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Abstract—Introducing the emerging serverless paradigm into
edge computing could avoid over- and under-provisioning of lim-
ited edge resources and make complex edge resource management
transparent to application developers, which largely facilitates the
cost-effectiveness, portability, and short time-to-market of edge
applications. However, the computation/data dispersion and de-
vice/network heterogeneity of edge environments prevent current
serverless computing platforms from acclimating to the network
edge. In this paper, we address such challenges by formulating a
container placement and data flow routing problem, which fully
considers the heterogeneity of edge networks and the overhead of
operating serverless platforms on resource-limited edge servers.
We design an online algorithm to solve the problem. We further
show its local optimum for each arriving container and prove
its theoretical guarantee to the optimal offline solution. We also
conduct extensive simulations based on practical experiment
results to show the advantages of the proposed algorithm over
existing baselines.

I. INTRODUCTION

The progressive penetration of Internet-of-Things (IoT) and

the fast proliferation of artificial intelligence (AI) applications

have endowed edge computing with unprecedented impor-

tance. Through deploying computing and storage capabilities

near the network edge, many delay-sensitive IoT applications

could be offloaded from the remote cloud to the proximity of

edge users, which largely reduces service delay and backbone

network pressure. In addition, edge computing enables a

significant portion of data generated by IoT to be processed

locally. Such a near-data paradigm greatly mitigates both trans-

mission and privacy problems that impede the development of

data-intensive services, e.g., AI applications.

Recently, serverless computing [1], [2], also known as

Function-as-a-Service (FaaS) [3], introduces new inspirations

to the edge computing landscape. In serverless computing,

each application is realized as one or several functions that are

initialized and executed upon a user event. It allows users to

focus only on application development and offload all manage-

ment operations, e.g., provisioning, scheduling, and scaling, to

the service provider. It is believed by multiple researches, e.g.,

[4]–[7], that extending the serverless paradigm from the cloud

to the network edge will bring new efficiency, flexibility, and

scalability to tremendous edge-native applications.

The serverless service model applied in edge environ-

ments is often called serverless edge computing or deviceless

computing [4], [5]. In such a paradigm, edge-native appli-

cations are implemented as functions and encapsulated in

light-weighted containers, which could be flexibly started or

stopped on edge servers according to dynamic workloads.

This mechanism largely prevents resource over- or under-

provisioning, which greatly alleviates resource shortage and

enhances flexibility in edge environments. In addition, server-

less edge computing makes the complex nature of edge

resource management completely transparent to application

developers. This feature significantly facilitates the portability

and short time-to-market of edge applications, which are major

challenges in today’s edge computing realm.

To fuse the serverless service model into edge environ-

ments, systems and architectures have been proposed from

both industry and academia, e.g., [6], [8]–[11]. Neverthe-

less, serverless edge computing platforms are still in their

early stages, especially for data-intensive services such as

edge AI applications, which are comprising the majority of

serverless use cases [12], [13]. The major reason for such

incompatibility comes from computation/data geo-dispersion

and device/network heterogeneity of edge environments. Con-

tainers holding data-intensive applications often have close

dependency on certain types and amounts of data during

their initialization and execution. For instance, getting the

corresponding image from a repository is necessary during the

initialization of a container. Many containers holding functions

such as training and inferring phases of AI applications also

need to access large quantities of data during their execution

periods. Unlike the cloud with centralized and homogeneous

computation and storage substrates, supporting data-dependent

containers on distributed and heterogeneous edge devices may

incur large transmission and execution delays that offset the

benefits of the serverless paradigm. On one hand, placing

containers near data origins may lead to significant execution

delay, since edge devices often have limited resources and may

not have desired accelerators to speed up computation. On the

other hand, transmitting data to edge devices or the remote

cloud with sufficient computing resources may lead to large

transmission delays and privacy issues.

There exists pioneering work proposing data-aware con-

tainer orchestration strategies and systems, e.g., [11], to bridge

the gaps between the serverless paradigm and the network edge

for data-intensive applications. Nonetheless, existing solutions

are not sufficient to address the aforementioned challenges,

since multiple unique features of the geo-distributed and

heterogeneous serverless edge computing network have not

been fully considered. First, as far as we are concerned,

existing work has not considered the heterogeneous network
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typologies at the network edge that may be much different

from the cloud. For example, an edge server holding containers

and the corresponding data location may not be directly

connected by one router but a complex routing path. Thus,

besides container scheduling, how to jointly route data flows

between containers and data sources for low transmission

delay is complex but pivotal towards a successful container

orchestration system. In addition, despite the efforts of sim-

plifying serverless computing platforms for edge environments

such as the K3s build [14], extra energy and resources for

container orchestration and maintenance are still needed, e.g.,

using a container scheduler to deploy containers and running

daemons like Kubelet [15] to take care of detailed starting,

stopping, and maintaining containers on each edge server.

Considering both energy and resource are highly limited at

the network edge, such extra operating costs for serverless

edge computing should not be omitted. Furthermore, since

serverless operating costs exist, initializing a container in the

remote cloud and transmitting corresponding data to it is

not necessarily inferior to starting a container near the data

location at the edge. It is highly desirable to have a model

that trades off delays and operating costs over the edge and the

cloud to achieve optimal container scheduling results. Finally,

existing container orchestration systems schedule containers

using greedy algorithms with no performance guarantee in

the worst cases. It is thus desirable to come up with an

online algorithm balancing both performance and theoretical

guarantee.

In this paper, we design an online container scheduling

strategy for data-intensive applications to solve the problems

in serverless edge computing mentioned above. Our main

contributions are summarized as follows.

• To overcome the computation/data dispersion and de-

vice/network heterogeneity in serverless edge computing,

we formulate a joint container placement and flow routing

problem. The formulated model reflects diverse execution

and transmission delays of data-intensive applications

on different edge devices. It also takes various network

typologies at the edge into consideration for detailed

data flow routing. Meanwhile, the formulation makes

it possible to trade off the operating costs of enabling

the serverless edge computing paradigm and the delay

reduction gained by deploying containers at the network

edge. In this way, an optimized container scheduling over

the edge and the cloud could be achieved.

• To solve the formulated problem, we design an Online

Data-aware Container Scheduling (ODCS) algorithm that

jointly places containers and routes data flows when

container requests arrive in a sequential manner. We

then show in the theoretical analysis that the placement

and routing result is locally optimized for each arriving

container. We further prove a theoretical bound of the

ODCS algorithm to the optimal offline solution in the

worst cases.

• We verify the advantages of our algorithm through ex-

tensive simulations, the settings of which are based on

data from small-scale practical experiments. Simulation

results show that the proposed ODCS algorithm achieves

much better performance than existing baselines.

The remainder of this paper is organized as follows. Section

II presents an overview of related work. Section III proposes

the joint container placement and flow routing problem while

Section IV demonstrates the ODCS algorithm and correspond-

ing theoretical analysis. Section V further shows the results of

the small-scale experiment and extensive simulations. Finally,

Section VI concludes the paper.

II. RELATED WORK

Lately, serverless computing is drawing more and more

attention from both industry and academia because of its pay-

as-you-go pricing model, low complexity, cost-effectiveness,

auto-scaling characteristics, etc. Several tech giants have de-

veloped commercial products such as Azure Functions [16],

Cloud Functions [17], Lambda [18], and OpenWhisk [19].

Many research studies have also been proposed focusing on

current challenges and open issues of serverless computing,

e.g., [1], [20]–[24]. Among them, one significant topic is

how to adapt the serverless computing paradigm to edge

environments given its great potential in numerous application

scenarios, e.g., smart home, edge swarms, industry 4.0, and

urban sensing [11], [25].

Fig. 1. Demonstration of a serverless edge computing network. Here, we
utilize the logo of Kubernetes (a blue ship wheel) to represent that a server
supports serverless computing.

In industry, big tech companies have already set their sights

on serverless edge computing. For instance, Amazon proposed

AWS IoT Greengrass [26] that could carry out AWS Lambda

functions on edge devices, aiming at bringing intelligence to

the network edge. In academia, algorithmic, systematic, and

architectural researches have also been proposed. Glikson et al.

pointed out major requirements of serverless edge computing

and defined a deviceless paradigm to emphasize the differences

between serverless models at the edge and in the cloud [5].

Aslanpour et al. put forward a detailed analysis concerning the

opportunities, e.g., always-on mitigation, event-driven applica-

tions, pure pay per use, and open issues, e.g., cold starts, dis-

tributed networking, edge artificial intelligence, in [13]. Xiong

et al. extended a series of components in Kubernetes to adapt
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the container orchestration platform to edge environments and

named the modified system KubeEdge [8]. While Nastic et al.

proposed a serverless real-time data analytics platform in [27],

Baresi et al. constructed a practical network architecture for

serverless edge computing in [6]. According to these pioneer-

ing researches, a serverless edge computing platform could

be concluded as an ingenious combination and extension of

multiple leading-edge virtualization technologies, e.g., docker

[28], OpenFaaS [29], and Kubernetes [30], which is deployed

on interconnected edge devices to provide low-delay, highly

flexible, and cost-effective edge-native applications as shown

in Fig 1.

To mitigate the negative impacts of computation/data geo-

distribution to a serverless edge computing network as men-

tioned in Section I, Pan et al. formulated in [31] a container

caching jointly with request distribution problem and designed

online algorithms to solve it. Rausch et al. proposed a data-

aware container orchestration system in [11] to acclimate data-

intensive edge functions to edge environments. Nevertheless,

existing work omits the necessity of data flow routing given

various and heterogeneous edge network typologies and does

not take the operating costs of serverless edge platforms into

consideration. Mechanisms focusing on end-to-end service

allocation and flow routing, e.g., [32]–[35], on the other hand,

could not be directly applied in the new serverless edge

computing scenario due to constraints such as data availability

and privacy requirements. Therefore, we formulate the joint

container placement and data routing problem for serverless

edge computing in this paper and provide an online solution

with a theoretical guarantee to the optimal offline solution.

III. MODEL FORMULATION

In this section, we formulate the joint container placement

and flow routing problem. We consider a serverless edge

computing network for data-intensive applications shown as

Fig. 2. For unification, we call all units in the network that

could hold containers ”nodes” and denote the set of nodes

as N = {1, ..., n, ..., |N |}. It is worth noting that we use the

node 1 to represent the remote cloud and other nodes as edge

servers. We also use I = {1, ..., i, ..., |I|} to denote the set

of containers to be scheduled on these nodes. To formulate

a container scheduling problem that targets mitigating the

negative impacts of computation/data geo-distribution and

device/network heterogeneity to serverless edge computing,

we need to consider in total four sets of decision variables

in the model.

The variable xi,n ∈ {0, 1} in Set X represents whether

the ith container is deployed on node n. The variable yi,n ∈
{0, 1} in Set Y represents whether the data for the ith

container is retrieved from node n. Due to the heterogeneous

topology of edge networks, we define en1,n2
∈ E as the

communication link between nodes n1 and n2 and utilize the

variable fi,n1,n2
∈ {0, 1} to represent if the flow between

any container i and its corresponding data passes through

link en1,n2
or not. In addition, since realizing the serverless

service model on an edge node involves extra operating costs,

Fig. 2. Demonstration of the container placement and data flow routing
problem for data-intensive applications in a serverless edge computing net-
work. Different containers are represented by C1, C2, and C3, while their
corresponding data are file symbols with corresponding colors. To solve the
problem, the container scheduler needs to determine the placement of each
container and decide which data location to choose for data retrieve and which
flow routing path to follow.

as mentioned in Section I, we consider zn = {0, 1} as the

variable indicating whether the node n is enabled to support

the serverless platform. With the decision variables defined,

we now construct the objective function with multiple terms

as follows. All important notations are listed in Table 1.

TABLE I

Notation Definition

N Set of nodes in the network, N = {1, ..., n, ..., |N |}.

I Set of containers in the network, I = {1, ..., i, ..., |I|}.

en1,n2
The communication link connecting node n1 to n2.

E Set of communication links.

xi,n ∈ {0, 1} Decision variable whether container i is placed on node n.

yi,n ∈ {0, 1} Decision variable whether data of container i is retrieved
from node n.

zn ∈ {0, 1} Decision variable whether node n is enabled for
serverless computing.

fi,n1,n2
∈ {0, 1} Decision variable whether flow between container i

and corresponding data passes through en1,n2
.

wi,n1,n2
The transmission delay introduced by the flow between
container i and corresponding data passing through en1,n2

.

αi,n Execution delay introduced by placing container i on node n.

βi,n Constant marking the availability of data for container i
on node n.

γn Operating cost of node n enabling serverless computing.

p Cost of operating a container with one unit of resource
consumption in the cloud.

ci Resource consumption of container i.
Cn Resource capacity of node n.

Transmission delay: Transmission delay occurs when data

is transmitted from one node to another. We thus define a

parameter wi,n1,n2
representing the transmission delay intro-

duced by the data flow between the container i and the chosen

data source passing the communication link en1,n2
. With each

flow variable fi,n1,n2
defined, the total data transmission delay

introduced by all containers could be summarized as
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U1 =
∑

i∈I

∑

n1∈N

∑

n2∈N

wi,n1,n2
· fi,n1,n2

.

Execution delay: Due to the heterogeneity of edge com-

puting, different edge devices have various types and amounts

of resources. Hence, it is possible that the same container will

incur distinct execution delays on different nodes. According

to our experiment results shown in Section V, a container

encapsulated with a machine learning inference function could

have about 3.6 times execution delay on a Raspberry Pi 4

device compared to the same container on a Jetson Xavier

NX device with a GPU. We thus define the execution delay

of container i on node n as αi,n. We could then formulate the

total execution delay as

U2 =
∑

i∈I

∑

n∈N

αi,n · xi,n.

It is worth noting that αi,n could be set to infinity to represent

that the data of container i could not be transmitted to node

n due to constraints such as privacy issues. Hence, our model

is compatible with applications that have privacy or security

requirements.

Data availability: For the availability of needed data for

each container, we consider the most generalized case in

this model. First, data could be located at edge nodes. It

could be a container image that is downloaded and saved

in the local storage of an edge node. It could also be raw

data generated by sensors that is collected and stored by

an edge storage server nearby. In addition, data could also

be retrieved from the remote cloud that contains numerous

container repositories and databases. Moreover, data needed by

a container i may exist on multiple nodes at the same time. In

this way, we use a parameter βi,n to represent whether the data

needed by container i could be retrieved from node n. If so,

βi,n = 0. Otherwise, βi,n will be assigned infinity to mark its

unavailability. In this way, we formulate the data availability

for all containers in the objective function as

U3 =
∑

n∈N

∑

i∈I

βi,n · yi,n.

Operating cost: As mentioned in Section I, applying the

serverless service model involves operating costs from multi-

ple aspects such as container scheduling and daemons. Since

both energy and computation resources are highly limited

at the network edge, such operating costs often have worse

impacts at the network edge than that in the cloud, which

means larger relative values in the model. For an edge node

n, we define γn as the operating cost if the node is enabled

to hold containers for serverless edge computing. γn varies

for different types of nodes due to the device heterogeneity.

Besides, we consider the operating cost of a container placed

in the cloud is proportional to its resource usage ci and utilize

the parameter p to represent the positive ratio. Therefore, the

total operating cost of the serverless edge computing network

could be considered as

U4 =
∑

n∈N/1

γn · zn +
∑

i∈I

p · ci · xi,1.

With the objective function determined, we further consider

the constraints for the container placement and data flow

routing problem. First, each edge node has a maximal resource

capacity for containers. Denote by ci and Cn the resource

needed by container i and the resource capacity of node n.

It is obvious that any node could hold containers only if it

is enabled for serverless computing, which is indicated by

variable zn. We thus have resource constraints defined as

∑

i∈I

ci · xi,n ≤ zn · Cn, ∀n ∈ N. (1)

Here, C1 is a very large positive constant (≥
∑

i∈I ci) so

that cloud can supply enough resource for all containers. It is

also clear that each container will only be placed once on a

single node, we thus have

∑

n∈N

xi,n = 1, ∀i ∈ I. (2)

Similarly, although data for a certain container may be

available at multiple locations, it only need to be retrieved

from one location, so that

∑

n∈N

yi,n = 1, ∀i ∈ I. (3)

In addition, the flows among containers and corresponding

data should satisfy the flow conservation law on any type of

network topology. This means that, for each data flow, the in-

degree and out-degree of a node n should be the same if both

container i and its data are on the node or neither of them is

on the node. Otherwise, there will be one unit of difference.

Hence, we can conclude that

∑

n1∈N

fi,n1,n −
∑

n2∈N

fi,n,n2
= xi,n − yi,n, ∀n ∈ N. (4)

In the end, we also need to ensure that all variables are

binary in the formulated model that

xi,n, yi,n, zn, fi,n1,n2
∈ {0, 1}, ∀i ∈ I, n, n1, n2 ∈ N. (5)

With the objective function and constraints defined, we

hence formulate the data-aware container placement and flow

routing problem P1 as follows.

min
xi,n,yi,n,zn,fi,n1,n2

U1 + U2 + U3 + U4

s.t. (1), (2), (3), (4), (5). (P1)

It is worth noting that the unit of U4 is different from the first

two terms in the objective function of P1. U3 is a penalty item,

which is either zero or infinity. Related work has proposed

methods to solve such a problem for multi-objective problems.

For instance, Rausch et al. designed a dedicated simulator to

find the best relative value of each objective term in [11].

We will not consider the details in this paper due to the page
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limitation. Nonetheless, we will prove in the following section

IV that the algorithm we propose in this paper will always

have a theoretical bound to the optimal offline solution. We

will also show that the superiority of our algorithm over other

baselines preserves when the relative value of operating cost

changes through extensive simulations in Section V.

IV. ONLINE DATA-AWARE CONTAINER PLACEMENT AND

FLOW ROUTING

In this section, we will discuss the hardness of the formu-

lated problem P1. We will then demonstrate an online algo-

rithm specifically designed to solve P1 with low complexity.

In the end, we will show that the proposed algorithm is locally

optimal for each arriving container and has a theoretical bound

to the optimal offline solution.

A. The Hardness of P1

By assigning parameters wi,n1,n2
, αi,n, βi,n, and p to zero,

and γn to one, we can reduce the well-known bin packing

problem to the problem P1. Therefore, P1 is at least strongly

NP-complete even if container requests come in a batch and

the problem could be solved in an offline manner. Furthermore,

since applications in serverless computing are realized as

functions that are initialized and executed upon users’ events,

containers holding such functions are often started in an online

manner. We thus need to consider a more complex case for P1
that the container requests will arrive sequentially instead of

all at once. This means that corresponding information about

the container i is unknown until its arrival. Such missing

information makes it even harder to solve P1 with close

performance to the optimal offline solution, which knows all

future information in advance.

B. Online Algorithm Design

In view of the hardness and online features of P1, we

design the Online Data-aware Container Scheduling (ODCS)

algorithm to handle the placement and data flow routing

of each arriving container request i. The ODCS algorithm

considers the serverless edge computing network as a di-

rected graph Gi = (N,E), where the edge weight of each

communication link en1,n2
from node n1 to n2 is wi,n1,n2

.

Suppose that all nodes with necessary data for container i
belong to a node set Ndata

i . Here, βi,n̂k
= 0 if n̂k ∈ Ndata

i .

For each n̂k, ODCS runs a single-sourced shortest path al-

gorithm and saves the shortest path and the corresponding

path length li,n̂k,n from n̂k to every node n in Gi. The

computational complexity of such a procedure for each n̂k

is O((|N | + |E|) log(|N |)). The same process is carried out

for all possible data locations n̂k ∈ Ndata
i with the total

complexity at most O((|N |+|E|)|N | log(|N |)) in the case that

data needed by container i is available on every node in the

network. Then, for each possible container location n, the data

location n̂k with the smallest li,n̂k,n is chosen to retrieve data

for container i along the corresponding routing path. Denote

by hi,n the transmission delay along the chosen routing path

from data to container i if it is placed on node n, i.e., the

smallest path length li,n̂k,n for any n̂k, we can transform the

original P1 into a new online problem P2 by combining hi,n

and αi,n and eliminating U1 and U3 as follows.

min
xi,n,zi

∑

i∈I

∑

n∈N

α
′
i,n · xi,n +

∑

n∈N/1

γn · zn +
∑

i∈I

p · ci · xi,1

s.t. (1), (2), (5). (P2)

Here, α′
i,n = αi,n + hi,n. Although simplified, P2 is

still at least strongly NP-complete even with batched arrivals

according to a similar proof. To solve P2 for each arriving

container i, the ODCS algorithm in total has three types of

choices. The first choice is to place the container on an edge

node that has been initialized for serverless computing and has

sufficient remaining resource capacity. The second choice is

to initialize a new edge node and deploy the container on it.

The third choice is to start the container in the remote cloud.

In our design, the metric for the ODCS algorithm to make

the decision is the increment to the objective function δn by

placing container i on node n. In the first type of choice, the

increment to the objective function δi,n = α′
i,n. For the second

choice, δi,n = α′
i,n+γn. If the container is to be placed in the

cloud in the third choice, δi,1 = α′
i,1+ ci · p. The ODCS sorts

all nodes in the increasing order of δi,n and deploys container

i into the first fit node with sufficient capacity. In general, the

complexity of running the ODCS algorithm for each container

is O((|N |+ |E|)|N | log(|N |)) and the total complexity for |I|
containers is thus O((|N |+|E|)|N ||I| log(|N |)). More details

about the online algorithm could be found in Algorithm 1.

C. Theoretical Analysis

We now analyze the proposed online algorithm theoretically

and show that it is local optimal for each arriving container

request.

Theorem 1. For each request i, the container placement and

routing decision of the ODCS algorithm is local optimum.

Proof. It is clear that by running the shortest path algorithm

and choosing the data location with the lowest transmission

delay hi,n for each possible container placement xi,n (lines

4-9 in Algorithm 1), choosing the optimal data location and

routing path is converted to choosing the best xi,n to minimize

hi,n · xi,n. Therefore, transforming P1 to P2 by combining

hi,n · xi,n and αi,n · xi,n will not change the local optimal

direction of the online problem. Since the problem P2 is then

solved by the ODCS algorithm via choosing the container

placement with the lowest objective value, the result is locally

optimized for each arriving container request i.

We then prove that the global performance of the ODCS

algorithm has a theoretical guarantee to the optimal offline

solution.

Theorem 2. Suppose the solution of the ODCS algorithm is

S† and we have S∗ as the result of the optimal offline solution.

Then, the competitive ratio between ODCS and the offline
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Algorithm 1 The ODCS Algorithm

Input: Related information of the upcoming containers, i.e., αi,n,
βi,n, wi,n1,n2

, ci. The conditions of the edge-cloud network, i.e.,
Cn, γn, p.

Output: Container placement xi,n, data location choice yi,n, flow
routing fi,n1,n2

, and enabled nodes for serverless computing zn.
1: for all i ∈ I do
2: Construct a directed graph Gi with edge weight wi,n1,n2

.
3: Suppose all nodes n̂k with βi,n̂k

= 0 belong to Set Ndata
i .

4: for all n̂k ∈ Ndata
i do

5: Conduct the single-sourced shortest path algorithm for node
n̂k and get the shortest path and corresponding length
li,n̂k,n to each node n in Gi.

6: end for
7: for all n ∈ N do
8: Find the n̂k ∈ Ndata

i with the smallest li,n̂k,n and assign
hi,n = minn̂k

{li,n̂k,n}.
9: Substitute αi,n with α′

i,n = αi,n + hi,n and eliminate U1

and U3 to formulate P2.
10: end for
11: Suppose the increment to the objective function of P2 by

placing container i on node n is δi,n.
12: for all n ∈ N do
13: if n = 1 then
14: δi,1 = α′

i,1 + ci · p
15: else if zn = 0 then
16: δi,n = α′

i,n + γn
17: else

δi,n = α′
i,n

18: end if
19: Sort nodes in the increasing order of δi,n as Set Nsort

i .
20: Denote the current workload of node n is Ln.
21: for all n ∈ Nsort

i do
22: if Ln + ci ≤ Cn then
23: xi,n = 1, Ln = Ln + ci.
24: yi,n̂k′ = 1, where li,n̂k′ ,n = hi,n.
25: if zn = 0 then
26: zn = 1.
27: end if
28: Assign fi,n1,n2

to 1 along the shortest path from n̂k′

to n in Gi.
29: Break.
30: end if
31: end for
32: end for
33: end for

optimum is a constant, i.e., S† ≤ η · S∗. Here, the constant η
will be defined in the following proof.

Proof. For each node n, we consider three sets of containers

I†n, I∗n, and Ifirstn placed on it. Set I†n and I∗n contain the con-

tainers that are placed on node n by the ODCS algorithm and

the optimal offline solution, respectively. Set Ifirstn includes

all containers that would be placed on node n if there is no

capacity constraint on the node n. To prove the theorem, we

need to consider three different cases for each node n.

Case 1, when n = 1: This means the node is the remote

cloud. We define the portion of objective value contributed by

containers in case 1 by the OCPS algorithm as alg1,1 that

alg1,1 =
∑

i∈I
†
1

(α′
i,1 + ci · p) =

∑

i∈I
†
1

α′
i,1

ci
(1 +

ci

α′
i,1

· p) · ci.

Consider θmax = max(
α′

i,n

ci
) and θmin = min(

α′
i,n

ci
), it is

clear that

alg1,1 ≤ θmax(1 +
p

θmin
) ·
∑

i∈I
†
1

ci.

Similarly, we have opt1,1, the objective value of the optimal

offline solution

opt1,1 ≥ θmin(1 +
p

θmax
) ·
∑

i∈I∗
1

ci.

Case 2, when Ifirstn ⊆ I†n and n ̸= 1: This means the

node n has sufficient capacity to include all containers which

will contribute to the minimized objective value if placed on

the node. Then we have the objective value of our algorithm

for each n, alg2,n, as

alg2,n =
∑

i∈I
†
n

α
′
i,n + γn =

∑

i∈I
first
n

α
′
i,n + γn +

∑

i∈I
†
n/I

first
n

α
′
i,n.

Then, it is clear that

alg2,n ≤
∑

i∈I
first
n

α
′
i,n + γn + θmax ·

∑

i∈I
†
n/I

first
n

ci.

For any node n in case 2, since its capacity is sufficient to

include all containers in Ifirstn , the optimal offline solution

will definitely also have Ifirstn ⊆ I∗n. Therefore, we have a

similar conclusion that

opt2,n ≥
∑

i∈I
first
n

α
′
i,n + γn + θmin ·

∑

i∈I∗n/I
first
n

ci.

Case 3, when Ifirstn ⊈ I†n and n ̸= 1: In this case, we

have the objective value of our algorithm for each n, alg3,n,

as

alg3,n =
∑

i∈I
†
n

α
′
i,n + γn =

(

1 +
Cn

∑

i∈I
†
n
α′
i,n

·
γn

Cn

)

·
∑

i∈I
†
n

α
′
i,n.

Consider σmax = max( γn

Cn
) and σmin = min( γn

Cn
), we have

alg3,n ≤

(

1 +
Cn

∑

i∈I
†
n
α′
i,n

· σmax

)

·
∑

i∈I
†
n

α
′
i,n

≤

(

1 +
Cn

θmin ·
∑

i∈I
†
n
ci

· σmax

)

·
∑

i∈I
†
n

α
′
i,n.

Based on the observation of our practical experiment in

Section V, we assume that the node with the smallest ca-

pacity can still hold the container with the maximal resource

consumption, i.e., R = min(Cn)
max(ci)

≥ 1. Since Ifirstn ⊈ I†n, there

exists at least one container î that î ∈ Ifirstn and î /∈ I†n due

to the capacity limitation. Hence, we have
∑

i∈I
†
n

ci + cî > Cn.

According to the definition of R, we know that

cî ≤ max(ci) =
1

R
·min(Cn) ≤

Cn

R
.

Then, it is clear that
∑

i∈I
†
n

ci > Cn − cî ≥ Cn −
Cn

R
=

R− 1

R
Cn.
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Thus, we have

alg3,n ≤

(

1 +
Cn

θmin · R−1

R
Cn

· σmax

)

·
∑

i∈I
†
n

α
′
i,n

≤ θmax ·

(

1 +
R

R− 1
·
σmax

θmin

)

·
∑

i∈I
†
n

ci.

Substituting
∑

i∈I
†
n
ci > R−1

R
Cn with

∑
i∈I∗

n
ci < Cn, we

can also conclude that

opt3,n ≥ θmin ·

(

1 +
σmin

θmax

)

·
∑

i∈I∗n

ci.

Taking all three cases into consideration, we can summarize

the competitive ratio between our algorithm and the optimal

offline solution as

S†

S∗
=

∑

n∈case1 alg1,1 +
∑

n∈case2 alg2,n +
∑

n∈case3 alg3,n
∑

n∈case1 opt1,1 +
∑

n∈case2 opt2,n +
∑

n∈case3 opt3,n

It is worth noting that
∑

n∈case2 alg2,n and
∑

n∈case2 opt2,n
share the same component m =

∑
n∈case2

∑
i∈I

first
n

α′
i,n +

γn ≥ 0. Knowing that if A ≥ B > m ≥ 0, then A
B

≤ A−m
B−m

.

We hence can conclude that S†

S∗ is less than or equal to
∑

n∈case1 alg1,1 +
∑

n∈case2 alg2,n +
∑

n∈case3 alg3,n −m
∑

n∈case1 opt1,1 +
∑

n∈case2 opt2,n +
∑

n∈case3 opt3,n −m
.

Here, we consider all containers counted in m belong to the

set Î . Therefore,

S†

S∗
≤

θmax · (1 +
max{p,0,R·σmax

R−1
}

θmin
) ·
∑

n

∑

i/∈Î ci

θmin · (1 + min{p,0,σmin}
θmax

) ·
∑

n

∑

i/∈Î ci

=
θmax

θmin
· (1 +

max{p, R·σmax

R−1
}

θmin
) = η.

After proving the theoretical guarantee of the ODCS algo-

rithm to the optimal offline solution in the worst cases, we

then evaluate its average performance compared to existing

baselines in the following section.

V. PERFORMANCE EVALUATION

To highlight the advantages of the proposed ODCS algo-

rithm, we conduct extensive simulations to compare it with

existing container scheduling algorithms for serverless edge

computing. Many basic settings and data in the simulations are

based on small-scale experiments, in which several real-world

data-intensive applications are implemented as serverless func-

tions on representative edge devices. Data transmission is also

carried out among different edge devices in the same edge

network. In this section, we will first briefly illustrate the

small-scale experiments and then demonstrate the simulation

settings based on them. Finally, we will present and discuss

the simulation results.

A. Serverless Edge Computing Experiments

The experiments are realized in an edge network consisting

of two types of edge nodes, raspberry Pi 4 [36] and Jetson

Xavier NX [37]. There are in total 4 Pi 4 and 2 NX devices and

all devices are connected in an Ad-Hoc network. Each rasp-

berry Pi 4 has 8G memory and 32G storage, while each Jetson

Xavier NX has 16G memory and 128G storage. We utilize a

lightweight container orchestration system, i.e., K3s [14], to

schedule and manage containers among the edge devices. K3s

is a highly available, certified Kubernetes distribution designed

for production workloads in unattended, resource-constrained,

remote locations or inside IoT appliances. We implement three

types of data-intensive serverless functions on the serverless

edge computing framework, i.e., data pre-processing, machine

learning inference with a convolutional neural network (CNN),

and results feedback to end users. Such three serverless

functions all involve data transmission with non-negligible

delays in the edge network. During the experiments, we record

the average execution and data transmission delays for each

serverless function as shown in Table II.

TABLE II

Function 1 Function 2 Function 3

Execution delay (s) 0.0027 1.1432 0.0001

Transmission delay (s) 1.4950 1.5926 0.2985

Besides above values, we also abstract heterogeneous fea-

tures of serverless edge computing from the experiments for

our simulation. For instance, the average execution delay of

the machine learning inference function on a raspberry pi 4

is 1.7520 seconds. However, the container running the same

function on a Jetson Xavier NX device only takes 0.4883

second to execute. More details about how to convert such

experiment results to simulation settings will be discussed in

the following section.

B. Simulation Settings

Due to the fact that edge networks may have different

topologies, we apply our ODCS algorithm on randomly gener-

ated connected graphs in the simulations. The connectivity is

0.2 by default but varies in different simulations to represent

the network heterogeneity. In the experiments, we observe that

the capacity of each edge node is mainly constrained by its

memory resource when executing data-intensive applications.

Given the memory resource of our edge devices is 8G and

16G, we set the capacity of each edge node Cn randomly

distributed in range [6, 14]. Here, 2G memory is set aside

for system functions. According to the minimal and maximal

memory consumption of different containers in our experi-

ments, i.e., 200M and 1.5G, we set the range of the resource

requirement of each container ci as [0.2, 1.5]. We further

set the execution delays, i.e., αi,n, as the benchmark of the

objective function. The basic value of this parameter for each

container i is uniformly distributed between [0.0001, 1.1432]
based on Table II. While for different edge node n, we multiply

the basic value with a factor that is randomly distributed in

[1, 1.7520
0.4883 ], which represents the execution delay difference
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between Raspberry Pi 4 and Jetson Xavier NX, to imitate the

delay variety on different edge devices.

For the transmission delays, we consider the delays among

edge nodes are uniformly distributed in range [0.2985, 1.5926].
Since we do not include the transmission delay from the

edge to the cloud in the current experiments, we apply a

ratio of edge-to-cloud delays to edge-to-edge delays, which

is 2 by default but will also change in different simulation

results considering distinct network conditions. We consider

the default data availability is 10%, which means there will

be one node storing the data needed by container i in every

ten nodes on average. In the following Fig. 4, we will show

the influence of changing data availability to performance of

different algorithms. As mentioned in Section III, the ratio

of operating cost to delay is important for multi-objective

problems with inconsistent units. By default, we consider the

operating cost of edge node γn is uniformly distributed in

range [0, 40]. We will further evaluate the effects of different

cost-delay ratios to our algorithm in Fig. 6. Similarly, the cloud

cost parameter p is set to 0.5 by default, which means that

operating the same container incurs on average half the cost

compared to that at the edge. The value will also be tuned and

evaluated in Fig. 6.

C. Baselines

In the simulations, we compare the ODCS algorithm with

three typical container scheduling strategies as follows.

Data-aware placement algorithm (DAP): This baseline algo-

rithm derives from the greedy container scheduling algorithm

that is widely adopted by container orchestration systems

like the Kubernetes [30]. The original algorithm assigns each

condition of a server node a priority score and schedules the

next arriving container on the node with the highest score.

To acclimate the algorithm to edge environments for data-

intensive applications, related work, e.g., [11], formulate the

DAP algorithm by adding scores to evaluate the transmission

distance between the edge node and data location. However,

DAP does not take multiple data locations, detailed data flow

routing, or operating costs of the serverless edge computing

platform into consideration.

Near-data placement algorithm (ND): The ND algorithm is

designed based on the fact that many edge-native applications

tend to minimize the data transmission delay. Hence, the

algorithm will deploy the next arriving container on the

capable node, i.e., the node with sufficient resources, with the

lowest transmission delay to the corresponding data location.

First placement then routing algorithm (FPTR): Instead

of jointly dealing with container placement and flow routing,

the FPTR algorithm first deploys the arriving container to the

capable node with the lowest execution delay and operating

cost. It then searches for the data location with the lowest

transmission delay along the data flow routing path.

D. Simulation Results

In this section, we utilize box plots to show details of the

simulation results and each box contains objective values of 20

independent simulations. We first present the performance of

our ODCS algorithm and other baselines when the sufficiency

of edge resources changes in Fig. 3. It is clear that an

increasing number of arrived containers leads to a higher

objective value with 60 nodes in the network as shown in

Fig. 3(a). Nevertheless, our ODCS algorithm, which has a

comprehensive consideration of flow routing and operating

costs, always performs much better than the baselines without

such features, e.g., the DAP algorithm. Such an advantage

preserves even when the number of containers reaches 600,

which means that the network is heavily loaded with the total

resource consumption of containers comparable to the total

capacity of all edge nodes. We can also draw from Fig. 3(a)

that jointly handling the container placement and data flow

routing as our algorithm does always achieve lower objective

values compared to solving the two problems separately by

the FPTR algorithm.
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Fig. 3. Performance of the ODCS algorithm and baselines under different
resource sufficiency. (a) presents the comparison of the algorithms with fixed
edge nodes and an increasing number of containers. (b) shows the performance
with fixed containers and an increasing number of nodes.

Fig. 3(b) further shows the performance of the algorithms

with in total of 300 containers deployed on an increasing

number of nodes. Besides conclusions similar to those drawn

from Fig. 3(a), we also observe that ignoring the operating

cost of serverless computing on edge nodes may lead to

even worse performance when the number of available edge

nodes increases. This is because such algorithms like DAP

and ND may initialize unnecessary edge devices for serverless

computing. The proposed ODCS algorithm in this paper totally

avoids this drawback and always achieves better performance

with more sufficient edge resources.

We then utilize Fig. 4(a) to evaluate the performance of

different algorithms when the topology of the edge network

varies. There are in total 60 nodes and 300 upcoming contain-

ers, the rest settings are the same as those in Fig. 3. There

is an obvious performance improvement for the ODCS and

FPTR algorithms when the connectivity of the edge network

increases. We infer that such an enhancement is caused by

the availability of more data flow routing choices with lower

transmission delay. On the other hand, there is no such

performance improvement in the DAP and ND algorithms due

to their ignorance of detailed flow routing. As discussed in

Section I, one advantage of the ODCS algorithm is that it

respects that data could be available at multiple locations and

picks the best one for objective function optimization. We thus

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:51:31 UTC from IEEE Xplore.  Restrictions apply. 



 0.1  0.3  0.5 0.7

Connectivity

0.6

0.8

1.0

1.2

1.4

1.6

1.8
O

b
je

c
ti

v
e
 V

a
lu

e
1e3

ODCS

DAP

ND

FPTR

(a)

 0.1  0.3  0.5 0.7

Data Availability

0.6

0.8

1.0

1.2

1.4

1.6

1.8

O
b
je

c
ti

v
e
 V

a
lu

e

1e3

ODCS

DAP

ND

FPTR

(b)

Fig. 4. Performance of the ODCS algorithm and baselines in serverless edge
computing networks with heterogeneous topology and data availability. (a)
shows the simulation results of different algorithms when the connectivity of
the edge network increases. (b) demonstrates corresponding results when the
number of data copies grows.

present the comparison of it to the baselines with different data

availability in Fig. 4(b). We observe from the figure that the

objective value of the ODCS algorithm keeps decreasing when

the copies of data for containers increases in the edge network.

In addition, ODCS still has the best performance compared to

the baselines even when the data availability is low.
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Fig. 5. Performance of the ODCS algorithm and baselines with increasing
delays. (a) presents the simulation results with growing transmission delays.
(b) shows the results when the ratio of the edge-cloud transmission delay to
the edge-edge transmission delay increases.

The geo-distribution and heterogeneity of edge networks

are also reflected in the diverse transmission delays among

edge nodes. We multiply the default transmission delay in

the settings by a factor changing from 0.5 to 2 and show

corresponding simulation results in Fig. 5(a). It is worth noting

that the performance declines of the ODCS and the FPTR

algorithms are more prominent than the other two baselines

DAP and ND. The reason is that the latter two algorithms

always tend to deploy containers on nodes with the lowest

transmission delay to data, thus largely offsetting the influence

of transmission delay increment. The former two algorithms,

on the other hand, need to balance the operating costs and the

delays. Nevertheless, ODCS and FPTR still outperform the

other two baselines even with large transmission delays. Fur-

thermore, the exceeding of our ODCS to the FPTR algorithm

is more obvious under large transmission delays, emphasizing

the advantages of solving container placement and flow routing

jointly. Similarly, we can infer from Fig. 5(b) that the ODCS

still achieves the best performance even if the transmission

delay between edge and cloud is on average four times larger

than that among edge nodes.
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Fig. 6. Performance of the ODCS algorithm and baselines under different
operating costs. (a) shows the algorithms’ performance when the ratio of the
operating cost to the default value in the settings increases from 0.5 to 2. (b)
shows corresponding results when p change from 0.25 to 1.

In the end, we present the effect of different operating costs

on the performance of the OCDS algorithm and other baselines

in Fig. 6. Although the objective values of all algorithms

increase with the growth of the relative operating cost as

shown in Fig. 6(a), the increments of ODCS and FPTR are

much milder than those of the other two baselines. Besides, the

ODCS algorithm remains the leading performance even when

the operating cost is relatively small compared to the delays,

which shows the superiority of the proposed algorithm in

solving the multi-objective problem. Fig. 6(b) further presents

the simulation results when the relative cloud operating cost,

i.e., the parameter p, varies while the operating cost of each

edge node remains the same. We can conclude from the figure

that our ODCS can orchestrate containers flexibly among

edge nodes and the cloud for the best performance. It will

achieve a lower objective value if operating a container on the

cloud is relatively cheaper but still keeps the best performance

compared with other baselines when cloud resources are

expensive.

VI. CONCLUSION

In this paper, we mainly focus on extending the serverless

computing paradigm from the cloud to the network edge

to facilitate data-intensive applications. We demonstrate the

challenges of serverless edge computing introduced by the

geo-distribution and heterogeneity of edge environments. We

propose an online data-aware container scheduling algorithm

to address the aforementioned challenges, which deals with

container placement and data flow routing simultaneously. We

prove that the proposed algorithm achieves local optimum

for each arriving container request and its global result also

preserves a theoretical bound to the optimal offline solution.

We further conduct extensive simulations based on real-world

experiment-driven data to show that our algorithm performs

better than existing baselines.
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