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Abstract—Network Function Virtualization (NFV) is becom-
ing one of the most popular paradigms for providing cost-
efficient, flexible, and easily-managed network services by migrat-
ing network functions from dedicated hardware to commercial
general-purpose servers. Despite the benefits of NFV, it remains
a challenge to deploy Service Function Chains (SFCs), placing
virtual network functions (VNFs) and routing the corresponding
flow between VNFs, in the edge-cloud continuum with the objec-
tive of jointly optimizing resource and latency. In this paper, we
formulate the SFC Deployment Problem (SFCD). To address this
NP-hard problem, we first introduce a constant approximation
algorithm for a simplified SFCD limited at the edge, followed by
a promotional algorithm for SFCD in the edge-cloud continuum,
which also maintains a provable constant approximation ratio.
Furthermore, we provide an online algorithm for deploying
sequentially-arriving SFCs in the edge-cloud continuum and
prove the online algorithm achieves a constant competitive ratio.
Extensive simulations demonstrate that on average, the total costs
of our offline and online algorithms are around 1.79 and 1.80
times the optimal results, respectively, and significantly smaller
than the theoretical bounds. In addition, our proposed algorithms
consistently outperform the popular benchmarks, showing the
superiority of our algorithms.

Index Terms—Network function virtualization, service func-
tion chain deployment, edge computing, cloud computing, joint
resource and latency optimization.

I. INTRODUCTION

N
ETWORK Function Virtualization (NFV) is a promising

technique that enables the migration of network functions

such as Proxies, Firewalls, Load Balancers, etc, from dedicated

hardware to commercial servers. It brings flexibility, scalability,

and cost-efficiency to network services. These virtual network

functions (VNFs) are typically chained together in a specific

Manuscript received 24 April 2023; revised 12 December 2023; accepted
19 December 2023. Date of publication 28 December 2023; date of current
version 12 February 2024. This work was supported in part by the U.S.
National Science Foundation under Grants CCF-1526162, CCF-1730291,
and CCF-1717731. Recommended for acceptance by X. Fu. (Corresponding

author: Yuanyuan Yang.)

Yingling Mao, Yu Liu, and Yuanyuan Yang are with the Department
of Electrical and Computer Engineering, Stony Brook University, Stony
Brook, NY 11794 USA (e-mail: yingling.mao@stonybrook.edu; yu.liu.3@
stonybrook.edu; yuanyuan.yang@stonybrook.edu).

Xiaojun Shang is with the Department of Computer Science and En-
gineering at the University of Texas, Arlington, TX 76019 USA (e-mail:
xiaojun.shang@uta.edu).

Digital Object Identifier 10.1109/TC.2023.3347671

order to form service function chains (SFCs) [1]. With the

growing development of low-latency edge computing, there is

increasing motivation to deploy SFCs at the edge [2], [3], [4],

[5], [6], [7], [8], [9]. Deploying SFCs at the network edges

offers numerous benefits, such as reducing communication de-

lays, avoiding network congestion, and enhancing data safety

and privacy [10].

Although NFV and edge computing offers many benefits, de-

ploying SFCs at the edge can be challenging. On the one hand,

efficient resource management is crucial due to the limited and

expensive nature of edge resources. Specifically, the task is to

place VNFs on as fewer edge commercial servers as possible

under server capacity constraints. On the other hand, we must

carefully schedule the data flow between adjacent VNFs during

SFC deployment. Poor scheduling schemes can result in redun-

dant flow paths, leading to network congestion and high latency,

while well-designed schemes can significantly reduce commu-

nication latency. Therefore, our model aims to jointly optimize

resources and latency, efficiently managing edge resources and

reducing communication latency simultaneously.

Several existing studies exclusively deploy SFCs on edge

servers [2], [3]. However, there are extreme scenarios where

deploying all SFCs on edge with the limited edge resources is

infeasible. For example, during peak hours [11], the majority

of users are requesting services, and the edge resources are

incapable of hosting all requesting SFCs. Under such scenarios,

we can offload some SFCs to the cloud which can provide

sufficient computing resources [12]. Some other existing studies

adopt a trivial approach of placing all remaining VNFs on the

remote cloud once all edge servers are fully utilized [4], [5].

However, this approach can result in increased communication

latency because SFCs consist of diverse VNFs and offloading

different SFCs to the cloud can significantly impact the overall

communication latency. Besides, as for some special VNFs, i.e.

Low-Density Parity Check (LDPC) or Turbo decoding, cloud

servers can provide more powerful computing resources like

GPU or FPGA to cut back the processing latency. Thus, there

is a tradeoff between communication and processing latency

when employing cloud resources. Therefore, it is necessary

to overall consider the SFC deployment problem in the edge-

cloud continuum.

In all, we formulate and study the SFC Deployment (SFCD)

problem, i.e., jointly placing VNFs in the edge-cloud continuum

and routing the data flow between VNFs, with the goal of

0018-9340 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 18:54:35 UTC from IEEE Xplore.  Restrictions apply. 



MAO et al.: JOINT VNF PLACEMENT AND FLOW ROUTING IN EDGE-CLOUD CONTINUUM 873

optimizing resource cost and network latency jointly. The prob-

lem is challenging for the following reasons. First, the problem

involves balancing the trade-off between resource cost, and

network latency, i.e., communication and processing latency,

which can be contradictory objectives, referring to work [13].

Second, incorporating edge and cloud makes the problem more

complicated. Additionally, the problem is NP-hard due to the

integer-variable constraint arising from the indivisible VNF and

limited edge server capacity. Furthermore, the complex network

topology poses difficulties in virtual network embedding, es-

pecially in solving the routing problem of data flow between

VNFs. Last but not least, we pursue to design a provable ap-

proximation algorithm for SFCD with an excellent theoretical

bound, which is also a big challenge.

In this paper, we design both offline and online algorithms for

the SFCD problem. We first simplify the SFCD problem to an

edge-only scenario where edge resources are sufficient for all

SFCs and thus only edge resources are considered. We propose

a constant approximation algorithm called Chained Next Fit

(CNF) for the edge-only cases. The CNF algorithm is based on

the Next Fit (NF) strategy [14] and utilizes a double spanning

tree (DST) algorithm to handle the network topology and the

corresponding flow routing problem. The NF strategy can guar-

antee efficient resource utilization while avoiding redundant

data traffic, and the DST algorithm helps to reduce latency

and prevent network congestion. Subsequently, we present the

Edge-First Chained Next Fit (ECNF) algorithm, a enhanced

version of the CNF algorithm that addresses the general SFCD

problem in the edge-cloud continuum overall considering both

edge and cloud resources. Additionally, we demonstrate that

ECNF can be bounded by a provable constant approximation

ratio. Furthermore, we propose an online algorithm named On-

line Chained Next Fit (OCNF) to address the online version

of SFCD, where SFCs sequentially arrive in an online manner.

OCNF is also proved to be a constant approximation algorithm.

Our main contributions are summarized as follows.

• We formulate the SFCD problem, which jointly con-

siders resource cost and network latency in the edge-

cloud continuum.

• We propose a constant approximation algorithm called

CNF for the edge-only cases of the SFCD problem.

• Based on CNF, we propose an enhanced algorithm named

ECNF to address the general SFCD problem overall con-

sidering edge and cloud. Also, we demonstrate that the

ECNF algorithm has a constant approximation ratio.

• To address the online SFCD problem, where SFCs arrive

sequentially in an online manner, we propose an online

algorithm named OCNF and prove that it has a provable

performance guarantee.

• Finally, we conduct extensive simulations using real-world

network topologies to evaluate the proposed algorithms.

Simulation results are consistent with the theoretical per-

formance bounds and demonstrate that the proposed algo-

rithms outperform the baselines.

The remainder of this paper is organized as follows. Sec-

tion II briefly reviews the related work. In Section III,

we give the formulation of the SFCD problem. Section IV

demonstrates our CNF algorithm designed for the simplified

SFCD limited at the edge and proves its constant theoretical

bound. In Section V, CNF is generalized to ECNF for com-

pletely solving SFCD in the edge-cloud continuum. Section VI

handles the online version of SFCD and provides an online

algorithm, called OCNF. Additionally, Section VII is the per-

formance evaluation of ECNF and OCNF. Finally, we conclude

the paper in Section VIII.

II. RELATED WORK

With the emergence of NFV, researchers have devoted much

effort to SFC deployment problems like [2], [3], [4], [5], [6],

[7], [8], [9], [13], [15], [16], [17], [18], [19], [20], [21], [22].

In this research area, there is a trend of deploying SFCs on

commercial servers at the edge because of the low latency of

edge computing.

Most of the existing related work is devoted to designing

heuristic algorithms for deploying SFCs on edge. For example,

Cziva et al. [2] presented a way to dynamically re-schedule

the optimal placement of vNFs at the network edge, based

on temporal network-wide latency fluctuations using optimal

stopping theory. Pei et al. [3] proposed the novel SFC em-

bedding approach (SFC-MAP) and VNF dynamic release al-

gorithm (VNF-DRA) to efficiently embed SFC requests in

geo-distributed cloud systems and optimize the number of

placed VNF instances. Son et al. [4] proposed a dynamic re-

source provisioning algorithm. It automatically allocates re-

sources in both the edge and the cloud for VNFs, adapting to

dynamically changing network volumes. Mart́in-Peréz et al. [5]

presented a novel methodology and resource allocation scheme,

named OKpi, which enables high-quality selection of radio

points of access as well as VNF placement and data routing with

polynomial computational complexity. He et al. [23] leveraged

the Markov Decision Process to model the dynamic network

states and devised a customized Deep Reinforcement Learning

(DRL) algorithm for the VNF placement problem. These works

are limited to the design of heuristic algorithms and do not have

a provable performance guarantee.

As far as we are concerned, there are only five related

works giving the performance bounds. Sang et al. [18] designed

two simple greedy algorithms and proved that they achieve an

asymptotical approximation ratio of (1 − 0(1))lnm+ 2, where

m is the number of flows. Jin et al. [6] designed a two-stage

VNF deployment scheme, including a constrained depth-first

search algorithm (CDFSA) and a path-based greedy algorithm

(PGA), to deploy VNF chains at network edges with latency

guarantees and resource efficiency. It gives a theoretically-

proved worst-case performance bound by an implicit constant

factor. In [8], Mao et al. produced the judge and repeated

largest fit decreasing algorithm (JR-LFD) with an asymptotic

approximation ratio of 3
2

to deploy VNFs at network edges.

Ren et al. [7] discussed a fundamental problem of NFV-enabled

multicasting in a mobile edge cloud, devised an approximation

algorithm with a provable approximation ratio for a single mul-

ticast request admission if its delay requirement is negligible.

In [9], an efficient randomized rounding approximation algo-

rithm was proposed to solve the delay-aware virtual network

function placement and routing in the edge-and-cloud network.
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These five theoretically provable works all have some draw-

backs to their model and their performance guarantees only

work for the specific simplified model. For example, work [6],

[8], [18] all limit to the edge-only cases. Since the resource of

edge computing is limited, it is likely to occur the case that

there is no way to deploy all SFCs on the edge servers under

the server capacity limitation. Thus, it is necessary to introduce

the cloud node into the network model, considering the SFC

deployment schemes in the edge-cloud continuum. Work [7],

[8], [18] only minimizes the edge server resource consumption,

ignoring the network latency, while [9] only optimizes the net-

work latency, ignoring the resource cost. In this paper, we con-

sider a general model, which targets joint resource and latency

optimization in the edge-cloud continuum. Under this general

model, the performance guarantee of existing provable works

may break. Thus, it is the first work to pursue a provable algo-

rithm for the joint VNF placement and flow routing in the edge-

cloud continuum.

III. PROBLEM FORMULATION

A. Background

Network functions play a pivotal role in shaping the dy-

namics of a network infrastructure. A diverse array of net-

work functions, including Proxies, Firewalls, Load Balancers,

and others, form the backbone of various network services.

Traditionally, these functions are implemented on proprietary

hardware, incurring high costs and posing challenges in terms

of management and upgrades. The emergence of virtualization

technologies introduced the concept of “Network Functions

Virtualisation” (NFV) in 2012 [24], presenting a novel solution

to address these challenges. NFV embodies a software-defined

network (SDN) architecture, wherein virtual network functions

(VNFs) are instantiated on virtual machines (VMs) hosted on

commercial servers.

A network service normally consists of multiple VNFs,

which exhibit dependencies on one another. For example, in the

case of a WAN optimizer and an Intrusion Detection System

(IDS), the IDS typically conducts packet inspection prior to

the WAN optimizer encrypting the contents. In sum, the real-

ization of a network service necessitates a sequence of VNFs,

orchestrated in a specific order. We call this sequence of VNFs

a service function chain (SFC) [1].

SFC deployment problem involves strategically placing these

VNFs within the edge-cloud environments and efficiently rout-

ing the data flows between inter-dependent VNFs within an

SFC to ensure efficient resource utilization and low network

latency. Below we will develop a model designed to address

the dual optimization goals of resources and latency in the SFC

deployment problem.

B. System Model

Table I summarizes the notations used in this paper.

We consider a edge network represented as a connected graph

G= (V,E), where every commercial server i is a vertex in

the graph denoted as Vi. If server Vp and Vq are directly con-

nected in the edge network, then the link (p, q) ∈ E, otherwise,

TABLE I
NOTATIONS

m number of Service Function Chains (SFCs)

M number of physical servers in the edge network

ni number of VNFs in SFC i

N number of all VNFs

Fi,j VNF j in SFC i

fi,j the size of VNF Fi,j

li the one-hop communication latency of SFC i

Li outside-edge (E&C) communication latency of SFC i

bi data flow of SFC i

Vk edge server k, if k > 0; the cloud, if k = 0

Ck capacity of edge server k

Bp,q bandwidth limit of network connection (p, q)

w
p,q
i,j if data between Fi,j and Fi,j+1 pass link (p, q) or not

xk
i,j if VNF Fi,j is placed on Vk or not

yk if server k is occupied or not

zi,j num. of hops at edge when data flows from Fi,j to Fi,j+1

Zi,j if there is E&C com. latency between Fi,j and Fi,j+1 or not

M ′ number of used servers in the results of CNF

M∗ number of used servers in OPT

V ∗

j used server j in OPT

C(·) (total) capacity of a server

c(·) occupied capacity of a server by VNFs.

zi number of hops in SFC i by CNF

z∗i number of hops in SFC i in OPT

ti,j the processing time of VNF Fi,j on edge nodes

Ti,j the processing time of VNF Fi,j on cloud

Fig. 1. System topology.

(p, q) /∈ E. We assume that there are M servers located at the

edge and that the processing capacity of server i is Ci. As shown

in Fig. 1, we assume there exists a central server in the edge

network, which is “directly”1 connected to the remote cloud

via ISP router. We note such a special server as V1.

We assume there are m SFCs requested by users, where

each SFC comprises an ordered set of VNFs, and the data

throughput of SFC i is bi. SFC i contains ni VNFs, noted

as Fi,1, Fi,2, · · ·, Fi,ni
in chaining order, so the total number

of VNFs is N =
∑m

i=1 ni. Suppose VNF Fi,j requires fi,j
computing resource, i.e., the size of Fi,j is fi,j . However, the

processing time of the same VNF may differ on edge and cloud.

Because edge nodes may only contain basic CPU resources,

while today’s cloud nodes may contain powerful GPU or FPGA,

which can accelerate some specific VNFs, e.g., Low-Density

Parity Check (LDPC) or Turbo decoding can rely on GPU to

1The “directly” here means the central server is connected directly to
the ISP (Internet Service Provider) router, which helps the edge servers
communicate to the cloud. If other servers want to communicate to the cloud,
the data flow must pass through this server.
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achieve lower processing time. Thus, we assume the processing

time of VNF fi,j is ti,j on edge nodes and Ti,j on the cloud,

where Ti,j ≤ ti,j .

In each SFC i, there is a data flow between Fi,j and Fi,j+1

for any 1 ≤ j ≤ ni − 1. If VNF Fi,j and Fi,j+1 are placed on

different edge commercial servers, transmitting data from Fi,j

to Fi,j+1 incurs communication latency. Since G is usually not

a complete graph, data transmission from Fi,j on one server to

Fi,j+1 on another server may need to traverse several server-

nodes in G. The communication latency here is determined

jointly by the one-hop communication latency of SFC i, noted

as li, and the number of hops or network connections that

the data flow passes through, denoted as zi,j . The number of

hops zi,j depends on the solutions of the multi-hop routing

problem on G under the bandwidth limit of each link (p, q),
noted as Bp,q . Note that the network topology information is

also contained in {Bp,q}, i.e., if (p, q) /∈ E, Bp,q = 0.

We discussed the communication latency at the edge above.

However, if some VNFs are offloaded to the cloud, commu-

nication latency between the edge and cloud arises, referred

to as E&C communication latency. We consider a scenario

where VNF Fi,j and Fi,j+1 are placed on the edge and cloud,

respectively, resulting in E&C communication latency. Since

most servers, except the central server, can not “directly” com-

municate with the cloud, such communication latency typically

has two parts like the red line in Fig. 1, the inside-edge part and

the outside-edge part. The inside-edge E&C communication

latency, for example the red solid line in Fig. 1, is exactly the

communication latency between the targeted server V5 and the

central server at edge V1, which can be computed by li · zi,j
as above mentioned. The outside-edge E&C communication

latency, for example the red dotted line in Fig. 1, depends on

various factors, including the SFC data flow, multiple hops

outside the edge network, and bandwidths between the edge

and cloud, and many other factors like network environment

along the path outside the edge, making it a complex issue

[12]. For simplicity, here we just assume the outside-edge E&C

communication latency, short for outside-edge communication

latency, is Li with Li ≥ li. The cloud is denoted as V0. Since

only the central server V1 is “directly” connected to the cloud

V0, here we give the estimated bandwidth limit of the connec-

tion between the central server V1 and the cloud V0, noted as

B1,0 =B0,1. Similarly as the case at the edge network, here

we also hide the network topology information between edge

and cloud in {B0,p, Bp,0}. That is, for any non-central server

Vp ∈ V (p > 1) that is not “directly” connected to the cloud V0,

Bp,0 =B0,p = 0.

C. Problem Formulation

The SFCD problem is to place the m SFCs onto the M
edge commercial servers or the cloud without exceeding the

constraints of edge server capacities and the bandwidth limits

of network connections. The goal of the problem is to minimize

the total resource consumption and produced network latency

in the SFC deployment scheme. In particular, the total resource

consumption contains the total capacities of occupied edge

servers and the total sizes of VNFs offloaded to the cloud.

On the other hand, the total network latency includes the total

processing latency, the communication latency between VNFs

placed at the edge, and that between the edge and cloud.

To formulate SFCD, we define three Boolean variables xk
i,j ,

yk, wp,q
i,j , where xk

i,j and wp,q
i,j are the decision variables in our

model while yk is used for clear expression. Note that xk
i,j = 1

if and only if VNF Fi,j is placed on server Vk; yk = 1 if and

only if server Vk is occupied; wp,q
i,j = 1 if and only if data flow

between VNF Fi,j and Fi,j+1 pass through network connection

between Vp and Vq, where (Vp, Vq) ∈ E.

First, the capacity constraint of each edge server asks

m∑

i=1

ni∑

j=1

xk
i,j · fi,j ≤ yk · Ck, ∀1 ≤ k ≤M. (1)

And the limitation of bandwidth requires

m∑

i=1

ni−1∑

j=1

(
wp,q

i,j + wq,p
i,j

)
· bi ≤Bp,q, ∀ 0 ≤ p, q ≤M. (2)

It is worth noticing that Bp,q = 0 for any (p, q) ∈
EC/{(0, 1), (1, 0)}, i.e., (p, q) /∈ E

⋃
{(0, 1), (1, 0)}.

Since each VNF can not be split, which implies it is exactly

placed on an edge server or the cloud, we obtain

M∑

k=0

xk
i,j = 1, ∀1 ≤ i≤m, 1 ≤ j ≤ ni − 1. (3)

Referring to the Flow Conservation Law, as for the data flow

between VNF Fi,j and Fi,j+1, we reach ∀ 0 ≤ k ≤M ,

M∑

p=0

wp,k
i,j −

M∑

q=0

wk,q
i,j = xk

i,j+1 − xk
i,j . (4)

The number of hops that data flow passes through at the edge

network, from Fi,j to Fi,j+1, is

zi,j =

M∑

p=1

M∑

q=1

wp,q
i,j , ∀1 ≤ i≤m, 1 ≤ j ≤ ni − 1. (5)

We additionally define zi,0 = 1 and zi,ni
= 1, showing at the

edge, there is data flowing into the first VNF Fi,1 and flowing

out of the last VNF Fi,ni
in SFC i.

Besides we define another Boolean variable, representing

whether there is E&C communication latency between Fi,j and

Fi,j+1. As for any 1 ≤ i≤m, 1 ≤ j ≤ ni − 1,

Zi,j = w1,0
i,j + w0,1

i,j . (6)

Here we define Zi,0 = x0
i,1 and Zi,ni

= x0
i,ni

, which implies

if the first VNF of a SFC, Fi,1, is offloaded to the cloud, there

still exists a transmitting data flow from edge to Fi,1 on the

cloud. Similarly, if the last VNF of a SFC, Fi,ni
, is offloaded to

the cloud, there is a transmitting data flow from Fi,ni
on cloud

to the edge. This part is also considered in E&C communica-

tion latency.

In our model, there are below five optimization objectives.

• Resource cost at the edge RE,

• Communication Latency between edge servers LE,

• Resource cost on the cloud RC,
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• Communication Latency between edge and cloud LC,

• The total processing latency LP,

RE =

M∑

k=1

yk · Ck, LE =

m∑

i=1

ni∑

j=0

li · zi,j ,

RC =
m∑

i=1

ni∑

j=1

x0
i,j , ·fi,j , LC =

m∑

i=1

ni∑

j=0

Li · Zi,j .

LP =
m∑

i=1

ni∑

j=1

x0
i,j · Ti,j + (1 − x0

i,j) · ti,j

In all, the SFCD problem can be formulated as the below

Integer Linear Programming (ILP) problem.

min αRE + βLE + γRC + ζLC + δLP

s.t. (1)− (6),

where α, β, γ, ζ, δ are weighting factors for adjusting the rela-

tive importance between objective components.

D. Problem Complexity

The SFCD problem has been proven to be NP-hard in many

previous works like [13]. In short, it can be proved by reduc-

ing from the classical Bin Packing (BP) Problem, based on

the resource cost alone. Besides, it can also be proved by the

reduction from the Travelling Salesman Problem (TSP) if only

the network latency is considered. It means the NP-hardness

of SFCD comes from not only the resource cost part but also

the latency part. Moreover, overall considering the edge-cloud

continuum with five jointly optimization objectives makes the

problem more complicated, posing challenges to our pursue of

provable approximation algorithms.

IV. SFCD LIMITED AT THE EDGE

In this section, we start from the edge-only cases of SFCD

and design an approximation algorithm for it. In this edge-

only case, obviously RC = LC = 0 and LP =
∑m

i=1

∑ni

j=1 ti,j ,

which is a given constant. Next, we prove competitive ratios of

resource consumption RE and communication latency LE sep-

arately and finally get the approximation ratio of our algorithm

by integrating these two parts.

A. Basic Ideas and Challenges

Acknowledged from the classical solutions for the BP prob-

lem, we find a suitable strategy for SFCD, called Next Fit strat-

egy. The key idea of the Next Fit strategy for the BP problem

is to sequentially pack items into bins, trying to place each

item in the next available bin and moving to the next bin when

necessary. It not only guarantees efficient resource utilization

but also helps cut back communication latency by avoiding

redundant data traffic. Additionally, in NF, there is no rule on

sequences of bins and items, which gives us chances to design

new rules specially for the SFC deployment. We plan to devise

an approximation algorithm for SFCD, based on NF.

Algorithm 1: Double Spanning Tree (DST) Algorithm

Input: G and the servers V1, V2, · · ·, VM .

Output: Sorted servers Vk1
, Vk2

, · · ·, VkM
and

multi-hop paths Tj for the data flow between

Vkj
and Vkj+1

.

1 Find the server Vp with maximal capacity and mark it.

2 Use DFS to obtain a spanning tree T with Vp as its

root, where large-capacity nodes have higher priority.

3 Double T and delete a link between Vp and its child

with the smallest capacity to get a path T ′.

4 j ← 1, kj ← p.

5 while j <M do

6 Find the next unmarked node of Vkj
on T ′, noted as

Vq , and mark it.

7 j ← j + 1, kj ← q.

8 for j = 1 →M − 1 do

9 Build a sub-graph Gj = (Nj , Ej) of G, where

Nj =
{
Vkj

, Vkj+1
, the nodes between them on

path T ′}, Ej ⊆ E.

10 Find the shortest path between Vkj
and Vkj+1

in Gj

with each edge weighted 1. This path is the

multi-hop path Tj from Vkj
to Vkj+1

.

However, based on these ideas, challenges still exist. The first

challenge is from the sophisticated network topology. The dis-

connection between some servers results in a multi-hop routing

sub-problem between VNFs placed on different edge servers,

which creates problems in mapping the virtual network of

links between VNFs to the physical edge network with the

bandwidth limits, i.e., virtual network embedding. To solve

these troubles, we need to add a preparing sub-algorithm for

virtual network embedding before applying the NF strategy.

In particular, the task of this sub-algorithm is to optimize the

number of hops between the adjacent employed servers by sort-

ing servers. Moreover, different server capacities causes a gap

between total used resources and the number of used servers,

thus posing challenges to the proof of the approximation ratio

on the communication latency.

B. Algorithm Design

As for the simplified SFCD limited at the edge, we devise

an approximation algorithm called Chained Next Fit algorithm.

In the beginning of CNF, we propose a preparing algorithm

called Double Spanning Tree algorithm (Algorithm 1) to sort

servers. In detail, we first choose a server with maximal ca-

pacity, noted as Vp. Then call the depth-first search (DFS)

algorithm to obtain a spanning tree with Vp as the root. DFS

is a graph traversal algorithm, whose fundamental concept is

to explore as deeply as possible along a chosen branch before

backtracking, ensuring a thorough exploration of the graph’s

structure. In the deep exploration process of DFS, each node

may present multiple unexplored neighbor nodes and DFS does

not provide a specific criterion for selection among these nodes.

Thus, we design a capacity-degree sorting rule to cooperate
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Fig. 2. A simple example for the DST algorithm.

with DFS as follows. During the deep exploration process of

DFS, our algorithm consistently opts for unexplored neighbor

nodes with the maximal server capacity. Take a simple network

with 6 edge servers, as shown in Fig. 2(a), for example. We

first set the maximal-capacity server V1 as the root. Node V1

has two unexplored neighbor nodes V2 and V3, where V2 has a

larger capacity, thus V2 is explored after V1. Next V2 has three

unexplored neighbor nodes V2, V5 and V6, where V6 has a larger

capacity, thus V6 is explored after V2. Node V6 does not have

any neighbor nodes. Thus, it goes back to its parent node V2,

which has two unexplored neighbor nodes left. Among them, V5

has a larger capacity. So explore V5 next and then is its only one

unexplored neighbor node V4. Node V4 has no neighbor nodes.

Then, it goes back to its parent node V5, which also has no

unexplored neighbor nodes. Continue going back to its parent

node V2 and next explore its only one remaining unexplored

neighbor node V3. In all, we can obtain the spanning tree T as

shown in Fig. 2(b).

Afterwards, we can get a path T ′ from this spanning tree T
by doubling it and deleting a link between the root and its child.

Starting from the root node of T and along the path T ′, we can

get a traverse path of G by selecting all first-time appearing

nodes. Finally, sort and reindex the servers in the traverse order.

Next, we sort and reindex SFCs in decreasing order of the

corresponding one-hop communication latency li. After that,

call the NF strategy to perform VNF placement. Specifically,

it processes each VNF by following the chaining and sorted

orderings of SFCs. As for each VNF, if the server capacity

permits, place it on the currently considered server. If not, the

VNF placement on the current server finishes, move to consider

the next new edge server with enough capacity following the

order of sorted servers, and place this VNF on this new server.

Repeat the same procedures on the next VNF until all VNFs

have been successfully placed on the edge servers or there is

no enough edge resources for the VNF placement.

The detailed procedures of the CNF algorithm with time

complexity of O(N +mlog(m) +M 2) are shown in

Algorithm 2.

It is worth to demonstrate that the solution produced by

CNF is feasible under the assumption that each edge network

connection has enough bandwidth for double of any data flow.

Based on this premise, the NF strategy (line 5-16 in Algo-

rithm 2) ensures the server capacity constraints in Ineq. 1 are

satisfied. In CNF, we deal with VNFs in their chaining order

(line 5 in Algorithm 2), which helps achieve the goal of avoiding

Algorithm 2: Chained Next Fit (CNF) algorithm

(Batched, Edge-only case)

Input: The list of VNFs {Fi,j} and the capacities of

servers C1, C2, · · ·, CM .

Output: The placement scheme xk
i,j and the number of

used servers M ′.

1 Sort and reindex servers by DST;

2 Sort and reindex SFCs so that l1 ≥ l2 ≥ · · · ≥ lm;

3 k ← 1;

4 for i= 1 →m do

5 for j = 1 → ni do

6 if Vk has enough capacity for Fi,j then

7 xk
i,j = 1; (Place Fi,j on Vk)

8 else

9 while k <M do

10 For all links (p, q) in the multi-hop path

Tk, let wp,q
i,j = 1, k ← k + 1;

11 if Vk has enough capacity for Fi,j then

12 xk
i,j = 1; (Place Fi,j on Vk)

13 Break;

14 else

15 if k ==M then

16 Return 0; (Fail)

17 M ′ ← k.

redundant data traffic, because it guarantees there is at most one

data flow between any two edge servers. Moreover, DST and the

property of tree structure ensure that there are at most two hops

(or data flows) passing through any edge network connection,

which is explained in detail in Section IV-D of the conference

version. So the connection bandwidth constraints in Ineq. (2)

are satisfied.

C. Bound of Resource Part

Below, we show CNF has an asymptotic approximation ratio

of 2 to the optimal solution (OPT) on resource cost RE. For

proof of the ratio, we use functions of C(·) and c(·) to respec-

tively represent the capacity of an edge server and the occupied

part. Obviously, for any 1 ≤ k ≤M ′, c(Vk)≤ C(Vk).
Besides we assume V1, · · ·, VM ′ are used servers by CNF

while V ∗
1 , · · ·, V ∗

M∗ are those by OPT. Since they both deal with

the same VNF set {Fi,j},

M ′∑

k=1

c(Vk) =

m∑

i=1

ni∑

j=1

fi,j =

M∗∑

k=1

c(V ∗
k ).

Theorem 1:

RE
CNF < 2 · RE

OPT + C,

where C =maxCk.

Proof: Omitted, please refer to the conference version [25],

where the proof of this theorem is standalone.
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With more information on sizes of VNFs and servers, we can

give CNF a better approximation ratio. Here, we define a related

parameter r.

r =
minCk

max fi,j
. (7)

Theorem 2: When r > 1, RE
CNF < r

r−1
· RE

OPT + C,

where C =maxCk is constant.

Proof: For any 1 ≤ k <M ′, the first VNF placed on Vk+1

cannot be placed onto Vk. Denote its size as f 1
k+1, then we have

c(Vk) + f 1
k+1 >Ck.

By the definition of r, we know that for 1 ≤ k <M ′,

f 1
k+1 ≤ max

1≤p≤N
{fp}=

1

r
min

1≤q≤M
{Cq} ≤

1

r
Ck. (8)

Then

c(Vk)>Cj − f 1
k+1 ≥ Ck −

1

r
Ck =

r − 1

r
C(Vk).

When R> 1,

C(Vk)<
r

r − 1
c(Vk), ∀1 ≤ k <M ′.

Therefore,

RE
CNF =

M ′∑

k=1

C(Vj) =

M ′−1∑

k=1

C(Vj) + C(VM ′),

<
r

r − 1

M ′∑

r=1

c(Vk) + C =
r

r − 1

M∗∑

k=1

c(V ∗
k ) + C,

≤
r

r − 1

M∗∑

j=1

C(V ∗
k ) + C =

r

r − 1
· RE

OPT + C.

Obviously, when r > 2, r
r−1

< 2, which implies in this

special case, we can give a smaller approximation ratio

of r
r−1

to SF.

D. Bound of Communication Part

Here we show CNF also has a constant ratio to OPT on LE.

Theorem 3:

LE
CNF ≤ 4 ·

⌈
maxCk

minCk

⌉
· LE

OPT .

Proof: Omitted, please refer to the conference version [25],

where the proof of this theorem is standalone.

E. Approximation Ratio of CNF in the Edge-Only Case

Then we can combine upper bounds of RE
CNF and LE

CNF

to prove the constant approximation ratio of CNF in SFCD.

Denote by CNF and OPT the total cost respectively by

CNF and OPT. Combined with Theorem 1, 3, we reach the

below theorem.

Theorem 4: CNF ≤ 4 ·
⌈
maxCk

minCk

⌉
·OPT + C, where C =

α ·maxCk.

V. SFCD FOR EDGE-CLOUD CONTINUUM

As for some special SFCs which can rely on the powerful

computing resource of the cloud, like GPU or FPGA, to re-

duce processing latency, if such acceleration advantages can

offset high communication latency, i.e., δ
∑ni

j=1(ti,j − Ti,j)≥
2ζ · Li, obviously these SFCs had better be offloaded to the

cloud for lower processing latency. Otherwise, we prioritize

edge resources due to their low communication latency.

To maximize the exploitation of edge resources, it is a natural

idea to prioritize VNFs at the edge as resources allow and then

offload all the remaining VNFs onto the cloud. Some existing

related work [4], [5] just did so. However, this approach has a

drawback in that it fails to proactively determine which SFCs to

be offloaded to the cloud. Offloading various SFCs to the cloud

can have a substantial impact on the overall communication

latency. Thus, such a trivial approach may cause increased

communication latency, especially the outside-edge communi-

cation latency, and is not a good option. In this section, we

plan to explore new algorithms for the scenarios of the edge-

cloud continuum, based on the CNF algorithm for the edge-

only cases. The critical challenge is how to control the SFCs

(or VNFs) offloaded to the cloud to minimize the employed

cloud resources and the produced outside-edge communica-

tion latency.

A. Algorithm Design

Below we will design an approximation algorithm called

Edge-first Chained Next Fit algorithm (ECNF). Here we de-

fine a new latency parameter L̃i = Li −
δ

2ζ

∑ni

j=1(ti,j − Ti,j).

If L̃i ≤ 0, offload the whole SFC i to the cloud (line 1

in Algorithm 3). Below we focus on the remaining SFCs

with L̃i > 0.

From the above section, we can see CNF does a good job

on the edge-only cases, which is also a special case belonging

to the edge-cloud continuum. Thus, as for such cases, just call

CNF to deploy SFCs at the edge (line 2-4 in Algorithm 3).

Below we focus on the cases that CNF can NOT successfully

deploy all SFCs at the edge. That is to say, some VNFs or SFCs

are needed to be offloaded to the cloud.

According to Theorem 1, CNF can work on maximizing

the exploitation of edge resources and minimizing the needed

cloud resources for the remaining VNFs. But it does not involve

the control of what the SFCs (or VNFs) to be offloaded to

the cloud to minimize the additional network latency, i.e., the

produced outside-edge communication latency minus the cloud

processing acceleration. It is our new task in this section.

In our proposal, we formulate the following basic rule, which

can help reduce the outside-edge communication latency. We

always offload the whole SFC i or a continuously chaining seg-

ment of SFC i to the cloud. In this case, the additional network

latency for SFC i is 2ζ · Li − δ
∑ni

j=1(ti,j − Ti,j) = 2ζ · L̃i.

Fortunately, the remaining VNFs after CNF must conform to

this rule.

Besides, in order to proactively determine which SFCs to be

offloaded to the cloud, we consider an SFC selection problem
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Algorithm 3: Edge-first Chained Next Fit (ECNF)

algorithm (edge-cloud continuum)

Input: The list of VNFs {Fi,j} and the capacities of

servers C1, C2, · · ·, CM .

Output: The placement scheme xk
i,j .

1 Offload all SFCs with L̃i ≤ 0 to the cloud and reindex

the remaining SFCs from 1 to m′ ;

2 Call default CNF to place the remaining SFCs;

3 if success then

4 END! (Edge-only cases)

5 Sort and reindex SFCs so that L̃1

F1
≥ L̃2

F2
≥ · · · ≥ L̃m′

Fm′

;

6 C̃ ←
∑M

k=1 Ck, Sum← F1, i← 1;

7 while Sum≤ 1
2
C̃ do

8 i← i+ 1, Sum← Sum+ Fi;

9 Call CNF with DST-revised (Algorithm 4) to place

SFCs 1 to i− 1 at the edge;

10 while there exist edge resources left do

11 Call CNF with DST-revised (Algorithm 4) to deal

with SFC i;
12 i0 ← i, i← i+ 1;

13 Offload the rest VNFs of SFC i0, as well as all

remaining SFCs, from i0 + 1 to m′, to the cloud.

for the cloud. Assume the total needed cloud resource is Rc.

Note that Theorem 1 ensures if Rc ≥
1
2

∑M
k=1 Ck, CNF can

always successfully place all unselected SFCs at the edge. Then

the SFC selection problem for the cloud with the objective of

minimizing the additional network latency can be formulated

as a below 0-1 min-knapsack problem.

min
m∑

i=1

2ζL̃i ·Xi,

s.t.

m∑

i=1

Fi ·Xi ≥Rc,

where Xi is a Boolean variable, representing if SFC i is of-

floaded to cloud or not; Fi =
∑ni

j=1 fi,j denotes the total size

of all VNFs in SFC i, also represents the size of SFC i.
This 0-1 min-knapsack problem can be dealt with by a greedy

solution. Sort and reindex SFCs by L̃i

Fi
in increasing order so

that

L̃1

F1

≤
L̃2

F2

≤ · · · ≤
L̃m

Fm

.

Then keep choosing SFCs following index order until the total

sizes of all choice SFCs reach Rc. Combined with the purpose

of maximizing the exploitation of edge resources, we sort and

reindex SFCs in the inverse order (line 5 in Algorithm 3) and

deploy SFCs at the edge in order as much as possible.

CNF can work on deploying SFCs at the edge and maximize

the exploitation of edge resources. But the reindexing step of

SFCs in line 2 of Algorithm 2 conflicts with the above sorting

step by L̃i

Fi
. Thus when employing CNF, we must ensure enough

Algorithm 4: DST-revised (for edge-cloud continuum)

Input: The list of VNFs {Fi,j} and the capacities of

servers C1, C2, · · ·, CM .

Output: The placement scheme xk
i,j .

1 Start from the server Vp(p= 0) and mark it;

2 Use DFS to obtain a spanning tree T with Vp as its

root, where small-capacity nodes have higher priority;

3 Call line 3-7 of DST (Algorithm 1);

4 Sorting and reindex server in the inverse order;

5 Call line 8-10 of DST (Algorithm 1).

resources at the edge. Otherwise, the left SFCs are not neces-

sarily those with with small L̃i

Fi
, which may cause high out-side

edge communication latency. Above all, we first call CNF with

the input of the most i0 smallest-index SFCs satisfying the total

sizes are no more than 1
2

∑M
k=1 Ck

def
= 1

2
C̃, i.e.,

∑i0

i=1 Fi ≤
1
2
C̃

(line 6-9 in Algorithm 3), because Theorem 1 tells us there is

always enough edge servers for these SFCs. Then as for the rest

SFCs, we can not ensure the adequate edge resources for them,

thus in order to avoid line 2 of Algorithm 2 invalidating the

order of SFCs, we had better limit the input with only one SFC

when calling CNF. Hence, keep calling CNF to deal with the

next SFC following the index order, until there is no enough

edge resources and CNF breaks (line 10-12 in Algorithm 3).

Finally, we offload the rest VNFs of the current SFC i0, as

well as all remaining SFCs, from i0 + 1 to m′, to the cloud

(line 13 in Algorithm 3). The detailed ECNF algorithm with

time complexity of O(N +mlog(m) +M 2) is shown in

Algorithm 3.

It is worth noticing that in CNF, we sort servers by DST (Al-

gorithm 1) where the first node is special. However, according

to the above algorithm steps, here we want the last server to

be special, being the central server V0. It is because in ECNF,

the last server is the only one which must communicate with

the cloud and the central server V0 the one nearest to the cloud

among all servers at the edge. Thus here we simply revise DST

as Algorithm 4 to make the last server the central server after

sorting. In ECNF except the edge-only cases, i.e., in line 9, 11

of Algorithm 3, we always substitute DST by this revised DST

when calling CNF.

Then we will illustrate the deployment scheme gained by

ECNF is feasible. First CNF guarantees all constraints at the

edge, which we has analyzed in the above section. Besides,

ECNF combined with the revised DST algorithm ensures only

the central server needs to communicate with the cloud, which

conforms to the connection bandwidth constraints between edge

and cloud, i.e., p= 0 or q = 0 in Inequality (2).

B. Approximation Ratio of ECNF in the Edge-Cloud

Continuum

We now prove ECNF has constant approximation ratios to

OPT for two different cases. In proof, denote by ECNF and

OPT the total cost of ECNF and that of OPT. Besides, denote

the total size of all VNFs with L̃i > 0 as F̃ =
∑m′

i=1 Fi.
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Theorem 5: ECNF ≤ r ·OPT + C, where if F̃ ≤ 1
2
C̃,

C = α ·maxCk and r = 4 ·

⌈
maxCk

minCk

⌉
;

If F̃ > 1
2
C̃,

C = 2ζ ·max L̃i and r =max

⎧
⎪⎨
⎪⎩

4

⌈
maxCk

minCk

⌉
,

2αC̃ + (2F̃ − C̃)
(
γ + 2ζmax

i

L̃i

Fi

)

2αmin
{
F̃ , C̃

}
+ 2max

{
F̃ − C̃, 0

}(
γ + 2ζmin

i

L̃i

Fi

)

⎫
⎪⎬
⎪⎭
.

(9)

And when F̃ →∞, r =max

{
4
⌈
maxCk

minCk

⌉
,
γ+2ζ max

i

L̃i
Fi

γ+2ζ min
i

L̃i
Fi

}
is

constant. When α= 0, 1
2
C̃ < F̃ ≤ C̃, r has another format,

r = 4 ·
⌈
maxCk

minCk

⌉
+ maxCk

min li
·
(2F̃−C̃)(γ+2ζ max

i

L̃i
Fi

)

β(F̃+C̃)
.

Proof: First, as for the SFCs with L̃i ≤ 0, offloading the

entire chain to the cloud is the optimal choice. Below, our

analysis focuses on the deployment of the rest SFCs.

When F̃ ≤ 1
2
C̃, ECNF is reduced to CNF and SFCD is lim-

ited at the edge. Referring to Theorem 4,

r = 4 ·

⌈
maxCk

minCk

⌉
and C = α ·maxCk.

When F̃ > 1
2
C̃, we analyse as below. First, it is easy to get

RE
e.f ≤ C̃, RE

OPT ≥min
{
F̃ , C̃

}
.

Since ECNF combined with the revised DST ensures only the

central server needs to communicate with the cloud, LE
e.f

comes totally from the data flow between VNFs placed at the

edge, like the green solid line in Fig. 1, rather than the inside-

edge part of the communication data flow between edge and

cloud like the red solid line in Fig. 1. Based on this fact and

Theorem 3, we can obtain LE
e.f ≤ 4

⌈
maxCk

minCk

⌉
·OPTc, where

OPTc means the minimal latency when placing these VNFs

at the edge. It is the latency of optimal solutions for a new

problem with the task of placing these VNFs at the edge and the

goal of only minimizing the communication latency. In OPT, the

optimal solution for the whole SFCD problem, there are more

VNFs placed at the edge because of the low latency of edge

computing. Thus, LE
OPT ≥OPTc.

Line 10-12 in Algorithm 3 guarantees all edge servers are

occupied, hence combined with Theorem 1, we can reach the

conclusion that the total sizes of VNFs placed at the edge ≥ 1
2
C̃,

which implies RC
e.f ≤ F̃ − 1

2
C̃.

In OPT, the total sizes of VNFs placed at the edge ≤ C̃, thus

if F̃ ≥ C̃, RC
OPT ≥ F̃ − C̃. If F̃ < C̃, there exists a possibility

that all SFCs are placed at the edge, so in this case, we can only

get RC
OPT ≥ 0. In all, RC

OPT ≥max
{
F̃ − C̃, 0

}
.

In ECNF, SFCs from 1 to i0 − 1 are successfully placed

on edge servers while SFCs i0 to m′ are totally or partially

offloaded to the cloud. Thus, ζLC
e.f + δLP

e.f = ζ
∑m′

i=i0
2L̃i+

δ
∑i01

i=1

∑ni

j=1 ti,j + δ
∑m′

i=i0

∑ni

j=1 Ti,j = ζ
∑m′

i=i0
2L̃i +

δ
∑m′

i=1

∑ni

j=1 ti,j ≤ 2ζL̃i0
+ 2ζ(max L̃i

Fi
)
∑m

i=i0+1 Fi + δ · tc,

where
∑m′

i=1

∑ni

j=1 ti,j , noted as tc, is a fixed constant

related to the given information of SFCs, which is

independent of the SFC deployment schemes. Besides,

Theorem 1 demonstrates
∑i0

i=1 Fi ≥
1
2
C̃, which implies∑m

i=i0+1 Fi = F −
∑i0

i=1 Fi ≤ F − 1
2
C. Therefore, ζLC

e.f +

δLP
e.f ≤ 2ζmax L̃i + ζmax L̃i

Fi
· (2F̃ − C̃) + δ · tc.

When it comes to OPT, if some VNFs in SFC i are of-

floaded to cloud, the outside-edge communication latency of

this chain is at least 2L̃i. And the total size of SFCs that contain

VNFs offloaded to cloud is larger than or equal to the used

cloud resources RC
OPT . Thus, ζLC

opt + δLP
opt ≥min 2L̃i

Fi
·

max
{
F̃ − C̃, 0

}
+ δ · tc.

Above all,

ECNF = αRE
e.f + βLE

e.f + γRC
e.f + ζLC

e.f + δLP
e.f ,

≤ αC̃ + 4

⌈
maxCk

minCk

⌉
· (β ·OPTc) + 2ζ ·max L̃i,

+

(
1

2
γ + ζ ·max

L̃i

fi

)
· (2F̃ − C̃) + ζ · tc,

OPT = αRE
opt + βLE

opt + γRC
opt + βLC

opt + δLP
opt,

≥ αmin
{
F̃ , C̃

}
+ β ·OPTc

+

(
γ + 2ζ ·min

L̃i

fi

)
·max

{
F̃ − C̃, 0

}
+ ζ · tc.

Since a+b+e
c+d+e

≤max
{

a
c
, b
d
, 1
}

, letting b= 4
⌈
maxCk

minCk

⌉
· (β ·

OPTc), d= β ·OPTc, and e= ζ · tc we can get Eq. 9.

Since there is at least one hop between two employed

edge servers for SFC i, OPTc ≥
∑m

i=1

(
Fi

maxCk
+ 1

)
· li ≥

( F̃
maxCk

+m) ·min li ≥
min li
maxCk

(F̃ + C̃). Thus, when α=

0, 1
2
C̃ < F̃ ≤ C̃, r has another format. r = 2 ·

⌈
maxCk

minCk

⌉
+

maxCk

min li
·
(4F̃−C̃)(γ+2ζ max

i

L̃i
Fi

)

β(F̃+C̃)
.

VI. THE ONLINE SFCD

In above discussion, we assume that the information of all

the SFCs is known before the deployment. Here we extend the

SFCD problem to an online version, where the SFCs arrive

sequentially in an online manner. At each time slot, we do not

know the information of SFCs that will arrive in the future and

we only know the information of SFCs that have arrived in the

past. If we start to make SFC deployment and flow routing only

after all of them have arrived, the earlier SFCs will suffer high

delays. Therefore, we provide an online algorithm, called the

online chained next fit (OCNF) algorithm, to solve the online

SFCD problem by deploying SFCs and routing the flow after

each new SFC arrives.

A. Basic Ideas and Challenges

We want to design OCNF based on the framework of ECNF

so that the performance guarantee of algorithms on resource
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cost and network latency can be maintained as much as pos-

sible. Luckily, it is easy to keep the approximation ratio on

resource cost, i.e., Theorem 1, Theorem 2, because the design

of the resource-related algorithms is based on the NF strategy,

which itself is an online algorithm and thus can fit the online

mechanism successfully. However, the design of the latency-

related algorithms is a totally different story. Line 5 of ECNF

and line 2 of CNF, which is called in ECNF in lines 2 and

9, both involve the sorting of latency-related coefficients, e.g.

li, L̃i, which only works when the information of all SFCs

is known. Thus, these two-line codes can NOT be adopted

in OCNF. Line 5 of ECNF is only employed to obtain better

average performance but does not make a difference in the

worst-case performance in Theorem 4. The trouble is that line

2 of CNF (Algorithm 2) is a key step for the proof of the

latency approximation ratio (Seen in the proof of Theorem 3

in the conference version [25]). Thus, the key challenge in

OCNF design is how to achieve a latency approximation ratio

like Theorem 3.

B. Algorithm Design

Since the online mechanism affects the information of SFCs,

we consider doing more jobs on the network topologies. Specif-

ically, in CNF, we sort servers by DST. Can we get a better

traverse path on the network graph so that the maximal

number of hops between two adjacent nodes in the traverse

path is limited? If so, we can achieve a latency approximation

ratio via steps like Eq. 10.

Such a problem is equivalent to a Hamiltonian cycle (/path)

problem. In detail, we consider a new graph G′ with the same

vertex set V as the network graph G and each pair of vertices

is connected by an edge in G′ if and only if they are joined by

a path with at most d edges (or hops) in G. Then the problem

of finding a traverse path on the network graph G so that the

maximal number of hops between two adjacent nodes in the

path is equivalent to the problem of finding a Hamiltonian cycle

(/path) in the new graph G′. In terms of such a Hamiltonian

cycle problem, H. Fleischner [26] has proved an existence the-

orem in 1974 that the square2 of every two-connected graph3

is Hamiltonian, i.e., we can always find a Hamiltonian cycle

in the square of every two-connected graph. Then H. T. Lau

[27] proposed an O(|V |2) algorithm in 1980 for producing a

Hamiltonian cycle in the square of a 2-connected graph.

Based on Fleischner’s theorem and Lau’s algorithm, below

we first devise a new preparing algorithm for OCNF, called the

Hamiltonian path traverse (HPT) algorithm. It can substitute

DST to sort servers, i.e., find a Hamiltonian path of G′ to

traverse the network graph G and sort the servers following this

traverse path. Specifically, we first use the depth-first search

(DFS) algorithm to obtain a spanning tree T . Then based on

T , we can get a new graph T ′ by the square of graph T , i.e.,

T ′ = T 2. By the definition of T ′, we can claim that T ′ must

2The square of a graph G, i.e., G2, is a graph with the same set of vertices
of G and each pair of vertices is connected by an edge in G2 if and only if
they are joined by a path with at most 2 edges in G.

3if any one vertex were to be removed, the graph will remain connected.

Algorithm 5: Hamiltonian path traverse (HPT)

Algorithm

Input: The physical network G= (V,E), where

V = {V1, · · · , VM}.

Output: The sorted servers Vk1
, Vk2

, · · · , VkM
and

multi-hops paths Tj for the data flow between

Vkj
and Vkj+1

.

1 Call DFS to get a spanning tree T of graph G;

2 Get a new graph T ′ by the square of T ;

3 Get a new graph G′ by the suqare of T ′;

4 Call Lau’s O(|V |2) algorithm to produce a Hamiltonian

cycle HC in G′;

5 Obtain a Hamiltonian path HP from the Hamiltonian

cycle HP by deleting an edge with V1 as an endpoint.

6 Note the other endpoint of path HP except V1 as Vp;

7 j ← 1, kj ← p;

8 while j <M do

9 Find the next node of Vkj
on HP , noted as Vq;

10 j ← j + 1, kj ← q;

11 for j = 1 →M − 1 do

12 Find the shortest path between Vkj
and Vkj+1

in G
with each edge weighted 1, noted as Tj .

be a two-connected graph. Let G′ be the square of graph T ′.

According to Fleischner’s theorem and Lau’s algorithm, we can

find a Hamiltonian cycle in G′. Then, it is easy to obtain a

Hamiltonian path from a Hamiltonian cycle by deleting an edge

with V1 as an endpoint. Such a Hamiltonian path is exactly the

traverse path we obtained and we can sort the servers following

this path from another endpoint to V1.

The detailed procedures of HPT with the time complexity

of O(M 2) are shown in Algorithm 5.

After sorting the servers by HPT, we start to deploy SFC i in

the edge-cloud continuum. If the currently considered server

is the cloud, just put all the VNFs of SFC i on the cloud.

Otherwise, we employ the NF strategy to do deployment for

the newly arrived SFC i following the chained order of VNFs.

Specifically, if a VNF fits inside the currently considered edge

server, it is placed on this server. Otherwise, the placement

on the current server ends, move to consider the next new

edge server with enough capacity following the order of sorted

server, and place the current VNF on this new server Repeat the

same procedures on the next VNF until all VNFs are placed on

the edge servers or there is not enough resource at the edge. If

there is not enough resource at the edge, put all the rest VNFs

of SFC i on the cloud.

The detailed OCNF algorithm with time complexity of

O(N +M 2) is shown in Algorithm 6.

C. Approxi. Ratio of OCNF in the Edge-Only Case

Theorem 6: RE
OCNF ≤min{2, r

r−1
} · RE

OCNF + C,

where C =maxCk and r = minCk

max fi,j
.
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Algorithm 6: Online Chained Next Fit (OCNF) algo-

rithm (Online, edge-cloud continuum)

Input: The new arrived SFC i, the current considered

server Vk, and the capacities of servers

C1, C2, · · ·, CM .

Output: The placement scheme xk
i,j .

1 Sort and reindex servers by HPT;

2 if k > 0 (there is resource left at the edge) and L̃i > 0

then

3 for j = 1 → ni do

4 if Vk has enough capacity for Fi,j then

5 xk
i,j = 1; (Place Fi,j on Vk)

6 else

7 while k <M do

8 For all links (p, q) in the multi-hop path

Tk, let wp,q
i,j = 1, k ← k + 1;

9 if Vk has enough capacity for Fi,j then

10 xk
i,j = 1; (Place Fi,j on Vk)

11 Break;

12 if k =M and xM
i,j = 0 then

13 Put the rest VNFs of SFC i on the

cloud; (x0
i,j = 1)

14 k = 0;

15 break;

16 else

17 Put all VNFs of SFC i on the cloud; (x0
i,j = 1)

Proof: OCNF stills employ the NF strategy when placing

VNFs on the edge, so we can obtain the conclusion the same

as Theorem 1 and Theorem 2.

Theorem 7: LE
OCNF < 8 ·

⌈
maxCk

minCk

⌉
· LE

OPT .

Proof: According to HPT, the. number of hops between

two adjacent sorted servers is at most 2 ∗ 2 = 4, thus

ni∑

j=0

zi,j = 2 +

ni−1∑

j=1

zi,j ≤ 2 + 4 ∗ (Mi − 1)< 4 ∗Mi, (10)

where Mi represents the number of employed servers when

placing SFC i by OCNF.

Similarly, we use M∗
i to represent the number of used servers

when placing SFC i by OPT. Additionally, denote by Vpi
and

Vqi the first used server of SFC i by CNF and the last one.

According to these definitions, we can obtain

M∗
i ≥

⎡
⎢⎢⎢

∑ni

j=1 fi,j

max
1≤k≤M

Ck

⎤
⎥⎥⎥

and Mi ≤

⎡
⎢⎢⎢

∑qi
k=pi

C(Vk)

min
1≤k≤M

Ck

⎤
⎥⎥⎥
.

In OPT, there is at least one hop between two employed edge

servers in SFC i. After adding one hop for data flowing in and

one for data flowing out, we reach

z∗i ≥M∗
i + 1.

In sum,

Mi ≤

⌈∑qi−1

k=pi+1 C(Vk) + C(Vpi
) + C(Vqi)

minCk

⌉
, (11)

≤

⌈
2
∑ni

j=1 fi,j + 2maxCk

minCk

⌉
, (12)

≤ 2 ·

⌈
maxCk

minCk

⌉
·M∗

i + 2 ·

⌈
maxCk

minCk

⌉
,

≤ 2 ·

⌈
maxCk

minCk

⌉
· z∗i ,

where �·� is the ceiling function, Format 11≤ Format 12 stems

from Theorem 1.

Referring to Ineq. 10, we can get the conclusion that

LE
OCNF =

m∑

i=1

ni∑

j=1

zi,j · li < 4 ·
m∑

i=1

Mi · li,

≤ 4 ·
m∑

i=1

2 ·

⌈
maxCk

minCk

⌉
· z∗i · li,

= 8 ·

⌈
maxCk

minCk

⌉
· LE

OPT .

Theorem 8: OCNF < 8 ·
⌈
maxCk

minCk

⌉
·OPT + C, where

C =maxCk.

D. Approximation Ratio of OCNF in the Edge-Cloud

Continuum

Similar as the proof of Theorem 5 and combined with The-

orem 6, 7, we get

Theorem 9: OCNF ≤ r ·OPT + C, where if F̃ ≤ 1
2
C̃,

C = α ·maxCk and r = 8 ·

⌈
maxCk

minCk

⌉
;

If F̃ > 1
2
C̃,

C = 2ζ ·max L̃i and r =max

⎧
⎪⎨
⎪⎩

8

⌈
maxCk

minCk

⌉
,

2αC̃ + (2F̃ − C̃)(γ + 2ζmax
i

L̃i

Fi
)

2αmin
{
F̃ , C̃

}
+ 2max

{
F̃ − C̃, 0

}
(γ + 2ζmin

i

L̃i

Fi
)

⎫
⎪⎬
⎪⎭

.

(13)

And when F̃ →∞, r =max

{
8
⌈
maxCk

minCk

⌉
,
γ+2ζ max

i

L̃i
Fi

γ+2ζ min
i

L̃i
Fi

}
is

constant. When α= 0, 1
2
C̃ < F̃ ≤ C̃, r has another format,

r = 8 ·
⌈
maxCk

minCk

⌉
+ maxCk

min li
·
(2F̃−C̃)(γ+2ζ max

i

L̃i
Fi

)

β(F̃+C̃)
.

VII. PERFORMANCE EVALUATION

In this section, we perform extensive simulations on different

network topologies to compare the performance of ECNF and

OCNF with optimal solutions and benchmarks.
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Fig. 3. Approximation ratios of ECNF and OCNF on topologies with 8 nodes.

Fig. 4. 5 different network topologies with 8 nodes.

A. Simulation Setup

The evaluation of the proposed algorithms in different sce-

narios is performed through simulations. At the time we write,

several standard simulation frameworks for the edge have been

proposed, such as iFogSim [28] and FogBus [29]. However,

they all do not suit our model. Specifically, iFogSim does not

support device-to-device communication, and FogBus does not

consider the communication between tasks in their model, while

the communication between the adjacent chained VNFs is an

important consideration in the model of SFCD. Compared with

them, the Monte-Carlo simulations are more suited for the

variability of the targeted environment, according to [30]. Thus,

we adopt a Monte Carlo simulator and add our model to the

simulator framework.

As for the infrastructure of the model, we set the one-hop

communication latency of an SFC i, li, randomly ranging from

0.5 ms to 1 ms, and the edge-and-cloud communication latency

of an SFC, Li, randomly ranging from 10 ms to 50 ms. Besides,

we randomly set the processing latency of each VNF on edge

server ti,j , with a 90% likelihood of ranging from 0.5 ms to 1

ms and a 10% likelihood of ranging from 1 ms to 100 ms. We

configure the VNF processing latency on the cloud to randomly

range from 0.3 to 1 times that on edge servers. Additionally, we

set the bandwidth capacity of each hop in the edge network,

Bp,q , as 1300 Mbps (the bandwidth of Wireless 802.11ac).

The flow rate of SFC i, bi, ranges from 0.5 Mbps to 5 Mbps.

Additionally, we set fi,j ∼ N(2, 0.5).
In below simulations, as for each group setting, we always

conduct 100 groups of simulations to show average cases.

B. Simulations on 5 Small-Scale Random Network Topologies

(Performance Comparisons With OPTs)

1) Network Topology and Server Capacity Setup: Since

SFCD is NP-hard, the time cost of traversal search for OPT

grows exponentially as the problem scale, i.e., N,M , increases.

Thus, we first perform simulations on some representative

small-scale network topologies with 8 nodes shown in Fig. 4.

We call these topologies the mesh, multi-ring (MtRg), hybrid,

tree, and star topology in order.

In simulations, the capacities of 8 edge servers are set as

4, 4, 4, 4, 4, 6, 6, 8 and the weight parameters are set as α=
β = γ = ζ = δ = 1. We perform simulations on the number of

chains m from 1 to 5 with 5 VNFs for each chain. We adopt

the Mixed-Integer Programming (MIP) solver to find OPT for

SFCD. Note that the practical approximation ratios of ECNF

or OCNF in Fig. 3 are computed by dividing the total cost of

ECNF or OCNF by that of OPT, computed by MIP solver.

2) Approximation Ratio Verification of ECNF: As we can

see from Fig. 3(a), the median ratios of ECNF under different

network topologies are all near 1.08 and the average ratios are

around 1.13, significantly smaller than the upper bound proved

in Theorem 5. In Fig. 3(a), we find different topologies do

not make a big difference in the performance of ECNF, which

indicates ECNF can adapt to various network topologies.

Fig. 3(b) exhibits the practical ratios of ECNF when deploy-

ing different numbers of SFCs. The results for 1 and 2 SFCs are

the edge-only cases when all SFCs are successfully deployed

at the edge and ECNF is reduced to CNF. The results for 3-

5 SFCs reveal the critical cases when ECNF may need cloud

resources while OPT does not. And the results for deploying

6-9 SFCs demonstrate the cases when there are no sufficient

edge resources and cloud resources must be used even for OPT.

As shown in Fig. 3(b) the worst case of approximation ratios

of ECNF is achieved under the critical cases when the edge

resources are just sufficient for OPT but insufficient in terms of

ECNF. It is consistent with the expression of r in Theorem 5.

3) Approximation Ratio Verification of OCNF: As shown

in Fig. 3(c), the median approximation ratios of OCNF under

various network topologies are all near 1.15, while the average

ratios around 1.25, also far smaller than the upper bound given

in Theorem 9. We can see different topologies do not make a

big difference in the performance of OCNF, meaning OCNF

can fit various network topologies.

Fig. 3(d) displays the performance of OCNF when deploying

different numbers of SFCs. Similar to ECNF, the results for

1 and 2 SFCs demonstrate the edge-only cases; the results

for 3-5 SFCs reveal the critical cases when OCNF may need

cloud resources while OPT need not; while the results for 6-

9 SFCs are the cases there are no sufficient edge resources
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Fig. 5. Performance comparisons of different algorithms on 4 different real network topologies.

Fig. 6. Performance comparisons of different algorithms with different settings.

and cloud resources must be used even for OPT. The worst

performance of OCNF is achieved under the critical cases

when the edge is just just sufficient for OPT but insufficient

in terms of OCNF, which is consistent with the expression of r
in Theorem 9

C. Simulations on 4 Large-Scale Real Network Topo.s

1) Network Topology and Server Capacity Setup: More-

over, we also conduct simulations on 4 larger real network

topologies from the Internet topology zoo [31]: (1) AMRES (25

nodes and 24 links), (2) ARNES (34 nodes and 46 links), (3)

DFN (58 nodes and 87 links), (4) ITCDeltacom (113 nodes and

160 links).

In simulations, we set the capacities of edge servers following

the normal distribution of a mean of 12 and a standard variance

of 4, with the limitation of no less than 6. And each SFC has

10 VNFs. If not mentioned, we default the weight parameters

as α= 1, β = 10, γ = 2, ζ = 10. (Note that below we will also

test the different parameter settings in Fig. 6.)

In this part, we will compare our proposed ECNF and OCNF

with the following three benchmarks: (1) Rounding Algo-

rithm: a classical approach to obtain a provable bound for ILP.

See [9], [16], [32] as examples; (2) edge-first strategy: an

intuition edge-based SFC deployment employed by work [4],

[5], where SFCs are offloaded to the cloud when the deployment

exceeds the capabilities of the edges; (3) all-to-cloud strategy:

a baseline that offloads all SFCs to the cloud.

Besides, in each trial of simulations, we also compute the

lower bound of SFCD by Gubori_objbound so that we can com-

pute the gaps of these algorithms, i.e., Algo_ObjV al−objbound
Algo_ObjV al

,

which clearly show the performance of each algorithm. In all

plots below, we adopt the average value from 100 groups of

simulations to show average cases. And the errors shown on

TABLE II
TIME COST OF DIFF. ALGORITHMS ON ITCDELTACOM

m 20 40 60 80 100

Rd 37.10 78.70 116.8 164.4 246.2

ECNF 0.01639 0.01900 0.02598 0.04716 0.04902

OCNF 0.01079 0.01164 0.01206 0.01262 0.01324

plots are determined by the standard variances of the 100 groups

of simulations with the same setting.

2) Performance Comparisons With Benchmarks: In what

follows, we show simulation results on 4 different real network

topologies with different m. As shown in Fig. 5, ECNF and

OCNF always perform better than the benchmarks, which in-

dicates the superiority of our two designed algorithms.

3) Time Cost Comparisons With Benchmarks: In Table II,

we list the time cost of different algorithms running on the

ITCDeltacom topology with 113 nodes. From these data, we

can get the conclusion that ECNF and OCNF are both very fast

algorithms. They have a dramatic advantage on the time cost

compared with the popularly-used rounding algorithm.

4) Performance Comparisons With Different Settings:

Next, we assess the robustness of our proposed algorithms

under varied parameter configurations and present the results in

Fig. 6. The simulations involve 25 SFCs, the AMRES network

topology, and diverse parameter settings. It’s worth noting

that parameters maintain their original configurations unless

explicitly stated otherwise. First, we examine the influence

of objective weights by adjusting relative weights between

resource cost and communication latency, depicted in plot (a),

as well as between edge and cloud resources, illustrated in plot

(b). Additionally, we explore the impact of VNF parameters

by adjusting mean values of VNF sizes, shown in plot (c),

and the appearance likelihood of computation-intensive VNFs
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with ti,j > 1 ms, depicted in plot (d). Fig. 6 shows that

different parameter settings do not make a big difference in the

performance of the algorithms, and the proposed ECNF and

OCNF algorithms always outperform the benchmarks under all

the settings.

VIII. CONCLUSION

In this paper, we investigate the SFCD problem in the edge-

cloud continuum, with the goal of jointly minimizing resource

consumption and network latency. We propose two approxi-

mation algorithms, OCNF and ECNF, for online and offline

versions of the SFCD problem, respectively. The proposed algo-

rithms aim to balance resource and latency while optimizing the

sweet-spot of resource cost on both the edge and the cloud, as

well as all corresponding network latency. Specifically, the Next

Fit (NF) strategy employed in these two algorithms ensures

efficient resource utilization and avoids redundant data traffic.

Also, the designed corresponding sub-algorithms for virtual

network embedding, i.e., DST for CNF, the revised DST for

ECNF, and HPT for OCNF, play a critical role in reducing

latency. In addition, we prove the proposed ECNF and OCNF

algorithms have constant approximation ratios. Simulation re-

sults verify the proved theoretical bounds and using real-world

network topologies show the proposed algorithms outperform

popular baselines.

In future discussions, we will try to refine the online algo-

rithm to enhance its real-time decision-making capabilities in

response to the dynamic nature of network environments. We

also plan to delve into extreme scenarios, such as cases involv-

ing bandwidth overload, and explore additional optimization

goals for a more comprehensive analysis.
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