
Local Enumeration and Majority Lower Bounds
Mohit Gurumukhani # Ñ

Cornell University, Ithaca, NY, USA

Ramamohan Paturi #

Department of Computer Science and Engineering, University of California, San Diego, La Jolla,
CA, USA

Pavel Pudlák #

Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic

Michael Saks #

Department of Mathematics, Rutgers University, Piscataway, NJ, USA

Navid Talebanfard #

University of Sheffield, Sheffield, UK
Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic

Abstract
Depth-3 circuit lower bounds and k-SAT algorithms are intimately related; the state-of-the-art
Σk

3 -circuit lower bound (Or-And-Or circuits with bottom fan-in at most k) and the k-SAT algorithm
of Paturi, Pudlák, Saks, and Zane (J. ACM’05) are based on the same combinatorial theorem
regarding k-CNFs. In this paper we define a problem which reveals new interactions between the
two, and suggests a concrete approach to significantly stronger circuit lower bounds and improved
k-SAT algorithms. For a natural number k and a parameter t, we consider the Enum(k, t) problem
defined as follows: given an n-variable k-CNF and an initial assignment α, output all satisfying
assignments at Hamming distance t(n) of α, assuming that there are no satisfying assignments of
Hamming distance less than t(n) of α. We observe that an upper bound b(n, k, t) on the complexity
of Enum(k, t) simultaneously implies depth-3 circuit lower bounds and k-SAT algorithms:

Depth-3 circuits: Any Σk
3 circuit computing the Majority function has size at least

(
n
n
2

)
/b(n, k, n

2).

k-SAT: There exists an algorithm solving k-SAT in time O
(∑n/2

t=1 b(n, k, t)
)

.

A simple construction shows that b(n, k, n
2) ≥ 2(1−O(log(k)/k))n. Thus, matching upper bounds

for b(n, k, n
2) would imply a Σk

3-circuit lower bound of 2Ω(log(k)n/k) and a k-SAT upper bound of
2(1−Ω(log(k)/k))n. The former yields an unrestricted depth-3 lower bound of 2ω(

√
n) solving a long

standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis.
In this paper, we propose a randomized algorithm for Enum(k, t) and introduce new ideas to

analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of
the problem, i.e., Enum(3, n

2). We show that the expected running time of our algorithm is 1.598n,
substantially improving on the trivial bound of 3n/2 ≃ 1.732n. This already improves Σ3

3 lower
bounds for Majority function to 1.251n. The previous bound was 1.154n which follows from the
work of Håstad, Jukna, and Pudlák (Comput. Complex.’95).

By restricting ourselves to monotone CNFs, Enum(k, t) immediately becomes a hypergraph
Turán problem. Therefore our techniques might be of independent interest in extremal combinatorics.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases Depth 3 circuits, k-CNF satisfiability, Circuit lower bounds, Majority function

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.17

Related Version Full version: https://arxiv.org/abs/2403.09134

Funding Mohit Gurumukhani: Supported by NSF CAREER Award 2045576 and a Sloan Research
Fellowship.
Ramamohan Paturi: Partially supported by NSF grant 2212136.

© Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael Saks, and Navid Talebanfard;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 17; pp. 17:1–17:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mgurumuk@cs.cornell.edu
https://www.mohitgurumukhani.com/
https://orcid.org/0009-0007-8808-2846
mailto:rpaturi@ucsd.edu
mailto:pudlak@math.cas.cz
mailto:saks@math.rutgers.edu
mailto:n.talebanfard@sheffield.ac.uk
https://orcid.org/0000-0002-3524-9282
https://doi.org/10.4230/LIPIcs.CCC.2024.17
https://arxiv.org/abs/2403.09134
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Local Enumeration and Majority Lower Bounds

Pavel Pudlák: Partially supported by grant EXPRO 19-27871X of the Czech Grant Agency and the
institute grant RVO: 67985840.
Navid Talebanfard: This project has received funding from the European Union’s Horizon Europe
research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101106684

— EXCICO. Views and opinions expressed are however those of author(s) only and do not necessarily
reflect those of the European Union or REA. Neither the European Union nor the granting authority
can be held responsible for them.

1 Introduction

Local search is a fundamental paradigm in solving the satisfiability problem: find an
assignment close in Hamming distance to the initial assignment that satisfies the formula, if
one exists. Papadimitriou [18] was the first to employ this idea in a randomized poly-time
2-SAT algorithm. Schöning [24] showed that a slight modification of this algorithm yields a
running time of (2 − 2/k)n for k-SAT. Dantsin et al. [4] considered a deterministic version of
local search and gave a deterministic (2 − 2/(k + 1))n time algorithm. Brueggemann and
Kern [2] and Kutzkov and Scheder [13] improved this deterministic local search procedure
and obtained faster deterministic 3-SAT algorithms. Moser and Scheder [17] eventually
considered a variant of the local search problem and used it to give a deterministic k-SAT
algorithm matching the running time of Schöning’s.

Despite the success of local search, the fastest known k-SAT algorithm PPSZ and its
improvements follow a different approach: pick a random variable x, if its value is not easily
seen to be forced1 then assign it randomly and continue (see [20, 19, 10, 8, 22]). The analysis
of this simple yet powerful algorithm consists of a combinatorial theorem relating the size
and the structure of the set of satisfying assignments of a k-CNF. The strength of this
combinatorial theorem is further manifested by the fact that the state-of-the-art depth-3
circuit lower bounds are built on it [20, 19].

This curious interaction between lower bounds and algorithms has become less of a
surprise over the years. Williams [27] initiated a whole new line of inquiry by showing that
improved satisfiability algorithms for a circuit class automatically imply lower bounds for the
same class. Conversely, almost all known circuit lower bound techniques have been adopted
in satisfiability algorithms (see e.g. [11, 3]). Within this context the role of local search is
unclear.

▶ Question 1. Can we derive lower bounds from local search algorithms?

This question is also motivated by a lack of progress in improving depth-3 circuit lower
bounds and related upper bounds on k-SAT algorithms.

Depth-3 circuit lower bounds. A Σk
3 circuit is an Or-And-Or circuit where the bottom

fan-in is bounded by k, i.e., a disjunction of k-CNFs. We use Σk
3(f) to denote the minimum

number of k-CNFs in a Σk
3 circuit computing a function f . The study of these circuits was

advocated by Valiant [25] who showed that a strong enough Σk
3 lower bound for every fixed

k implies a super-linear lower bound for series-parallel circuits. Moreover, [7] showed that
strong lower bounds even for small constant k such as k = 16 imply various circuit lower

1 For example if x appears in a unit clause, or if such a clause can be derived in small width resolution.

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:3

bounds including better general circuit lower bounds. The technique of [20] gives a lower
bound of Ω(2n/k) for the parity function and it is known to be tight. In fact this results in a
Ω(n 1

4 2
√

n) lower bound for computing parity by unrestricted depth-3 circuits which is tight
up to a constant factor. A further improvement comes from [19] which gives a lower bound
of 2cn/k where c > 1 for the BCH code. At this point, this is the best known lower bound
for computing any explicit function by Σk

3 circuits.

Majority is a natural candidate for going beyond the 2Ω(
√

n) depth-3 circuit lower bound.
The natural Σk

3 circuit for computing Majority has size 2O(n log(k)/k) (which implies an
unrestricted depth-3 size upper bound of 2O(

√
n log n)). Håstad, Jukna and Pudlák [9]

introduced the intriguing notion of k-limits to capture the depth-3 complexity of various
functions and proved a lower bound of 2Ω(

√
n) where the constant factor in the exponent is

improved over the constant one could obtain from Switching Lemma. Regarding Σk
3 circuits

computing Majority, their result implies size lower bounds of 1.414n for k = 2, and 1.154n

for k = 3, and for k ≥ 4 it yields nothing. The Σ2
3 bound is known to be essentially tight [21].

More recently, [14] proved a tight lower bound of 2Ω(n log(k)/k) for computing Majority by Σk
3

circuits where each And gate depends on at most k variables. Further, [1] studied the effect
of negations for Σk

3 circuits computing majority. However, the question of proving tight lower
bounds for computing Majority by depth-3 circuits (even for fan-in 3 circuits) remains open.

k-SAT upper bounds: Lack of progress in improving the savings beyond Ω(1
k) for k-SAT

algorithms led researchers to consider SSETH (Super Strong Exponential Time Hypothesis).
SSETH is the hypothesis that k-SAT cannot be solved with savings asymptotically more
than 1/k, i.e., there is no 2(1−ϵk)n time k-SAT algorithm with ϵk = ω(1/k). However, SSETH
is known to be false on average [26, 15], that is, the satisfiability of almost all k-CNFs can be
decided with much larger savings. It is thus not unreasonable to attempt to get such savings
even in the worst-case. Yet we cannot hope to achieve such a savings for a large subclass of
PPSZ-style algorithms [23].

It appears that making progress towards larger k-SAT savings as well as depth-3 circuit
lower bounds requires new ideas. We argue that local search has the potential to achieve
this goal, and as an evidence for this claim, we apply local search ideas to give a new Σ3

3
lower bound for Majority function.

1.1 Local enumeration, k-SAT and Σk
3 lower bounds for Majority

function
The local search problem is formally defined as follows.

(k, t)-SAT. Given an n-variable k-CNF F , a parameter t, and an assignment α, decide if
there is a satisfying assignment β of F such that d(α, β) ≤ t(n), where d(·) is the Hamming
distance.

Dantsin et al. [4] gave a simple branching algorithm which solves (k, t)-SAT in time
poly(n) · kt. This already gives a non-trivial algorithm for 3-SAT: solve (k, n

2)-SAT starting
with the all-0 and all-1 assignments. To get a non-trivial algorithm for larger k, they used
covering codes, i.e., a small and asymptotically optimal number C(n, t) of Hamming balls of
a given radius t that cover the entire n-dimensional Boolean cube. Then an upper bound of
C(n, r) · kt follows immediately for k-SAT by solving (k, t)-SAT starting with the centers

CCC 2024

17:4 Local Enumeration and Majority Lower Bounds

of each of the balls in the covering code. Setting t = n
k+1 minimizes this quantity. Thus

improved upper bounds for (k, t)-SAT immediately imply improved k-SAT upper bounds,
and indeed this is what [2, 13] did by proving an upper bound of ct for some c < 3 for
(3, t)-SAT. However, this improvement in local search is not sufficient to yield better upper
bounds for k-SAT when we want to use the technique for large t. It is conceivable that
improved bounds for large t combined with covering codes would yield improved k-SAT
algorithms. This leads to the following question:

▶ Question 2. What is the complexity of (k, ϵn)-SAT where 0 < ϵ ≤ 1
2 ?

It is also natural to consider the enumeration problem for (k, t)-SAT: enumerate all
satisfying assignments within Hamming distance t of an initial assignment. We note that
even a weaker form of this problem already captures the circuit complexity of Majority
function. For this purpose, we introduce the following class of parameterized problems.

Enum(k, t). Given an n-variable k-CNF F and an initial assignment α, output all satisfying
assignments of F at a Hamming distance t from α assuming that there are no satisfying
assignments of F at a Hamming distance of less than t from α.

We observe that upper bounds on Enum(k, t) imply depth-3 circuit lower bounds and
k-SAT algorithms.

▶ Proposition 1. Assume that Enum(k, t) can be solved in randomized expected time
b(n, k, t). Then
1. any Σk

3 circuit requires at least
(

n
n/2
)
/b(n, k, n

2) size for computing Majority function.
2. k-SAT can be solved in time O(

∑n/2
t=1 b(n, k, t)).

Proof. 1) Consider a Σk
3 circuit C that computes Majority function. We will write C =∨m

i=1 Fi, where each Fi is a k-CNF. None of the Fis has a satisfying assignment with Hamming
weight less than n/2. By assumption we can enumerate all satisfying assignments of Hamming
weight exactly n/2 in expected time b(n, k, n

2). This in particular implies that the total
number of such satisfying assignments for each Fi is at most b(n, k, n

2). Since Fis should
together cover all assignments of Hamming weight exactly n/2 and since there are

(
n

n/2
)

such
assignments, the claim follows.

2) We can trivially check if there is a satisfying assignment of Hamming weight at most
n/2 in 1 +

∑n/2
t=1 b(n, k, t) steps. In the same number of steps we can check if there is a

satisfying assignment of Hamming weight at least n/2. ◀

Observe that b(n, k, n
2) cannot be too small: define the k-CNF Majn,k by partitioning

the n variables into sets of size 2(k − 1) and by including all positive clauses of size k from
each of the parts. It is easy to see that every satisfying assignment of this formula must
set at least k − 1 variables in each part to 1 and the total number satisfying assignments
with Hamming weight n/2 is 2(1−O(log(k)/k))n, thus b(n, k, n

2) ≥ 2(1−O(log(k)/k))n. It follows
that a matching upper bound for Enum(k, n

2) refutes SSETH and gives Σk
3 lower bound

of 2Ω(log k
k n) for Majority which in turn implies a 2ω(

√
n) unrestricted depth-3 circuit lower

bound, breaking a decades long barrier.

1.2 Our contributions
In this paper, we study Enum(3, ϵn) and obtain new algorithms and lower bounds. Note
that this is the first non-trivial instance of Enum(k, t), since Enum(2, t) can be solved in

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:5

2t steps using a simple extension of the local search algorithm, and it is easy to see that this
is tight for t ≤ n/2 by considering the 2-CNF consisting of t disjoint monotone clauses.

▶ Theorem 2 (Main result). Enum(3, t) can be solved in expected time

1. 3t, for t ≤ n
3 ,

2. 1.164n × 1.9023t, for n
3 < t ≤ 3n

7 ,
3. 1.1962n × 1.7851t, for 3n

7 < t ≤ n
2 .

In particular, Enum(3, n
2) can be solved in expected time 1.598n.

Consequently, we get

▶ Corollary 3. Σ3
3(Maj) ≥ 1.251n−o(n).

Our lower bound is the best known bound to compute Majority function by Σ3
3 circuits.

Note that Majn,3 has 6n/4 ≃ 1.565n satisfying assignments of Hamming weight n/2. Our
bound is not too far from the optimal bound and it is a substantial improvement over
3n/2 ≃ 1.732n.

In the following, we explain how our approach to enumeration differs from the well-known
approaches. The kt algorithm used by [4] which solves (k, t)-SAT is a simple branching
procedure. Without loss of generality assume that the initial assignment is all-0. If there is
no monotone clause in the formula, then the all-0 assignment satisfies the formula. Otherwise
select a monotone clause C = x1∨. . .∨xk. Then for each xi, recursively solve (k, (t−1))-SAT
for the formula restricted by xi = 1. An obvious weakness of this algorithm is that if the
depth of the recursion tree is more than n/k, then some assignments will be considered more
than once in the tree thus leading to redundant computation.

Our starting point is to search the recursion tree (which we call a transversal tree
following the hypergraph nomenclature) so each satisfying assignment (which we call a
transversal in the following) within the ball is visited exactly once. We observe that such a
non-redundant search can be conducted with any clause ordering and any fixed ordering of
variables within the clause. During the search of the transversal tree, it is easy to decide
whether a subtree contains any new satisfying assignments by considering the labels of the
child edges of the nodes along the path. If there are no new satisfying assignments in a
subtree, we will prune it. It turns out that this approach is isomorphic to the seminal method
of Monien-Speckenmeyer [16] where for each i we recursively solve the problem under the
restriction x1 = . . . = xi−1 = 0, xi = 1. However, it is not clear how to improve upon
the bound obtained by [16]. We show that by choosing the clause ordering carefully and
randomly ordering clause variables, a better bound can be obtained. In other words, we will
consider randomized Monien-Speckenmeyer trees with careful clause ordering. The crux of
our contribution is a new analysis of randomized transversal trees.

Connection to hypergraph Turán problems. Recall that a transversal in a hypergraph
is a set of vertices that intersects every hyperedge. The recent work [6] gives a connection
between depth-3 circuits and transversals2. Here we find another connection. Given n, t, and
k, let R+(n, t, k) be the maximum number of transversals of size t in an n-vertex k-graph
with no transversal of size t − 1. Since a k-graph can be viewed as a monotone k-CNF,

2 [6] results are stated in terms of cliques which are dual to transversals.

CCC 2024

17:6 Local Enumeration and Majority Lower Bounds

our algorithm enumerates minimum size transversals and thus gives new upper bounds for
R+(n, t, k). Mantel’s theorem, which is a special case of Turán’s seminal theorem, gives the
exact value R+(n, n − 2, 2) = n2/4, and the Turán problem for 3-graphs can be phrased as
showing R+(n, n − 3, 3) = (5/9 + o(1))n3 (see [12] for a thorough survey of this and related
problems). Our technique allows us to derive new bounds for R+(n, t, 3), where t = Θ(n).
Although we currently do not get any useful results for t = n − o(n), we hope that our
techniques can be extended to make progress for this regime of parameters.

Enumeration algorithms for CNFs with bounded negations. As an additional
application of our enumeration techniques, we get the following enumeration algorithm:

▶ Theorem 4. Let F be a CNF of arbitrary width where either each clause contains at most
3 negative literals or each clause contains at most 3 positive literals. Then, we can enumerate
all minimal satisfiable solutions of F in time O(1.8204n).

2 Preliminaries

In this section, we introduce concepts and notation that we use for the rest of the paper.
Let F = (X, C) be a k-CNF with variable set X and clause set C. We view the satisfying
assignments of F as subsets of variables which are set to 1.

▶ Definition 5 (Transversals). A set S ⊆ X is a transversal for F if the assignment that sets
the variables in S to 1 and the variables in X \ S to 0 is a satisfying assignment of F . The
size of a transversal S is defined as |S|.

We say S is a minimal transversal for F if no subset of S is a transversal. We call the
corresponding satisfying asssignment a minimal satisfying assignment.

Our use of transversals for discussing satisfying assignments is motivated by the notion
of transversals in hypergraphs. We view a monotone k-CNF (where all literals in every
clause are positive) as a k-graph where every hyperedge has size at most k. This leads
to a 1-1 correspondence between the transversals of a monotone k-CNF and those of the
corresponding hypergraph.

In this paper, we are primarily interested in minimum-size transversals.

▶ Definition 6 (Transversal number). For a satisfiable k-CNF F , we define transversal
number τ(F) to be the cardinality of the minimum-size transversal of F . We use Γ(F) to
denote the set of all minimum-size transversals of F and #Γ(F) to denote the cardinality of
Γ(F).

Let t ∈ [n] and α ∈ {0, 1}n be such that every satisfying assignment of F is at a distance
of at least t from α. We reduce the Enum(k, t) problem for F from the initial assignment α

to the Enumz(k) problem: enumerate all minimum-size transversals of a k-CNF3. Indeed,
let G be the k-CNF formula (over the variable set X) where its clause set is obtained from
that of F by the following replacement of literals: For each variable v ∈ X, if α sets v to 1,
then we swap occurrences of the positive and the negative literals corresponding to v in C.
Otherwise, if α sets v to 0, we leave the corresponding literals as they are. G is also a k-CNF

3 This problem has been previously considered by, e.g. [5] with a different name Min-Ones k-SAT and a
non-trivial algorithm is given independent of τ(F). Here we focus on running times with fine dependence
on τ(F).

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:7

and for all y ∈ {0, 1}n, G(y) = F (y ⊕ α). Clearly, there exists a transversal within distance t

from 0n in G if and only if there exists a transversal within distance t from α in F .
We now prove the following useful proposition that allows us to assume all clauses of F

have width exactly k.

▶ Proposition 7. For every k-CNF F = (X, C) with τ(F) ≤ n − k, there exists a k-CNF
G where every clause has width exactly k and τ(G) = τ(F) and the set of transversals of G

includes the set of transversals of F . Furthermore, if F is monotone, G is monotone.

Proof. Assume that F has a clause C of width 1 ≤ k′ < k. Let F ′ be the formula
obtained from F by removing the clause C and adding a clause C ′ = C ∪ C ′′ for each
S ⊆ X \ C, |S| = k − k′, where C ′′ is a monotone clause over variables in S. The proposition
follows since every transversal of F is a transversal of F ′ and any transversal of F ′ which is
not a transversal of F must have size at least n − k + 1. ◀

3 Transversal Trees and Tree Search

In this section, we present an algorithm called TreeSearch for solving Enumz(k), i.e., to
enumerate all minimum-size transversals of a satisfiable k-CNF F . Let t = τ(F) be the
transversal number of F . Our algorithm considers a tree, called transversal tree, of depth t

where each minimum-size transversal corresponds to at least one leaf node at depth t. Our
algorithm TreeSearch traverses the tree to enumerate the leaves at depth t corresponding
to minimum-size transversals. However, a leaf at depth t need not correspond to a minimum-
size transversal and furthermore two distinct leaves at depth t may correspond to the same
minimum-size transversal. For these reasons, enumerating all leaves can take significantly
more time than the total number #Γ(F) of minimum-size transversals. We deal with this issue
by pruning subtrees so that TreeSearch would only encounter minimum-size transversals
that are not encountered elsewhere. While our pruning approach is isomorphic to that of
Monien-Speckenmeyer [16], our analysis and bound crucially depend on our choice of clause
ordering and random ordering of the child nodes of the transversal tree. In the following, we
define the required concepts and present our constructions.

▶ Definition 8 ((k, X)-trees). For k ≥ 1 and a set X of variables, a (k, X)-tree is a directed
k-ary tree T with a node and edge labeling Q and a tree-edge ordering π which satisfies the
following properties.
1. Each edge is directed from parent to child. Each non-leaf node has at most k children.

Children of a node are ordered from left to right according to π.
2. Each (tree) edge e is labeled with a variable qe ∈ X. Each node v is labeled with a set

Qv ⊆ X ∪ {⊥}.
3. For each node, labels of child edges are distinct. If e = (u, v) is an edge, then Qv =

Qu ∪ {qe} or Qv = Qu ∪ {qe, ⊥}.
4. Labels of edges along any path are distinct.
5. All leaves v where ⊥ /∈ Qv are at the same level.
Let T be a (k, X)-tree with root r and labeling Q. For node v of T , let Tv denote the subtree
Tv of T rooted at v. If u and v are nodes of T such that u is an ancestor of v, Puv denotes
the unique path from u to v in T .

▶ Definition 9 (Shoot of a tree path). If u and v are nodes of T such that u is an ancestor
of v, the subgraph consisting of all the child edges of the nodes along the unique path from u

to v is called the shoot Suv = ST
uv from u to v. In particular Puv ⊆ Suv.

CCC 2024

17:8 Local Enumeration and Majority Lower Bounds

For a path Puv, the labels of the edges along the path are called path variables of Puv.
For a shoot Suv, labels of the shoot edges are called shoot variables.

▶ Definition 10 (Transversal tree). Let F = (X, C) be a k-CNF on the variable set X. A
(k, X)-tree T rooted at r with labeling Q and tree-edge ordering π is a transversal tree for F

if
1. Qr = ∅ if F has no empty clause and otherwise Qr = {⊥}, and
2. for every node v, each minimum-size transversal of F which is an extension of Qv will

appear as the label of a leaf in the subtree rooted at v.

It is easy to see that a transversal tree T for a satisfiable k-CNF F has depth τ(F) and
every leaf v of T such that ⊥ /∈ Qv is at depth τ(F). We also note that any subtree of a
transversal tree is also a transversal tree.

▶ Definition 11 (Valid and invalid leaves). Let T be a transversal tree for a satisfiable k-CNF
F . We say that a leaf v of T is valid if Qv is a minimum-size transversal of F . Otherwise it
is invalid.

For a transversal tree T of a satisfiable k-CNF F , let Γ(T) denote the collection of
minimum-size transversals associated with the valid leaves of T . The definition of transversal
tree implies the following basic fact.

▶ Fact 1. Γ(F) = Γ(T).

3.1 Construction of Transversal Trees
In this section, we show how to construct transversal trees for a satisfiable k-CNF F = (X, C).
The construction produces a labeling Q on nodes and edges. We will not specify a tree-edge
ordering in the construction. However, we will later select a left-right ordering where child
nodes are ordered randomly and independently for each node. The construction depends on
the ordering of clauses. Let Π denote an ordering of the clauses in F .

We start with the tree T with just one node r (the root node) with the label Qr = ∅.
Assume that we are about to expand a non-leaf node v. By construction, v is at depth less
than τ(F) and ⊥ ̸∈ Qv. Since v is at depth less than τ(F), Qv is not a transversal. Select
the first monotone clause Cv = {a1, . . . , ak′} according to the clause order Π, where k′ ≤ k.
Such a monotone clause must exist since every clause is non-empty and since otherwise an
all-0 assignment will satisfy the formula contradicting the fact that Qv is not a transversal.
Also, it must be the case that Cv ∩ Qv = ∅ as none of the variables from Qv can appear in
Cv. For each a ∈ Cv,
1. Create a child node va for v and label the edge (v, va) by a.
2. Simplify the clauses by setting the variables along the path Prva

to 1. If there is an empty
clause, set Qva = Qv ∪ {a, ⊥} and va will not be expanded and thus will become a leaf
node. Otherwise, label va by Qva

= Qv ∪ {a}.
3. If the level of the node is τ(F), make it a leaf node.
4. Order the child nodes of v left-right according to a tree-edge ordering.

▶ Proposition 12. The tree T with the labeling as described above is a transversal tree for F .

Proof. Indeed each non-leaf node has at most k children. All leaves v with ⊥ /∈ Qv must be
at the same level τ(F) since any node v at a level smaller than τ(F) and does not contain ⊥
in Qv can be expanded and since the construction stops at level τ(F). It is easy to verify that
the labeling Q has the requisite properties. For every v with ⊥ /∈ Qv and every extension Y

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:9

of Qv to a minimum-size transversal, there exists a leaf with label Y in the subtree Tv since
there is a child edge (v, v′) of v with label a for some a ∈ Y ∩ Cv ̸= ∅ where Cv is the clause
used to expand v. Inductively we can construct a path from v′ to a leaf which ultimately
has Y as the label. ◀

3.2 TreeSearch: An Algorithm for Enumerating the Valid Leaves of T

Our goal is to search the transversal tree to enumerate all minimum-size transversals. However,
visiting all leaf nodes may take at least kτ(F) time. To improve the efficiency of the search, we
prune the tree during our search while guaranteeing the enumeration of each minimum-size
transversal exactly once.

Let F be satisfiable k-CNF. Let Π be a clause ordering for F . Let T be transversal tree
for F constructed using Π and some tree-edge ordering π. We note that for any tree-edge
ordering π, the edges of any shoot Suv (where u is any ancestor of v) are situated in one of
three ways with respect to the tree path from u to v: 1) to the left of the tree path, 2) to
the right of the tree path, or 3) along the tree path. Our key insight is that for any node
v we can determine whether the subtree Tv potentially contains any new minimum-size
transversals by considering the labels of the edges in the shoot Srv.

Our TreeSearch starts with the root node r of T . Assume that we are currently visiting
the node v. Let Tv be a subtree of T rooted at v. If v is not a leaf, let Cv be the monotone
clause used for expanding the node v (based on the clause order Π) and a1, . . . , ak′ be the
ordering of its variables according to π for some k′ ≤ k. For 1 ≤ i ≤ k′, let vai

be the i-th
child node of v. The edge ei = (v, vai) is labeled with ai. The search procedure TreeSearch
starting at node v works as follows:

If v is a leaf, output Qv if it is a transversal. In any case, return to the parent.
Otherwise, process the children of v in order. Let Ti = Tvai

be the transversal tree rooted
at the child vai

for ai ∈ Cv. Prune the subtree Ti if and only if the shoot Srv contains an
edge e′ = (u′, v′) where u′ is ancestor of v such that Qei = Qe′ , and the edge e′ appears
to the left of the path Prv. Search the tree Ti if it is not pruned.

▶ Fact 2. For any clause ordering Π and tree-edge ordering π, TreeSearch outputs all
minimum-size transversals of F exactly once.

3.3 Canonical Clause Ordering and Random Tree Edge Ordering
The time complexity of TreeSearch is bounded by the number of leaf nodes it visits. While
we know that TreeSearch outputs all minimum-size transversals without redundancy, it is
much less clear how to analyze its complexity. We need two ideas to analyze TreeSearch
to get a good bound. The first idea is a canonical clause ordering Π in which a sequence
of maximally disjoint monotone clauses will precede all other clauses. The second idea is
a random π, that is, a tree-edge ordering that orders the children of every node in the
transversal tree uniformly and independently at random.

4 Analysis of TreeSearch for Monotone k-CNFs

Let F = (X, C) be a monotone k-CNF where every clause has exactly k literals. Let t = τ(F)
be the transversal number of F . We assume that t ≤ 3n

5 . Let T be a transversal tree for F

where T is constructed using a canonical clause ordering Π. The child edges of each of its

CCC 2024

17:10 Local Enumeration and Majority Lower Bounds

nodes are randomly ordered from left-right independent of other nodes. Let π denote this
random tree-edge ordering. Let r be its root and Q its labeling.

In this section, we analyze TreeSearch and prove Theorem 2 for the monotone case.
We start with a few ideas required to keep track of the effect of the random ordering on
pruning. We then build upon them Section 5 to prove Theorem 2 for general k-CNFs.

4.1 Random Tree Edge Ordering and Pruning
▶ Definition 13 (Cut event). We say that an edge e = (u, v) is cut if u has an ancestor
u′ with a child edge e′ = (u′, v′) where Qe′ = Qe and e′ appears to the left of the path Pru

according to π.

We use ϕ(e) to denote the event that the edge e is not cut. We also use ϕ(Puv) to denote
the event no edge along Puv is cut. We use ϕ(u) = ϕ(Pru) to denote the event that none of
the edges along the path from the root to the node u are cut.

▶ Definition 14 (Survival probability of paths and nodes). The survival probability σ(Puv) of
a path Puv is P(ϕ(Puv)). The survival probability σ(u) of a node u is P(ϕ(u)).

▶ Definition 15 (Survival value of a transversal tree). For a subtree Tu rooted at u, we define
σ(Tu) =

∑
v is leaf of Tu

σ(v) as the survival value of Tu. We write σ(T) = σ(Tr) where r is
the root node.

Our main tool for upper bounding the expected running time of TreeSearch is the
following basic fact.

▶ Fact 3. The expected number of leaves visited by TreeSearch is exactly σ(T). In
particular #Γ(F) ≤ σ(T).

Proof. This follows by definition, since TreeSearch only visits surviving leaves of T under
a random tree-edge ordering. Furthermore, let Y be a minimum-size transversal of F . We
argue that

∑
v:Qv=Y P(π(Prv)) = 1 which implies #Γ(F) ≤ σ(T). ◀

Our goal is to upper bound σ(T) by bounding the survival probabilities of the leaves at
depth t. A path survives if and only none of its edges are cut. For an edge to be cut, it is
necessary that some ancestor of the edge has a child edge with the same label as that of the
edge. We will keep track of repeated edge labels via markings to bound the cut probabilities
from below and thereby bounding the survival probabilities from above.

▶ Definition 16 (Marking set of an edge). The marking set M(e) of an edge e = (u, v) in T

is the set of nodes w ̸= u in the path Pru which have a child edge e′ such that Qe = Qe′ . We
say that the nodes in M(e) mark the edge e. We also say that the nodes in M(e) mark the
label of e.

▶ Definition 17 (Marked edges). An edge e = (v, u) in T is marked if M(e) ̸= ∅.

Marked edges are precisely those that have a non-zero probability of being cut. In fact,
we can calculate the survival probability exactly.

▶ Fact 4. For an edge e in T , σ(e) = 2−|M(e)|.

▶ Definition 18. Let u be a node in T . For each node v along the path Pru, let Nu(v) =
{e ∈ Pru | v ∈ M(e)}. Nu(v) is the set of edges along the path Pru marked by v.

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:11

▶ Fact 5. For any node u in T , the survival probability σ(Pru) of the path Pru is given by

σ(Pru) = Πv: a node along Pru

1
|Nu(v)| + 1

Proof. Pru survives if and only if for every node v ∈ Pru and every edge e ∈ Pru that v

marks, the child edge of v with the same label as that of e appears to the right of the path.
This happens with probability 1

|Nu(v)|+1 and since these events are independent, the claim
follows. ◀

4.2 An Analysis of TreeSearch for Monotone 3-CNF
Although Fact 5 gives us a fairly complete picture of the survival probabilities of individual
paths in T in terms of the edge markings of the path, we need a few ideas to find nontrivial
upper bounds on σ(T). The first idea is the concept of a weight which captures the number
of marked edges in a path or a shoot.

▶ Definition 19 (Weight). Let Puv be a path in T . The weight of Puv is defined as
W (Puv) def= |{e ∈ P : M(e) ̸= ∅}|, i.e., the number of marked edges along Puv. The weight of
a shoot Suv denoted by W (Suv) is the number of marked edges in the shoot Suv.

The following fact provides a lower bound on the weight of each root to leaf shoot in T .

▶ Fact 6. Every root to leaf shoot Sru in T has a weight of at least 3t − n.

Proof. Since the depth of T is t, a root to leaf shoot has 3t edges and there are only n

distinct edge labels, at least 3t − n labels appear at least twice. ◀

▶ Definition 20 (Weight of a tree). We say that a tree has weight w if every root to leaf
shoot of the tree has weight at least w.

▶ Definition 21 (M(w, d)). For non-negative integers w and d, let M(w, d) be the maximum
survival value over all ternary depth-d transversal trees with weight w.

We can now upper bound σ(T) in terms of M(w, d) exploiting the canonical clause
ordering. Our canonical clause ordering Π starts with a maximal collection of disjoint clauses
C1, C2, · · · , Cm so that all clauses in the formula intersect with at least one of the clauses
from these disjoint clauses. We observe that m ≥ t

3 for monotone F since otherwise by
setting all the variables in the monotone clauses Ci, we satisfy F contradicting that the
transversal number of F is t.

▶ Lemma 22.

σ(T) ≤

{
3t t ≤ n

3

3 t
3 × M(3t − n, 2

3 t) otherwise

Proof. For t ≤ n
3 , we use the trivial upper bound of 1 on the survival probability of paths to

conclude that σ(T) ≤ 3t as desired.
For t ≥ n

3 , we use the fact that the canonical clause ordering starts with a maximal
collection of disjoint clauses C1, C2, · · · , Cm where m ≥ t

3 . We observe that for 1 ≤ i ≤ t
3 ≤ m

each node at level i of T is expanded by the same clause Ci. Moreover, none of the child
edges of nodes at level 1 ≤ i ≤≤ t

3 ≤ m are marked as the corresponding clauses are disjoint.
The result follows since for every node u at level t

3 + 1, the subtree Tu has depth 2t
3 and the

weight of every root to leaf shoot in Tu is at least 3t − n minus the number of marked edges
from root to u = 3t − n − 0 = 3t − n (Fact 6). ◀

CCC 2024

17:12 Local Enumeration and Majority Lower Bounds

4.2.1 Upper Bounds on M(w, d)
Upper bounding M(w, d) for T based on random tree-edge ordering π is challenging. Instead
we introduce a different random process π′ for T : Each edge e survives with probability
pe independently where pe = λ if e is marked and 1 otherwise, where we define λ

def= 1√
3 .

The concept of survival probability under π′ can be extended to paths and nodes of T . For
example, the σ′(P) =

∏
e∈P pe is the survival probability of the path P under π′. Similarly, we

define the survival value σ′(T) of the transversal tree T according to π′ as
∑

v is a leaf σ′(Prv).
We define M ′(w, d) as the maximum survival value σ′(T ′) of transversal trees T ′ of depth
d where every root to leaf shoot has weight at least w. The following lemma shows that
σ(T) ≤ σ′(T).

▶ Lemma 23. For a root to leaf path Pru, σ(P) ≤ λW (Pru) = σ′(P) which in turn implies
σ(T) ≤ σ′(T) and M(w, d) ≤ M ′(w, d).

Proof. Given an edge e ∈ Pru, define the contribution ye of e to the survival probability
(according to π) of Pru as

ye
def=

∏
v∈M(e)

(
1

|Nu(v)| + 1

)1/|Nu(v)|

where the empty product is considered as 1. By Fact 5, σ(Pru) =
∏

e:M(e) ̸=∅ ye. It is
then sufficient to show that ye ≤ pe. Observe that Nu(v) can be at most 2 since F is a
3-CNF. For each v ∈ M(e) with Nu(v) = 1, the probability that v does not cut e is exactly
1
2 , independent of other nodes. If Nu(v) = 2 for v ∈ M(e), v marks another edge e′ along
the path in addition to e. The probability that v cuts neither e nor e′ is exactly 1

2 × 2
3 = 1

3 ,
independent of other nodes. If Nu(v) = 2, we regard the probability of each edge surviving
as the geometric average λ of the survival probabilities of individual edges. As a consequence,
ye can be written as (1

2)a(1√
3)b for some non-negative integers a and b where a is the number

of ancestors v of e such that v marks exactly one edge along the path and b is the number of
ancestors v of e such that v marks exactly two edges along the path. We now argue that ye

is at most pe. If e is not marked, then a + b = 0 and hence ye = pe. If e is marked, we have
a + b > 0 which implies ye ≤ λ = pe. ◀

The following lemma determines M ′(w, d).

▶ Lemma 24. For all 0 ≤ d ≤ n, 0 ≤ w ≤ 3d, we have

M ′(w, d) =


(2 + λ)w3d−w 0 ≤ w ≤ d

(1 + 2λ)w−d(2 + λ)2d−w d ≤ w ≤ 2d

(3λ)w−2d(1 + 2λ)3d−w 2d ≤ w ≤ 3d

Lemma 24 already gives an upper bound σ(T) ≤ M ′(3t−n, t). However, taking advantage
of Lemma 22, we can improve this bound to establish Theorem 2 for monotone formulas.

4.2.2 Proof of Theorem 2 for monotone formulas
Proof. By Fact 3 and Lemma 23 the expected time of TreeSearch is bounded by σ′(T)
(up to polynomial factors). We divide the proof into cases based on the value of t.

Case 1. t ≤ n
3 . Applying Lemma 22 for the case t ≤ n

3 , we get σ(T) ≤ 3t.

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:13

Case 2. n
3 < t ≤ 3n

7 . t ≤ 3n
7 implies 3t − n ≤ 2t

3 . We apply Lemma 22 together with Lemma 24
for the case 0 ≤ w ≤ d to get

σ(T) ≤ 3 t
3 M ′

(
3t − n,

2t

3

)
=
(

3
2 + λ

)n((2 + λ)3

9

)t

≤ 1.164n × 1.9023t

Case 3. 3n
7 ≤ t ≤ n

2 . We note that t ≤ n
2 implies 3t − n ≤ t ≤ 4t

3 and t ≥ 3n
7 implies 3t − n ≥ 2t

3 .
We apply Lemma 22 together with Lemma 24 for the case d ≤ w ≤ 2d to get

σ(T) ≤ 3 t
3 M ′

(
3t − n,

2t

3

)
=
(

2 + λ

1 + 2λ

)n
((

3(1 + 2λ)7

(2 + λ)5

)1/3)t

≤ 1.1962n × 1.7851t

◀

4.2.3 Proof of Lemma 24
Let T ′ be a tree of depth d and weight 0 ≤ w ≤ 3d. It is clear that the survival value
σ′(T ′) of T ′ is determined once the edges are marked consistent with the fact that every
root to leaf shoot has weight at least w. We say that a transversal tree T ′ of depth d and
weight w is normal if it has the following marking: Let w = id + j where 0 ≤ i ≤ 3 and
0 ≤ j < d. Mark i + 1 children of every non-leaf node in the first j levels and mark i

children for each of the remaining non-leaf nodes. The survival value of normal tree is exactly
((i + 1)λ + 2 − i)j(iλ + 3 − i)d−j . One can easily see that this is given exactly as M ′(w, d) as
in the statement of the lemma. We will show that normal trees have the largest survival
values by induction on d which completes the proof of Lemma 24.

Let T ′ be a tree of depth d and weight w with the maximum survival value σ′(T ′). Let r

be the root of T ′. Assume that l1 children of r are marked. Let T ′
1, T ′

2, and T ′
3 be the subtrees

of T ′ of depth d − 1 and weight w − l1 with r1, r2, and r3 as their root nodes respectively.
T ′

1, T ′
2, and T ′

3 are normal by induction hypothesis. Assume that l2 child edges of each of ri

are marked. The survival value of T ′ is g1g2M ′(w − (l1 + l2), d − 2) where g1 = (3 − l1 + l1λ)
and g2 = (3 − l2 + l2λ). It is easy to see that if l1 + l2 is held constant, g1g2 is maximized
when l1 and l2 are as equal as possible. If |l1 − l2| = 1, the survival value of T ′ does not
change if r has marked l2 children and each ri has l1 marked children, that is, if the number
of markings of the first two levels are exchanged.

If l1 = l2, then T ′ is normal. If |l1 − l2| ≥ 2, then T ′ does not have the largest survival
value which is a contradiction. We are left with the case that l1 and l2 differ by one. If
l1 < l2, we swap l1 and l2 without changing the survival value and normality follows from
induction. If l1 > l2, the tree is already normal. Otherwise, its survival value cannot be the
maximum.

5 Analysis of TreeSearch for arbitrary 3-CNFs

In this section, we analyze transversal trees for arbitrary 3-CNFs and prove Theorem 2. We
will introduce few more ideas in addition to those introduced in Section 4.

Throughout this section, we fix a 3-CNF F = (X, C) and let T be its canonical transversal
tree with root node r. Let the number of maximally disjoint width 3 clauses used to develop
F be m. Let XD ⊂ X denote set of variables that appeared in this set of m disjoint clauses.
We also note that unlike in Section 4, the clauses used to develop T may not have width
exactly 3.

CCC 2024

17:14 Local Enumeration and Majority Lower Bounds

5.1 Slight modification to canonical ordering and TreeSearch
We extend the conditions on the canonical ordering Π of clauses and how TreeSearch uses
Π. We order clauses in Π so that all maximally disjoint width 3 clauses appear first, followed
by all width 3 monotone clauses, followed by all other clauses. For a node u at level below m,
we impose that instead of choosing the first unsatisfied monotone clause from Π, u instead
chooses an unsatisfied width 3 monotone clause C from Π such that C does not contain any
variable x ∈ XD that has appeared twice in the shoot Sru. If such a clause does not exist,
then C can pick the first unsatisfied monotone clause from Π.

5.2 Fullness and Double marking
We reuse the notion of weight here and observe that all basic facts and basic lemmas from
monotone analysis apply here as well. We introduce one more definition related to this:

▶ Definition 25 (Uniform Weight). Let S = Suv be a shoot in T of length ℓ. Let a be the
number of edges in the shoot Suv. The uniform weight of S denoted by W +(S) = W (S)+3ℓ−a.

We can similarly find a lower bound to this quantity for every root to leaf path:

▶ Fact 7. Every root to leaf shoot in T has a uniform weight of at least 3t − n.

Proof. Let S be arbitrary root to leaf path with a edges. As there are only n distinct edge
labels, at least a − n labels appear at least twice. So, W (S) ≥ a − n. Since the depth of T is
t, we infer that W +(S) = W +(S) + 3t − a ≥ 3t − n as desired. ◀

We extend the idea of markings and introduce double markings:

▶ Definition 26 (Double marking). We say an edge e ∈ T is doubly marked if |M(e)| ≥ 2.
Let P = Puv be a path from u to v. We write W≥2(P) to denote number of edges e in P

such that |M(e)| ≥ 2.

Recall that when proving Lemma 22, we took advantage of the fact that any monotone
3-CNF G with τ(G) = t will contain t

3 disjoint monotone clauses. However, there is no such
guarantee for arbitrary 3-CNFs. Observe that if the number of maximally disjoint monotone
clauses is small, then many clauses of width 3 will intersect with it and this will cause many
edges to be doubly marked. We formalize this intution and introduce a new parameter called
fullness that will help keep track of this:

▶ Definition 27 (Fullness). Let u be arbitrary node at level ≥ m in T . Let um be the node at
level m along the path Pru. Then, fullness of the shoot Sru is defined as

Y (Sru) := |{x ∈ XD \ Qum
: ∃e = (a, b) ∈ Sru, depth(a) ≥ m, Qe = x}|,

i.e., the number of variables in XD that are not along the path in the first m levels and
appear as labels of some edge in the shoot after level m. For arbitrary nodes u, v where u is
ancestor of v and u appears at level ≥ m, we define Y (Suv) = Y (Srv) − Y (Sru).

This parameter is useful because every node after level m will have at least one edge that
will either ‘add to’ fullness or at least one edge that will have marking set of size at least 2.
The edges that are ‘doubly marked’ will contribute very little to the recursion. Moreover, we
will see that fullness of any root to leaf shoot is at most 2m. As m is small, very few nodes
will be such that they will not contain any doubly marked edges. This is our key insight and
we fomrally prove this now.

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:15

▶ Fact 8. Let M denote the set of all monotone clauses of width 3 in F . Then, every clause
C ∈ M must contain at least one variable x such that x ∈ XD.

▶ Lemma 28. Let u ∈ T be a node at level greater than m. Then, at least one of the following
must be true:
1. u has at most 2 edges going out.
2. u has one edge e going out such that |M(e)| ≥ 2.
3. u has one edge e going out such that Qe ∈ XD and |M(e)| = 1.

Proof. Set variables that are part of Qu to 1 and let F ′ be the simplified 3-CNF. Say case 1
does not happen. Then, the monotone clause C used to develop edges out of u has width
3 and so, C is also present in F . By Fact 8, u contains an edge e such that Qe = x and
x ∈ XD. If M(e) ≥ 2, then case 2 is satisfied and if M(e) = 1, then case 3 is satisfied. ◀

5.3 An Analysis of TreeSearch for arbitrary 3-CNF
We extend Lemma 23 for arbitrary 3-CNFs taking into double markings into account.

▶ Lemma 29. Let T be a transversal tree and let P = Pru be a path starting from root r.
Then σ(P) ≤ (1√

3)W +(P)+W≥2(P).

Proof. For a marked edge e ∈ P , we define the contribution of e as

qe :=
∏

v∈M(e)

(
1

|Nu(v)| + 1

)1/|Nu(v)|

.

By Fact 5, σ(P) =
∏

e:M(e)̸=∅ qe. It is then sufficient to show that qe ≤ λ for every marked
edge e. Note that qe can be written as (1

2)a(1√
3)b, for some non-negative integers a and b

such that a + b ≥ |M(e)|. This quantity is at most 1√
3 if |M(e)| = 1 and is at most 1

3 if
|M(e)| ≥ 2. Finally, we observe that e contributes 1 to W (P) if |M(e)| ≥ 1 and contributes
1 to W≥2(P) if M(e) ≥ 2. ◀

▶ Definition 30 (NM(w, d, y)). For non-negative integers w, d, y, define NM(w, d, y) to be
the maximum of sum of survival probabilities of leaves over depth-d transversal trees T for
3-CNFs. Moreover, for every root to leaf shoot S, W +(S) ≥ w and Y (S) ≤ y.

5.3.1 Proving Theorem 2
We will show the following as our main lemma:

▶ Lemma 31. Let F be a 3-CNF over n variables with τ(F) = t ≤ n
2 . Then for any canonical

transversal tree T for F , it holds that

σ(T) ≤

{
3t t ≤ n

3

3 t
3 × M ′ (3t − n, 2t

3
)

otherwise

where M ′(w, d) is the same bound we obtained in Section 4.

Using this, Theorem 2 follows from Lemma 31 by using the exact same argument as in
the Proof of monotone case of Theorem 1.

Our main lemma will make use of the following bounds on NM(w, d, y):

CCC 2024

17:16 Local Enumeration and Majority Lower Bounds

▶ Lemma 32. For all 0 ≤ d ≤ n, 0 ≤ w ≤ 3d, 0 ≤ y ≤ d, it holds that:

NM(w, d, y) ≤



(2 + λ)y(2 + λ2)d−y 0 ≤ w ≤ d

(2 + λ)y−(w−d)(1 + 2λ)w−d(2 + λ2)d−y d ≤ w ≤ d + y

(1 + 2λ)y(2 + λ2)2d−w(1 + λ + λ2)w−d−y d + y ≤ w ≤ 2d

(1 + 2λ)y−(w−2d)(3λ)w−2d(1 + λ + λ2)d−y 2d ≤ w ≤ 2d + y

(3λ)y(1 + λ + λ2)3d−w(2λ + λ2)w−2d−y 2d + y ≤ w ≤ 3d

Moreover, for y ≥ d:

NM(w, d, y) ≤ M ′(w, d)

where M ′(w, d) is from Section 4.

Using this, we now prove our main lemma, which yields Theorem 2 as desired.

Proof of Lemma 31 assuming Lemma 32. If t ≤ n
3 , then observe that T has at most 3t

leaves and we trivially bound σ(T) ≤ 3t.
For t ≥ n

3 , we proceed by considering the maximal set of disjoint monotone width 3 clauses
in F used to develop the first m levels of T . For every node u ∈ T at level m, let the subtree
rooted at u be Tu. We can bound σ(Tu) ≤ NM(w, d, y) where d = t − m, w = 3t − n, y = 2m.
Hence, σ(T) ≤ 3mNM(w, d, y).

If m ≥ t
3 , then y = 2m ≥ t − m = d. Applying Lemma 32, we infer that

σ(T) ≤ 3mM ′(3t − n, t − m)

= 3t/3
(

3m−t/3M ′
(

3t − n,
2t

3 −
(

m − t

3

)))
≤ 3t/3M ′

(
3t − n,

2t

3

)

and we infer the claim.
So, we assume that m ≤ t

3 and try to find the value of m which will maximize σ(T).
Notice that in this case, y ≤ d and so, we can’t directly reduce to the case of M ′(w, d). As
t ≤ n

2 , it must be that w = 3t − n ≤ t ≤ t + m ≤ d + y. This implies w ≤ d + y. We now
take two cases based on value of w and apply Lemma 32 for the case of y ≤ d.

Case 1. 0 ≤ w ≤ d. In this case, we see that:

σ(T) ≤ 3mNM (3t − n, t − m, 2m)
≤ 3m(2 + λ)2m(2 + λ2)t−3m

= (2 + λ2)t

(
(3)(2 + λ)2

(2 + λ2)3

)m

Here, the fraction has value > 1 and so is maximized when m is maximized, i.e., when
m = t

3 in which case:

σ(T) ≤ 3t/3(2 + λ)2t/3

= 3t/3M ′
(

3t − n,
2t

3

)
Here the last equality follows by considering the case of 0 ≤ w ≤ d for M ′(w, d).

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:17

Case 2. d ≤ w ≤ d + y. In this case, we see that:

σ(T) ≤ 3mNM (3t − n, t − m, 2m)
≤ 3m(2 + λ)n−2t+m(1 + 2λ)2t−n+m(2 + λ2)t−3m

=
(

2 + λ

1 + 2λ

)n−2t

(2 + λ2)t

(
(3)(2 + λ)(1 + 2λ)

(2 + λ2)3

)m

Here, the rightmost fraction is > 1 and so is maximized when m is maximized, i.e., when
m = t

3 in which case:

σ(T) ≤ 3t/3(2 + λ)n−5t/3(1 + 2λ)7t/3−n

= 3t/3M ′
(

3t − n,
2t

3

)
Here the last equality follows by considering the case of d ≤ w ≤ 2d for M ′(w, d) (we can
do this as y ≤ d and hence, w ≤ 2d).

Thus, in either case, we exactly recover the monotone bound as desired. ◀

5.3.2 Upper bounds on NM(w, d, y)

As done in monotone analysis, we let λ
def= 1√

3 . Our goal is to prove Lemma 32. We introduce
a recurrence relation L(w, d, y) that we argue will upper bound NM(w, d, y).

▶ Definition 33 (L(w, d, y)). We define L(w, d, y) : N3 → R recursively as follows:

L(w, 0, y) =
{

1 w ≤ 0
0 w > 0

For w ≤ 3d, 0 ≤ d ≤ n, and y ≥ 1, define L(w, d, y) as:

L(w, d, y) = max{(2 + λ)L(w − 1, d − 1, y − 1),
(1 + 2λ)L(w − 2, d − 1, y − 1),
3λL(w − 3, d − 1, y − 1)}

For w ≤ 3d, 0 ≤ d ≤ n, and y = 0, define L(w, d, 0) as:

L(w, d, 0) = max{(2 + λ2)L(w − 1, d − 1, 0),
(1 + λ + λ2)L(w − 2, d − 1, 0),
(2λ + λ2)L(w − 3, d − 1, 0)}

We claim that L(w, d, y) gives a good bound on M(w, d, y).

▶ Proposition 1. For all 0 ≤ d ≤ n, 0 ≤ w ≤ 3d, 0 ≤ y, it holds that: NM(w, d, y) ≤
L(w, d, y)

We will show the following bound on L(w, d, y).

CCC 2024

17:18 Local Enumeration and Majority Lower Bounds

▶ Lemma 34. For all 0 ≤ d ≤ n, 0 ≤ w ≤ 3d, 0 ≤ y ≤ d, it holds that:

L(w, d, y) ≤



(2 + λ)y(2 + λ2)d−y 0 ≤ w ≤ d

(2 + λ)y−(w−d)(1 + 2λ)w−d(2 + λ2)d−y d ≤ w ≤ d + y

(1 + 2λ)y(2 + λ2)2d−w(1 + λ + λ2)w−d−y d + y ≤ w ≤ 2d

(1 + 2λ)y−(w−2d)(3λ)w−2d(1 + λ + λ2)d−y 2d ≤ w ≤ 2d + y

(3λ)y(1 + λ + λ2)3d−w(2λ + λ2)w−2d−y 2d + y ≤ w ≤ 3d

Moreover, for y ≥ d:

L(w, d, y) ≤ M ′(w, d)

where M ′(w, d) is from Section 4.

Combining Proposition 1 and Lemma 34, Lemma 32 trivially follows.

5.3.3 Proving NM(w, d, y) ≤ L(w, d, y)
Using Lemma 28 and Lemma 29, we come up with a recurrence for NM(w, d, y) and show
it’s bounded by L(w, d, y), proving Proposition 1.

Proof of Proposition 1. Recall that in the canonical ordering, all width 3 monotone clauses
appear first and remaining clauses appear later. After exhausting the width 3 monotone
clauses, the remaining clauses that we develop in the transversal tree have width at most 2.
Towards this, for non-negative integers w, d: let M2(w, d) be the maximum sum of survival
probabilities over all transversal trees for 2-CNFs where every root to leaf path has uniform
weight at least w. Recall that uniform weight is defined with respect to 3-CNFs and we
continue using that definition. We get various recurrences by considering cases on number
of marked edges out of the root node (0 or 1 or 2) and by observing that some cases are
dominated by others (such as various cases of width 1 clauses). The remaining recurrences
that are not dominated by any other recurrence are the following:

M2(w, d) ≤ max{(2)M2(w − 1, d − 1),
(1 + λ)M2(w − 2, d − 1),
2λM2(w − 3, d − 1)}

By induction, we infer that M2(w, d) ≤ L(w, d, 0).
We now develop a recurrence for NM(w, d, 0). Recall that in canonical ordering, either

we exhaust all width 3 monotone clause and reach M2(w, d), or we develop width 3 monotone
clause. Observe that Lemma 28 guarantees that every node in such a tree must have an
edge e coming out of it such that |M(e)| ≥ 2. Taking cases on the number of marked edges
coming out of the root node and whether root node has 3 or at most 2 edges coming out,
we get many recurrences. However certain recurrences are dominated by others and the
remaining recurrences that are not dominated by any othe recurrence are as follows:

NM(w, d, 0) ≤ max{(2 + λ2)NM(w − 1, d − 1, 0),
(1 + λ + λ2)NM(w − 2, d − 1, 0),
(2λ + λ2)NM(w − 3, d − 1, 0),
M2(w, d)}

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:19

By induction, we again infer that NM(w, d, 0) ≤ L(w, d, 0).
We now develop a recurrence for NM(w, d, y). We again take advantage of the fact that

in canonical ordering, either we exhaust all width 3 monotone clause and reach M2(w, d), or
we develop width 3 monotone clause. Moreover, amongst width 3 clauses, canonical ordering
causes either y to decrease by at least 1 or we exhaust such clauses and all remaining clauses
have the property that a node developed using such a clause will have an outgoing edge e

such that |M(e)| ≥ 2.
We get many recurrences for NM(w, d, y) by considering cases on number of marked

edges (1 or 2 or 3) out of the root node, number of marked edges that cause Y to decrease (1
or 2 or 3), various combinations of number of double marked edges (1 or 2 or 3), whether
the root node has at most 2 edges coming out, and whether the root node has no edges that
cause Y to decrease by at least 1. Notice that if the root node has no edges that cause Y

to decrease by at least 1, then by clause ordering, no other width 3 clause can cause Y to
decrease and hence, we are in case NM(w, d, 0). Lastly, we observe that certain recurrences
are dominated by others. The remaining recurrences that are not dominated by any other
recurrences are the following:

NM(w, d, y) ≤ max{(2 + λ)NM(w − 1, d − 1, y − 1),
(1 + 2λ)NM(w − 2, d − 1, y − 1),
3λNM(w − 3, d − 1, y − 1),
NM(w, d, 0),
M2(w, d)}

By induction, utilizing the fact that L(w, d, y) ≥ L(w, d, 0), we again infer that NM(w, d, y) ≤
L(w, d, y) as desired. ◀

5.3.4 Upper bound on L(w, d, 0)
We first show Lemma 34 for the special case of y = 0:

▶ Lemma 35. For all 0 ≤ d ≤ n, 0 ≤ w ≤ 3d, it holds that:

L(w, d, 0) ≤


(2 + λ2)d 0 ≤ w ≤ d

(2 + λ2)2d−w(1 + λ + λ2)w−d d ≤ w ≤ 2d

(1 + λ + λ2)3d−w(2λ + λ2)w−2d 2d ≤ w ≤ 3d

Proof. Let G1, G2, G3, G : N2 → R be defined as:

G1(w, d) = (2 + λ2)d

G2(w, d) = (2 + λ2)2d−w(1 + λ + λ2)w−d

G3(w, d) = (1 + λ + λ2)3d−w(2λ + λ2)w−2d

G(w, d) = min{G1(w, d), G2(w, d), G3(w, d)}

For 1 ≤ i ≤ 3, define Pi to be the set of pairs (w, d) such that d ≥ 0 and w ∈ [(i − 1)d, id].
We will show the following two propositions:

CCC 2024

17:20 Local Enumeration and Majority Lower Bounds

▶ Proposition 36. For all 1 ≤ i ≤ 3, and all (w, d) ∈ Pi : G(w, d) = Gi(w, d).

▶ Proposition 37. For all 1 ≤ i ≤ 3 and all (w, d) ∈ Pi : L(w, d, 0) ≤ G(w, d).

We observe that Proposition 36 and Proposition 37 together imply our claim.

Proof of Proposition 36. The result follows immediately from the following claims:

▷ Claim 38. G1(w, d) ≤ G2(w, d) if and only if w ≤ d, with equality when w = d.

▷ Claim 39. G2(w, d) ≤ G3(w, d) if and only if w ≤ 2d, with equality when w = 2d.

Claim 38 holds because:

G1(w, d)
G2(w, d) =

(
2 + λ2

1 + λ + λ2

)w−d

which is greater than 1 if and only if w > d. Claim 39 holds because:

G2(w, d)
G3(w, d) =

(
(1 + λ + λ2)2

(2λ + λ2)(2 + λ2)

)w−2d

which is greater than 1 if and only if w > 2d. ◀

Proof of Proposition 37. We consider cases on value of w and in every case, induct on d

and apply Definition 33 to infer the claim.

Case 1. Assume (w, d) ∈ P1.
L(w, d, 0) ≤ max{(2 + λ2)G(w − 1, d − 1, 0),

(1 + λ + λ2)G(w − 2, d − 1, 0),
(2λ + λ2)G(w − 3, d − 1, 0)}

≤ max{(2 + λ2)G1(w − 1, d − 1), (1 + λ + λ2)G1(w − 2, d − 1), (2λ + λ2)G1(w − 3, d − 1)}
= G1(w, d) max{1, (1 + λ + λ2)/(2 + λ2), (2λ + λ2)/(2 + λ2)}
= G1(w, d)
= G(w, d)

The last equality follows by applying Proposition 36 for the case (w, d) ∈ P1.
Case 2. Assume (w, d) ∈ P2.

L(w, d, 0) ≤ max{(2 + λ2)G(w − 1, d − 1, 0),
(1 + λ + λ2)G(w − 2, d − 1, 0),
(2λ + λ2)G(w − 3, d − 1, 0)}

≤ max{(2 + λ2)G2(w − 1, d − 1), (1 + λ + λ2)G2(w − 2, d − 1), (2λ + λ2)G2(w − 3, d − 1)}
= G2(w, d) max{1, 1, (2λ + λ2)(2 + λ2)/(1 + λ + λ2)2}
= G2(w, d)
= G(w, d)

The last equality follows by applying Proposition 36 for the case (w, d) ∈ P2.

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:21

Case 3. Assume (w, d) ∈ P3.
L(w, d, 0) ≤ max{(2 + λ2)G(w − 1, d − 1, 0),

(1 + λ + λ2)G(w − 2, d − 1, 0),
(2λ + λ2)G(w − 3, d − 1, 0)}

≤ max{(2 + λ2)G3(w − 1, d − 1), (1 + λ + λ2)G3(w − 2, d − 1), (2λ + λ2)G3(w − 3, d − 1)}
= G3(w, d) max{(2 + λ2)(2λ + λ2)/(1 + λ + λ2)2, 1, 1}
= G3(w, d)
= G(w, d)

The last equality follows by applying Proposition 36 for the case (w, d) ∈ P3.

◀

◀

5.3.5 Upper bound on L(w, d, y)
We are finally ready to give general bounds on L(w, d, y):

Proof of Lemma 34. Notice that if y ≥ d, then if we try and unravel the recurrence, no
path can lead to the case y = 0, d > 0. Hence, y plays no role in restricting the recurrence
and L(w, d, y) follows the same recurrence as M ′(w, d), yielding the claim.

For y ≤ d, we proceed by first defining H1, H2, H3, H4, H5, H : N3 → R as follows:

H1(w, d, y) = (2 + λ)y(2 + λ2)d−y

H2(w, d, y) = (2 + λ)y−(w−d)(1 + 2λ)w−d(2 + λ2)d−y

H3(w, d, y) = (1 + 2λ)y(2 + λ2)2d−w(1 + λ + λ2)w−d−y

H4(w, d, y) = (1 + 2λ)y−(w−2d)(3λ)w−2d(1 + λ + λ2)d−y

H5(w, d, y) = (3λ)y(1 + λ + λ2)3d−w(2λ + λ2)w−2d−y

H(w, d, y) = min{H2(w, d, y), H3(w, d, y), H4(w, d, y), H5(w, d, y)}

For 1 ≤ i ≤ 5, define Qi ⊂ N3 as follows:

Q1 = {(w, d, y) ∈ N3 : 0 ≤ w ≤ d + y}
Q2 = {(w, d, y) ∈ N3 : d ≤ w ≤ d + y}
Q3 = {(w, d, y) ∈ N3 : d + y ≤ w ≤ 2d}
Q4 = {(w, d, y) ∈ N3 : 2d ≤ w ≤ 2d + y}
Q5 = {(w, d, y) ∈ N3 : 2d + y ≤ w ≤ 3d}

We will show the following propositions that together imply our claim:

▶ Proposition 40. For all 1 ≤ i ≤ 5, and all (w, d, y) ∈ Qi : H(w, d, y) = Hi(w, d, y).

▶ Proposition 41. For all 1 ≤ i ≤ 5 and all (w, d, y) ∈ Qi : L(w, d, y) ≤ H(w, d, y).

We will in fact use Proposition 40 in the proof of Proposition 41. Hence, we prove the
former first:

Proof of Proposition 40. The result follows immediately from the following claims:

CCC 2024

17:22 Local Enumeration and Majority Lower Bounds

▷ Claim 42. H1(w, d, y) ≤ H2(w, d, y) if and only if w ≤ d, with equality when w = d.

▷ Claim 43. H2(w, d, y) ≤ H3(w, d, y) if and only if w ≤ d+y, with equality when w = d+y.

▷ Claim 44. H3(w, d, y) ≤ H4(w, d, y) if and only if w ≤ 2d, with equality when w = 2d.

▷ Claim 45. H4(w, d, y) ≤ H5(w, d, y) if and only if w ≤ 2d + y, with equality when
w = 2d + y.

Claim 42 holds because:

H1(w, d, y)
H2(w, d, y) =

(
2 + λ

1 + 2λ

)w−d

which is greater than 1 if and only if w > d. Claim 43 holds because:

H2(w, d, y)
H3(w, d, y) =

(
(1 + 2λ)(2 + λ2)

(2 + λ)(1 + λ + λ2)

)w−d−y

which is greater than 1 if and only if w > d + y. Claim 44 holds because:

H3(w, d, y)
H4(w, d, y) =

(
(1 + 2λ)(1 + λ + λ2)

(2 + λ2)(3λ)

)w−2d

which is greater than 1 if and only if w > 2d. Claim 45 holds because:

H4(w, d, y)
H5(w, d, y) =

(
(3λ)(1 + λ + λ2)
(1 + 2λ)(2λ + λ2)

)w−2d−y

which is greater than 1 if and only if w > 2d + y. ◀

We prove our final proposition:

Proof of Proposition 41. We observe that for y = 0, our claim follows from Lemma 35. We
use this fact in the inductive argument below and only consider cases where y ≥ 1. We
consider cases on value of w and in every case, induct on d + y and apply Definition 33 to
infer the claim.

Case 1. Assume (w, d, y) ∈ Q1 and y ≥ 1.
L(w, d, y) = max{(2 + λ)H(w − 1, d − 1, y − 1), (1 + 2λ)H(w − 2, d − 1, y − 1),

(3λ)H(w − 3, d − 1, y − 1)}
≤ max{(2 + λ)H1(w − 1, d − 1, y − 1), (1 + 2λ)H1(w − 2, d − 1, y − 1),

(3λ)H1(w − 3, d − 1, y − 1)}

= H1(w, d, y) max
{

1,
1 + 2λ

2 + λ
,

3λ

2 + λ

}
= H1(w, d, y)
= H(w, d, y)

The last equality follows by applying Proposition 40 for the case (w, d, y) ∈ Q1.

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:23

Case 2. Assume (w, d, y) ∈ Q2 and y ≥ 1.
L(w, d, y) ≤ max{(2 + λ)L(w − 1, d − 1, y − 1), (1 + 2λ)L(w − 2, d − 1, y − 1),

(3λ)L(w − 3, d − 1, y − 1)}
≤ max{(2 + λ)H2(w − 1, d − 1, y − 1), (1 + 2λ)H2(w − 2, d − 1, y − 1),

(3λ)H2(w − 3, d − 1, y − 1)}

= H2(w, d, y) max
{

1, 1,
(3λ)(2 + λ)
(1 + 2λ)2

}
= H2(w, d, y)
= H(w, d, y)

The last equality follows by applying Proposition 40 for the case (w, d, y) ∈ Q2.
Case 3. Assume (w, d, y) ∈ Q3 and y ≥ 1.

L(w, d, y) ≤ max{(2 + λ)L(w − 1, d − 1, y − 1), (1 + 2λ)L(w − 2, d − 1, y − 1),
(3λ)L(w − 3, d − 1, y − 1)}

≤ max{(2 + λ)H3(w − 1, d − 1, y − 1), (1 + 2λ)H3(w − 2, d − 1, y − 1),
(3λ)H3(w − 3, d − 1, y − 1)}

= H3(w, d, y) max
{

(2 + λ)(1 + λ + λ2)
(1 + 2λ)(2 + λ2) , 1,

(2 + λ2)(3λ)
(1 + 2λ)(1 + λ + λ2)

}
= H3(w, d, y)
= H(w, d, y)

The last equality follows by applying Proposition 40 for the case (w, d, y) ∈ Q3.
Case 4. Assume (w, d, y) ∈ Q4 and y ≥ 1.

L(w, d, y) ≤ max{(2 + λ)L(w − 1, d − 1, y − 1), (1 + 2λ)L(w − 2, d − 1, y − 1),
(3λ)L(w − 3, d − 1, y − 1)}

≤ max{(2 + λ)H4(w − 1, d − 1, y − 1), (1 + 2λ)H4(w − 2, d − 1, y − 1),
(3λ)H4(w − 3, d − 1, y − 1)}

= H4(w, d, y) max
{

(3λ)(2 + λ)
(1 + 2λ)2 , 1, 1

}
= H4(w, d, y)
= H(w, d, y)

The last equality follows by applying Proposition 40 for the case (w, d, y) ∈ Q4.
Case 5. Assume (w, d, y) ∈ Q5 and y ≥ 1.

L(w, d, y) ≤ max{(2 + λ)L(w − 1, d − 1, y − 1), (1 + 2λ)L(w − 2, d − 1, y − 1),
(3λ)L(w − 3, d − 1, y − 1)}

≤ max{(2 + λ)H5(w − 1, d − 1, y − 1), (1 + 2λ)H5(w − 2, d − 1, y − 1),
(3λ)H5(w − 3, d − 1, y − 1)}

= H5(w, d, y) max
{

(2 + λ)(2λ + λ2)2

(3λ)(1 + λ + λ2)2 ,
(1 + 2λ)(2λ + λ2)
(3λ)(1 + λ + λ2) , 1

}
= H5(w, d, y)
= H(w, d, y)

The last equality follows by applying Proposition 40 for the case (w, d, y) ∈ Q5.

◀

◀

CCC 2024

17:24 Local Enumeration and Majority Lower Bounds

6 Satisfiability for CNFs with bounded negations

We now use TreeSearch to give an enumeration algorithm for class of CNFs with arbitrary
width and bounded negations in each clause.

We will use the following well known estimate of binomial coefficients:

▶ Proposition 46. Let H2 : (0, 1) → (0, 1) be the binary entropy function defined as
H2(x) = −x log2(x) + (1 − x) log2(1 − x). Then, for k ≤ n/2, it holds that:

∑k
i=0
(

n
k

)
≤

poly(n)2nH2(k/n).

Proof of Theorem 4. Without loss of generality we assume each clause F contains at most
3 postive literals. Indeed, if every clause in F contains at most 3 negative literals, then
we can negate every literal in every clause and consider the resultant CNF. This CNF is
satisfiable if and only if the original CNF was satisfiable. Moreover, the new CNF has the
property that each clause contains at most 3 positive literals.

Let c = 0.71347. Then, we use TreeSearch to to enumerate all minimal satisfiable
assignments of weight at most cn. We then exhaustively go over all assignments α with
weight at least cn and check whether α satisfies F and output such minimal α.

The runtime of the exhaustive procedure is

poly(n)
n∑

i=cn

(
n

k

)
≤ poly(n)2nH2(c) ≤ O(1.8204n)

Notice that when we develop the transversal tree, we only develop positive monotone
clauses. Any positive monotone clauses that we encounter during the TreeSearch procedure
for F must have width at most 3 as each clause contains at most 3 positive literals. Hence,
the resultant transversal tree T is still a ternary tree. So, every root to leaf shoot S must
have weight at least 3t − n where t = cn. We do not put any lower bound on Y for any such
shoot and so, we set y = ∞. Then, the runtime of TreeSearch upto polynomial factors is
bounded by NM(3(cn) − n, cn, ∞) ≤ M ′((3c − 1), cn). We observe that c ≤ 3c − 1 ≤ 2c and
so, we are in the regime where w ≤ d ≤ 2d. Thus,

M ′((3c − 1)n, cn) ≤

((
1 + 2√

3

)2c−1(
2 + 1√

3

)1−c
)n

≤ 1.8204n

Hence, the runtime of our algorithm is indeed O(1.8204n) as desired.
◀

7 Conclusion

We gave a new non-trivial algorithm for Enum(3, n
2): given an n-variable 3-CNF with

no satsifying assignment of Hamming weight less than n
2 , we can enumerate all satisfying

assignments of Hamming weight exactly n
2 in expected time 1.598n. Several fascinating

questions with major consequences remain open. Here we list the most pressing.

1. We already mentioned that Enum(3, n
2) cannot be solved in less than 1.565n steps. Close

this gap.
2. Can our approach produce significant improvements for k-CNFs with k > 3?

It seems that to make progress towards resolving these problems, deeper analysis of the
structure of k-CNFs will be required.

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:25

References
1 Kazuyuki Amano. Depth-three circuits for inner product and majority functions. In Satoru

Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and
Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages
7:1–7:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/
10.4230/LIPIcs.ISAAC.2023.7, doi:10.4230/LIPICS.ISAAC.2023.7.

2 Tobias Brüggemann and Walter Kern. An improved deterministic local search algorithm for
3-SAT. Theor. Comput. Sci., 329(1-3):303–313, 2004. doi:10.1016/j.tcs.2004.08.002.

3 Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David Zuckerman.
Mining circuit lower bound proofs for meta-algorithms. Comput. Complex., 24(2):333–392,
2015. doi:10.1007/s00037-015-0100-0.

4 Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon M. Kleinberg,
Christos H. Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A deterministic (2 −
2/(k + 1))n algorithm for k-SAT based on local search. Theor. Comput. Sci., 289(1):69–83,
2002. doi:10.1016/S0304-3975(01)00174-8.

5 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via
monotone local search. J. ACM, 66(2):8:1–8:23, 2019. doi:10.1145/3284176.

6 Peter Frankl, Svyatoslav Gryaznov, and Navid Talebanfard. A variant of the VC-dimension with
applications to depth-3 circuits. In Mark Braverman, editor, 13th Innovations in Theoretical
Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA,
volume 215 of LIPIcs, pages 72:1–72:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ITCS.2022.72.

7 Alexander Golovnev, Alexander S. Kulikov, and R. Ryan Williams. Circuit depth reductions.
In James R. Lee, editor, 12th Innovations in Theoretical Computer Science Conference, ITCS
2021, January 6-8, 2021, Virtual Conference, volume 185 of LIPIcs, pages 24:1–24:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.
ITCS.2021.24, doi:10.4230/LIPICS.ITCS.2021.24.

8 Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-SAT algorithms
using biased-PPSZ. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA,
June 23-26, 2019, pages 578–589. ACM, 2019. doi:10.1145/3313276.3316359.

9 Johan Håstad, Stasys Jukna, and Pavel Pudlák. Top-down lower bounds for depth-three
circuits. Comput. Complex., 5(2):99–112, 1995. doi:10.1007/BF01268140.

10 Timon Hertli. Breaking the PPSZ barrier for unique 3-SAT. In Javier Esparza, Pierre
Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,
2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 600–611.
Springer, 2014. doi:10.1007/978-3-662-43948-7_50.

11 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC0. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
961–972. SIAM, 2012. doi:10.1137/1.9781611973099.77.

12 Peter Keevash. Hypergraph Turán problems. In Surveys in combinatorics 2011, volume 392 of
London Math. Soc. Lecture Note Ser., pages 83–139. Cambridge Univ. Press, Cambridge, 2011.

13 Konstantin Kutzkov and Dominik Scheder. Using CSP to improve deterministic 3-sat. CoRR,
abs/1007.1166, 2010. URL: http://arxiv.org/abs/1007.1166, arXiv:1007.1166.

14 Victor Lecomte, Prasanna Ramakrishnan, and Li-Yang Tan. The composition complexity of
majority. In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022,
July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 19:1–19:26. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.19.

15 Andrea Lincoln and Adam Yedidia. Faster random k-CNF satisfiability. In Artur Czumaj,
Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata,

CCC 2024

https://doi.org/10.4230/LIPIcs.ISAAC.2023.7
https://doi.org/10.4230/LIPIcs.ISAAC.2023.7
https://doi.org/10.4230/LIPICS.ISAAC.2023.7
https://doi.org/10.1016/j.tcs.2004.08.002
https://doi.org/10.1007/s00037-015-0100-0
https://doi.org/10.1016/S0304-3975(01)00174-8
https://doi.org/10.1145/3284176
https://doi.org/10.4230/LIPIcs.ITCS.2022.72
https://doi.org/10.4230/LIPIcs.ITCS.2021.24
https://doi.org/10.4230/LIPIcs.ITCS.2021.24
https://doi.org/10.4230/LIPICS.ITCS.2021.24
https://doi.org/10.1145/3313276.3316359
https://doi.org/10.1007/BF01268140
https://doi.org/10.1007/978-3-662-43948-7_50
https://doi.org/10.1137/1.9781611973099.77
http://arxiv.org/abs/1007.1166
https://arxiv.org/abs/1007.1166
https://doi.org/10.4230/LIPIcs.CCC.2022.19

17:26 Local Enumeration and Majority Lower Bounds

Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual
Conference), volume 168 of LIPIcs, pages 78:1–78:12. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.78.

16 Burkhard Monien and Ewald Speckenmeyer. Solving satisfiability in less than 2n steps. Discret.
Appl. Math., 10(3):287–295, 1985. doi:10.1016/0166-218X(85)90050-2.

17 Robin A. Moser and Dominik Scheder. A full derandomization of schöning’s k-SAT algorithm.
In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 245–252. ACM,
2011. doi:10.1145/1993636.1993670.

18 Christos H. Papadimitriou. On selecting a satisfying truth assignment (extended abstract). In
32nd Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1-4
October 1991, pages 163–169. IEEE Computer Society, 1991. doi:10.1109/SFCS.1991.185365.

19 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-SAT. J. ACM, 52(3):337–364, 2005. doi:10.1145/1066100.
1066101.

20 Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chic. J.
Theor. Comput. Sci., 1999, 1999. URL: http://cjtcs.cs.uchicago.edu/articles/1999/11/
contents.html.

21 Ramamohan Paturi, Michael E. Saks, and Francis Zane. Exponential lower bounds for depth
three boolean circuits. Comput. Complex., 9(1):1–15, 2000. doi:10.1007/PL00001598.

22 Dominik Scheder. PPSZ is better than you think. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages
205–216. IEEE, 2021. doi:10.1109/FOCS52979.2021.00028.

23 Dominik Scheder and Navid Talebanfard. Super strong ETH is true for PPSZ with small
resolution width. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169
of LIPIcs, pages 3:1–3:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.CCC.2020.3.

24 Uwe Schöning. A probabilistic algorithm for k-SAT based on limited local search and restart.
Algorithmica, 32(4):615–623, 2002. doi:10.1007/s00453-001-0094-7.

25 Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Mathematical
foundations of computer science (Proc. Sixth Sympos., Tatranská Lomnica, 1977), pages
162–176. Lecture Notes in Comput. Sci., Vol. 53, 1977.

26 Nikhil Vyas and R. Ryan Williams. On super strong ETH. In Mikolás Janota and Inês Lynce,
editors, Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd International
Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, volume 11628 of Lecture
Notes in Computer Science, pages 406–423. Springer, 2019. doi:10.1007/978-3-030-24258-9\
_28.

27 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM J.
Comput., 42(3):1218–1244, 2013. doi:10.1137/10080703X.

https://doi.org/10.4230/LIPIcs.ICALP.2020.78
https://doi.org/10.1016/0166-218X(85)90050-2
https://doi.org/10.1145/1993636.1993670
https://doi.org/10.1109/SFCS.1991.185365
https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1145/1066100.1066101
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
https://doi.org/10.1007/PL00001598
https://doi.org/10.1109/FOCS52979.2021.00028
https://doi.org/10.4230/LIPIcs.CCC.2020.3
https://doi.org/10.4230/LIPIcs.CCC.2020.3
https://doi.org/10.1007/s00453-001-0094-7
https://doi.org/10.1007/978-3-030-24258-9_28
https://doi.org/10.1007/978-3-030-24258-9_28
https://doi.org/10.1137/10080703X

	1 Introduction
	1.1 Local enumeration, k-SAT and lower bounds for Majority function
	1.2 Our contributions

	2 Preliminaries
	3 Transversal Trees and Tree Search
	3.1 Construction of Transversal Trees
	3.2 TreeSearch: An Algorithm for Enumerating the Valid Leaves of T
	3.3 Canonical Clause Ordering and Random Tree Edge Ordering

	4 Analysis of TreeSearch for Monotone k-CNFs
	4.1 Random Tree Edge Ordering and Pruning
	4.2 An Analysis of TreeSearch for Monotone 3-CNF
	4.2.1 Upper Bounds on M(w,d)
	4.2.2 Proof of Theorem 2 for monotone formulas
	4.2.3 Proof of Lemma 24

	5 Analysis of TreeSearch for arbitrary 3-CNFs
	5.1 Slight modification to canonical ordering and TreeSearch
	5.2 Fullness and Double marking
	5.3 An Analysis of TreeSearch for arbitrary 3-CNF
	5.3.1 Proving Theorem 2
	5.3.2 Upper bounds on NM(w,d,y)
	5.3.3 Proving NM(w,d,y)<=L(w,d,y)
	5.3.4 Upper bound on L(w,d,0)
	5.3.5 Upper bound on L(w,d,y)

	6 Satisfiability for CNFs with bounded negations
	7 Conclusion

