2).

Next, let z! be the z at the ¢-th iteration of CGBA()), we consider
two cases as follows.
Case 1: €(z') < . From (41), we have

Az") = Ay(2") + Ag(2")
<20+ €(2))TC (z!) < 42T ().

(42)

43)
Then, from (38) and (43), we have
TC(2') <2.62T(z") + 2A(z")
<2.62T%(z") + 8T (2"). (44)
That is,

C (%
704ty < 22T

T (45)

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

Case 2: €(z') > A. Under Case 2, we have A 7(z') > AT (z!).
That is, there exists 7 such that

Ai(z") > &Tc(zt) > éP(zt).

1 1 (46)

Let ¢* be the player that changes its decision at iteration ¢. That
is, Aj« (z") = max;e; Ai(z") > 2 P(z"). Let P, be the potential
value at iteration ¢. From Lemma 2, we have P; —
Ai* (Zt) Z %P(Zt) = %Pt

Let Py and P* be the initial and the minimum value of the
potential function P(z), respectively, and both Py and P* are
finite positive values. Let

o log(P*/Fy) o (Il <P0)>
~log(1—a/I) pP))’
If there exists ¢t < ¢’ such z! is of case 1, the theorem holds.
Otherwise, z; is of case 2 for ¢t < t'. Then, we have Py <
Py(1— %) = P*, which contradicts to the fact that P* is the
minimum value of the potential function. Thus, the algorithm
will terminates in at most O(£ log(%)) iterations.

We now analyze the time complexity of each iteration (from
Line 2 to Line 28). From the objective function of P1, computing
TF (z) involves a double summation of total |R;(z;)| x I terms.
As each WD i chooses two resources, i.e., |R;(z;)| = 2, the
time complexity of computing 7' (z) is O(I). Next, we focus
on the time complexity of the for loop (from Line 4 to Line 20),
which iterates for I times. In addition, the time complexity of
Line 5 to Line 7 is O(I). From the definition of Z;, we know
that set Z; has K2 members. Therefore, the time complexity
of the for loop (from Line 8 to Line 14) is O(I) x K? =
O(IK?). The time complexity of Line 15 to Line 19 is O(1).
Thus, the time complexity of the for loop (Line 4-Line 20)
is I x (O(IK)+ O(IK?) + O(1)) = O(I? K?). In addition,
the time complexity of Line 21 to Line 27 is dominated by that
of Line 24, which is equivalent to O(I). As a result, the time
complexity of each iteration of the while loop is equal to the
time complexity of Line 4-Line 20 plus the time complexity of
Line 21-Line 27, i.e., O(I? K?) + O(I) = O(I*? K?). O

Next we consider a variant of CGBA(X) named FCGBA, repre-
senting fast CGBA. FCGBA converges in [iteration. At iteration
1, WD i chooses its best responses without considering WDs
1+ 1,0+ 2,...,1. FCGBA is formally stated in Algorithm 2.

Theorem 5: FCGBA has an approximation ratio of (v/3 + 1)?
and converges in O(I? K?) steps.

Proof: Use z; to denote the decision of WD 7 made at the
i-thiteration, wherei € Z.Letz’ = (z1,...,%;,0,...,0)bethe
decision profile of WDs after i iterations. The communication
latency of users in [i] under decision z* is denoted as T'S; (z*). Let

Py =

(47)

z = (21,%2, . ..,2) be any feasible decision. Then, we have
ECED DY (mr > riia))ri(a)
J=1reRq(2:) =1

(48)

Z mrpr 'r)

reR

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TASK OFFLOADING AND RESOURCE ALLOCATION IN HETEROGENEOUS EDGE ENVIRONMENTS

Algorithm 2: FCGBA

Input: By, B,, for k € K, ¢;,c; fori € T,
vig fori e,k e K
Output: A feasible solution to P1: z
1 Initialization: set z; := () for k € K;

2 for i € 7 do

3 jvinew = o0;

4 for z, € Z do

5 T;femp = Tic(iiv Zfi);
6 if Tyep < T then
7 Tinew = Ttemp;

8 Zg = il,

9 end

10 end

11 Z; == 7;
12 end

13 Return z;

By partitioning set R to R \ R;(z;) and R;(z;), we have

Tgci(zi) = Z mrpr(ziil)pr(ziil)
rER\R: (1)
+ Z mr(pr(zi_l)'i'pi(zi))z
TGRi(Zm)
< Z mrpT(iiil)pr(Ziil)
reER
+ > 2mpl(zi)(pr(Z) + ph(Z:))
reR;(Z;)
(a) i i
< S g @ (@
reR
+ Y 2meph(z)(pe(2) + pl(zi)
reR;(z;)

=TS ,(Z)

S 2mp () (o, (7

’I‘ERi (Zl)

)+ pi(zi). (49)

Inequality (a) holds because z; minimizes the latency of WD

iy 1€ 30 er, (a) TPy (20) (pr(2°1) + pl(2)). From (49), we
have
T(2') = TS (2") < TSy (2")
+ > 2mpl(zn)(pe () 1l (2r))
reR;(zr)
I . . .
<Y 2w ()o@ + ()
i=1 reRy(z:)

(50)

Then, we have

2') <2> > meph(z)(pr(2") + pl(zi)

i€ 7eR;(z;)

7327

)+ pi(2i))

=2 Z Z mrpi’(zi)@r (ZI

reR i€l

< 2Zmrpr(2)p (Z

reR

<30 oGRS e 1)

+27%(z)

=2\/TC (2T (2z) +2 T (z).

From (51), we have

)+ 2 Z mypr(2)pr(2)

reR

(G

T¢(z")

TC(z")
TC(z) =

@ 2

(52)

Solving the above inequation, we have
(@) < (1+V3)*T(2),

which proves the approximation ratio part of the theorem.

We now analyze the time complexity of FCGBA. The first for
loop (Line 2-Line 12) of Algorithm 2 runs for I times. From
the proof of Theorem 4, the time complexity of second for loop
(Line 4-Line 10) is O(I K?). Thus, we have the time complexity
of FCGBA is I x O(IK?) = O(I? K?).]

(53)

V. ALGORITHM DESIGN FOR TASK OFFLOADING AND
COMPUTING RESOURCE MANAGEMENT

This section focuses on designing algorithms for JOM. We
first show the hardness of JOM.

Theorem 6: JOM is NP-hard, and no polynomial-time ap-
proximation algorithm is possible unless there are some addi-
tional assumptions.

The main idea of the proof is to show a special version of JOM
is equivalent to the Generalized Assignment Problem (GAP)
defined in Chapter 48 of [34]. Under the special version of JOM,
there is no general-purpose server and only one type of resource
constraint, i.e., N = 0 and L = 1. Detailed proof of Theorem 6
is omitted due to space limitations.

A. Computing Resource Management

Next, we address the problem of determining the optimal
computing resource management decision « under any given
offloading decision (x,y). For WDs placing their tasks on re-
configurable accelerators, their latencies are fixed. Therefore, if
(x,y) is given, JOM is equivalent to minimizing the summation
of TF fori € ngN(’)n(x) over a as follows:

wY Y g

neN ieO,,

st g € [O, 1} forn e N,i € O,(x)
Z ;i < 1forneN.

1€0, (x)

TL znazn

(54)

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

7328

We use o (x) = {o] ,|n € N,i € O,,(x)} to denote the opti-
mal solution of (54) under offloading decision x. The optimal
computing resource management decision «*(x) is shown in
Lemma 3.

Lemma 3: For any given x, o*(x) is as follows:

i
6'i.n

forn € N,i € O,(x). (55)

f .
22je0.(0) \ 5

The proof of Lemma 3 is omitted due to space limitations.
The main idea of the proof is to exploit the KKT conditions.
Substituting o into (8) and changing the order in the double
sum, the optimal processing latency under offloading decision
(x,y) is equal to

=2 @i

i€ neN nrn

2D i

i€ neN

=D D vl

1€ meM

S)

1€Z meM

bintLjn fz.f
Z ZZ - Fij W+Z Z Yi,mtim.-

neN i€l jeI 1€ meM
(56)

That is, by substituting o* into JOM, JOM is equivalent to P2
as follows:

f i
RTD DS) DERORN LTINS o)
Y neN Fr i€l jeT J ™ el meM
s.t. Z img < Ay forme Ml e L
1€0,m (y)
inm—I— Z Yim = Lfori €L
neN meM

Tin,Yim € {0,1} fori € Z,n € N,m € M.

We use (x*,y*) to denote the optimal solution of P2. Accord-
ingly, (x*,y*, a*(x*)) is the optimal solution of JOM. Since we
have the optimal solution o* (x) under any given (x,y), we then
focus on choosing (x,y), i.e., solving P2.

(P2)

B. Semidefinite Programming Relaxation for Task Offloading

Despite eliminating variable «, P2 remains NP-hard, and
no polynomial-time approximation algorithm exists for it. The
proof is akin to that of Theorem 6, and we omit it. Semidefinite
relaxation for P2 provides a practical method to find a feasible
solution close to the optimal one in polynomial time. Conse-
quently, we concentrate on developing a semidefinite program-
ming (SDP) relaxation approach for P2.

First, we restructure P2 into the standard binary quadratic
programming (BQP) form. Let u be the column vec-
tor of all variables of P2, ie., x and y. In particular,
we have u = (x1;X2;...;XN;¥1;¥2;---;YM) Where x,, =
(xl,n; cees xl,n) and Yn = (yl,m;yZ,m; cee ;yl,m)~ J = (M +
N)I is the number of binary variables of P2. By introducing a

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

TABLE III
NOTATION TABLE

vector representing the collection of variables x and y

matrix related to quadratic terms in the objective function of P2

< Qe

vector related to linear terms in the objective function of P2

h; vector related to the single selection constraint of WD 4
dm,,l

vector of resource sizes related to the resource [of RA m

T

new variable U = u - u*, we can reformulate P2 as:

Tr(PU) +q"u

min
u,U

st. hlu=1foricZT
d%lu <Ap formeM,lel
U=u-u’. (57)

P is a J x J matrix corresponding to the quadratic terms in
the objective function of P2. g, h;, d,, ; are column vectors of
length J. Since P can be written in the form of Y, Q;Q7,
P is positive semidefinite, i.e., P = 0. The only non-convex
constraint in (57) is U = u - u”. By relaxing U = v - u’ to
U = u-u” and adding constraint u;(1 — u;) > 0, (57) can be
relaxed to a convex optimization problem as follows:

Tr(PU) +q"u

min
u,U
st. hlu=1forieZ,

d,Tn’lu <A, formeM,leL

diag(U) < u
U u
= 0. 58
71 (58)

The last constramt in (58) holds if and only if U > 0 and
U —u-u” = 0, which can be proved by exploiting the Schur
complement. Let (u*, U*) be the optimal solution to (58). Since
(58) is a relaxation of P2, the optimal objective value of (58) is
a natural lower bound of the minimum value of P2.

In what follows, we provide a physical interpretation of the
semidefinite relaxation in (58). Let v be a J-dimensional joint
normal random vector. Let ;2 and 3 be the mean and covariance
matrix of v, respectively. That is, v is drawn from distribution
N (u,X). Then, from [35], if constraint diag(U) < u is not
in (58), 4 = u* and ¥ = U* — 1 - T minimizes the following
problem:

min E [UTPU + qu]
st. E[hfv]=1foriel

E [df, 0] < Ay forme Ml L. (59)

Intuitively, v drawn from A (p,Y) under p=u* and X =
U* — uu- 1T has a cost close to the optimal objective value of
(58). We can draw a number of samples from A (p, X)) with
p=u*and ¥ =U* — p-uT, round each of them to a feasible
decision, and choose the feasible decision with the lowest cost.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TASK OFFLOADING AND RESOURCE ALLOCATION IN HETEROGENEOUS EDGE ENVIRONMENTS 7329
Algorithm 3: SDPR. Algorithm 4: Round (Rounding Algorithm).
Input: F,,,n €N, f;,icZ, A,,,mE M, a;,i €L, Input: F,,,neN, fi,ic€cZ, A,,,meM,a;icT,
ti,iel ti,i €, x6 and y°©
Parameter: IterNum Parameter: IterNum
Output: A feasible solution to P2: (x*,y*) Output: A feasible solution to P2: (x°, y)
1 Calculate P,q,c; for i € Z, and d,,, for m € M; 1 Zp=0,Tg:=7,1:=1x"=0y"=0;
2 Solve SDP (58) to get u* and U™, 2 while 35 € 7, m € M such that a; < A, do
3 Initialize (x*,y*) = round(u*); 3 | d=argmaxmax{yS, -, Y5t
4 Initialize L* = TF (x*, y*, o* (x*, y*)); P aiezr;ax e .
sSetpu=u*,Y=U"—vu*-u",and | =0; o & nemim
¢ while | < IterNum do 5 if a; < A,,- then
7 | Randomly sample v from N (1, ¥); 6 Yim =0 forme M\ {m*}, g7 . =1
s | Calculate (x,y") = round(v'); 7 A 1= A — a5
9 | Calculate L = TP (x0,yD o*(xV,yD)); 8 a; = 00,)
w | if LO < L* then ? Yim 1= 0 for i € T;
11 L* = L(l); 10 Ir =1p U {Z} and Zg = Zg \ {Z},
n|] ey = Oy 0); e
13 end 2 Yime =03
14 l:=101+1 13 end
15 end i: jtlbld' Oforic€ZandncN;
* %) in ot B
16 Return (", y7): 16 rfn :=1for i€ Zg and n* = arg m;;ix.rf)n;
17 for iter € {1,2,--- ,IterNum} do
Let round be the operator rounding u to a feasible solution to 3 fag - 0;
P2. A specific rounding algorithm is proposed in Section V-D. v for i € 52 do b
We then formally state the proposed algorithm, named SDPR, 20 COStn;w: Ci(x”);
for P2 in Algorithm 3. 2 gost = oo;
In step 2 of Algorithm 3 (SDPR), we can solve (58) 2 for x; € A; do_ by,
by the interior point method with the time complexity of 3 C: st = G (X;’;;_il)l’
O(J"log(e~1)) [36], where e represents the desired level of 24 ! cos/t<7c?s‘z. then
precision. The time complexity for solving (58) plus the time zz :&;zf; cost:
complexity of the rounding process is the time complexity of » end ’
Algorithm 3. The time complexity of the rounding process is 58 end
rpuch l(?wer than solving (58), which is validated by numerical if cost™ < cost® then
simulations. 30 flag = 1;
31 break;
C. Linearly Constrained Quadratic Programming Relaxation 32 end
for Task Offloading 33 end
In Section V-B, we relax P2 to an SDP problem. In particular, H if fl a(g; = ,] then
the nonconvex constraint U = v - u7 is substituted with the SDP > ‘l X=X
constraint, i.e., the last constraint in (58). This relaxation, how- 23 e‘ Sebreak‘
ever, results in a longer numerical solution time. In this section, " end ’
we relax P2 to a linearly constrained quadratic programming 3 end
(QP) problem, which can be solved more efficiently. Similar to
that in Section V-B, we use u to denote the set of all decision
variables. Then, P2 can be rewritten as follows: quadratic programming (QP) problem:
rrhin u Pu+q"u Hhm uI'Pu+q¢'u
s.t. h?uzlforiel s.t. hiTu:lforiGI
df, u < Apy form e Ml € L dl ju < Ay forme M€ L
u e {0,1}7. (60) u € [0,1]7. (61)

The last constraint in (60) is non-convex. By relaxing it di-
rectly tou € {0, 1}”, we have the following linearly constrained

Next, we introduce an algorithm similar to SDPR, which we
name the Quadratic Programming Relaxation and Rounding

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

7330

(abbreviated as QPR) algorithm. The main idea of QPR is to first
solve (61), obtaining a continuous decision, and subsequently
rounding this decision to its binary form using the round algo-
rithm in Section V-D. For brevity, we will not delve into the
detailed description of the QPR algorithm.

D. Rounding Algorithm Design

Next, we propose a rounding algorithm that rounds vector
u of length J to a feasible solution (x,y) for P2, where u is
the continuous solution of Problem (58) or (61), and (x,y) is
binary. Before the rounding process, we unzip u to (x°,y©). In
particular, 5, = v(n_1).74; for i € Z and n € N and yy,, =
VU(N+m-1).14i for i € Z and m € M. The rounding algorithm
is formally stated in Algorithm 4.

We first consider rounding y*© to a feasible y, where y is an
I-by-M binary matrix, y,, is the m*" column of y. We sort WDs
1 by the value of max Y; m, indescending order. WDs in the order

take turns toround {5, € [0, 1] }mer to {yim € {0, 1} frner-
In particular, WD i set y; ,,, = 1 if m = argmaxy;,, and a; is
no greater then the available space of FPGKL m, and y; ,, =
0 otherwise. Let Zr be the set of WDs offloading its tasks to
M, ie., i € Ip if and only if) . vim = 1. Then, since
we have the constraint that)}, Yim + D ,cp Tin = 1, We
have x; ,, = 0 for7 € Zp. Thatis, we only need to consider z; ,
fori € Ig = T \ Zr in the following.

In what follows, we consider rounding z7 ,, to binary for i €
TIsandn € N.First, letx; = {z; ,|n € N} and define function
C;(x) as follows:

Ci(x) = JZJH 5fi
nen T\ %bn

(62)

S u i
J.n Y
J,n

J€Ls

If y is fixed, P2 is equivalent to the optimization problem as
follows:

min
x;,4€Lg

Z Ci(x)

i€lg
sit. x;, € X, 1€ 1g

X, 2 {xi e {0, 13N> win = 1}.

neN

(63)

Problem (63) can be interpreted as a congestion game similar

to P1. Then, we can choose x by an algorithm similar to Al-

gorithm 1 as follows. At the beginning, each WD ¢ sets x;

to 1 if n = argmax 7, and sets z;,, to 0 otherwise. Then,
" :

WDs in Zg take turns adjusting their decisions. To be more
specific, if ;,, = 1 and there exists 1 € N such that moving
WD i from n to n can lower the latency of WD 4 given other
WDs’ decisions, WD i resets z; 5 = 1 and z; , = 0 for n # 7.
We can set a maximum number of iterations for WDs to adjust
their decisions. In fact, if there is no limit for maximum iteration,
it can be proved that the decision adjustment process for WDs

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

in Zg will terminate after a finite number of iterations, as shown
in the following theorem.

Theorem 7. If IterNum is set to oo, Algorithm 4 termi-
nates in finite steps, and 77 (x°, y®) < 2.62 - T (x,y") for any
feasible x.

The proof of Theorem 7 is omitted because the main idea of the
proof is similar to that of Theorem 3. Note that Theorem 7 does
not mean the proposed algorithm has an approximation ratio.
Theorem 7 means that T (x°, y*) < 2.62 - T (x, y?) for any
x, where y® may not necessarily be the optimal y. The time
complexity of the rounding algorithm is polynomial. Since the
proof is standard, we omit it.

VI. NUMERICAL EVALUATION

In this section, we assess the performance of the proposed
algorithms across various scenarios. Our simulations are im-
plemented using Python 3.10 on a DELL Alienware desktop
equipped with 32 GB RAM and an AMD Ryzen7 2700X Eight-
Core Processor running Windows 10 OS.

A. Simulation Setup

The computing capability of each server is measured by
floating-point operations per second (FLOPS), and the capacity
of each server ¢ is set to the real-world FLOPS of EC2 instances
from [37]. We consider a system with N = 10 general-purpose
servers (servers) and M = 5 FPGAs. Task size of WDs f;, i € 7
are drawn from the real-world computing complexity (in terms
of floating-point operations (FLOPs)) of 6 neural network mod-
els, the first six entries of Table V in [38]. Similar to [22],
i n is drawn from [0.5,1]. We set the numbers of CLBs and
DSP slices are the two bottleneck resources, i.e., L = 2, and
set A1, m € M and Ay, 2, m € M to real-world values of
different types of FPGAs [39]. The number of CLBs required
for implementing a fuzzy neural network varies with network
size, where the numbers of CLBs required for implementing
fuzzy neural networks with 60 input neurons, 10 to 18 neurons
in the hidden layer, and three output neurons are in the range
from 5000 to 6000 [40]. We drew the number of CLBs required
of WDs from [4000, 8000] and the number of DSP slices of WDs
from [20,40]. From [5], [6], t; .7 € Z,m € M are set to 10
to 60 times faster than the optimal average latencies of WDs on
servers under the case that / = 100 and M = 0. The number of
WDs varies in different simulations and will be specified in the
following.

We assume WDs are located in a square area of 1km x 1 km,
similar to that used in [9]. We divide the 1km x 1 km area into
six 1/3km x 1/2 km subareas, and there are 6 5 G base stations
(APs) located in the center of the 6 subareas. WD ¢ and an AP
k can communicate if the distance between them, denoted by
d; 1. is less than 0.5 km. For convenience, we set the bandwidth
of APs to the maximum achievable speed rather than its true
physical bandwidth. We randomly draw the uplink bandwidth
B}, and the downlink bandwidth B i from the set of 50-100 MHz.
¢;,i € [N] and ¢;,i € [N] are randomly drawn from [0.4, 1]
and [0.2,0.5] Megabits, respectively [10]. The parameter of

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TASK OFFLOADING AND RESOURCE ALLOCATION IN HETEROGENEOUS EDGE ENVIRONMENTS

—— CGBA(0)
o] —— FccBA
—4+— MCMC
8] —m— HEAL
-—- OPT

Communication Latency

80 85 90 95 100 105 110 115 120

Number of WDs

Fig. 2. Communication latency versus the number of WDs.

bandwidth utilization ratio ; j corresponding to WD ¢ and AP
k is randomly chosen 15-50 bps/Hz [41].

B. Baselines

We use three baselines for comparison with SDPR. The first
baseline, named by MCMC, which is similar to the algorithm
proposed in [42]. MCMC is short for Monte Carlo Markov Chain
technique and is similar to the simulated annealing technique.
MCMC randomly chooses initial states (x,y) and z for JOM
and JAM, respectively. Then, at each iteration, MCMC chooses
a neighbor of the previous decision and moves to the neighbor
with a probability related to the cost difference of the decisions.
Details of MCMC can be found in Algorithm 1 of [42]. The
second baseline is named HEAL (short for HEuristic ALgo-
rithm), similar to the baseline used in [22]. For JOM, HEAL
first chooses y by a greedy algorithm similar to the greedy
algorithm [43] for the knapsack problem. In particular, HEAL
sorts WDs in ascending order of ¢; ,,,, and WDs in the order
take turns to be placed on an FPGA until there is no sufficient
space available. Then, HEAL chooses x for WDs that are not
placed on M. In particular, HEAL chooses the best server n for
each ¢ under the assumption that there is no other WD. HEAL
chooses the optimal computing resource allocation decisions
under the selected (x,y). For JAM, HEAL chooses the best
uplink and downlink AP for each 7 under the assumption that
there is no other WD and chooses the optimal communication
resource allocation decisions under the selected z. Moreover,
we also compare the performance of our algorithms and that of
the third baseline, i.e., the optimal solution by the commercial
Gurobi solver.

C. Simulation Results

We first evaluate the performance of the proposed CGBA(X)
and FCGBA for P1. Fig. 2 shows the communication latency
(in ms) of CGBA(0), FCGBA, MCMC, HEAL and the optimal
latency under the number of WDs I = {80, 90, ...,120}. The
results shown in Fig. 2 represent the average values obtained
from 10 independent simulations. As we can see from Fig. 2, the
communication latency of CGBA(0) (Algorithm 1) is lower than
that of FCGBA, MCMC and HEAL under all different settings of
I.In addition, the communication latency of CGBA(0) is around
1.013 times the optimal latency on average, and the communica-
tion latency of FCGBA is around 1.05 times the optimal latency

7331

—— Latency under CGBA(A)
= Latency under FCGBA
—4— Execution Time, CGBA(A)

Communication Latency
Execution Time/s

0.00 0.02 0.04 0.06 0.08 0.10 0.12
parameter A

Fig. 3. Communication latency and execution time versus parameter A.

®
°

—e— Latency, CGBA(0)

—e— Latency, CGBA(0.125)

-4-- Execution Time, CGBA(0)
-+4-- Execution Time, CGBA(0.125)

o

- 0.2
3 S

Execution Time/s

N

Communication Latency
v-

°
°

80 85 90 95 100 105 110 115 120
Numer of WDs

Fig. 4. Communication latency and execution time versus number of WDs.

= e
© © 5 =

Processing Latency

80 85 90 95 100 105 110 115 120

Number of WDs

Fig. 5. Processing latency versus the number of WDs.

on average. As the number of WDs [increases, the average
communication latencies under all the algorithms increase due
to congestion. Then, we evaluate the performance of CGBA(A)
under different A. Fig. 3 shows the performance of CGBA(})
under A € {0,0.02,...,0.12} and that of FCGBA. There is a
trade-off between the time complexity and the objective value
(communication latency) of CGBA()). As A increases, the time
complexity decreases, and the communication latency increases,
which matches the statement in Theorem 4. From Theorem 4
and Theorem 5, the time complexity of FCGBA is equivalent to
one iteration of CGBA(%). Although CGBA(A) has higher
time complexity, it outperforms FCGBA in terms of objec-
tive value for A € {0,0.02,0.04,0.06}. FCGBA outperforms
CGBA() in both time complexity and approximation ratio for
2 € {0.08,0.1,0.12}. Fig. 4 shows the communication latency
and time complexity of CGBA(0) and CGBA(0.125). As the
system scale increases, both the latencies and time complexities
under CGBA(0) and CGBA(0.125) increase linearly.

We then evaluate the performance of the proposed SDPR and
QPR for P2. Fig. 5 shows the average processing latency (in
ms) of SDPR and QPR, MCMC, HEAL and the optimal latency

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

7332

—+— CGBA(0) + SDPR
—=— CGBA(0) + QPR

—4— FCGBA + SDPR

80 85 90 95 100 105 110 115 120
Number of WDs

= [[
S Y 5
5 3 2

Approximation Ratio

1.00

Fig. 6. Overall approximation ratio versus the number of WDs.

-+- CGBA(0) + SDPR
| -=- cGBA(0) + QPR
- FCGBA + SDPR
-®- FCGBA + QPR

2o
° 3

bl

o
©

Exoecution Time/s

80 85 90 95 100 105 110 115 120

Number of WDs

Fig. 7. Overall execution time versus the number of WDs

under the number of WDs I = {80,90,...,120}. We set the
maximum iteration number to be 20, i.e., the IterNum of SDPR
is 20. In addition, since Theorem 7 holds, the maximum iteration
number of the rounding algorithm (Algorithm 4) is set to co.
The proposed SDPR and QPR outperform MCMC and HEAL
under all the settings of /. From Fig. 5, the average ratio of
the processing latencies under SDPR and QPR to the optimal
value are around 1.017 and 1.021, respectively. As the number
of WDs [increases, the average processing latency increases
due to congestion. In addition, simulation results show that the
execution time of SDPR and QPR is linear to I, demonstrating
the good scalability of the proposed algorithms.

Next, we evaluate the total system latency and execution time
of the proposed algorithms. Figs. 6 and 7 respectively illustrate
the approximation ratio and execution time using various com-
binations of the proposed algorithms. Different combinations of
the proposed algorithms yield varying approximation ratios and
execution times, allowing users to select based on their precision
and delay requirements, e.g., applications requiring low execu-
tion time can use the combination of FCGBA and QPR with
the lowest time complexity, while applications requiring high
precision can choose the combination of CGBA(0) and SDPR
with the lowest approximation ratio. The execution time for the
combinations of the proposed algorithms increases linearly with
1, demonstrating the good scalability of our proposed approach.

VII. CONCLUSION

In this article, we have studied the joint task offloading, AP
selection, and resource allocation problem (JOAM) in heteroge-
neous edge environments to minimize the overall system latency.
We decomposed JOAM into two subproblems, namely JOM
and JAM. We proposed a 2.62-approximation algorithm named

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

CGBA for JAM. We demonstrated a trade-off between the ap-
proximation ratio and time complexity of CGBA and additionally
offered a faster variant of the algorithm. In addition, we designed
two algorithms, SDPR and QPR, for JOM based on convex
relaxation and rounding. Simulation results have shown that
the proposed algorithms outperform the popular baselines and
are near-optimal. In particular, the average processing latency
under SDPR is around 1.017 times the optimum, and the average
communication latency under CGBA is around 1.013 times the
optimum. In our future work, we aim to explore energy-aware
online task offloading, AP selection, and resource allocation.
Our emphasis will be on reducing system latency while adhering
to energy consumption constraints, and on the development of
algorithms optimized for swift decision-making.

REFERENCES

[1] L.Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning for on-
line computation offloading in wireless powered mobile-edge computing
networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11, pp. 2581-2593,
Nov. 2020.

[2] J. Shi, J. Du, Y. Shen, J. Wang, J. Yuan, and Z. Han, “DRL-based V2V
computation offloading for blockchain-enabled vehicular networks,” IEEE
Trans. Mobile Comput., vol. 22, no. 7, pp. 38823897, Jul. 2023.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637-646,
Oct. 2016.

[4] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of FPGA-based
neural network accelerator,” 2017, arXiv: 1712.08934.

[5] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN accelerator
efficiency through resource partitioning,” in Proc. ACM/IEEE 44th Annu.
Int. Symp. Comput. Archit., 2017, pp. 535-547.

[6] P. Milder, “ESE507 advanced digital system design and generation,”
ESES507 lecture notes, 2021.

[7] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling
FPGAs in hyperscale data centers,” in Proc. IEEE 12th Int. Conf. Ubiqui-
tous Intell. Comput. 12th Int. Conf. Autonomic Trusted Comput. IEEE
15th Int. Conf. Scalable Comput. Commun. Assoc. Workshops, 2015,
pp. 1078-1086.

[8] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-attached
FPGAs for data center applications,” in Proc. Int. Conf. Field- Program.
Technol., 2016, pp. 36-43.

[9] S. JoSilo and G. Ddn, “Wireless and computing resource allocation for

selfish computation offloading in edge computing,” in Proc. IEEE Conf.

Comput. Commun., 2019, pp. 2467-2475.

S. Josilo and G. Ddn, “Joint wireless and edge computing resource man-

agement with dynamic network slice selection,” IEEE/ACM Trans. Netw.,

vol. 30, no. 4, pp. 1865-1878, Aug. 2022.

J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading for

mobile edge computing in dense networks,” in Proc. IEEE Conf. Comput.

Commun., 2018, pp. 207-215.

T. Liu, Y. Zhang, Y. Zhu, W. Tong, and Y. Yang, “Online computation

offloading and resource scheduling in mobile-edge computing,” IEEE

Internet Things J., vol. 8, no. 8, pp. 6649-6664, Apr. 2021.

H. Sun, F. Zhou, and R. Q. Hu, “Joint offloading and computation energy

efficiency maximization in a mobile edge computing system,” IEEE Trans.

Veh. Technol., vol. 68, no. 3, pp. 3052-3056, Mar. 2019.

A. Al-Shuwaili, O. Simeone, A. Bagheri, and G. Scutari, “Joint up-

link/downlink optimization for backhaul-limited mobile cloud computing

with user scheduling,” IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 4,

pp. 787-802, Dec. 2017.

Y. Liu, Y. Mao, X. Shang, Z. Liu, and Y. Yang, “Energy-aware online task

offloading and resource allocation for mobile edge computing,” in Proc.

43rd Int. Conf. Distrib. Comput. Syst., 2023, pp. 339-349.

P. A. Apostolopoulos, G. Fragkos, E. E. Tsiropoulou, and S. Papavassiliou,

“Data offloading in UAV-assisted multi-access edge computing systems

under resource uncertainty,” IEEE Trans. Mobile Comput., vol. 22, no. 1,

pp. 175-190, Jan. 2023.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: JOINT TASK OFFLOADING AND RESOURCE ALLOCATION IN HETEROGENEOUS EDGE ENVIRONMENTS 7333

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou, “Risk-
aware data offloading in multi-server multi-access edge computing en-
vironment,” IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1405-1418,
Jun. 2020.

P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou, “Risk-
aware social cloud computing based on serverless computing model,” in
Proc. IEEE Glob. Commun. Conf., 2019, pp. 1-6.

P. A. Apostolopoulos, M. Torres, and E. E. Tsiropoulou, “Satisfaction-
aware data offloading in surveillance systems,” in Proc. 14th Workshop
Challenged Netw., New York, NY, USA, 2019, pp. 21-26. [Online].
Available: https://doi.org/10.1145/3349625.3355437

S. Wang, J. Yang, and S. Bi, “Adaptive video streaming in multi-
tier computing networks: Joint edge transcoding and client enhance-
ment,” [EEE Trans. Mobile Comput., early access, Mar. 30, 2023,
doi: 10.1109/TMC.2023.3263046.

Y. Liu, Y. Mao, Z. Liu, and Y. Yang, “Deep learning-assisted on-
line task offloading for latency minimization in heterogeneous mo-
bile edge,” IEEE Trans. Mobile Comput., early access, Jun. 20, 2023,
doi: 10.1109/TMC.2023.3285882.

Y. Liu, X. Shang, and Y. Yang, “Joint SFC deployment and resource man-
agement in heterogeneous edge for latency minimization,” IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 8, pp. 2131-2143, Aug. 2021.

Y. Liu, Y. Mao, Z. Liu, E Ye, and Y. Yang, “Joint task offloading and
resource allocation in heterogeneous edge environments,” in Proc. [EEE
Conf. Comput. Commun., 2023, pp. 1-10.

S. I. Venieris and C.-S. Bouganis, “f~CNNx: A toolflow for mapping
multiple convolutional neural networks on FPGAs,” in Proc. 28th Int.
Conf. Field Program. Log. Appl., 2018, pp. 381-3817.

Y. Zha and J. Li, “Virtualizing FPGAs in the cloud,” in Proc. 25th Int. Conf.
Architectural Support Program. Lang. Operating Syst., 2020, pp. 845-858.
0. Knodel, P. Lehmann, and R. G. Spallek, “RC3E: Reconfigurable
accelerators in data centres and their provision by adapted service models,”
in Proc. IEEE 9th Int. Conf. Cloud Comput., 2016, pp. 19-26.

P. Chanclou and e. Pizzinat, “Optical fiber solution for mobile fronthaul to
achieve cloud radio access network,” in Proc. Future Netw. Mobile Summit,
2013, pp. 1-11.

S.Josilo and G. Dan, “Decentralized scheduling for offloading of periodic
tasks in mobile edge computing,” in Proc. IFIP Netw. Conf. Workshops,
2018, pp. 1-9.

R. K. James, K. P. Jacob, and S. Sasi, “Performance analysis of double
digit decimal multiplier on various FPGA logic families,” in Proc. 5th
Southern Conf. Program. Log., 2009, pp. 165-170.

Wikipedia contributors, “5G NR frequency bands—Wikipedia, the free
encyclopedia,” 2023. Accessed: Nov. 27, 2023. [Online]. Available: https:
/len.wikipedia.org/w/index.php?title=5G_NR_frequency_bands&oldid=
1185466352

Nvidia, “Multi-process service (MPS).” Accessed: Nov. 25, 2023.
[Online]. Available: https://docs.nvidia.com/deploy/pdf/CUDA_Multi_
Process_Service_Overview.pdf

T. Harks, M. Klimm, and R. H. Mohring, “Characterizing the existence of
potential functions in weighted congestion games,” Theory Comput. Syst.,
vol. 49, no. 1, pp. 46-70, 2011.

B. Awerbuch, Y. Azar, A. Epstein, V. S. Mirrokni, and A. Skopalik, “Fast
convergence to nearly optimal solutions in potential games,” in Proc. 9th
ACM Conf. Electron. Commerce, 2008, pp. 264-273.

T. E. Gonzalez, Handbook of Approximation Algorithms and Metaheuris-
tics. London, U.K.: Chapman and Hall/CRC, 2007.

P. Wang, C. Shen, A. v. d. Hengel, and P. H. S. Torr, “Large-scale binary
quadratic optimization using semidefinite relaxation and applications,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 3, pp. 470-485,
Mar. 2017.

H. Jiang, T. Kathuria, Y. T. Lee, S. Padmanabhan, and Z. Song, “A faster
interior point method for semidefinite programming,” in Proc. IEEE 61st
Annu. Symp. Found. Comput. Sci., 2020, pp. 910-918.

J.Emeras, S. Varrette, V. Plugaru, and P. Bouvry, “Amazon elastic compute
cloud (EC2) versus in-house HPC platform: A cost analysis,” IEEE Trans.
Cloud Comput., vol. 7, no. 2, pp. 456-468, Apr./Jun. 2019.

X.Zhang, X.Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely efficient
convolutional neural network for mobile devices,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 6848—6856.

Virtex, “Virtex-5 FPGA feature summary.” Accessed: Nov. 25, 2023.
[Online]. Available: https://docs.xilinx.com/v/u/en-US/ds100

S. R. Chowdhury and H. Saha, “Development of a FPGA based fuzzy
neural network system for early diagnosis of critical health condition of a
patient,” Comput. Biol. Med., vol. 40, no. 2, pp. 190-200, 2010.

[41] Y. Huo, X. Dong, and W. Xu, “5G cellular user equipment: From theory to

practical hardware design,” IEEE Access, vol. 5, pp. 13992-14010, 2017.

[42] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service caching

and workload scheduling in mobile edge computing,” in Proc. IEEE Conf.
Comput. Commun., 2020, pp. 2076-2085.

[43] G. Dantzig, 26. Discrete-Variable Extremum Problems. Princeton, NJ,

USA: Princeton Univ. Press, 2016.

Yu Liu (Graduate Student Member, IEEE) received
the BEng degree in telecommunication engineering
from Xidian University, Xi’an, China. He is currently
working the PhD degree with the Department of
Electrical and Computer Engineering, Stony Brook
University. His research interests encompass edge
computing and networks, low-earth orbit satellite
networks, and distributed quantum computing. His
primary focus is on service function placement and
resource management in edge environments, as well
as ensuring the reliability of service functions.

Yingling Mao (Graduate Student Member, IEEE)
received the BS degree in mathematics and applied
mathematics from Zhiyuan College, Shanghai Jiao
Tong University, Shanghai, China, in 2018. She is
currently working toward the PhD degree with the
Department of Electrical and Computer Engineer-
ing, Stony Brook University. Her research interests
include network function virtualization, software-
defined networks, and cloud computing.

Zhenhua Liu received the BE degree in measurement
control with honor from Tsinghua University, in 2006,
the BS degree in economics from Peking Univer-
sity, in 2009, the MS degree in computer science
technology with honor from Tsinghua University, in
2009, and the PhD degree in computer science from
the California Institute of Technology, where he was
co-advised by Dr. Adam Wierman and Prof. Steven
Low. He is currently assistant professor with the De-
partment of Applied Mathematics and Statistics, also
affiliated with the Department of Computer Science

and Smart Energy Technology Cluster, since August 2014. During the year
2014-2015, he is on leave for the ITRI-Rosenfeld Fellowship in the Energy and
Environmental Technology Division, Lawrence Berkeley National Laboratory.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

7334

Fan Ye (Senior Member, IEEE) received the BE
and MS degrees from Tsinghua University, Beijing,
China, and the PhD degree from the Computer Sci-
ence Department, The University of California at
Los Angeles, Los Angeles, CA, USA. He is an as-
sistant professor with the ECE Department, Stony
Brook University, Stony Brook, NY, USA. He has
published more than 60 peer-reviewed papers that
have received more than 8000 citations according
to Google Scholar. He has 21 granted/pending U.S.
and international patents/applications. He was the
co-chair of the Mobile Computing Professional Interests Community, IBM
Watson for two years. His current research interests include mobile sensing
platforms, systems and applications, Internet of Things, indoor location sensing,
wireless, and sensor networks. He received IBM Research Division Award,
five Invention Achievement Plateau Awards, and the Best Paper Award for
International Conference on Parallel Computing 2008.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 6, JUNE 2024

Yuanyuan Yang (Fellow, IEEE) received the BEng
and MS degrees in computer science and engineering
from Tsinghua University, Beijing, China, and the
MSE and PhD degrees in computer science from
Johns Hopkins University, Baltimore, Maryland. She
is a SUNY distinguished professor of computer en-
gineering and computer science with Stony Brook
University, New York, and is currently on leave with
the National Science Foundation as a program direc-
tor. Her research interests include edge computing,
data center networks, cloud computing and wireless
networks. She has published more than 460 papers in major journals and refereed
conference proceedings and holds seven US patents in these areas. She is
currently the editor-in-chief for /IEEE Transactions on Cloud Computing and
an associate editor for I[EEE Transactions on Parallel and Distributed Systems
and ACM Computing Surveys. She has served as an associate editor-in-chief for
IEEE Transactions on Cloud Computing, associate editor-in-chief and associated
editor for IEEE Transactions on Computers, and associate editor for /EEE
Transactions on Parallel and Distributed Systems. She has also served as a
general chair, program chair, or vice chair for several major conferences and a
program committee member for numerous conferences.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:25:40 UTC from IEEE Xplore. Restrictions apply.

