872

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 3, MARCH 2024

Joint Virtual Network Function Placement and Flow
Routing in Edge-Cloud Continuum

Yingling Mao

Abstract—Network Function Virtualization (NFV) is becom-
ing one of the most popular paradigms for providing cost-
efficient, flexible, and easily-managed network services by migrat-
ing network functions from dedicated hardware to commercial
general-purpose servers. Despite the benefits of NFV, it remains
a challenge to deploy Service Function Chains (SFCs), placing
virtual network functions (VNFs) and routing the corresponding
flow between VNFs, in the edge-cloud continuum with the objec-
tive of jointly optimizing resource and latency. In this paper, we
formulate the SFC Deployment Problem (SFCD). To address this
NP-hard problem, we first introduce a constant approximation
algorithm for a simplified SFCD limited at the edge, followed by
a promotional algorithm for SFCD in the edge-cloud continuum,
which also maintains a provable constant approximation ratio.
Furthermore, we provide an online algorithm for deploying
sequentially-arriving SFCs in the edge-cloud continuum and
prove the online algorithm achieves a constant competitive ratio.
Extensive simulations demonstrate that on average, the total costs
of our offline and online algorithms are around 1.79 and 1.80
times the optimal results, respectively, and significantly smaller
than the theoretical bounds. In addition, our proposed algorithms
consistently outperform the popular benchmarks, showing the
superiority of our algorithms.

Index Terms—Network function virtualization, service func-
tion chain deployment, edge computing, cloud computing, joint
resource and latency optimization.

1. INTRODUCTION

ETWORK Function Virtualization (NFV) is a promising
N technique that enables the migration of network functions
such as Proxies, Firewalls, Load Balancers, etc, from dedicated
hardware to commercial servers. It brings flexibility, scalability,
and cost-efficiency to network services. These virtual network
functions (VNFs) are typically chained together in a specific

Manuscript received 24 April 2023; revised 12 December 2023; accepted
19 December 2023. Date of publication 28 December 2023; date of current
version 12 February 2024. This work was supported in part by the U.S.
National Science Foundation under Grants CCF-1526162, CCF-1730291,
and CCF-1717731. Recommended for acceptance by X. Fu. (Corresponding
author: Yuanyuan Yang.)

Yingling Mao, Yu Liu, and Yuanyuan Yang are with the Department
of Electrical and Computer Engineering, Stony Brook University, Stony
Brook, NY 11794 USA (e-mail: yingling.mao@stonybrook.edu; yu.liu.3@
stonybrook.edu; yuanyuan.yang @stonybrook.edu).

Xiaojun Shang is with the Department of Computer Science and En-
gineering at the University of Texas, Arlington, TX 76019 USA (e-mail:
xiaojun.shang @uta.edu).

Digital Object Identifier 10.1109/TC.2023.3347671

, Graduate Student Member, IEEE, Xiaojun Shang
and Yuanyuan Yang

, Yu Liu
, Life Fellow, IEEE

, Graduate Student Member, IEEE,

order to form service function chains (SFCs) [1]. With the
growing development of low-latency edge computing, there is
increasing motivation to deploy SFCs at the edge [2], [3], [4],
[5], [6], [71, [8], [9]. Deploying SFCs at the network edges
offers numerous benefits, such as reducing communication de-
lays, avoiding network congestion, and enhancing data safety
and privacy [10].

Although NFV and edge computing offers many benefits, de-
ploying SFCs at the edge can be challenging. On the one hand,
efficient resource management is crucial due to the limited and
expensive nature of edge resources. Specifically, the task is to
place VNFs on as fewer edge commercial servers as possible
under server capacity constraints. On the other hand, we must
carefully schedule the data flow between adjacent VNFs during
SFC deployment. Poor scheduling schemes can result in redun-
dant flow paths, leading to network congestion and high latency,
while well-designed schemes can significantly reduce commu-
nication latency. Therefore, our model aims to jointly optimize
resources and latency, efficiently managing edge resources and
reducing communication latency simultaneously.

Several existing studies exclusively deploy SFCs on edge
servers [2], [3]. However, there are extreme scenarios where
deploying all SFCs on edge with the limited edge resources is
infeasible. For example, during peak hours [11], the majority
of users are requesting services, and the edge resources are
incapable of hosting all requesting SFCs. Under such scenarios,
we can offload some SFCs to the cloud which can provide
sufficient computing resources [12]. Some other existing studies
adopt a trivial approach of placing all remaining VNFs on the
remote cloud once all edge servers are fully utilized [4], [5].
However, this approach can result in increased communication
latency because SFCs consist of diverse VNFs and offloading
different SFCs to the cloud can significantly impact the overall
communication latency. Besides, as for some special VNFs, i.e.
Low-Density Parity Check (LDPC) or Turbo decoding, cloud
servers can provide more powerful computing resources like
GPU or FPGA to cut back the processing latency. Thus, there
is a tradeoff between communication and processing latency
when employing cloud resources. Therefore, it is necessary
to overall consider the SFC deployment problem in the edge-
cloud continuum.

In all, we formulate and study the SFC Deployment (SFCD)
problem, i.e., jointly placing VNFs in the edge-cloud continuum
and routing the data flow between VNFs, with the goal of

0018-9340 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

MAQO et al.: JOINT VNF PLACEMENT AND FLOW ROUTING IN EDGE-CLOUD CONTINUUM 873

optimizing resource cost and network latency jointly. The prob-
lem is challenging for the following reasons. First, the problem
involves balancing the trade-off between resource cost, and
network latency, i.e., communication and processing latency,
which can be contradictory objectives, referring to work [13].
Second, incorporating edge and cloud makes the problem more
complicated. Additionally, the problem is NP-hard due to the
integer-variable constraint arising from the indivisible VNF and
limited edge server capacity. Furthermore, the complex network
topology poses difficulties in virtual network embedding, es-
pecially in solving the routing problem of data flow between
VNFs. Last but not least, we pursue to design a provable ap-
proximation algorithm for SFCD with an excellent theoretical
bound, which is also a big challenge.

In this paper, we design both offline and online algorithms for
the SFCD problem. We first simplify the SFCD problem to an
edge-only scenario where edge resources are sufficient for all
SFCs and thus only edge resources are considered. We propose
a constant approximation algorithm called Chained Next Fit
(CNF) for the edge-only cases. The CNF algorithm is based on
the Next Fit (NF) strategy [14] and utilizes a double spanning
tree (DST) algorithm to handle the network topology and the
corresponding flow routing problem. The NF strategy can guar-
antee efficient resource utilization while avoiding redundant
data traffic, and the DST algorithm helps to reduce latency
and prevent network congestion. Subsequently, we present the
Edge-First Chained Next Fit (ECNF) algorithm, a enhanced
version of the CNF algorithm that addresses the general SFCD
problem in the edge-cloud continuum overall considering both
edge and cloud resources. Additionally, we demonstrate that
ECNF can be bounded by a provable constant approximation
ratio. Furthermore, we propose an online algorithm named On-
line Chained Next Fit (OCNF) to address the online version
of SFCD, where SFCs sequentially arrive in an online manner.
OCNF is also proved to be a constant approximation algorithm.

Our main contributions are summarized as follows.

o« We formulate the SFCD problem, which jointly con-
siders resource cost and network latency in the edge-
cloud continuum.

« We propose a constant approximation algorithm called
CNF for the edge-only cases of the SFCD problem.

« Based on CNF, we propose an enhanced algorithm named
ECNF to address the general SFCD problem overall con-
sidering edge and cloud. Also, we demonstrate that the
ECNF algorithm has a constant approximation ratio.

o To address the online SFCD problem, where SFCs arrive
sequentially in an online manner, we propose an online
algorithm named OCNF and prove that it has a provable
performance guarantee.

« Finally, we conduct extensive simulations using real-world
network topologies to evaluate the proposed algorithms.
Simulation results are consistent with the theoretical per-
formance bounds and demonstrate that the proposed algo-
rithms outperform the baselines.

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews the related work. In Section III,
we give the formulation of the SFCD problem. Section IV
demonstrates our CNF algorithm designed for the simplified

SFCD limited at the edge and proves its constant theoretical
bound. In Section V, CNF is generalized to ECNF for com-
pletely solving SFCD in the edge-cloud continuum. Section VI
handles the online version of SFCD and provides an online
algorithm, called OCNF. Additionally, Section VII is the per-
formance evaluation of ECNF and OCNF. Finally, we conclude
the paper in Section VIIL

II. RELATED WORK

With the emergence of NFV, researchers have devoted much
effort to SFC deployment problems like [2], [3], [4], [5], [6],
(71, [81. [9), [13], [15], [16], [17], [18], [19], [20], [21], [22].
In this research area, there is a trend of deploying SFCs on
commercial servers at the edge because of the low latency of
edge computing.

Most of the existing related work is devoted to designing
heuristic algorithms for deploying SFCs on edge. For example,
Cziva et al. [2] presented a way to dynamically re-schedule
the optimal placement of vNFs at the network edge, based
on temporal network-wide latency fluctuations using optimal
stopping theory. Pei et al. [3] proposed the novel SFC em-
bedding approach (SFC-MAP) and VNF dynamic release al-
gorithm (VNF-DRA) to efficiently embed SFC requests in
geo-distributed cloud systems and optimize the number of
placed VNF instances. Son et al. [4] proposed a dynamic re-
source provisioning algorithm. It automatically allocates re-
sources in both the edge and the cloud for VNFs, adapting to
dynamically changing network volumes. Martin-Peréz et al. 5]
presented a novel methodology and resource allocation scheme,
named OKpi, which enables high-quality selection of radio
points of access as well as VNF placement and data routing with
polynomial computational complexity. He et al. [23] leveraged
the Markov Decision Process to model the dynamic network
states and devised a customized Deep Reinforcement Learning
(DRL) algorithm for the VNF placement problem. These works
are limited to the design of heuristic algorithms and do not have
a provable performance guarantee.

As far as we are concerned, there are only five related
works giving the performance bounds. Sang et al. [18] designed
two simple greedy algorithms and proved that they achieve an
asymptotical approximation ratio of (1 — 0(1))lnm + 2, where
m is the number of flows. Jin et al. [6] designed a two-stage
VNF deployment scheme, including a constrained depth-first
search algorithm (CDFSA) and a path-based greedy algorithm
(PGA), to deploy VNF chains at network edges with latency
guarantees and resource efficiency. It gives a theoretically-
proved worst-case performance bound by an implicit constant
factor. In [8], Mao et al. produced the judge and repeated
largest fit decreasing algorithm (JR-LFD) with an asymptotic
approximation ratio of % to deploy VNFs at network edges.
Ren et al. [7] discussed a fundamental problem of NFV-enabled
multicasting in a mobile edge cloud, devised an approximation
algorithm with a provable approximation ratio for a single mul-
ticast request admission if its delay requirement is negligible.
In [9], an efficient randomized rounding approximation algo-
rithm was proposed to solve the delay-aware virtual network
function placement and routing in the edge-and-cloud network.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

874

These five theoretically provable works all have some draw-
backs to their model and their performance guarantees only
work for the specific simplified model. For example, work [6],
[8], [18] all limit to the edge-only cases. Since the resource of
edge computing is limited, it is likely to occur the case that
there is no way to deploy all SFCs on the edge servers under
the server capacity limitation. Thus, it is necessary to introduce
the cloud node into the network model, considering the SFC
deployment schemes in the edge-cloud continuum. Work [7],
[8], [18] only minimizes the edge server resource consumption,
ignoring the network latency, while [9] only optimizes the net-
work latency, ignoring the resource cost. In this paper, we con-
sider a general model, which targets joint resource and latency
optimization in the edge-cloud continuum. Under this general
model, the performance guarantee of existing provable works
may break. Thus, it is the first work to pursue a provable algo-
rithm for the joint VNF placement and flow routing in the edge-
cloud continuum.

III. PROBLEM FORMULATION
A. Background

Network functions play a pivotal role in shaping the dy-
namics of a network infrastructure. A diverse array of net-
work functions, including Proxies, Firewalls, Load Balancers,
and others, form the backbone of various network services.
Traditionally, these functions are implemented on proprietary
hardware, incurring high costs and posing challenges in terms
of management and upgrades. The emergence of virtualization
technologies introduced the concept of “Network Functions
Virtualisation” (NFV) in 2012 [24], presenting a novel solution
to address these challenges. NFV embodies a software-defined
network (SDN) architecture, wherein virtual network functions
(VNFs) are instantiated on virtual machines (VMs) hosted on
commercial servers.

A network service normally consists of multiple VNFs,
which exhibit dependencies on one another. For example, in the
case of a WAN optimizer and an Intrusion Detection System
(IDS), the IDS typically conducts packet inspection prior to
the WAN optimizer encrypting the contents. In sum, the real-
ization of a network service necessitates a sequence of VNFs,
orchestrated in a specific order. We call this sequence of VNFs
a service function chain (SFC) [1].

SFC deployment problem involves strategically placing these
VNFs within the edge-cloud environments and efficiently rout-
ing the data flows between inter-dependent VNFs within an
SFC to ensure efficient resource utilization and low network
latency. Below we will develop a model designed to address
the dual optimization goals of resources and latency in the SFC
deployment problem.

B. System Model

Table I summarizes the notations used in this paper.

We consider a edge network represented as a connected graph
G = (V, E), where every commercial server ¢ is a vertex in
the graph denoted as V;. If server V, and V; are directly con-
nected in the edge network, then the link (p, ¢) € E, otherwise,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 3, MARCH 2024

TABLE I
NOTATIONS

m number of Service Function Chains (SFCs)
M number of physical servers in the edge network
n; number of VNFs in SFC ¢

N number of all VNFs

fig the size of VNF F; ;
l; the one-hop communication latency of SFC 1

L; outside-edge (E&C) communication latency of SFC ¢
b; data flow of SFC 1

Vi edge server k, if k> 0; the cloud, if k=0

Ck capacity of edge server k

By, bandwidth limit of network connection (p, q)
wy'if data between Fj j and Fj ;1 pass link (p,) or not

acf] if VNF Fj ; is placed on Vj, or not

Yk if server k is occupied or not

Zij num. of hops at edge when data flows from F; ; to Fj j 4|
Zij if there is E&C com. latency between [; and F; j 11 or not
M’ number of used servers in the results of CNF

number of used servers in OPT
Vv used server j in OPT

(total) capacity of a server

occupied capacity of a server by VNFs.

Z; number of hops in SFC 7 by CNF

zF number of hops in SFC ¢ in OPT

tij the processing time of VNF F; ; on edge nodes
T4 the processing time of VNF Fj ; on cloud

: Path 1 between V, and V,
—eenee : Path 2 between Vs and Cloud

ISP Router Internet

— :Inside-Edge Communication
--------- : Outside-Edge Communication

Fig. 1.

System topology.

(p,q) ¢ E. We assume that there are M servers located at the
edge and that the processing capacity of server i is C;. As shown
in Fig. 1, we assume there exists a central server in the edge
network, which is “directly”! connected to the remote cloud
via ISP router. We note such a special server as V}.

We assume there are m SFCs requested by users, where
each SFC comprises an ordered set of VNFs, and the data
throughput of SFC ¢ is b;. SFC ¢ contains n; VNFs, noted
as Fy 1, F;», -+, I}y, in chaining order, so the total number
of VNFs is N =3%"",n,. Suppose VNF F;; requires f; ;
computing resource, i.e., the size of F; ; is f; ;. However, the
processing time of the same VNF may differ on edge and cloud.
Because edge nodes may only contain basic CPU resources,
while today’s cloud nodes may contain powerful GPU or FPGA,
which can accelerate some specific VNFs, e.g., Low-Density
Parity Check (LDPC) or Turbo decoding can rely on GPU to

IThe “directly” here means the central server is connected directly to
the ISP (Internet Service Provider) router, which helps the edge servers
communicate to the cloud. If other servers want to communicate to the cloud,
the data flow must pass through this server.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

MAQO et al.: JOINT VNF PLACEMENT AND FLOW ROUTING IN EDGE-CLOUD CONTINUUM 875

achieve lower processing time. Thus, we assume the processing
time of VNF f; ; is ¢; ; on edge nodes and 7T; ; on the cloud,
where T ; <t; ;.

In each SFC i, there is a data flow between F; ; and Fj ;4
for any 1 <j <n; — 1. If VNF Fj ; and F; ;| are placed on
different edge commercial servers, transmitting data from Fj ;
to Fj j 41 incurs communication latency. Since G is usually not
a complete graph, data transmission from F; ; on one server to
F; ;41 on another server may need to traverse several server-
nodes in . The communication latency here is determined
jointly by the one-hop communication latency of SFC ¢, noted
as [;, and the number of hops or network connections that
the data flow passes through, denoted as z; ;. The number of
hops z; ; depends on the solutions of the multi-hop routing
problem on G under the bandwidth limit of each link (p, q),
noted as BB, ;. Note that the network topology information is
also contained in {B,, ,}, i.e., if (p,q) ¢ E, B, , =0.

We discussed the communication latency at the edge above.
Howeyver, if some VNFs are offloaded to the cloud, commu-
nication latency between the edge and cloud arises, referred
to as E&C communication latency. We consider a scenario
where VNF F; ; and Fj ;. are placed on the edge and cloud,
respectively, resulting in E&C communication latency. Since
most servers, except the central server, can not “directly” com-
municate with the cloud, such communication latency typically
has two parts like the red line in Fig. 1, the inside-edge part and
the outside-edge part. The inside-edge E&C communication
latency, for example the red solid line in Fig. 1, is exactly the
communication latency between the targeted server Vs and the
central server at edge Vi, which can be computed by [; - 2; ;
as above mentioned. The outside-edge E&C communication
latency, for example the red dotted line in Fig. 1, depends on
various factors, including the SFC data flow, multiple hops
outside the edge network, and bandwidths between the edge
and cloud, and many other factors like network environment
along the path outside the edge, making it a complex issue
[12]. For simplicity, here we just assume the outside-edge E&C
communication latency, short for outside-edge communication
latency, is L; with L; > 1;. The cloud is denoted as Vj. Since
only the central server V) is “directly” connected to the cloud
Vb, here we give the estimated bandwidth limit of the connec-
tion between the central server V] and the cloud V4, noted as
Bi,0= By,;. Similarly as the case at the edge network, here
we also hide the network topology information between edge
and cloud in {By p, By o}. That is, for any non-central server
Vp € V(p > 1) that is not “directly” connected to the cloud V4,
B, o= DBy, =0.

C. Problem Formulation

The SFCD problem is to place the m SFCs onto the M
edge commercial servers or the cloud without exceeding the
constraints of edge server capacities and the bandwidth limits
of network connections. The goal of the problem is to minimize
the total resource consumption and produced network latency
in the SFC deployment scheme. In particular, the total resource
consumption contains the total capacities of occupied edge
servers and the total sizes of VNFs offloaded to the cloud.

On the other hand, the total network latency includes the total
processing latency, the communication latency between VNFs
placed at the edge, and that between the edge and cloud.

To formulate SFCD we deﬁne three Boolean variables azz o
Yk W Z G 4. where :c and w 9 are the decision variables i 1n our
model while yy, is used for clear expression. Note that 2% i =1
if and only if VNF Fj ; is placed on server Vi; yr =1 if and
only if server Vj, is occupied; w!” J =1 if and only if data flow
between VNF F; ; and F; ;| pass through network connection
between V), and V,, where (V,,V,) € E.

First, the capacity constraint of each edge server asks

>3k

i=1 j=1

fig <yk-Ck, VI<E<M. 1)

And the limitation of bandwidth requires

m n;—1

2. (

i=1 j=I1

wil +wlt) by <Bpg, YO<p,g<M. (2)

It is worth noticing that B,,=0 for any (p,q)€

EC/{(0,1),(1,0)}, ie., (p,q) ¢ EU{(0,1), (1,0)}.
Since each VNF can not be split, which implies it is exactly
placed on an edge server or the cloud, we obtain

M

k
> ak =1,
k=0

Referring to the Flow Conservation Law, as for the data flow
between VNF Fi’j and Fi7j+1, wereachV 0 <k <M,

Z Zw

The number of hops that data flow passes through at the edge
network, from F; ; to F; j11, is

Vi<i<m,1<j<mni—1. (3

k
w1 — T)

M M

P,q
2y =) D iy,

p=1 g=1

Vi<i<m,1<j<n;—1. (5

We additionally define z; o = 1 and z;,, = 1, showing at the
edge, there is data flowing into the first VNF F; | and flowing
out of the last VNF F; ,,. in SFC i.

Besides we define another Boolean variable, representing
whether there is E&C communication latency between Fj ; and
Fijt1.Asforany 1 <i<m,1<j<n;—1,

Zij=w +w);. (6)

Here we define Z; o =, and Z;,, =, , which implies
if the first VNF of a SFC, Fj 1, is offloaded to the cloud, there
still exists a transmitting data flow from edge to I ; on the
cloud. Similarly, if the last VNF of a SFC, F; ,,,, is offloaded to
the cloud, there is a transmitting data flow from Fj} ,,, on cloud
to the edge. This part is also considered in E&C communica-
tion latency.

In our model, there are below five optimization objectives.

« Resource cost at the edge R,

o Communication Latency between edge servers L=,

» Resource cost on the cloud RC,

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

876

o Communication Latency between edge and cloud LS,
o The total processing latency LF,

M m n;
RE:Z%'C’C’ LE:ZZli'Zi,j;

k=1 i=1 j=0

mo i mon;
Rczzzx?,j7'fi7j7 LC:ZZL,LZZJ

=1 j=1 i=1 j=0

m n;
L' = sz?y T+ (1 —a;) ti

i=1 j=1

In all, the SFCD problem can be formulated as the below
Integer Linear Programming (ILP) problem.

min aRE + SLE + ARC 4 ¢ILC 4 6LF
s.t. (1) — (6),

where «, 3,7, (, 0 are weighting factors for adjusting the rela-
tive importance between objective components.

D. Problem Complexity

The SFCD problem has been proven to be NP-hard in many
previous works like [13]. In short, it can be proved by reduc-
ing from the classical Bin Packing (BP) Problem, based on
the resource cost alone. Besides, it can also be proved by the
reduction from the Travelling Salesman Problem (TSP) if only
the network latency is considered. It means the NP-hardness
of SFCD comes from not only the resource cost part but also
the latency part. Moreover, overall considering the edge-cloud
continuum with five jointly optimization objectives makes the
problem more complicated, posing challenges to our pursue of
provable approximation algorithms.

IV. SFCD LIMITED AT THE EDGE

In this section, we start from the edge-only cases of SFCD
and design an approximation algorithm for it. In this edge-
only case, obviously R® =L® =0 and L* = 371" | 377 #; 5,
which is a given constant. Next, we prove competitive ratios of
resource consumption R¥ and communication latency LF sep-
arately and finally get the approximation ratio of our algorithm
by integrating these two parts.

A. Basic Ideas and Challenges

Acknowledged from the classical solutions for the BP prob-
lem, we find a suitable strategy for SFCD, called Next Fit strat-
egy. The key idea of the Next Fit strategy for the BP problem
is to sequentially pack items into bins, trying to place each
item in the next available bin and moving to the next bin when
necessary. It not only guarantees efficient resource utilization
but also helps cut back communication latency by avoiding
redundant data traffic. Additionally, in NF, there is no rule on
sequences of bins and items, which gives us chances to design
new rules specially for the SFC deployment. We plan to devise
an approximation algorithm for SFCD, based on NF.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 3, MARCH 2024

Algorithm 1: Double Spanning Tree (DST) Algorithm

Input: G and the servers Vi, V5, - - V.

Output: Sorted servers Vi, Vi, -+, V,, and
multi-hop paths T} for the data flow between
Vi, and Vi, .

Find the server V,, with maximal capacity and mark it.

2 Use DFS to obtain a spanning tree 1" with V), as its

root, where large-capacity nodes have higher priority.
3 Double T and delete a link between V), and its child
with the smallest capacity to get a path 7”.

j1, kj < p.

while j < M do

6 Find the next unmarked node of ij on 7’, noted as

V4, and mark it.

7 j—J7+1, kj+—q

gsforj=1—M—1do

9 | Build a sub-graph G; = (N, E;) of G, where

N; = {Vk]. R ij +1» the nodes between them on

path 7"}, E; C E.

10 Find the shortest path between Vi, and Vi,

with each edge weighted 1. This path is the

multi-hop path T); from V}, to Vj

—

L7 I N

in G

i1

However, based on these ideas, challenges still exist. The first
challenge is from the sophisticated network topology. The dis-
connection between some servers results in a multi-hop routing
sub-problem between VNFs placed on different edge servers,
which creates problems in mapping the virtual network of
links between VNFs to the physical edge network with the
bandwidth limits, i.e., virtual network embedding. To solve
these troubles, we need to add a preparing sub-algorithm for
virtual network embedding before applying the NF strategy.
In particular, the task of this sub-algorithm is to optimize the
number of hops between the adjacent employed servers by sort-
ing servers. Moreover, different server capacities causes a gap
between total used resources and the number of used servers,
thus posing challenges to the proof of the approximation ratio
on the communication latency.

B. Algorithm Design

As for the simplified SFCD limited at the edge, we devise
an approximation algorithm called Chained Next Fit algorithm.
In the beginning of CNF, we propose a preparing algorithm
called Double Spanning Tree algorithm (Algorithm 1) to sort
servers. In detail, we first choose a server with maximal ca-
pacity, noted as V),. Then call the depth-first search (DFS)
algorithm to obtain a spanning tree with V), as the root. DFS
is a graph traversal algorithm, whose fundamental concept is
to explore as deeply as possible along a chosen branch before
backtracking, ensuring a thorough exploration of the graph’s
structure. In the deep exploration process of DFS, each node
may present multiple unexplored neighbor nodes and DES does
not provide a specific criterion for selection among these nodes.
Thus, we design a capacity-degree sorting rule to cooperate

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

MAQO et al.: JOINT VNF PLACEMENT AND FLOW ROUTING IN EDGE-CLOUD CONTINUUM 877

e ﬂ V1

V2 Ve

u “
" o
‘ Vs Ve Vs V3
/ Vs Va
Server V3 ‘
with capacity 5 Va

(a) (b)

Fig. 2. A simple example for the DST algorithm.

with DFS as follows. During the deep exploration process of
DFS, our algorithm consistently opts for unexplored neighbor
nodes with the maximal server capacity. Take a simple network
with 6 edge servers, as shown in Fig. 2(a), for example. We
first set the maximal-capacity server V) as the root. Node V;
has two unexplored neighbor nodes V, and V3, where V, has a
larger capacity, thus V5 is explored after V. Next V, has three
unexplored neighbor nodes V5, V5 and Vg, where Vi has a larger
capacity, thus Vg is explored after V5. Node Vi does not have
any neighbor nodes. Thus, it goes back to its parent node V5,
which has two unexplored neighbor nodes left. Among them, V5
has a larger capacity. So explore V5 next and then is its only one
unexplored neighbor node V;. Node V; has no neighbor nodes.
Then, it goes back to its parent node V5, which also has no
unexplored neighbor nodes. Continue going back to its parent
node V5 and next explore its only one remaining unexplored
neighbor node V3. In all, we can obtain the spanning tree 7" as
shown in Fig. 2(b).

Afterwards, we can get a path 7" from this spanning tree T
by doubling it and deleting a link between the root and its child.
Starting from the root node of 7" and along the path 7", we can
get a traverse path of G by selecting all first-time appearing
nodes. Finally, sort and reindex the servers in the traverse order.

Next, we sort and reindex SFCs in decreasing order of the
corresponding one-hop communication latency [;. After that,
call the NF strategy to perform VNF placement. Specifically,
it processes each VNF by following the chaining and sorted
orderings of SFCs. As for each VNF, if the server capacity
permits, place it on the currently considered server. If not, the
VNF placement on the current server finishes, move to consider
the next new edge server with enough capacity following the
order of sorted servers, and place this VNF on this new server.
Repeat the same procedures on the next VNF until all VNFs
have been successfully placed on the edge servers or there is
no enough edge resources for the VNF placement.

The detailed procedures of the CNF algorithm with time
complexity of O(N + mlog(m)+ M?) are shown in
Algorithm 2.

It is worth to demonstrate that the solution produced by
CNF is feasible under the assumption that each edge network
connection has enough bandwidth for double of any data flow.
Based on this premise, the NF strategy (line 5-16 in Algo-
rithm 2) ensures the server capacity constraints in Ineq. 1 are
satisfied. In CNF, we deal with VNFs in their chaining order
(line 5 in Algorithm 2), which helps achieve the goal of avoiding

Algorithm 2: Chained Next Fit (CNF) algorithm
(Batched, Edge-only case)

Input: The list of VNFs {F; ;} and the capacities of
servers C,Ch, - -+, Cyy.
Output: The placement scheme xf ; and the number of
used servers M.
1 Sort and reindex servers by DST;
2 Sort and reindex SFCs so that [y > 1, > -+ - > 1,,;
3 k<« 1;
4 fori=1—mdo
5 for j=1—n,; do

6 if Vi, has enough capacity for I} ; then

7 L zf; = 1; (Place F; j on Vy)

8 else

9 while £ < M do

10 For all links (p, ¢) in the multi-hop path

T, letwfj: 1, k+k+1;

11 if Vi, has enough capacity for F; ; then
12 z}; = 1; (Place F; j on V)

13 Break;

14 else

15 if £ == M then

16 | Return 0; (Fail)
17 M’ + k.

redundant data traffic, because it guarantees there is at most one
data flow between any two edge servers. Moreover, DST and the
property of tree structure ensure that there are at most two hops
(or data flows) passing through any edge network connection,
which is explained in detail in Section IV-D of the conference
version. So the connection bandwidth constraints in Ineq. (2)
are satisfied.

C. Bound of Resource Part

Below, we show CNF has an asymptotic approximation ratio
of 2 to the optimal solution (OPT) on resource cost R¥. For
proof of the ratio, we use functions of C'(+) and ¢(-) to respec-
tively represent the capacity of an edge server and the occupied
part. Obviously, for any 1 <k < M’, ¢(Vi) < C(Vy).

Besides we assume Vi, - - -,V are used servers by CNF
while V", - - -, V. are those by OPT. Since they both deal with
the same VNF set {F} ;},

M’ m ng M*

S eVi) =D > fii=_ Vi)

k=1 i=1 j=1 k=1
Theorem 1:

Rfcnr <2-REopr +C,

where C' = max (Y.
Proof: Omitted, please refer to the conference version [25],
where the proof of this theorem is standalone. O

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

878

With more information on sizes of VNFs and servers, we can
give CNF a better approximation ratio. Here, we define a related
parameter 7.

. min C}, .)

max fi,j

Theorem 2: When r>1, REqoyp < - REqpr +C,
where C' = max C}, is constant.

Proof: For any 1 < k < M’, the first VNF placed on V1

cannot be placed onto V;. Denote its size as f, , |, then we have

(Vi) + f/i-i-l > C,.
By the definition of r, we know that for 1 < k < M’,

max {f,} =—- min {C,} < Ck (8

Jis1 < 1<p<N 7 1<q<M

Then
r—1

1
(Vi) >Cj — fo > Cg — —Ci = C(Vi).
When R > 1,

C(Vi) < VI<k<M.

r
lc(vk')7

Therefore,

M’ M1
Rfcnp = Z c(v; Z c(\,

k=1
M’ M*

r r
< * = .
_T_leZIC(Vk)+O —

L

Obviously, when r > 2, poa 1 < 2, which implies in this

special case, we can give a smaller approximation ratio
of - to SF.

D. Bound of Communication Part

Here we show CNF also has a constant ratio to OPT on LE.
Theorem 3:
max C},
ILJ]EC'NF §4 ’V -‘ ']L]EOPT.
min C},

Proof: Omitted, please refer to the conference version [25],
where the proof of this theorem is standalone. |

E. Approximation Ratio of CNF in the Edge-Only Case

Then we can combine upper bounds of R® ¢y and LE oy
to prove the constant approximation ratio of CNF in SFCD.
Denote by CNF and OPT the total cost respectively by
CNF and OPT. Combined with Theorem 1, 3, we reach the
below theorem.

Theorem 4: CNF < 4 - [%Ck-‘ -OPT + C, where C' =

o - max C}.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 3, MARCH 2024

V. SFCD FOR EDGE-CLOUD CONTINUUM

As for some special SFCs which can rely on the powerful
computing resource of the cloud, like GPU or FPGA, to re-
duce processing latency, if such acceleration advantages can
offset high communication latency, i.e., d 7%, (tij — Ti,5) >
2¢ - L;, obviously these SFCs had better be ofﬂoaded to the
cloud for lower processing latency. Otherwise, we prioritize
edge resources due to their low communication latency.

To maximize the exploitation of edge resources, it is a natural
idea to prioritize VNFs at the edge as resources allow and then
offload all the remaining VNFs onto the cloud. Some existing
related work [4], [5] just did so. However, this approach has a
drawback in that it fails to proactively determine which SFCs to
be offloaded to the cloud. Offloading various SFCs to the cloud
can have a substantial impact on the overall communication
latency. Thus, such a trivial approach may cause increased
communication latency, especially the outside-edge communi-
cation latency, and is not a good option. In this section, we
plan to explore new algorithms for the scenarios of the edge-
cloud continuum, based on the CNF algorithm for the edge-
only cases. The critical challenge is how to control the SFCs
(or VNFs) offloaded to the cloud to minimize the employed
cloud resources and the produced outside-edge communica-
tion latency.

A. Algorithm Design

Below we will design an approximation algorithm called
Edge-first Chained Next Fit algorithm (ECNF). Here we de-
fine a new latency parameter L; = L; — % Z;l:] (ti; — T)

If E <0, offload the whole SFC ¢ to the cloud (line 1
in Algorithm 3). Below we focus on the remaining SFCs
with L; > 0.

From the above section, we can see CNF does a good job
on the edge-only cases, which is also a special case belonging
to the edge-cloud continuum. Thus, as for such cases, just call
CNF to deploy SFCs at the edge (line 2-4 in Algorithm 3).
Below we focus on the cases that CNF can NOT successfully
deploy all SFCs at the edge. That is to say, some VNFs or SFCs
are needed to be offloaded to the cloud.

According to Theorem 1, CNF can work on maximizing
the exploitation of edge resources and minimizing the needed
cloud resources for the remaining VNFs. But it does not involve
the control of what the SFCs (or VNFs) to be offloaded to
the cloud to minimize the additional network latency, i.e., the
produced outside-edge communication latency minus the cloud
processing acceleration. It is our new task in this section.

In our proposal, we formulate the following basic rule, which
can help reduce the outside-edge communication latency. We
always offload the whole SFC ¢ or a continuously chaining seg-
ment of SFC ¢ to the cloud. In this case, the additional network
latency for SFC i is 2¢ - L; E T;5)=2C- L;.
Fortunately, the remaining VNFs after CNF must conform to
this rule.

Besides, in order to proactively determine which SFCs to be
offloaded to the cloud, we consider an SFC selection problem

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

MAQO et al.: JOINT VNF PLACEMENT AND FLOW ROUTING IN EDGE-CLOUD CONTINUUM 879

Algorithm 3: Edge-first Chained Next Fit (ECNF)
algorithm (edge-cloud continuum)

Input: The list of VNFs {F; ;} and the capacities of
servers C,Ch, - -+, Cyy.

Output: The placement scheme xf ;-

1 Offload all SFCs with E < 0 to the cloud and reindex
the remaining SFCs from 1 to m’ ;

2 Call default CNF to place the remaining SFCs;

3 if success then

4 L END! (Edge-only cases)

Ni

5 Sort and reindex SFCs so that%2%2~ >
66’(—22/[:101% Sum <+ Fy, i+ 1;

7 while Sum < 1C do

3 L i+ 1+ 1, Sum<+ Sum+ F;;

9 Call CNF with DST-revised (Algorithm 4) to place
SFCs 1 to ¢ — 1 at the edge;

10 while there exist edge resources left do

11 Call CNF with DST-revised (Algorithm 4) to deal

with SFC 4;

12 ig 1, 11+ 1;

13 Offload the rest VNFs of SFC i, as well as all
remaining SFCs, from iy + 1 to m/, to the cloud.

for the cloud. Assume the total needed cloud resource is ..
Note that Theorem 1 ensures if R, > 1 ,]y:l Cy, CNF can
always successfully place all unselected SFCs at the edge. Then
the SFC selection problem for the cloud with the objective of
minimizing the additional network latency can be formulated
as a below 0-1 min-knapsack problem.

min Zm: 2L; - X,

i=1

> Fi-Xi>Re,

i=1
where X; is a Boolean variable, representing if SFC i is of-
floaded to cloud or not; F; = Z?:l fi,; denotes the total size
of all VNFs in SFC ¢, also represents the size of SFC q.

This 0-1 min-knapsack problem can be dealt with by a greedy

solution. Sort and reindex SFCs by IL,— in increasing order so
that

Then keep choosing SFCs following index order until the total
sizes of all choice SFCs reach R.. Combined with the purpose
of maximizing the exploitation of edge resources, we sort and
reindex SFCs in the inverse order (line 5 in Algorithm 3) and
deploy SFCs at the edge in order as much as possible.

CNF can work on deploying SFCs at the edge and maximize
the exploitation of edge resources. But the reindexing step of
SFCs in line 2 of Algorithm 2 conflicts with the above sorting
step by % Thus when employing CNF, we must ensure enough

Algorithm 4: DST-revised (for edge-cloud continuum)

Input: The list of VNFs {F; ;} and the capacities of
servers C',Cs, - - -, Cyy.
Output: The placement scheme z¥ . 1
1 Start from the server V,(p = 0) and mark it;
2 Use DFS to obtain a spanning tree 1T° with V), as its
root, where small-capacity nodes have higher priority;
3 Call line 3-7 of DST (Algorithm 1);
4 Sorting and reindex server in the inverse order;
5 Call line 8-10 of DST (Algorithm 1).

resources at the edge. Otherwise, the left SFCs are not neces-
sarily those with with small £, which may cause high out-side
edge communication latency. Above all, we first call CNF with
the input of the most 7(smallest-index SFCs satisfying the total
sizes are no more than % 21:1 Ch def %5, i.e., 220:1 F; < %5
(line 6-9 in Algorithm 3), because Theorem 1 tells us there is
always enough edge servers for these SFCs. Then as for the rest
SFCs, we can not ensure the adequate edge resources for them,
thus in order to avoid line 2 of Algorithm 2 invalidating the
order of SFCs, we had better limit the input with only one SFC
when calling CNF. Hence, keep calling CNF to deal with the
next SFC following the index order, until there is no enough
edge resources and CNF breaks (line 10-12 in Algorithm 3).
Finally, we offload the rest VNFs of the current SFC i0, as
well as all remaining SFCs, from iy + 1 to m/, to the cloud
(line 13 in Algorithm 3). The detailed ECNF algorithm with
time complexity of O(N + mlog(m)+ M?) is shown in
Algorithm 3.

It is worth noticing that in CNF, we sort servers by DST (Al-
gorithm 1) where the first node is special. However, according
to the above algorithm steps, here we want the last server to
be special, being the central server V. It is because in ECNF,
the last server is the only one which must communicate with
the cloud and the central server V) the one nearest to the cloud
among all servers at the edge. Thus here we simply revise DST
as Algorithm 4 to make the last server the central server after
sorting. In ECNF except the edge-only cases, i.e., in line 9, 11
of Algorithm 3, we always substitute DST by this revised DST
when calling CNF.

Then we will illustrate the deployment scheme gained by
ECNF is feasible. First CNF guarantees all constraints at the
edge, which we has analyzed in the above section. Besides,
ECNF combined with the revised DST algorithm ensures only
the central server needs to communicate with the cloud, which
conforms to the connection bandwidth constraints between edge
and cloud, i.e., p =0 or ¢ = 0 in Inequality (2).

B. Approximation Ratio of ECNF in the

Continuum

Edge-Cloud

We now prove ECNF has constant approximation ratios to
OPT for two different cases. In proof, denote by EC N F and
OPT the total cost of ECNF and that of OPT. Bemdes denote
the total size of all VNFs with L; > 0 as F = >

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

880

Theorem 5: ECNF <r-OPT + C, where if F<

max Cj, |
min C},

C,

<1
=2

C’za-makaandr:4-{

If F> 10,

C’zZCmaxZi and r = max < 4 {maka-‘

min C},

20C + (2F — O) (7 +2¢ max %)

2amin{ﬁ75} —&—ZmaX{l3 — 5,0} (7+2Cmiin E—)
©

v+ max &)
, - zf 1S
~y+2¢ min z
, éC’ <F<C, r has another format,
(2F—C) (42 max 5)
_ 4. | maxCy max Cp, i i
r=4 "min C; —‘ + minlik 5(ﬁ+5)

Proof: First, as for the SFCs with L; < 0, offloading the
entire chain to the cloud is the optimal choice. Below, our
analysis focuses on the deployment of the rest SFCs.

When F' < %C, ECNEF is reduced to CNF and SFCD is lim-
ited at the edge. Referring to Theorem 4,

min C},

And when F — 00, T = max {4 [m'axck]

constant. When oo =0

red. [maka

- -‘ and C = o - max C},.
min C,

When F > %CN’, we analyse as below. First, it is easy to get
RE, ;< C, REopr>min {ﬁ,é} .

Since ECNF combined with the revised DST ensures only the
central server needs to communicate with the cloud, LE, I
comes totally from the data flow between VNFs placed at the
edge, like the green solid line in Fig. 1, rather than the inside-
edge part of the communication data flow between edge and
cloud like the red solid line in Fig. 1. Based on this fact and
Theorem 3, we can obtain LF, <4 [%g:—‘ - OPT,, where
OPT, means the minimal latency when placing these VNFs
at the edge. It is the latency of optimal solutions for a new
problem with the task of placing these VNFs at the edge and the
goal of only minimizing the communication latency. In OPT, the
optimal solution for the whole SFCD problem, there are more
VNFs placed at the edge because of the low latency of edge
computing. Thus, LEopr > OPT..

Line 10-12 in Algorithm 3 guarantees all edge servers are
occupied, hence combined with Theorem 1, we can reach the
conclusion that the total sizes of VNFs placed at the edge > C
which implies R®, ; < F— C’

In OPT, the total sizes of VNFS placed at the edge < C, thus
if [>C,RC OPT > F — C.If F < C, there exists a possibility
that all SFCs are placed at the edge, so in thls case, we can only
get RCopr > 0. In all, R®o pp > max CO,}

In ECNF, SFCs from 1 to iy — 1 are successfully placed
on edge servers while SFCs 4y to m/ are totally or partlally
offloaded to the cloud. Thus, (LC, ; + 6LF. ; =¢ X" 2L+

’LZ()

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 3, MARCH 2024

O L Sty + 0N NI Ty = (X, 2L+

Zrn Zm i < 2CL10 + 2((max) ZZL‘OH Fy+0-t.,
where > lznl ti;, noted as ¢ is a fixed constant
related to the given information of SFCs, which is
independent of the SFC deployment schemes. Besides,
Theorem 1 demonstrates F > %C, which implies
Sl F=F =0 F, <F- 1C. Therefore, (L% ; +
SLF, f<2CmaXL + ¢ max (2F C)+6-t.

When it comes to OPT, 1f some VNFs in SFC i are of-
floaded to cloud, the outside-edge communication latency of
this chain is at least 21;. And the total size of SFCs that contain
VNFs offloaded to cloud is larger than or equal to the used

cloud resources R€opr. Thus, (ILC,,; + 6LF,,; > min 2; .

max F—C,O} +0 -t
Above all,

ECNF = aRE, ; 4 BLE, ; + 4R . ; + CLC, ; + oLF. ¢,

"lj‘b‘l

maxgk—‘ . (5 . OPTC) +2¢ - maxi;
k

min

§a5+4[

1 L; -~
OPT = aREopt + BLEopt + 7Rcopt + 6]]-‘Copt + 5LPopt;

zamm{ﬁ5}+ﬂ-OFn

+ (’y—i—ZC-min%) -max{ﬁ'—é,O}—&-(-tC.

Since ct+d+te min C},
OPT.),d=p0-OPT,, and e =(- t. we can get Eq. 9.
Since there is at least one hop between two employed

atbie < max{2,2 1}, letting b=4 [m%‘xckw (8-

. m F;
edge servers for SFC i, OPT. > 3", (m + 1) Sl >
(m'lxck +m) - -minl; > Iﬂf(ljk (F+C). Thus, when «a=

1 _ max C},
0, §C<F§C, r has another format. » =2 - ’VminC:—I +

. i,

min [; B(F+C)

VI. THE ONLINE SFCD

In above discussion, we assume that the information of all
the SFCs is known before the deployment. Here we extend the
SFCD problem to an online version, where the SFCs arrive
sequentially in an online manner. At each time slot, we do not
know the information of SFCs that will arrive in the future and
we only know the information of SFCs that have arrived in the
past. If we start to make SFC deployment and flow routing only
after all of them have arrived, the earlier SFCs will suffer high
delays. Therefore, we provide an online algorithm, called the
online chained next fit (OCNF) algorithm, to solve the online
SFCD problem by deploying SFCs and routing the flow after
each new SFC arrives.

A. Basic Ideas and Challenges

We want to design OCNF based on the framework of ECNF
so that the performance guarantee of algorithms on resource

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

MAQO et al.: JOINT VNF PLACEMENT AND FLOW ROUTING IN EDGE-CLOUD CONTINUUM 881

cost and network latency can be maintained as much as pos-
sible. Luckily, it is easy to keep the approximation ratio on
resource cost, i.e., Theorem 1, Theorem 2, because the design
of the resource-related algorithms is based on the NF strategy,
which itself is an online algorithm and thus can fit the online
mechanism successfully. However, the design of the latency-
related algorithms is a totally different story. Line 5 of ECNF
and line 2 of CNF, which is called in ECNF in lines 2 and
9, both involve the sorting of latency-related coefficients, e.g.
l;, L;, which only works when the information of all SFCs
is known. Thus, these two-line codes can NOT be adopted
in OCNF. Line 5 of ECNF is only employed to obtain better
average performance but does not make a difference in the
worst-case performance in Theorem 4. The trouble is that line
2 of CNF (Algorithm 2) is a key step for the proof of the
latency approximation ratio (Seen in the proof of Theorem 3
in the conference version [25]). Thus, the key challenge in
OCNF design is how to achieve a latency approximation ratio
like Theorem 3.

B. Algorithm Design

Since the online mechanism affects the information of SFCs,
we consider doing more jobs on the network topologies. Specif-
ically, in CNF, we sort servers by DST. Can we get a better
traverse path on the network graph so that the maximal
number of hops between two adjacent nodes in the traverse
path is limited? If so, we can achieve a latency approximation
ratio via steps like Eq. 10.

Such a problem is equivalent to a Hamiltonian cycle (/path)
problem. In detail, we consider a new graph G’ with the same
vertex set V' as the network graph G and each pair of vertices
is connected by an edge in G’ if and only if they are joined by
a path with at most d edges (or hops) in G. Then the problem
of finding a traverse path on the network graph G so that the
maximal number of hops between two adjacent nodes in the
path is equivalent to the problem of finding a Hamiltonian cycle
(/path) in the new graph G’. In terms of such a Hamiltonian
cycle problem, H. Fleischner [26] has proved an existence the-
orem in 1974 that the square® of every two-connected graph?
is Hamiltonian, i.e., we can always find a Hamiltonian cycle
in the square of every two-connected graph. Then H. T. Lau
[27] proposed an O(|V|?) algorithm in 1980 for producing a
Hamiltonian cycle in the square of a 2-connected graph.

Based on Fleischner’s theorem and Lau’s algorithm, below
we first devise a new preparing algorithm for OCNF, called the
Hamiltonian path traverse (HPT) algorithm. It can substitute
DST to sort servers, i.e., find a Hamiltonian path of G’ to
traverse the network graph G and sort the servers following this
traverse path. Specifically, we first use the depth-first search
(DES) algorithm to obtain a spanning tree 7. Then based on
T, we can get a new graph 7" by the square of graph T, i.e.,
T' = T?. By the definition of 7", we can claim that 7" must

2The square of a graph G, i.e., G2, is a graph with the same set of vertices
of G and each pair of vertices is connected by an edge in G? if and only if
they are joined by a path with at most 2 edges in G.

3if any one vertex were to be removed, the graph will remain connected.

Algorithm 5: Hamiltonian path traverse (HPT)
Algorithm

Input: The physical network G = (V, E'), where
V={V, -, Vu}
Output: The sorted servers Vi, Vi,, -+, Vi,, and
multi-hops paths T for the data flow between
ij and ij+] .
1 Call DFS to get a spanning tree 1" of graph G
2 Get a new graph 7" by the square of T;
3 Get a new graph G’ by the suqare of T”;
4 Call Lau’s O(|V'|?) algorithm to produce a Hamiltonian
cycle HC in G';
Obtain a Hamiltonian path H” from the Hamiltonian
cycle H” by deleting an edge with V; as an endpoint.
6 Note the other endpoint of path H except V; as Vs
7741, kj < p;
8
9

wm

while j < M do
Find the next node of Vj,, on H”, noted as V;
Lj<—j+17 kj <
1 forj=1—M—1do
L Find the shortest path between Vi, and Vi, in G
with each edge weighted 1, noted as Tj .

[y
>

"
N

be a two-connected graph. Let G’ be the square of graph T”.
According to Fleischner’s theorem and Lau’s algorithm, we can
find a Hamiltonian cycle in G’. Then, it is easy to obtain a
Hamiltonian path from a Hamiltonian cycle by deleting an edge
with V} as an endpoint. Such a Hamiltonian path is exactly the
traverse path we obtained and we can sort the servers following
this path from another endpoint to V).

The detailed procedures of HPT with the time complexity
of O(M?) are shown in Algorithm 5.

After sorting the servers by HPT, we start to deploy SFC i in
the edge-cloud continuum. If the currently considered server
is the cloud, just put all the VNFs of SFC 7 on the cloud.
Otherwise, we employ the NF strategy to do deployment for
the newly arrived SFC i following the chained order of VNFs.
Specifically, if a VNF fits inside the currently considered edge
server, it is placed on this server. Otherwise, the placement
on the current server ends, move to consider the next new
edge server with enough capacity following the order of sorted
server, and place the current VNF on this new server Repeat the
same procedures on the next VNF until all VNFs are placed on
the edge servers or there is not enough resource at the edge. If
there is not enough resource at the edge, put all the rest VNFs
of SFC ¢ on the cloud.

The detailed OCNF algorithm with time complexity of
O(N + M?) is shown in Algorithm 6.

C. Approxi. Ratio of OCNF in the Edge-Only Case

Theorem 6: REoconr <min{2, g ‘REoonr +C,
where C' = max C}, and r = ;2% ?k .
2,7

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

882

Algorithm 6: Online Chained Next Fit (OCNF) algo-
rithm (Online, edge-cloud continuum)

Input: The new arrived SFC ¢, the current considered
server V, and the capacities of servers
C17027' : 'aCM-
Output: The placement scheme xf i
1 Sort and reindex servers by HPT;
2 if k > O (there is resource left at the edge) and E >0
then

for j=1—n,; do
4 if Vi, has enough capacity for F; ; then
L x} ;= 1; (Place F; j on Vz)
6 else
7 while k£ < M do
8 For all links (p, ¢) in the multi-hop path
Ty, let wﬁ’jq =1, k< k+1;
9 if Vi, has enough capacity for I ; then
10 mfj =1; (Place F; ; on V)
1 Break;
12 if k= M and 2 =0 then
13 Put the rest VNFs of SFC 7 on the
cloud; (a:w =1)
14 k=0;
15 B break;
16 else

17 L Put all VNFs of SFC i on the cloud; (m?’j =1)

Proof: OCNEF stills employ the NF strategy when placing
VNFs on the edge, so we can obtain the conclusion the same
as Theorem 1 and Theorem 2.

Theorem 7: LEOCNF <8 Jm—‘ . LEOPT.
Proof: According to HPT, the. number of hops between

two adjacent sorted servers is at most 2 x 2 =4, thus

n;—1

Zzu_er Zz”<2+4*(Mi—1)<4*Mi, (10)

where M; represents the number of employed servers when
placing SFC 7 by OCNF.

Similarly, we use M;" to represent the number of used servers
when placing SFC i by OPT. Additionally, denote by V), and
V4. the first used server of SFC ¢ by CNF and the last one.
According to these definitions, we can obtain

n;
"y Ji, . C(
M > 2 Jis and M, < Loy, O Vi)
max C’ min Cj
1<k<M 1<k<M

In OPT, there is at least one hop between two employed edge
servers in SFC i. After adding one hop for data flowing in and
one for data flowing out, we reach

zi > M+ 1.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 3, MARCH 2024

In sum,
i—1
q—p +1 Vk) + C(Vpi) + C(ti) (11)
min C}, ’
i+ 2max C,
{ =1 fig + 2max ﬂ, (12)
min C},
max C, . max C,
<2 [mka-‘ M +2 [mian-"
max C,
<2. Lo
=2 ’Vmin C -‘ Fi

where [] is the ceiling function, Format 11< Format 12 stems
from Theorem 1.
Referring to Ineq. 10, we can get the conclusion that

m n;

LEOCNF:ZZZ” li<4- ZM

zlgl

max C,
4. 7. 2l
- ; {mian.-‘ Zi

—3. FMXC’C-‘ LEopr.
min C},

O
Theorem 8: OCNF <8 - {ﬁ?ﬁgﬂ -OPT + C, where
C' = max Cy.

D. Approximation Ratio of OCNF in the
Continuum

Edge-Cloud

Similar as the proof of Theorem 5 and combined with The-
orem 6, 7, we get _
Theorem 9: OCNF <r-OPT + C, where if F' <
max Cy, |
min C},

.
50,

C’owmakaandr&[

If F>1C,

C:2C~maxz and r =max < 8 [maka—‘

min C},

2aC + (2F — O) (v + 20 max)

ZOzmin{ﬁ,é} + 2 max {ﬁ — 5,0} (v+ 2(miin %)
(13)

}is

10<F < C r has another format,

)
r—=8. lrmaxck—‘ =+ max Cy, . (ZFic)(A/+2<m?XF7i)
N i i B(F+C)

min C min [;

.
~y+2¢ max F—Z

min C},

And when F' — oo, " =max< 8 [“"‘.‘XC’“—‘, z;
~y+2¢ min F’

constant. When oo =0

VII. PERFORMANCE EVALUATION

In this section, we perform extensive simulations on different
network topologies to compare the performance of ECNF and
OCNF with optimal solutions and benchmarks.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

MAQO et al.: JOINT VNF PLACEMENT AND FLOW ROUTING IN EDGE-CLOUD CONTINUUM 883

o
g
o

o

I
©

8
o

@ O 0O
=
o

Approxi. Ratio
N
o)

Approxi. Ratio

i

I -
=) N
o o
H }—i-n @o O o

Iy
o

ggzim%%

3456 7 8
Number of chains

T T T T T
Mesh MtRg Hybrid Tree Star

Network Topology

(a) ECNF on Diff. Topologies (b) ECNF on Star Topology

Fig. 3.

KR L7

(a) Mesh (b) MtRg (c) Hybrid (d) Tree (e) Star

Fig. 4. 5 different network topologies with 8 nodes.

A. Simulation Setup

The evaluation of the proposed algorithms in different sce-
narios is performed through simulations. At the time we write,
several standard simulation frameworks for the edge have been
proposed, such as iFogSim [28] and FogBus [29]. However,
they all do not suit our model. Specifically, iFogSim does not
support device-to-device communication, and FogBus does not
consider the communication between tasks in their model, while
the communication between the adjacent chained VNFs is an
important consideration in the model of SFCD. Compared with
them, the Monte-Carlo simulations are more suited for the
variability of the targeted environment, according to [30]. Thus,
we adopt a Monte Carlo simulator and add our model to the
simulator framework.

As for the infrastructure of the model, we set the one-hop
communication latency of an SFC i, [;, randomly ranging from
0.5 ms to 1 ms, and the edge-and-cloud communication latency
of an SFC, L;, randomly ranging from 10 ms to 50 ms. Besides,
we randomly set the processing latency of each VNF on edge
server t; ;, with a 90% likelihood of ranging from 0.5 ms to 1
ms and a 10% likelihood of ranging from 1 ms to 100 ms. We
configure the VNF processing latency on the cloud to randomly
range from 0.3 to 1 times that on edge servers. Additionally, we
set the bandwidth capacity of each hop in the edge network,
B, 4, as 1300 Mbps (the bandwidth of Wireless 802.11ac).
The flow rate of SFC i, b;, ranges from 0.5 Mbps to 5 Mbps.
Additionally, we set f; ; ~N(2,0.5).

In below simulations, as for each group setting, we always
conduct 100 groups of simulations to show average cases.

B. Simulations on 5 Small-Scale Random Network Topologies
(Performance Comparisons With OPTs)

1) Network Topology and Server Capacity Setup: Since
SFCD is NP-hard, the time cost of traversal search for OPT
grows exponentially as the problem scale, i.e., N, M, increases.

3.04{ © 8 o o
S0 s | g i
g 2.5 B] o g 0 © .
i 8 E ° 8 W 2.0 o
% 2.0 X Q
o o
1Y 1
Q15 2 157
g F ot
1.0 1 1.0 é

12 3 456 7 8 9
Number of chains

Mésh Mt‘Rg Hyl‘ur\d Trée St‘ar
Network Topology

(c) OCNF on Diff. Topologies (d) OCNF on Star Typology

Approximation ratios of ECNF and OCNF on topologies with 8 nodes.

Thus, we first perform simulations on some representative
small-scale network topologies with 8 nodes shown in Fig. 4.
We call these topologies the mesh, multi-ring (MtRg), hybrid,
tree, and star topology in order.

In simulations, the capacities of 8 edge servers are set as
4,4,4/4,4,6,6,8 and the weight parameters are set as a =
B =~=(=0=1. We perform simulations on the number of
chains m from 1 to 5 with 5 VNFs for each chain. We adopt
the Mixed-Integer Programming (MIP) solver to find OPT for
SFCD. Note that the practical approximation ratios of ECNF
or OCNEF in Fig. 3 are computed by dividing the total cost of
ECNF or OCNF by that of OPT, computed by MIP solver.

2) Approximation Ratio Verification of ECNF: As we can
see from Fig. 3(a), the median ratios of ECNF under different
network topologies are all near 1.08 and the average ratios are
around 1.13, significantly smaller than the upper bound proved
in Theorem 5. In Fig. 3(a), we find different topologies do
not make a big difference in the performance of ECNF, which
indicates ECNF can adapt to various network topologies.

Fig. 3(b) exhibits the practical ratios of ECNF when deploy-
ing different numbers of SFCs. The results for 1 and 2 SFCs are
the edge-only cases when all SFCs are successfully deployed
at the edge and ECNF is reduced to CNF. The results for 3-
5 SFCs reveal the critical cases when ECNF may need cloud
resources while OPT does not. And the results for deploying
6-9 SFCs demonstrate the cases when there are no sufficient
edge resources and cloud resources must be used even for OPT.
As shown in Fig. 3(b) the worst case of approximation ratios
of ECNF is achieved under the critical cases when the edge
resources are just sufficient for OPT but insufficient in terms of
ECNEF. It is consistent with the expression of r in Theorem 5.

3) Approximation Ratio Verification of OCNF: As shown
in Fig. 3(c), the median approximation ratios of OCNF under
various network topologies are all near 1.15, while the average
ratios around 1.25, also far smaller than the upper bound given
in Theorem 9. We can see different topologies do not make a
big difference in the performance of OCNF, meaning OCNF
can fit various network topologies.

Fig. 3(d) displays the performance of OCNF when deploying
different numbers of SFCs. Similar to ECNEF, the results for
1 and 2 SFCs demonstrate the edge-only cases; the results
for 3-5 SFCs reveal the critical cases when OCNF may need
cloud resources while OPT need not; while the results for 6-
9 SFCs are the cases there are no sufficient edge resources

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

884

0.6 0.6

AMRES —— ali2Cloud ARNES —— all2Cloud
0.5 —4- Rounding 0.5 —4- Rounding
—4— edgeFirst —4— edgeFirst

0.4 —#- OCNF 0.4 —#- OCNF
Q —— ECNF
@ 0.3

(Y]
0.2

0.1

Qo
M 0.3
(Y

0.2

0.1

10 20 30 10 20 30 40 50
Num of Chains Num of Chains

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 3, MARCH 2024

0.6 0.6

DFN —— all2Cloud ITCDeltacom —+ all2Cloud
0.5 —+- Rounding 0.5 —+- Rounding
—4— edgeFirst —4— edgeFirst

OCNF

100 125 150

Num of Chains

20 40 60 80 50 75
Num of Chains

Fig. 5. Performance comparisons of different algorithms on 4 different real network topologies.
1.5 0.8 0.6 0.6
—+ ali2Cloud —+ all2Cloud —+ ali2Cloud — all2Cloud
-t- Round.mg 06 -+- Rounding -+- Rounding -+- Rounding
1.0 —+ edgeFirst | =4 edgeFirst 0.4 —— edgeFirst 0.4 —— edgeFirst
o —H- OCNF o —H- OCNF o OCNF o —4- OCNF
g —— ECNF g 0.4 —4— ECNF 8 = 8 — —4— ECNF
os{ A 0.21 -
———————————— 0.2q 7777 f===-- [S— R e
St e B = \;-:;‘!
0.0 L——— - - - — g : . 0.0+
1 3 5 7 9 1 2 3 4 5 0.05 010 015 020 025
Ratio of Weights Ratio of Weights Mean of VNF sizes Likelihood of cptt VNFs
(a) Ratio = g =< (b) Ratio = X (c) Mean values of VNF sizes (d) likelihood of computation-

@

Fig. 6.

and cloud resources must be used even for OPT. The worst
performance of OCNF is achieved under the critical cases
when the edge is just just sufficient for OPT but insufficient
in terms of OCNF, which is consistent with the expression of r
in Theorem 9

C. Simulations on 4 Large-Scale Real Network Topo.s

1) Network Topology and Server Capacity Setup: More-
over, we also conduct simulations on 4 larger real network
topologies from the Internet topology zoo [31]: (1) AMRES (25
nodes and 24 links), (2) ARNES (34 nodes and 46 links), (3)
DEN (58 nodes and 87 links), (4) ITCDeltacom (113 nodes and
160 links).

In simulations, we set the capacities of edge servers following
the normal distribution of a mean of 12 and a standard variance
of 4, with the limitation of no less than 6. And each SFC has
10 VNFs. If not mentioned, we default the weight parameters
asa=1,8=10,v=2,(=10. (Note that below we will also
test the different parameter settings in Fig. 6.)

In this part, we will compare our proposed ECNF and OCNF
with the following three benchmarks: (1) Rounding Algo-
rithm: a classical approach to obtain a provable bound for ILP.
See [9], [16], [32] as examples; (2) edge-first strategy: an
intuition edge-based SFC deployment employed by work [4],
[5], where SFCs are offloaded to the cloud when the deployment
exceeds the capabilities of the edges; (3) all-to-cloud strategy:
a baseline that offloads all SFCs to the cloud.

Besides, in each trial of simulations, we also compute the
lower bound of SFCD by Gubori_objbound so that we can com-
pute the gaps of these algorithms, i.e., Alg"—glbgj(}/glb;?}’glbound,
which clearly show the performance of each algorithm. In all
plots below, we adopt the average value from 100 groups of
simulations to show average cases. And the errors shown on

intensive VNFs with ¢; ; > 1 ms

Performance comparisons of different algorithms with different settings.

TABLE 11
TIME COST OF DIFF. ALGORITHMS ON ITCDELTACOM
m 20 40 60 80 100
Rd 37.10 78.70 116.8 164.4 246.2
ECNF | 0.01639 | 0.01900 | 0.02598 | 0.04716 | 0.04902
OCNF | 0.01079 | 0.01164 | 0.01206 | 0.01262 | 0.01324

plots are determined by the standard variances of the 100 groups
of simulations with the same setting.

2) Performance Comparisons With Benchmarks: In what
follows, we show simulation results on 4 different real network
topologies with different m. As shown in Fig. 5, ECNF and
OCNF always perform better than the benchmarks, which in-
dicates the superiority of our two designed algorithms.

3) Time Cost Comparisons With Benchmarks: In Table II,
we list the time cost of different algorithms running on the
ITCDeltacom topology with 113 nodes. From these data, we
can get the conclusion that ECNF and OCNF are both very fast
algorithms. They have a dramatic advantage on the time cost
compared with the popularly-used rounding algorithm.

4) Performance Comparisons With Different Settings:
Next, we assess the robustness of our proposed algorithms
under varied parameter configurations and present the results in
Fig. 6. The simulations involve 25 SFCs, the AMRES network
topology, and diverse parameter settings. It’s worth noting
that parameters maintain their original configurations unless
explicitly stated otherwise. First, we examine the influence
of objective weights by adjusting relative weights between
resource cost and communication latency, depicted in plot (a),
as well as between edge and cloud resources, illustrated in plot
(b). Additionally, we explore the impact of VNF parameters
by adjusting mean values of VNF sizes, shown in plot (c),
and the appearance likelihood of computation-intensive VNFs

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

MAQO et al.: JOINT VNF PLACEMENT AND FLOW ROUTING IN EDGE-CLOUD CONTINUUM

with ¢; ; > 1 ms, depicted in plot (d). Fig. 6 shows that
different parameter settings do not make a big difference in the
performance of the algorithms, and the proposed ECNF and
OCNF algorithms always outperform the benchmarks under all
the settings.

VIII. CONCLUSION

In this paper, we investigate the SFCD problem in the edge-
cloud continuum, with the goal of jointly minimizing resource
consumption and network latency. We propose two approxi-
mation algorithms, OCNF and ECNF, for online and offline
versions of the SFCD problem, respectively. The proposed algo-
rithms aim to balance resource and latency while optimizing the
sweet-spot of resource cost on both the edge and the cloud, as
well as all corresponding network latency. Specifically, the Next
Fit (NF) strategy employed in these two algorithms ensures
efficient resource utilization and avoids redundant data traffic.
Also, the designed corresponding sub-algorithms for virtual
network embedding, i.e., DST for CNF, the revised DST for
ECNEF, and HPT for OCNEF, play a critical role in reducing
latency. In addition, we prove the proposed ECNF and OCNF
algorithms have constant approximation ratios. Simulation re-
sults verify the proved theoretical bounds and using real-world
network topologies show the proposed algorithms outperform
popular baselines.

In future discussions, we will try to refine the online algo-
rithm to enhance its real-time decision-making capabilities in
response to the dynamic nature of network environments. We
also plan to delve into extreme scenarios, such as cases involv-
ing bandwidth overload, and explore additional optimization
goals for a more comprehensive analysis.

REFERENCES

[1] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Proc. IEEE 3rd Int. Conf. Cloud Netw.
(CloudNet), Piscataway, NJ, USA: IEEE Press, 2014, pp. 7-13.

[2] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-
optimal VNF placement at the network edge,” in Proc. IEEE
INFOCOM—Conf. Comput. Commun., Piscataway, NJ, USA: IEEE
Press, 2018, pp. 693-701.

[3] J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service
function chains with dynamic virtual network function placement in geo-
distributed cloud system,” IEEE Trans. Parallel Distrib. Syst., vol. 30,
no. 10, pp. 2179-2192, Oct. 2019.

[4] J. Son and R. Buyya, “Latency-aware virtualized network function
provisioning for distributed edge clouds,” J. Syst. Softw., vol. 152,
pp. 24-31, Jun. 2019.

[5] J. Martin-Pérez, F. Malandrino, C.-F. Chiasserini, and C. J. Bernardos,
“OKpi: All-KPI network slicing through efficient resource allocation,”
in Proc. IEEE INFOCOM—Conf. Comput. Commun., Piscataway, NJ,
USA: IEEE Press, 2020, pp. 804-813.

[6] P.Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, “Latency-aware VNF chain
deployment with efficient resource reuse at network edge,” in Proc. [IEEE
INFOCOM—Conf. Comput. Commun., Piscataway, NJ, USA: IEEE
Press, 2020, pp. 267-276.

[7]1 H. Ren et al., “Efficient algorithms for delay-aware NFV-enabled mul-
ticasting in mobile edge clouds with resource sharing,” IEEE Trans.
Parallel Distrib. Syst., vol. 31, no. 9, pp. 2050-2066, Sep. 2020.

[8] Y. Mao, X. Shang, and Y. Yang, “Near-optimal resource allocation and
virtual network function placement at network edges,” in Proc. IEEE
27th Int. Conf. Parallel Distrib. Syst. (ICPADS), Piscataway, NJ, USA:
IEEE Press, 2021, pp. 18-25.

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

885

S. Yang, F. Li, S. Trajanovski, X. Chen, Y. Wang, and X. Fu, “Delay-
aware virtual network function placement and routing in edge clouds,”
IEEE Trans. Mobile Comput., vol. 20, no. 2, pp. 445-459, Feb. 2021.
W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637-646,
Oct. 2016.

Y. Liu, Y. Mao, X. Shang, Z. Liu, and Y. Yang, “Distributed cooperative
caching in unreliable edge environments,” in Proc. IEEE INFOCOM—
Conf. Comput. Commun., Piscataway, NJ, USA: IEEE Press, 2022,
pp. 1049-1058.

Z. Wan, “Cloud computing infrastructure for latency sensitive applica-
tions,” in Proc. IEEE 12th Int. Conf. Commun. Technol., Piscataway, NJ,
USA: IEEE Press, 2010, pp. 1399-1402.

Y. Mao, X. Shang, and Y. Yang, “Provably efficient algorithms for traffic-
sensitive SFC placement and flow routing,” in Proc. IEEE INFOCOM—
Conf. Comput. Commun., Piscataway, NJ, USA: IEEE Press, 2022,
pp. 950-959.

D. S. Johnson, “Near-optimal bin packing algorithms,” Ph.D. dis-
sertation, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1973.

M. A. Khoshkholghi et al., “Service function chain placement for joint
cost and latency optimization,” Mobile Netw. Appl., vol. 25, pp. 2191—
2205, Dec. 2020.

X. Shang, Z. Liu, and Y. Yang, “Network congestion-aware online
service function chain placement and load balancing,” in Proc. 48th
Int. Conf. Parallel Process., 2019, pp. 1-10.

D. Li et al., “Virtual network function placement considering resource
optimization and SFC requests in cloud datacenter,” IEEE Trans. Parallel
Distrib. Syst., vol. 29, no. 7, pp. 1664-1677, Jul. 2018.

Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient algo-
rithms for joint placement and allocation of virtual network functions,”
in Proc. IEEE INFOCOM—Conf. Comput. Commun., Piscataway, NJ,
USA: IEEE Press, 2017, pp. 1-9.

S. Agarwal, F. Malandrino, C.-F. Chiasserini, and S. De, “Joint VNF
placement and CU allocation in 5G,” in Proc. IEEE INFOCOM—
Conf. Comput. Commun., Piscataway, NJ, USA: IEEE Press, 2018,
pp- 1943-1951.

X. Shang, Y. Huang, Z. Liu, and Y. Yang, “Reducing the service function
chain backup cost over the edge and cloud by a self-adapting scheme,”
IEEE Trans. Mobile Comput., vol. 21, no. 8, pp. 2994-3008, Aug. 2022.
D. Zheng, C. Peng, X. Liao, L. Tian, G. Luo, and X. Cao, “Towards
latency optimization in hybrid service function chain composition and
embedding,” in Proc. IEEE INFOCOM—Conf. Comput. Commun., Pis-
cataway, NJ, USA: IEEE Press, 2020, pp. 1539-1548.

V. Valls, G. Josifidis, G. De Mel, and L. Tassiulas, “Online net-
work flow optimization for multi-grade service chains,” in Proc. IEEE
INFOCOM—Conf. Comput. Commun., Piscataway, NJ, USA: IEEE
Press, 2020, pp. 1329-1338.

N. He et al., “Leveraging deep reinforcement learning with attention
mechanism for virtual network function placement and routing,” /IEEE
Trans. Parallel Distrib. Syst., vol. 34, no. 4, pp. 1186-1201, Apr. 2023.
“Network functions virtualization—Introductory white paper,” ETSI,
SDN and OpenFlow World Congress, Darmstadt, Germany, Oct.
2012, pp. 1-16. [Online]. Available: https://portal.etsi.org/nfv/nfv
white_paper.pdf

Y. Mao, X. Shang, and Y. Yang, “Joint resource management and flow
scheduling for SFC deployment in hybrid edge-and-cloud network,”
in Proc. IEEE INFOCOM—Conf. Comput. Commun., Piscataway, NJ,
USA: IEEE Press, 2022, pp. 170-179.

H. Fleischner, “The square of every two-connected graph is Hamilto-
nian,” J. Combinatorial Theory, Ser. B, vol. 16, no. 1, pp. 29-34, 1974.
H. T. Lau, “Finding a Hamiltonian cycle in the square of a block,” Ph.D.
dissertation, McGill Univ., Montreal, QC, Canada, 1980.

H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim:
A toolkit for modeling and simulation of resource management tech-
niques in the Internet of Things, Edge and Fog computing environ-
ments,” Softw.: Pract. Experience, vol. 47, no. 9, pp. 1275-1296, 2017.
S. Tuli, R. Mahmud, S. Tuli, and R. Buyya, “FogBus: A blockchain-
based lightweight framework for Edge and Fog computing,” J. Syst.
Softw., vol. 154, pp. 22-36, Aug. 2019.

J. C. Spall, Introduction to Stochastic Search and Optimization: Estima-
tion, Simulation, and Control. Hoboken, NJ, USA: Wiley, 2005.

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” IEEE J. Sel. Areas Commun., vol. 29,
no. 9, pp. 1765-1775, Oct. 2011.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

886

[32] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in Proc. IEEE Conf. Com-
put. Commun. (INFOCOM), Piscataway, NJ, USA: IEEE Press, 2015,
pp. 1346-1354.

Yingling Mao (Graduate Student Member, IEEE)
received the B.S. degree in mathematics and applied
mathematics from Zhiyuan College, Shanghai Jiao
Tong University, Shanghai, China, in 2018. She is
currently working toward the Ph.D. degree in the
Department of Electrical and Computer Engineer-
ing, Stony Brook University. Her research interests
include network function virtualization, edge com-
puting, cloud computing, and quantum networks.

Xiaojun Shang received the B.Eng. degree in in-
formation science and electronic engineering from
Zhejiang University, Hangzhou, China, and the M.S.
degree in electronic engineering from Columbia
University, New York, NY, USA, and the Ph.D.
degree in computer engineering from Stony Brook
University. He is currently an assistant professor
with the Department of Computer Science and
Engineering at the University of Texas, Arlington.
He is currently working toward the Ph.D. degree in
computer engineering with Stony Brook University.
His research interests include cloud computing and data center networks, with
focus on placement and routing of virtual network functions and resilience of
service function chains.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 3, MARCH 2024

Yu Liu (Graduate Student Member, IEEE) received
the B.Eng. degree with honor in telecommunication
engineering from Xidian University, Xi’an, China.
He is currently working toward the Ph.D. degree in
computer engineering with Stony Brook University.
His research interests include online algorithms, dis-
tributed storage, cloud computing, edge computing,
and data center networks, with focus on placement
and resource management of virtual network func-
tions and reliability of service function chains.

Yuanyuan Yang (Life Fellow, IEEE) received the
B.Eng. and M.S. degrees in computer science and
engineering from Tsinghua University, and the
M.S.E. and Ph.D. degrees in computer science from
Johns Hopkins University. She is currently a Dis-
tinguished Professor with Stony Brook University.
Her research interests include edge computing, data
center networks, cloud computing, and wireless
networks. She has published over 480 papers and
holds seven U.S. patents in these areas. She is the
Editor-in-Chief for IEEE TRANSACTIONS ON CLOUD
COMPUTING and an Associate Editor for ACM Computing Surveys. She
has served as the Associate Editor-in-Chief for IEEE TRANSACTIONS ON
COMPUTERS and an Associate Editor for IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS. She has also served as a Program Director with
the National Science Foundation and as the General Chair, Program Chair, or
Vice Chair for several major conferences.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore. Restrictions apply.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

