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Abstract—Mobile edge computing is becoming one of the
ubiquitous computing paradigms to support applications requir-
ing low latency and high computing capability. FPGA-based
reconfigurable accelerators have high energy efficiency and low
latency compared to general-purpose servers. Therefore, it is
natural to incorporate reconfigurable accelerators in mobile
edge computing systems. This paper formulates and studies the
problem of joint task offloading, access point selection, and re-
source allocation in heterogeneous edge environments for latency
minimization. Due to the heterogeneity in edge computing devices
and the coupling between offloading, access point selection, and
resource allocation decisions, it is challenging to optimize over
them simultaneously. We decomposed the proposed problem into
two disjoint subproblems and developed algorithms for them.
The first subproblem is to jointly determine offloading and
computing resource allocation decisions and is NP-hard, where
we developed an algorithm based on semidefinite relaxation.
The second subproblem is to jointly determine access point
selection and communication resource allocation decisions, where
we proposed an algorithm with a provable approximation ratio of
2.62. We conducted extensive numerical simulations to evaluate
the proposed algorithms. Results highlighted that the proposed
algorithms outperformed baselines and were near-optimal over
a wide range of settings.

Index Terms—Edge Computing, Reconfigurable Accelerators

I. INTRODUCTION

Recently, the development of information technology has

given birth to a large number of novel applications requiring

extra-low response time, e.g., augmented reality, virtual reality,

the internet of things, and autonomous vehicles [1]. Due to

the computing capability and energy consumption limitations,

implementing such applications on wireless devices can not

meet the low latency requirement of such applications. On

the other hand, nor is cloud computing able to meet the

low latency requirement due to network congestion and long

physical distances. Since edge servers are located in close

proximity to end-users and have powerful enough computing

capability, offloading tasks of wireless devices to edge servers

is becoming a ubiquitous computing paradigm for such appli-

cations.

With the advancement of Field Programmable Gate Arrays

(FPGAs), FPGA-based reconfigurable accelerators have been

widely adopted for various tasks [2]. Running specific jobs

on FPGA has high efficiency in both computing time and

energy consumption. For example, an AlexNet accelerator
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with 16-bit fixed point implemented on Xilinx Virtex-7 is 62×
faster and uses 22× less energy compared to ARM Cortex

A15 [3], [4]. FPGAs are frequently attached to a CPU in

traditional computing systems, acting as powerful auxiliaries.

Recently, a more advanced structure [5], [6] has been proposed

where FPGAs can connect to networks as standalone com-

puting resources following existing infrastructure as a service

(IaaS) mechanisms. The availability of FPGAs as independent

resources will enable high scalability, flexibility, and easy

maintenance.

Existing task offloading works at the edge mainly focus

on homogeneous systems that contain either general-purpose

processors or FPGAs. In contrast, we consider a heterogeneous

edge computing system where both FPGAs and general-

purpose servers exist. Wireless devices (WDs) communicate

with computing devices via access points (APs). There are four

categories of decisions in such systems, namely offloading,

access point selection, computing resource management, and

communication resource management decisions. The goal is

to minimize the average latency of all wireless devices.

Despite the advantages of edge computing and incorporating

standalone FPGAs, it is challenging to choose offloading, AP

selection, computing resource management, and communica-

tion resource management decisions jointly. First, computing

devices in the system are heterogeneous and thus suitable

for different jobs. For example, some jobs can be acceler-

ated significantly on FPGAs, while others have less latency

reduction on FPGAs. The amounts of resources required for

performing tasks of different WDs on FPGAs are different.

Therefore, to efficiently use limited FPGAs, offloading de-

cisions must be made carefully, so tasks are offloaded to

suitable computing devices. Second, the computing resources

of general-purpose servers are limited and must be shared

among multiple WDs [7]. The resource allocation among WDs

must be balanced to ensure that the overall latency is as low as

possible. Third, WDs can communicate with edge computing

devices via different APs, and the channel conditions between

WDs and APs can vary greatly. Consequently, we need to

coordinate the AP selections for WDs to minimize their

collective latencies. Lastly, the bandwidth of access points is

limited, and the bandwidths have to be allocated to WDs in

a collective optimal manner. Existing methods can not deal

with the above challenges collectively, and this is the first

work considering the joint tasking offloading and resource

management problem in heterogeneous edge environments.
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Our main contributions are summarized as follows.

• We formulate the joint task offloading, AP selection, and

resource management problem (JOAM) in heterogeneous

edge environments, which we prove is NP-hard. JOAM can

be divided into two disjoint NP-hard problems, namely Joint

task Offloading and computing resource Management prob-

lem (JOM) for computing latency minimization and Joint

AP selection and communication resource Management

problem (JAM) for communication latency minimization,

and see Section III-E for details.

• For the first subproblem (JOM) minimizing computing la-

tency, we show that there is no polynomial-time approx-

imation algorithm. Therefore, we develop a semidefinite

relaxation-based algorithm to make offloading decisions

and derive the closed-form optimal computing resource

management decisions.

• For the second subproblem (JAM) minimizing communica-

tion latency, we design a game-theoretic algorithm to choose

APs and allocate communication resources. We prove the

approximation ratio of the proposed algorithm is 2.62. In

addition, we show that there exists a trade-off between the

time complexity and the approximation ratio of the proposed

algorithm.

• We evaluate the algorithms by extensive simulations. The

results highlight that the proposed algorithms outperform

popular baselines, e.g., Markov chain Monte Carlo meth-

ods [8], and are near-optimal (1.02× and 1.05× the optimal

latencies).

The remainder of this paper is organized as follows. Sec-

tion II discusses related works. Section III presents the prob-

lem formulation. Sections IV and V propose algorithms for

JOM and JAM, respectively. Section VI shows the perfor-

mance evaluation of our algorithms. Section VII concludes

this paper.

II. RELATED WORKS

A large number of works of job offloading with various

purposes and settings in edge computing systems are well-

studied, e.g., [7], [9]–[13]. In particular, [7], [9], [10] and

[14] focus on minimizing the latency of jobs, [12] and [15]

consider job offloading problems with the goal of optimizing

the computation energy efficiency, and [11] formulates a job

offloading problem that considers minimizing a combination

of computing latency and energy consumption. In [13], Ali et

al. consider the problem of minimizing energy consumption

under latency constraints in a mobile cloud computing system.

Different methodologies have been exploited for choosing

decision variables. Game theoretic-based algorithms are used

in [7], [9]. [11] proposes a reinforcement learning-based

algorithm for choosing decision variables. [10] applies Lya-

punov optimization to the proposed problem. [12] proposes

an iterative and gradient descent method for minimizing its

objective value. Some works assume the computing resource

assigned to jobs are adjustable [7], [9], [11], [12], while others

fix the amount of resources required by jobs [10]. In this

paper, we consider a more general case where the amount

of resources for jobs on general-purpose servers is adjustable

and that for jobs on FPGAs is fixed.

[7], [9] are two papers that consider offloading jobs and

resource allocating, where the amount of computing resources

allocated to wireless devices is adjustable. In [7], Jošilo et

al. consider the problem of allocating wireless and computing

resources to wireless devices in an edge computing system

for latency minimization, and an algorithm with a provable

approximation ratio is proposed. In [9], Jošilo et al. extend the

model in [7] by enabling network slicing. The amount of com-

puting resource allocated to wireless devices is adjustable in

both [7] and [9], while standalone FPGAs are included in this

paper, and we can not change the amounts of FPGA resources

assigned to FPGAs to tune the processing latency (detailed

reasons can be found in Section III-D). The computing laten-

cies of general-purpose servers and FPGAs follow different

natures, leading to the difficulty of the latency minimization

problem, and the previous methods in the literature can not

solve the problem considered in this paper. The algorithm

proposed in Section V can solve the problems in [7], [9],

where our algorithm converges in polynomial steps and their

algorithms may need exponential steps.

III. SYSTEM MODEL

We consider the problem of joint task offloading and re-

source allocation in heterogeneous edge environments with

the goal of minimizing the system latency. Some important

notations are shown in Table I.

A. Edge Task Offloading System

a) System Components: We consider an edge system

consisting of wireless edge devices (WDs), access points

(APs), and edge computing devices. There are I WDs in the

system, and I = [I] ≜ {1, 2, · · · , I} denotes the set of WDs.

There are K APs in the system, and K = [K] ≜ {1, 2, · · · ,K}
represents the set of APs. For each AP k ∈ K, it has an

uplink bandwidth of Bk bits/s and a downlink bandwidth

of Bk bits/s. There are two types of edge computing de-

vices, namely general-purpose servers and FPGAs. We use

N = [N ] ≜ {1, 2, · · · , N} to denote the set of servers where

N is the number of servers. Similarly, M = [M ] represents

the set of FPGAs where M is the number of FPGAs. We

use Fn to denote the computing capability of server n, e.g.,

numbers of floating-point operations per second (FLOPs). For

each m ∈ M, Am = {Am,1, Am,2, · · · , Am,L} is the vector

representing the amounts of L different resources of FPGA

m, i.e., the number of configurable logic blocks (CLBs), Flip-

Flops, DSPs, BRAMs and so on [16]. L = {1, 2, · · · , L}
denotes the set the L types of resources. Multiple applications

can share the resources of an FPGA board simultaneously [17],

[18].

b) Network Topology: WDs can communicate with edge

computing devices through APs. Each AP k ∈ K has a

coverage area. A WD can be covered by more than one AP.

We use Ki to denote the set of APs that cover the location of

WD i where Ki ⊆ K. APs communicate with edge computing
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to denote the proportion of computing capability of server n
allocated to WD i. Note that the server can be not only a CPU

but also a GPU because the MPS scheme allows different jobs

running on different address spaces of a GPU [23]. There is

a constraint limiting that the amount of computing capability

allocated to WDs in On(x) can not exceed the total computing

capability of server n as follows:
∑

i∈I
xi,nαi,n ≜

∑

i∈On(x)

αi,n ≤ 1.
(3)

For the sake of simplicity, we use α = {αi,n|i ∈ I, n ∈ N} to

denote the collection of all computing resource management

variables.

b) Suitability Between servers and Tasks: Since different

servers may be equipped with different amounts of CPUs,

GPUs, etc., some servers are more suitable for running some

types of tasks. For each WD i and server n, there is a

suitability δi,n ∈ [0, 1] [14]. δi,n ∈ [0, 1] depicts how well

a server n is fitting for running tasks of WD i. The larger

δi,n, the better the suitability of offloading tasks of WD i to

server n.

c) Offloading to Field Programmable Gate Arrays: For

each WD i ∈ I and FPGA m ∈ M, there is a decision variable

yi,m ∈ {0, 1}. In particular, yi,m = 1 if WD i places its tasks

on FPGA m, and yi,m = 0 otherwise. y is the collection of

yi,m for i ∈ I,m ∈ M. Moreover, Om(y) represents the set

of WDs that place their tasks on FPGA m, i.e., i ∈ Om(y)
if yi,m = 1. There is a constraint limiting the total amounts

of resources required by WDs in Om(y) can not exceed the

resource amounts of FPGA m as follows:
∑

i∈I
yi,mai,m,l ≜

∑

i∈Om(y)

ai,m,l ≤ Am,l for m ∈ M, l ∈ L.

(4)

d) Constraint of Offloading Decision: The collection of

offloading decisions is (x,y). Since each WD i offloads its

tasks on either a server n ∈ N or an FPGA m ∈ M, we have

the following constraint regarding (x,y):
∑

n∈N
xi,n +

∑

m∈M
yi,m = 1 for i ∈ I. (5)

D. Goal of the System

The goal of the system is to minimize the summation

of latency of all WDs. The latency of each WD i consists

two parts, namely processing latency TP
i and communication

latency TC
i .

a) Processing Latency: If WD i places its task on server

n, the average processing latency can be expressed as a

function of the amount of computing capability allocated to

WD i [24], i.e.,

TP
i = xi,n · fi/

(

Fnδi,nαi,n

)

(6)

where δi,n is a fixed parameter reflecting the suitability of

running tasks of WD i on server n. For example, δi,n is

different in two cases where the server is a CPU and a GPU.

We can tune the above latency by varying αi,n [7], [23]. On

the other hand, if WD i offloads its tasks on FPGA m, the

processing latency of WD i is ti,m, i.e.,

TP
i = yi,mti,m. (7)

Different from the latencies of tasks on servers, latencies of

tasks on FPGAs can not be decreased by increasing the number

of configurable logic blocks for the following reasons. First,

the functions running on FPGAs are described by hardware

description language in advance. Once the hardware descrip-

tion code is given and an FPGA is specified, the resource

consumption and the latency are also fixed. Second, it is

wasteful and time-consuming to develop different versions of

FPGA implementation. Last and most importantly, varying

the implementation (reprogramming FPGA) takes time, e.g.,

hundreds of ms up to tens of seconds, which is fatal to

applications requiring extra-low latency.

From (6) and (7), the processing latency is a function of

(x,y, α), and we use TP (x,y, α) to denote the summation

of processing latency of all WDs, i.e.,

TP (x,y, α) =
∑

i∈I

(

∑

n∈N

xi,nfi
Fnδi,nαi,n

+
∑

m∈M
yi,mti,m

)

. (8)

b) Communication Latency: Since we focus on edge

computing systems, the WDs and APs are in close vicinity;

therefore, the propagation delay is negligible, and we only

need to consider the transmission delay. The transmission

latency of WD i consists of input data uploading latency and

output data downloading latency. If AP k is the uploading

AP of WD i, the uploading transmission delay of WD i is

denoted by T
C

i , i.e., T
C

i = ci/(γi,k · Bk · βi,k) if zi,k = 1.
Similarly, if AP k is the downloading AP of WD i, the

downloading transmission delay of WD i is denoted by TC
i ,

i.e., TC
i = ci/(γi,k · Bk · β

i,k
) if zi,k = 1. Let TC

i be the

average communication latency of WD i, i.e., TC
i = T

C

i +TC
i .

In addition, the summation of communication latencies of all

WDs is a function of z, β as follows:

TC(y, β) =
∑

i∈I
TC
i (y, β) =

∑

i∈I

(

T
C

i + TC
i

)

. (9)

E. Problem Formulation

In this subsection, we formally state the problem we formu-

lated above as an optimization problem, and we refer to the

problem as JOAM which is short for Joint job Offloading, AP

selection, and resource Management. JOAM is as follows:

min
x,y,z,α,β

TP (x,y, α) + TC(y, β) (JOAM)

s.t. (1)− (5)

xi,n ∈ {0, 1} for i ∈ I and n ∈ N (10)

yi,m ∈ {0, 1} for i ∈ I and m ∈ M (11)

αi,n ∈ [0, 1] for i ∈ On(x) and n ∈ N (12)

zi,k, zi,k ∈ {0, 1} for i ∈ I and k ∈ K (13)

βi,k ∈ [0, 1] for i ∈ Ok(z) and k ∈ K (14)

β
i,k

∈ [0, 1] for i ∈ Ok(z) and k ∈ K. (15)
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The decision variables of JOAM can be partitioned into two
sets, namely (x,y, α) and (z, β). There is no coupling between
(x,y, α) and (z, β) in the constraints. In addition, communica-
tion latency TC is merely determined by (z, β), and processing
latency TP is merely determined by (x,y, α). Therefore,
JOAM can be divided into two disjoint subproblems, namely
the Joint task Offloading and computing resource Management
problem (JOM) of minimizing TP over (x,y, α) and the AP
selection and communication resource Management problem
(JAM) of minimizing TC over variables (z, β). The two
disjoint subproblems are as follows:

min
x,y,α

TP (x,y, α) (JOM)

s.t. (3)− (5), (12)− (14)

min
z,β

TC(z, β) (JAM)

s.t. (1)− (2), (15)− (17)

In what follows, we show the NP-hardness of JOAM. Actually,

both JOM and JAM are NP-hard.

Theorem 1. JOAM is NP-hard.

Proof. JOM is a special version of JOAM. To be more

specific, JOM is equivalent to JOAM if there is only one AP

covering all WDs and having infinite uplink and downlink

bandwidth. JOAM is NP-hard because JOM, a special version

of JOM, is NP-hard. The NP-hardness of JOM is shown in

Theorem 2.

IV. ALGORITHM DESIGN FOR TASK OFFLOADING AND

COMPUTING RESOURCE MANAGEMENT

In this section, we focus on the first subproblem of JOAM,

i.e., JOM. We first show the hardness of JOM. Then, We

design an algorithm for JOM.

Theorem 2. JOM is NP-hard, and no polynomial-time approx-

imation algorithm is possible unless there are some additional

assumptions.

The main idea of the proof is to show a special version of

JOM is equivalent to the Generalized Assignment Problem

(GAP) (Chapter 48 of [25]). Under the special version of

JOM, there is no general-purpose server and only one type

of resource constraint, i.e., N = 0 and m = 1. Detailed proof

of Theorem 2 is omitted due to space limitations.

A. Computing Resource Management Under Given Offloading

Decisions

We then consider the problem of finding the optimal
computing resource management decision α under any given
offloading decision (x,y). For WDs placing their tasks on gate
arrays, their latencies are fixed. Therefore, if (x,y) is given,
JOM is equivalent to minimizing the summation of TP

i for
i ∈ ∪

n∈N
On(x) over α as follows:

min
α

∑

n∈N

∑

i∈On(x)

fi/
(

Fnδi,nαi,n

)

s.t. αi,n ∈ [0, 1] for n ∈ N , i ∈ On(x)
∑

i∈On(x)

αi,n ≤ 1 for n ∈ N .

(16)

We use α∗(x) = {α∗
i,n

∣

∣n ∈ N , i ∈ On(x)} to denote the

optimal solution of (16) under offloading decision x. The

optimal computing resource management decision α∗(x) is

shown in Lemma 1.

Lemma 1. For any given x, α∗(x) is as follows:

α∗
i,n =

√

fi/δi,n
∑

j∈On(x)

√

fj/δi,n
for n ∈ N , i ∈ On(x). (17)

The proof of Lemma 1 is omitted due to space limitations.

The main idea of the proof is to exploit the KKT conditions.

Substituting α∗ into (8) and changing the order in the double

sum, the optimal processing latency under offloading decision

(x,y) is equal to

TP =
∑

n∈N

∑

i∈I

∑

j∈I

xi,nxj,n

Fn

√

fifj
δi,nδj,n

+
∑

i∈I

∑

m∈M
yi,mti,m.

That is, by substituting α∗ into JOM, JOM is equivalent to P1
as follows:

min
x,y

∑

n∈N

1

Fn

∑

i∈I

∑

j∈I

xi,nxj,n

√

fifj
δi,nδj,n

+
∑

i∈I

∑

m∈M

yi,mti,m

s.t.
∑

i∈Om(y)

ai,m,l ≤ Am,l for m ∈ M, l ∈ L

∑

n∈N

xi,n +
∑

m∈M

yi,m = 1 for i ∈ I

xi,n, yi,m ∈ {0, 1} for i ∈ I, n ∈ N ,m ∈ M.
(P1)

We use (x∗,y∗) to denote the optimal solution of P1. Accord-

ingly,
(

x∗,y∗, α∗(x∗)
)

is the optimal solution of JOM. Since

we have the optimal solution α∗(x) under any given (x,y),
we then focus on choosing (x,y), i.e., solving P1.

B. Algorithm Design for P1

Although we eliminate decision α, P1 is still NP-hard and

there is no polynomial-time approximation algorithm for it.

The proof is similar to that of Theorem 2, and we omit the

proof due to space limitations. Semidefinite relaxation to P1

is a practical approach for finding a feasible solution nearing

the optimal solution in polynomial time. Next, we focus

on developing a semidefinite programming (SDP) relaxation

approach for P1.
First, we rewrite P1 in the standard binary quadratic pro-

gramming (BQP) form. Let u be the column vector uni-
fying all variables of P1, i.e., x and y. In particular, we
have u = (x1;x2; · · · ;xN ;y1;y2; · · · ;yM ) where xn =
(x1,n; · · · ;xI,n) and yn = (y1,m; y2,m; · · · ; yI,m). J = (M+
N)I is the number of binary variables of P1. By introducing
a new variable U = u · uT , we can reformulate P1 as:

min
u,U

Tr(PU) + qTu

s.t. hT
i u = 1 for i ∈ I

dTm,lu ≤ Am,l for m ∈ M, l ∈ L

U = u · uT .

(18)

P is a J × J matrix corresponding to the quadratic terms in
the objective function of P1. q, hi, dm,l are column vectors of
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Algorithm 1: SDPR

Input: Fn, n ∈ N , fi, i ∈ I, Am,m ∈ M, ai, i ∈ I,

ti, i ∈ I
Parameter: IterNum

Output: A feasible solution to P1: (xbest,ybest)
1 Calculate P, q, ci for i ∈ I, and dm for m ∈ M;

2 Solve SDP (19) to get u∗ and U∗;

3 Initialize (xbest,ybest) = round(u∗);
4 Initialize Lbest = TP (xbest,ybest, α∗(xbest,ybest));

5 Set µ = u∗, Σ = U∗ − u∗ · u∗T , and l = 0;

6 while l < IterNum do

7 Randomly sample v(l) from N (µ,Σ);
8 Calculate (x(l),yl) = round(vl);
9 Calculate L(l) = TP

(

x(l),y(l), α∗(x(l),y(l))
)

;

10 if L(l) < Lbest then

11 Lbest := L(l);

12 (xbest,ybest) := (x(l),y(l));
13 end

14 l := l + 1;

15 end

length J . P can be written in the form of Q ·QT . Therefore,
P is positive semidefinite, i.e., P ≽ 0. The only non-convex
constraint in (18) is U = u · uT . By relaxing U = u · uT to
U ≽ u ·uT and adding constraint uj(1−uj) ≤ 1, (18) can be
relaxed to a convex optimization problem as follows:

min
u,U

Tr(PU) + qTu

s.t. hT
i u = 1 for i ∈ I,

dTm,lu ≤ Am,l for m ∈ M, l ∈ L,

diag(U) ≤ u · uT ,

∣

∣

∣

∣

∣

[

U u

uT 1

]

≽ 0.

(19)

The last constraint in (19) holds if and only if U ≽ 0 and

U − u · uT ≽ 0, which can be proved by exploiting Schur

complement. Let (u∗, U∗) be the optimal solution to (19).

Since (19) is a relaxation of P1, the optimal objective value

of (19) is a natural lower bound of the minimum value of P1.

Next, we show a physical interpretation of the semidefinite
relaxation (19). Let v be a J-dimensional joint normal random
vector. Let µ and Σ be the mean and covariance matrix of
v, respectively. That is, v ∼ N (µ,Σ). Then, from [26], if
constraint diag(U) ≤ u · uT is not in (19), µ = u∗ and
Σ = U∗ − µ · µT minimizes the following problem:

min E

[

vTPv + qT v
]

s.t. E

[

hT
i v

]

= 1 for i ∈ I

E

[

dTm,lv
]

≤ Am,l for m ∈ M, l ∈ L.

(20)

Intuitively, v drawn from N (µ,Σ) under µ = u∗ and Σ =
U∗ −µ ·µT has a cost close to the optimal objective value of

(19). We can draw a number of samples from N (µ,Σ) with

µ = u∗ and Σ = U∗−µ ·µT , round each of them to a feasible

point, and choose the feasible point with the lowest cost. Let

round be the operator rounding u to a feasible solution to P1.

A specific rounding algorithm is proposed in the following

Algorithm 2: Round (Rounding Algorithm)

Input: Fn, n ∈ N , fi, i ∈ I, Am,m ∈ M, ai, i ∈ I,

ti, i ∈ I, xc, and yc

Parameter: IterNum

Output: A feasible solution to P1: (xfsb,yfsb)
1 IF := ∅, IS := I, l := 1,xfsb = 0,yfsb = 0;

2 while ∃j ∈ I,m ∈ M such that aj ≤ Am do

3 i := argmax
j∈IS

max{ycj,1, · · · , ycj,M};

4 m∗ := arg max
m∈M

yci,m;

5 if ai ≤ Am∗ then

6 yfsbi,m := 0 for m ∈ M \ {m∗}, yfsbi,m∗ := 1;

7 Am∗ := Am∗ − ai;

8 ai := ∞;

9 yci,m := 0 for i ∈ I;

10 IF = IF ∪ {i} and IS = IS \ {i};

11 else

12 yci,m∗ := 0;

13 end

14 end

15 xfsb
i,n := 0 for i ∈ I and n ∈ N ;

16 xfsb
i,n∗ := 1 for i ∈ IS and n∗ = argmax

n
xc
i,n;

17 while l < IterNum and ∃i ∈ IS such that

TP
i (xfsb)

(a)
< min

n∈N

√
fi/δi,n
Fn

(
√
fi√
δi,n

+
∑

j∈I
xj,n

√
fj√
δj,n

) do

18 Randomly choose an i satisfying inequality (a);

19 n̂ := argmin
n

√
fi/δi,n
Fn

(
√
fi√
δi,n

+
∑

j∈I
xj,n

√
fj√
δj,n

);

20 xfsb
i,n := 0 for n ∈ N \ {n̂} and xfsb

i,n̂ := 1;

21 l := l + 1;

22 end

section. We then formally state the proposed algorithm, named

SDPR, for P1 in Algorithm 1.

In step 2 of Algorithm 1 (SDPR), we can solve (19)

by the interior point method with the time complexity of

O(J7 log(ϵ−1)) [27]. The time complexity for solving (19)

plus the time complexity of the rounding process is the

time complexity of Algorithm 1. The time complexity of the

rounding process is much faster than solving (19), which is

validated by numerical simulations.

C. Rounding the Solution of the Semidefinite Relaxation

Next, we propose a rounding algorithm that rounds vector

v of length J to a feasible solution (x,y) for P1. Before

the rounding process, we unzip v to (xc,yc), where v is the

input vector. In particular, xc
i,n = v(n−1)·I+i for i ∈ I and

n ∈ N and yci,m = v(N+m−1)·I+i for i ∈ I and m ∈ M. The

rounding algorithm is formally stated in Algorithm 2.

We first consider rounding yc to a feasible y, where y is an

I-by-M binary matrix, ym is the mth column of y. We sort

WDs I by the value of max
m

yci,m in descending order. WDs

in the order take turns to round {yci,m|m ∈ M} to {yi,m|m ∈
M}. In particular, WD i set yi,m = 1 if m = argmax

m′

yci,m′

and ai is no greater then the available space of FPGA m, and
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yi,m = 0 otherwise. Let IF be the set of WDs offloading its

tasks to M, i.e., i ∈ IF if and only if
∑

m∈M yi,m = 1. Then,

since we have the constraint that
∑

m∈M yi,m+
∑

n∈N xi,n =
1, we have xi,n = 0 for i ∈ IF . That is, we only need to

consider xi,n for i ∈ IS ≜ I \ IF in the following.

Then, we consider rounding xc
i,n to binary for i ∈ IS and

n ∈ N . Each WD i sets xi,n to 1 if n = argmax
n′

xc
i,n′ and

sets xi,n to 0 otherwise. Then, WDs in IS take turns to adjust

their decision. To be more specific, if xi,n = 1 and there exists

n̄ ∈ N such that moving WD i from n to n̄ can lower the

latency of WD i given other WDs’ decisions, WD i resets

xi,n̄ = 1 and xi,n = 0 for n ̸= n̄. We can set a maximum

number of iterations for WDs to adjust their decisions. In fact,

if there is no limit for maximum iteration, it can be proved that

the decision adjustment process for WDs in IS will terminate

after a finite number of iterations (see [28] for details).

The time complexity of rounding y (Line 1-14) is O(I2 ·
log(I)) and the time complexity of rounding x (Line 15-22)

is O(IN + I · IterNum). That is, the time complexity of the

rounding algorithm is polynomial to the system parameters.

V. ALGORITHM DESIGN FOR AP SELECTION AND

COMMUNICATION RESOURCE MANAGEMENT

In this section, we focus on designing an algorithm for JAM.

First, we show the hardness of JAM. Then, we propose an

algorithm for solving JAM.

The hardness of JAM is shown in Theorem 3.

Theorem 3. JAM is strongly NP-hard, and there is no fully

polynomial-time approximation scheme (FPTAS) and pseudo-

polynomial time algorithm for JAM.

The proof of Theorem 3 is similar to that of Theorem 1 in

[9], so we omit it.

A. Communication Resource Management Under Given AP

selection Decisions

We first consider finding communication resource manage-
ment variables β under any given AP selection decision z. If
z is given, JAM is equivalent to the following problem.

min
β

∑

i∈I

(

T
C

i (z, β) + TC
i (z, β)

)

s.t.
∑

i∈Ok(z)

βi,k ≤ 1,
∑

i∈Ok(z)

β
i,k

≤ 1 for k ∈ K

βi,k ∈ [0, 1] for i ∈ Ok(z) and k ∈ K

β
i,k

∈ [0, 1] for i ∈ Ok(z) and k ∈ K.

(21)

We use β∗(z) = {β∗
i,k|k ∈ K, i ∈ Ok(z)} ∪ {β∗

i,k
|k ∈

K, i ∈ Ok(z)} to denote the optimal solution of (21) under

AP selection decision z. The optimal communication resource

management decision β∗(z) is shown in Lemma 2.

Lemma 2. For any feasible z, optimal communication re-
source management decision β∗(z) is as follows:

β
∗

i,n =

√

ci/γi,k
∑

j∈Ok(z)

√

cj/γj,k
for k ∈ K, i ∈ Ok(z), (22)

β∗

i,n
=

√

ci/γi,k
∑

j∈Ok(z)

√

cj/γj,k
for k ∈ K, i ∈ Ok(z). (23)

The proof of Lemma 2 is omitted due to space limitations.

The main idea of Lemma 2 is to derive the optimal solution

by exploiting KKT conditions.
Substituting β∗ into (21), the optimal communication la-

tency under AP selection decision z is equal to
∑

i∈I

(

T
C

i + TC
i

)

=
∑

k∈K

∑

i∈Ok(z)

T
C

i +
∑

k∈K

∑

i∈Ok(z)

TC
i

=
∑

k∈K

1

Bk

∑

i∈Ok(z)

√

ci/γi,k
(

∑

j∈Ok(z)

√

cj/γj,k
)

+
∑

k∈K

1

Bk

∑

i∈Ok(z)

√

ci/γi,k
(

∑

j∈Ok(z)

√

cj/γj,k
)

.

(24)

For the sake of convenience, we introduce some short-formed

terms as follows. Let R ≜ {(k, upload), (k, download)|k ∈
K}, where each element in set R is a tuple representing a kind

of communication resource. For example, (k, upload) and

(k, download) represent the uploading and downloading band-

width resources of AP k, respectively. For each resource r ∈
R, there is a weight mr associated with it. In particular, mr =
1
Bk

if r = (k, upload) and mr = 1
Bk

if r = (k, download).
For each WD i, let Zi be the set of all feasible zi. In particular,

from the constraints of JAM, we have Zi =
{

zi
∣

∣

∑

k∈K zi,k =
1,
∑

k∈K zi,k = 1, and zi,k, zi,k ∈ {0, 1}
}

. For any given

zi ∈ Zi, zi decides the uploading AP and the downloading

AP of WD i, and we use Ri(zi) to denote resources that

WD i chooses. For example, if WD i chooses AP k1 and

AP k2 as its uploading and downloading APs respectively, we

have Ri(zi) = {(k1, upload), (k2, download)}. Let pi,r be a

value corresponding with the pair of WD i and resources r.

In particular, pi,r =
√

ci/γi,k if r = (k, uploading), and let

pi,r =
√

ci/γi,k if r = (k, downloading). In addition, for

each r ∈ R, there is a value pr, which is a function of z.

In particular, pr(z) =
∑

i∈Ok(z)
pi,k if r = (k, upload), and

pr(z) =
∑

i∈Ok(z)
p
i,k

if r = (k, download).

Then, substituting (24) and the terms defined above into
JAM, we have that JAM is equivalent to P2 as follows:

min
z

TC(z) =
∑

i∈I

TC
i (z) =

∑

i∈I

∑

r∈Ri(zi)

mrpi,rpr(z)

s.t. zi ∈ Zi, i ∈ I.

(P2)

B. Algorithm Design for AP Selection

Next, we propose an algorithm, called generalized Conges-

tion Game Based Algorithm (CGBA), for P2 in Algorithm 3.

CGBA has a parameter λ ≥ 0 that we can tune. We use

CGBA(λ) to denote CGBA with parameter λ. We use ẑ to

denote the AP selection decision made by Algorithm 3, and

use z∗ = (z∗1, · · · , z∗I) to denote the optimal AP selection

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:45:00 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 3: CGBA(λ)

Input: Bk, Bk for k ∈ K, ci, ci for i ∈ I,

γi,k for i ∈ I, k ∈ K
Output: A feasible solution to P2: ẑ

1 Initialization: choose zi from Zi randomly for k ∈ K;

2 while {∃i ∈ I, (1− λ)TC
i (z) > min

z̄i∈Zi

TC
i (z̄i, z−i)} do

3 i := argmax
j∈I

{

TC
j (z)− min

z̄j∈Zj

TC
i (z̄i, z−i)

}

;

4 ẑi := argminz̄i∈Zi
TC
i (z̄i, z−i);

5 z := (ẑi, z−i);
6 end

7 ẑ := z;

decision. In addition, z−i represents the decision of all WDs

except WD i, i.e., z = (z−i, zi).

In what follows, we analyze the performance of CGBA(λ).

First, we show that P2 can be interpreted as an exact potential

game, as shown in Lemma 3.

Lemma 3. There exists an potential function P (z) such that

TC
i (zi, z−i)−TC

i (z̄iz−i) = P (zi, z−i)−P (z̄i, z−i) holds for

all feasible zi, z̄i, and z−i, and P (z) < TC(z) holds for all

feasible z.

The proof of Lemma 3 is standard and can be found in

[7], [9], [29], so we omit it. Based on Lemma 3, we have the

performance guarantee for CGBA(0) as shown in the following

theorem.

Theorem 4. CGBA(0) terminates to a decision ẑ with 2.62 ·
TC(z∗) ≥ TC(ẑ) after a finite number of iterations.

The approximation ratio in Theorem 4 is a special case of

Theorem 5, and Lemma 3 implies that the algorithm terminates

after a finite number of iterations [30]. The theorem shows

that CGBA(0) is a 2.62-approximation algorithm. Note that

each iteration of CGBA takes polynomial time, where the

proof is straightforward and omitted due to space limitations.

Simulation results show that the time complexity of CGBA(0)

is linear to I and the average cost under CGBA(0) is around

1.02× the optimum. Then, we consider the case that λ > 0.

To show the performance of CGBA(λ) with λ > 0, we first

introduce a Lemma appears in [29] as follows.

Lemma 4. Let z be any feasible decision and z∗ be

the optimal decision, then we have
∑

i∈I TC
i (z∗i , z−i) ≤

√

TC(z)TC(z∗) + TC(z∗).

Next, the performance guarantee for CGBA(λ) is as follows.

Theorem 5. For λ ∈ (0, 1
8 ], CGBA(λ) generates a decision

ẑ with TC(ẑ) ≤ 2.62
1−8λT

C(z∗) in at most O
(

I
λ log(P

0

P∗
)
)

iterations.

P 0 and P ∗ are the initial and the minimum value of the

potential function P (z), respectively, and both P 0 and P ∗

are finite positive values. The proof of Theorem 5 is found in

our technical report [28].

VI. NUMERICAL EVALUATION

In this section, we evaluate the performance of the proposed

algorithms under a wide range of settings. We implement our

simulations using MATLAB R2021a in a DELL Alienware

desktop with 32GB RAM and AMD Ryzen7 2700X Eight-

Core Processor running of Windows 10 OS.

A. Simulation Setup

The computing capability of each server is measured by

floating-point operations per second (FLOPS), and the capacity

of each server i is set to the real-world FLOPS of EC2 in-

stances from [31]. We consider a system with N = 10 general-

purpose servers (servers) and M = 5 FPGAs. Task size of

WDs fi, i ∈ I are drawn from the real-world computing

complexity (in terms of floating-point operations (FLOPs)) of

6 neural network models, the first six entries of Table 5 in [32].

Similar to [14], δi,n is drawn from [0.5, 1]. We set the numbers

of CLBs and DSP slices are the two bottleneck resources,

i.e., L = 2, and set Am,1,m ∈ M and Am,2,m ∈ M
to real-world values of different types of FPGAs [33]. The

number of CLBs required for implementing a fuzzy neural

network varies with network size, where the numbers of CLBs

required for implementing fuzzy neural networks with 60 input

neurons, 10 to 18 neurons in the hidden layer, and three output

neurons are in the range from 5000 to 6000 [34]. We drew

the number of CLBs required of WDs from [4000, 8000] and

the number DSP slices of WDs from [20, 40]. From [3], [4],

ti,m, i ∈ I,m ∈ M are set to 10 to 60 times faster than the

optimal average latencies of WDs on servers under the case

that I = 100 and M = 0. The number of WDs varies in

different simulations and will be specified in the following.

We assume WDs are located in a square area of 1km×1km,

similar to that used in [7]. We divide the 1km×1km area into

six 1/3km × 1/2km subareas, and there are 6 APs located

in the center of the 6 subareas. WD i and an AP k can

communicate if the distance between them, denoted by di,k,

is less than 0.5km. For convenience, we set the bandwidth

of APs to the maximum achievable speed rather than its true

physical bandwidth. We randomly draw the uplink bandwidth

Bk from the set of [1, 3] Gbps and the downlink bandwidth

Bk from the set of [2, 5] Gbps. ci, i ∈ [N ] and ci, i ∈ [N ]
are randomly drawn from [0.1, 0.5] and [0.2, 1] Megabits,

respectively [9]. The parameter of bandwidth utilization ratio

γi,k corresponding to WD i and AP k is randomly chosen

from 0.1 to 1.

B. Baselines

We use three baselines for comparison with SDPR. The first

baseline, named by MCMC, which is similar to the algorithm

proposed in [8]. MCMC is short for Monte Carlo Markov

Chain technique and is similar to the simulated annealing

technique. MCMC randomly chooses initial states (x,y) and

z for JOM and JAM, respectively. Then, at each iteration,

MCMC chooses a neighbor of the previous decision and

moves to the neighbor with a probability related to the cost

difference of the decisions. Details of MCMC can be found
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in Algorithm 1 of [8]. The second baseline is named HEAL

(short for HEuristic ALgorithm), similar to the baseline used

in [14]. For JOM, HEAL first chooses y by a greedy algorithm

similar to the greedy algorithm [35] for the knapsack problem.

In particular, HEAL sorts WDs in ascending order of ti,m, and

WDs in the order take turns to be placed on an FPGA until

there is no sufficient space available. Then, HEAL chooses

x for WDs that are not placed on M. In particular, HEAL

chooses the best server n for each i under the assumption that

there is no other WD. HEAL chooses the optimal computing

resource allocation decisions under the selected (x,y). For

JAM, HEAL chooses the best uplink and downlink AP for

each i under the assumption that there is no other WD

and chooses the optimal communication resource allocation

decisions under the selected z. Moreover, we also compare

the performance of our algorithms and corresponding lower

bounds (LB). Lower bounds of JOM and JAM are set to

the optimal objective values of the convex SDP relaxation

problems of JOM and JAM got by the cvx solver, respectively.

C. Simulation Results

We first compare the performance of SDPR (Algorithm 1)

with that of MCMC, HEAL, and LB. Figure 2 shows that

the average latencies of SDPR (Algorithm 1), MCMC, HEAL

and LB under I = {50, 60, · · · , 100}. SDPR (Algorithm 1)

outperforms MCMC and HEAL under all the settings of I .

From Figure 2, the average ratio of the latency under SDPR

(Algorithm 1) to the optimal objective value of the SDP

relaxation of JOM (lower bound) is around 1.05. As I , the

number of WDs, increases, the average latency increases due

to congestion. In addition, simulation results show that the

time complexity of Algorithm 1 (in terms of the running time)

is linear to I , which shows that SDPR has good scalability.

We then compare the average communication latencies of

CGBA(0) (Algorithm 3) and that of the baselines under I =
{50, 60, · · · , 100}. As shown in Figure 3, the communication

latency of CGBA(0) (Algorithm 3) is lower than that of MCMC

and HEAL under all different settings of I . As I increases, the

average latencies of CGBA(0) (Algorithm 3) and the baselines

increase due to congestion. In addition, we use the objective

value of an SDP relaxation of JAM as a lower bound of the

optimal objective value. As shown in Figure 3, the average

ratio of the latency of CGBA(0) (Algorithm 3) to the lower

0 0.02 0.04 0.06 0.08 0.1

parameter 

148

150

152

154

156

158

160

162

T
im

e
 C

o
m

p
le

x
it
y

4.9

4.92

4.94

4.96

4.98

5

L
a
te

n
c
y

Time Complexity

Communication Latency

Fig. 5: Trade-off Between

Communication Latency and

Time Complexity

50 60 70 80 90 100

Number of WDs

60

80

100

120

140

160

180

T
im

e
 C

o
m

p
le

x
it
y

=0

=0.1

Fig. 6: Time Complexity vs.
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bound is around 1.02. By merging Figure 3 and Figure 2, the

total latency (processing latency plus communication latency)

is shown in Figure 4.

Next, we show the performance of CGBA (Algorithm 3)

under different λ. In Figure 5, we show the time complexity

and communication latency under different settings of λ. From

Figure 5, there is a trade-off between the time complexity

and the objective value (communication latency) of CGBA(λ).
As λ increases, the time complexity decreases, and the com-

munication latency increases, which matches the statement in

Theorem 5. The time complexity of Algorithm 3 (in terms of

the number of iterations) is linear to the number of WDs under

different settings of λ as shown in Figure 6.

VII. CONCLUSION

In this paper, we have studied the joint task offloading, AP

selection, and resource allocation problem (JOAM) in hetero-

geneous edge environments to minimize the overall system

latency. We decomposed JOAM into two subproblems, namely

JOM and JAM. We designed an algorithm named SDPR for

JOM based on semidefinite relaxation and proposed a 2.62-

approximation algorithm named CGBA for JAM. We proved

that there is a trade-off between the approximation ratio and

the time complexity of CGBA. Simulation results have shown

that the proposed algorithms outperform the popular baselines

and are near-optimal. In particular, the average processing

latency under SDPR is around 1.05 times the optimum, and the

average communication latency under CGBA is around 1.02

times the optimum.
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