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Abstract

Poor fit between models of sequence or trait evolution and empirical data is known to cause biases and lead to spuri-
ous conclusions about evolutionary patterns and processes. Bayesian posterior prediction is a flexible and intuitive
approach for detecting such cases of poor fit. However, the expected behavior of posterior predictive tests has never
been characterized for evolutionary models, which is critical for their proper interpretation. Here, we show that the
expected distribution of posterior predictive P-values is generally not uniform, in contrast to frequentist P-values
used for hypothesis testing, and extreme posterior predictive P-values often provide more evidence of poor fit
than typically appreciated. Posterior prediction assesses model adequacy under highly favorable circumstances, be-
cause the model is fitted to the data, which leads to expected distributions that are often concentrated around inter-
mediate values. Nonuniform expected distributions of P-values do not pose a problem for the application of these
tests, however, and posterior predictive P-values can be interpreted as the posterior probability that the fitted model

would predict a dataset with a test statistic value as extreme as the value calculated from the observed data.

Key words: phylogenetics, Bayesian inference, model testing, RevBayes, posterior prediction.

Introduction

Statistical models are mathematical abstractions of
reality that employ simplifying assumptions to capture
important features of complex systems. As long as such as-
sumptions do not depart from reality too strongly, statistic-
al models can provide important insights into the systems
they represent. However, if assumptions violate reality in
meaningful ways, models lose both utility and reliability
(Gelman et al. 2014; Brown and Thomson 2018).

Applied statistical fields, including phylogenetics and
molecular evolution, need tools to assess when their mod-
els fail as meaningful abstractions of reality. The use of
these tools is often referred to as testing absolute model
fit or testing model adequacy. In a Bayesian framework,
one way to test a model’s absolute fit is through posterior
prediction (Rubin 1984; Bollback 2002).

Posterior prediction involves fitting a Bayesian model with
parameters 6 to observed data y. We then draw S values of 9
from the posterior distribution, p(8 | y), and based on these
posterior draws ( 6 - - - 6s), we simulate S predictive datasets
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(y7 - - - y¥) of the samessize as y. To perform a posterior pre-
dictive check of our model, we start by selecting a test statis-
tic, T(y), that can be calculated on the observed and
predictive datasets in order to compare them. One way to
summarize the comparison between T(y) and T(y;”) is to
calculate the fraction of predictive datasets that have test
statistic values smaller or larger than the observed. If smaller,
we can define the posterior predictive P-value as Pr(T(y"%) <
T(y) | y) and, if larger, Pr(T(y"*) > T(y) | y) (see Hohna et al.
2018, for a description of different posterior predictive
P-values). In either case, particularly large or small P-values in-
dicate poor fit between the model and data.

The steps outlined above describe the mechanics of per-
forming posterior prediction, but the more formal math-
ematical description of the quantity being estimated by
this procedure is given by

p =% (I, p(TG) |00 1) 40) dTG/). (1)

Here, integration inside the parentheses describes the pos-
terior predictive distribution of test statistic values, T,
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based on the posterior distribution of 6, while the outer
integration describes calculation of the lower tail-area
probability of this distribution with an upper limit defined
by the empirical test statistic value, T(y).

Despite statistical literature discussing the behavior
of posterior predictive tests in general (e.g. Meng
1994), expected distributions have never been charac-
terized for posterior predictive P-values in phyloge-
netics and molecular evolution. Therefore, we aim to
characterize the expected distributions of posterior
predictive P-values for phylogenetics, compare such
distributions across different types of test statistics,
and understand how different parameters affect these
expectations. To do so, we performed a broad set of si-
mulations and posterior predictive analyses. We used
the same model for simulation and analysis, and we
drew parameter values for simulation from the prior
distributions of the model parameters.

Our results convincingly demonstrate that posterior
predictive P-values should not be interpreted like
P-values from frequentist hypothesis tests. If misinter-
preted in this way, posterior predictive tests will not be
used to greatest effect and the strength of evidence for
poor model fit will be underestimated because the ex-
pected distributions of posterior predictive P-values are,
in many cases, highly nonuniform with a concentration
of values near 0.5.

Definition and Comparison of P-values

While posterior predictive P-values are called P-values be-
cause they involve the calculation of tail-area probabilities,
they are distinct from several other types of P-values that
we describe here for clarity.

The traditional frequentist P-value used in a hypothesis
testing framework is defined as the probability of obtaining
a test statistic value, T(y") that is as or more extreme than
the observed test statistic value, T(y), if the null hypothesis
(with a value of 6 fixed a priori) is true. If we focus on the
probability of obtaining observations that are smaller than
the observed, the frequentist hypothesis testing P-value
can be described by the cumulative distribution function,

p =" p(T(y®) | 0) dT(y'™). 2)

Note that 6, and correspondingly the distribution of T(y"),
does not depend at all on y in this case.

The parametric bootstrap P-value is similar in formula-
tion to the frequentist P-value for testing a null hypothesis,
but with estimated parameter 6. That is, instead of assum-
ing a value of  that is fixed a priori, we use the maximum-
likelihood estimate, 6, based on y:

p =" p(T(/?) | ) dT(y?) (3)

Parametric bootstrapping is a frequentist analog to poster-
ior predictive model checking, but does not involve prior
distributions or integration across different values of 6.

2

The estimated value of & and the distribution of T(y"™P)
do depend on y in this case.

The prior predictive P-value (Box 1980) is the Bayesian
equivalent of the traditional frequentist hypothesis test,
in the sense that the (probabilities of) parameter values
defining the model are fixed a priori and do not depend
on the observed data, y. The main difference is that, in
the case of the prior predictive P-value, the cumulative
distribution function is computed while integrating over
different values of 6 weighted by the prior probability of
each, p(0),

p=I"2 (IZa PTG/)1Op(©) d0) dTG/™). ()

A graphical depiction of the similarities and differences
across P-values is given in Fig. 1.

Results

The expected distribution of posterior predictive P-values
varies by both test statistic and simulation condition, but
is typically nonuniform (Figs. 2 and 3). Instead, these distri-
butions are more concentrated around intermediate values,
with fewer values near 0 or 1. This expectation has gone un-
appreciated in the discussion and applications of these tests
to phylogenetics and molecular evolution (e.g. Bollback
2002; Brown 2014; Brown and Thomson 2018), but has im-
portant consequences for how results are interpreted.

In this study, we investigated the expected behavior of
both data- and inference-based test statistics. Briefly, data-
based test statistics can be calculated directly based on the
properties of sequence alignments (e.g. the variance in GC
content across sequences), while inference-based test statis-
tics are calculated based on the properties of inferences con-
ditional on those alignments and a model (e.g. the 99th
percentile in the ordered vector of RF distances describing dis-
tances between trees sampled from the posterior distribu-
tion). Despite these differences, both types of test statistics
have expected distributions that exhibit the same concentra-
tion of posterior predictive P-values near intermediate values.

While most test statistics have nonuniform expected
distributions, ancillary test statistics (those statistics whose
probability distributions do not depend on model para-
meters) should have uniform expected distributions
(Meng 1994; Gelman 2013), because fitting the model
has no effect for these statistics. This expectation explains
the distributions of P-values for statistics based on GC con-
tent in our results (Fig. 2). Mean GC content is an ancillary
statistic of the Jukes—Cantor model (JC), since this model
assumes equal nucleotide frequencies, and we see roughly
uniform expected distributions for Mean GC when using
JC. However, Mean GC content is not ancillary for the
GTR+I+G model, so the expected distribution is more con-
centrated around 0.5 in this case (bottom right of Fig. 2).
Variance in GC content across sequences is ancillary for
both models, since both assume that GC content does
not vary across the tree. These distributions are roughly
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Fig. 1. Schematic of workflows to estimate expected distributions for different types of P-values. The depictions of expected distributions are
generalizations, intended to highlight important differences among different types of P-values.

uniform for both models and far more dispersed than the
distributions for other, nonancillary statistics.
Inference-based test statistics, by definition, depend on
parameters of the model and cannot be ancillary. As a re-
sult, expected distributions of posterior predictive P-values

for these statistics are never uniform (Fig. 3) and are always
more concentrated near 0.5 than 0 or 1. Expected distribu-
tions for inference-based statistics tend to be more con-
sistent than for data-based statistics, although some
become markedly more peaked when dataset size

3
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Fig. 2. Distributions of posterior predictive P-values for data-based test statistics. The conditions for simulation and analysis are shown above
each relevant portion of the figure as: Model/Number of Taxa/Number of Sites/Mean Branch Length. Results from the baseline setting (Setting 1
in Table 1) are shown in the middle. The other settings modified one condition of the baseline, indicated by the labels next to arrows. The Mean
GC Content test statistic is ancillary for the JC model, while the Variance in GC Content test statistic is ancillary for both the JC and GTR+I+G
models. The labels for these statistics are emphasized and the relevant distributions are marked with an asterisk.

increases either in terms of number of sites or number of
taxa.

Several statistics, both data- and inference-based, have
expected P-value distributions that are essentially fixed
at 0.5 for some conditions (e.g. the effect of more taxa
on the number of invariant sites or the topological en-
tropy; Figs. 2 and 3). Posterior predictive P-values can be
interpreted as the posterior probability of observing a
test statistic value that is as extreme as the observed value
(Gelman 2013), so these (nearly) invariant distributions
may indicate that fitted models almost always predict da-
tasets with (nearly) the same test statistic value as the ob-
served. This interpretation makes sense for both the
number of invariant sites and entropy test statistics with
large numbers of taxa in our simulations (“Setting 2” in
Table 1, “More Taxa” in Figs. 2 and 3). For datasets

4

simulated with these conditions, nearly every site in the
alignment will have some variation, causing the number
of invariant sites to be approximately 0 for all observed
and posterior predictive datasets. Similarly, these condi-
tions lead to very diffuse posterior distributions of phylo-
genetic topologies, such that every topology sampled
from the posterior distribution is unique and the esti-
mated entropy is the same across datasets.

Expected P-value distributions for some test statistics
are multimodal (e.g. the minimum pairwise difference stat-
istic; Fig. 2). Multimodal distributions typically occur with
discrete test statistics that adopt a small number of pos-
sible values. Such distributions are not unique to phyloge-
netics and molecular evolution and present no particular
difficulties for interpretation (Gelman 2013). However,
these expected distributions are worth bearing in mind
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Fig. 3. Distributions of posterior predictive P-values for inference-based test statistics. The labels and layout are the same as in Fig. 2.

Table 1 Settings for simulations and posterior predictive analyses

Setting Substitution Model Number of taxa Number of sites Mean branch length
1 (Baseline) JC 16 100 0.1

2 JC 64 100 0.1

3 JC 16 1,000 0.1

4 JC 16 100 0.02

5 GTR +I'+ 1 16 100 0.1

when interpreting such values in empirical studies. In these
cases, small changes in test statistic values can lead to
seemingly large changes in P-values.

While P-values have received the most attention as a
way to summarize the results of posterior predictive tests,
an alternative approach is the use of effect sizes (Doyle
et al. 2015; Hohna et al. 2018). Briefly, effect sizes measure
the distance between the empirical test statistic value and
the median of the posterior predictive distribution,

normalized by the standard deviation of the posterior pre-
dictive distribution. Effect sizes are useful for understand-
ing the magnitude of the discrepancy between the
observed and predicted values, even when the observed
value is highly improbable given the model. We used the
same set of simulations and analyses to characterize the
expected distributions of effect sizes (Figs. 4 and 5).
These expected effect size distributions make sense in light
of the expected distributions of P-values, although there is

5
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Fig. 4. Distributions of effect sizes for data-based test statistics. The labels and layout are the same as in Fig. 2.

a preponderance of values near 0 rather than near 0.5. Due
to the way effect sizes are calculated, their expected distri-
bution is not uniform even when the expected distribution
of P-values is uniform. As an example, see the distributions
of expected effect sizes for Mean GC content for any of the
analyses employing a JC model (Fig. 4). As with expected
distributions of P-values, many of the distributions of ef-
fect sizes are multimodal, due to the discrete nature of
many test statistics. However, in all cases, these values
are nearly always < 2.0. This result stands in contrast to
our experiences analyzing empirical data sets, where effect
sizes are frequently > 10.0 (Doyle et al. 2015).

Discussion and Conclusions

P-values by definition represent the probability, conditional
on the model, of observing data that are more extreme
than what has actually been observed. A P-value that is
very small or very large indicates that the observed dataset
is an outlier relative to model expectations and possibly

6

reflects poor absolute model fit. In a standard frequentist
hypothesis test, the model corresponds to the null hypoth-
esis and poor model fit would lead to its rejection.
Frequentist P-values for hypothesis testing are explicitly
constructed to have uniform distributions in order to con-
trol false positive rates. Importantly, this uniformity of
P-values stems from the use of fixed (i.e. not fitted) param-
eter values.

Posterior predictive P-values, on the other hand, use
model parameter values that have been fitted to the ob-
served data (Fig. 1). The probability that the observed
data are more extreme than expected is always reduced
relative to tests using fixed values, because the model is gi-
ven the opportunity to explain the data as well as possible.
Thus, expected distributions of posterior predictive
P-values tend to be concentrated around 0.5 (Meng
1994, Figs. 2 and 3), although the precise shape can vary
by both test statistic and analysis condition. In practice,
nonuniform distributions can be precisely what we want
if our goal is to assess the ability of our model to capture
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Fig. 5. Distributions of effect sizes for inference-based test statistics. The labels and layout are the same as in Fig. 2.

certain aspects of our observed data (Gelman 2013). If our
model always does a good job of predicting these features,
then the expected distribution of posterior predictive
P-values should reflect that.

We focused here on posterior predictive P-values, com-
puted in a Bayesian framework, but similar considerations
apply to P-values from parametric bootstrapping analyses
(Fig. 1) conducted in a frequentist framework. Since para-
metric bootstrapping also involves fitting a model to a da-
taset, it should also produce expected distributions of
P-values that are nonuniform. In fact, expected distribu-
tions from parametric bootstrapping may be much more
concentrated than those from posterior prediction, be-
cause the effect of posterior uncertainty keeps the ex-
pected distributions from becoming too peaked in a
Bayesian setting.

If posterior predictive P-values are misinterpreted as fre-
quentist hypothesis testing P-values, the evidence for poor
model fit will usually be underestimated. A posterior pre-
dictive P-value of 0.05 typically has a <5% probability of
occurring when the assumptions of an analysis exactly
match the data-generating process. However, again, it is
best to avoid framing posterior predictive tests in frequen-
tist hypothesis testing terms. The goal of posterior predict-
ive tests should not be to reject a model as “true” (Gelman
et al. 2014), since we know that none of the models fully
represent the complexity of real evolutionary processes.
Rather, these tests indicate the extent to which the mod-
el’s simplifications are problematic for explaining import-
ant features of the data.

In the course of this study, we simultaneously character-
ized expected distributions of posterior predictive P-values

7
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Table 2 Parameters of phylogenetic models and their associated prior distributions

Parameter Description Prior distribution Parameters of the distribution
1 4 Topology of the tree Uniform Num. of Taxa=16 or 64
bl Branch lengths Exponential A = 10 or 50

b4 Equilibrium base frequencies Dirichlet o =(1,1,1,1)

er Exchangeabilities Dirichlet O =(1, 1, 1,1, 1, 1)
a Shape of the Gamma distribution Exponential Aq = 0.05

1 Proportion of invariant sites Beta (a4, B)) = (10, 20)

for multiple test statistics and our results demonstrate that
many of these test statistics are correlated. Strong correla-
tions mean that a count of the number of statistics with small
P-values is not an effective way to measure the overall degree
of fit between model and data. Small P-values for posterior
predictive tests with two uncorrelated test statistics would
provide more insight than small P-values for many such tests
with highly correlated test statistics.

Empirical application of posterior predictive tests in phy-
logenetics and molecular evolution has frequently resulted
in extremely small P-values across many different datasets
using a variety of different test statistics (e.g. Foster 2004;
Lartillot et al. 2007; Zhou et al. 2010; Doyle et al. 2015;
Duchéne et al. 2016; Hohna et al. 2018; Richards et al.
2018). Based on the nature of the expected distributions
that we have characterized here, these empirical results of-
ten represent even stronger evidence than has been appre-
ciated that commonly applied models in phylogenetics are
seriously inadequate. Depending on which particular test
statistics exhibit poor fit for a given study, we may take dif-
ferentactions depending on the goals of the analysis. For in-
stance, previous work has shown that inadequately
accounting for variation in substitution rates across sites
can have detrimental consequences on phylogenetic accur-
acy (Yang 1996), and so poor fit for the number of invariant
sites test statistic might motivate exploration of alternative
types of distributions or models for characterizing rate vari-
ation. Poor fit for other test statistics, for instance the max
invariant block length, may have less of an impact on phylo-
genetic accuracy, but still indicate interesting patterns of
molecular evolution that are worth exploring further (e.g.
highlighting striking spatial patterns of constraint, like
those found in ultraconserved elements).

An important future direction for this work will be to
more comprehensively characterize the aspects of empiric-
al datasets that consistently exhibit poor fit under com-
monly employed models of sequence and trait evolution.
These results would highlight which aspects of the molecu-
lar evolutionary process are most likely to lead to analytical
issues and that are least well captured by available models,
thereby helping to prioritize and guide the efficient devel-
opment of more effective new models. Such information
would also help identify interesting and widespread pat-
terns of genomic evolution still in need of explanation.

To our knowledge, this paper is the first characterization
of the expected distribution of posterior predictive P-values
for models commonly used in phylogenetics and molecular
evolution. Our hope is that the results presented here clarify

8

the interpretation of empirical assessments of absolute
model fit using posterior predictive tests. These tests can
highlight important mismatches between model assump-
tions and the actual biological processes that shape genome
sequences. Critical thought must be given to how models
are applied in order to gain insight into evolutionary pat-
terns and processes (Brown and Thomson 2018).

Materials and Methods

Data Simulation

To understand the expected distributions of posterior pre-
dictive P-values when analysis conditions precisely match
those under which the data were generated, we first simu-
lated alignments of DNA sequences using a baseline set of
conditions: a JC model (Jukes and Cantor 1969) of sequence
evolution, a 16-taxon tree from a uniform distribution,
alignments with 100 sites, and exponentially distributed
branch lengths with a mean of 0.1 (Table 1, Setting 1). We
then simulated alignments under four additional sets of con-
ditions that varied each baseline setting individually. We in-
creased the size of the tree to 64 taxa (Setting 2), increased
the length of the alignment to 1,000 sites (Setting 3), reduced
the mean branch length to 0.02 (Setting 4), and used the
General Time-Reversible model (GTR) (Tavaré 1986) with
Gamma-distributed rate variation among sites as four dis-
crete rate categories (/) (Yang 1994, 1996) and a proportion
of invariable sites (I) (Adachi and Hasegawa 1995; Gu et al.
1995) (Setting 5). For each setting, we simulated 10,000 align-
ments in RevBayes (Hohna et al. 2016) by randomly drawing
parameter values from the prior distribution associated with
each parameter (see Table 2 for details about the parameters
and their prior distributions). Parameter values were drawn
separately for each dataset.

Once datasets were simulated, we conducted Bayesian
Markov chain Monte Carlo (MCMC) analyses using
RevBayes (Hohna et al. 2016) to estimate posterior distri-
butions of tree topologies and model parameter values
for each simulated dataset. We then drew samples from
these posterior distributions to generate posterior predict-
ive datasets and compared each original dataset to its cor-
responding posterior predictive distribution using a variety
of test statistics (Hohna et al. 2018). Details of these ana-
lyses are provided below.

Markov Chain Monte Carlo Analyses
We performed MCMC analyses in RevBayes (Hohna et al.
2016) for each simulated dataset using the same
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Table 3 Moves used during Markov chain Monte Carlo (MCMC) analyses

Function in RevBayes Description Parameter to change Weight

mvNNI Nearest-neighbor interchange move 4 num. of taxa (e.g. 16, 64)
mvSPR Subtree prune-and-regraft move 4 num. of taxa x 0.1 (e.g. 1.6, 6.4)
mvBranchLengthScale Scaling move on the branch lengths bl num. of taxa (e.g. 16, 64)
mvBetaSimplex Scaling move on nucleotide frequencies T 2.0
mvDirichletSimplex Scaling move on nucleotide frequencies T 1.0
mvBetaSimplex Scaling move on exchangeabilities er 3.0
mvDirichletSimplex Scaling move on exchangeabilities er 1.5

mvScale Scaling move on shape parameter a 2.0
mvBetaProbability Scaling move on proportion of invariable sites | 2.0

JC analyses used only the first three moves

Table 4 Descriptions of data-based test statistics

Test Statistic Description Reference

Number of invariant

Number of columns in the alignment that show no variation in nucleotide

Hoéhna et al. (2018)

Héhna et al. (2018)

Hohna et al. (2018)

sites content

Max invariant block The maximum number of consecutive sites with no variation
length

Max pairwise The scaled number of mismatches between the pair of sequences with the
difference greatest number of mismatches

Max variable block The maximum number of consecutive sites with variation
length

Min pairwise The scaled number of mismatches between the pair of sequences with the
difference fewest number of mismatches

Mean GC content
Variance in GC

GC content averaged across all sequences

Variance in GC content across sequences in an alignment

Héhna et al. (2018)
Hohna et al. (2018)

content
Theta Watterson’s § measures the genetic diversity in a given population Watterson (1975)
Tajima’s D Accounts for how much the variability observed is due to chance Tajima (1989)
Tajima’s 7 Average number of pairwise differences across sequences in an alignment Nielsen and Slatkin (2013) and King

Multinomial likelihood Measures the ability of the model to account for different site pattern

frequencies

et al. (2018)
Goldman (1993)

conditions under which they were simulated (see Table 1).
Prior distributions were the same as those from which par-
ameter values were drawn for simulation (Table 2). For all
analyses, we estimated the tree topology and branch
lengths. For analyses of datasets simulated under Setting
5 with a GTR+/+] model, we also estimated the equilib-
rium base frequencies, the exchangeabilities, the shape
parameter of the /" distribution, and the proportion of in-
variable sites (I; Table 2). Each analysis involved a burn-in
phase of 200 iterations, followed by MCMC sampling for
10,000 iterations. The moves used for each parameter,
and their associated weights, are provided in Table 3. A
subset of runs from different conditions were spot checked
to ensure that the MCMC settings were sufficient to
achieve good convergence of both scalar parameter values
and tree topologies. MCMC analyses conducted for use
with posterior predictive analyses involving data-based
test statistics used two independent replicate analyses
and automatic tuning of moves every 200 generations dur-
ing both the burn-in and sampling phases. Analyses con-
ducted for wuse with posterior predictive analyses
involving inference-based test statistics used a single repli-
cate and only used automatic tuning during the burn-in
phase.

Posterior Predictive Analyses and P-values
To perform posterior predictive analysis on each of the si-
mulated datasets, we used the P*> (Phylogenetic Posterior
Prediction) workflow implemented in RevBayes (Hohna
et al. 2018). Phylogenetic posterior predictive analyses in-
volve four steps: (1) estimating posterior distributions of
phylogenetic trees and model parameters from input
data (see above), (2) simulating new (posterior predictive)
data using parameter values drawn from the estimated
posterior distributions, (3) computing test statistics for
both the original and simulated data, and (4) calculating
P-values and effect sizes to summarize the (dis)similarity
between original and simulated data. Some test statistics,
known as inference-based (see below), may depend on
characteristics of the inferences drawn from data. To cal-
culate these, an additional step (3a) is necessary that in-
volves running MCMC analyses on each simulated,
posterior predictive dataset. For step (2), we simulated
1,001 posterior predictive datasets when using data-based
test statistics and 501 posterior predictive datasets when
using inference-based test statistics.

The P* workflow has a number of test statistics (Tables 4
and 5) available that summarize characteristics of align-
ments. Some of these statistics (data-based, Table 4) are
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Table 5 Descriptions of inference-based test statistics, originally
described by Brown (2014)

Test Statistic Description

Mean RF Mean RF (Robinson and Foulds (1981)) distance
between trees sampled from the posterior
distribution

Quant 25  25th percentile in the ordered vector of RF distances
between trees sampled from the posterior
distribution

Quant 50  50th percentile in the ordered vector of RF distances
between trees sampled from the posterior
distribution

Quant 75  75th percentile in the ordered vector of RF distances
between trees sampled from the posterior
distribution

Quant 99  99th percentile in the ordered vector of RF distances

between trees sampled from the posterior
distribution

Quant 999 999th 1,000-quantile in the ordered vector of RF
distances between trees sampled from the posterior

distribution

Entropy Gain in information about the tree topology provided
by the data

Mean TL Mean length of trees sampled from the posterior
distribution

Var TL Variance in the length of trees sampled from the

posterior distribution

calculated directly from the alignment itself, while others
(inference-based, Table 5) are calculated based on character-
istics of inferences drawn from the alignment. We used all
test statistics currently implemented in P* in RevBayes. For
any of these statistics, P-values can be used to assess whether
the “observed” alignment is similar to the posterior predict-
ive alignments (Doyle et al. 2015; H6hna et al. 2018). P-values
indicate what percentage of posterior predictive test statistic
values are more extreme than the observed value.

P-values near 0 or 1 indicate that the observed value
falls in a tail of the posterior predictive distribution.
Midpoint P-values are particularly useful for discrete test
statistics, where ties can be observed between posterior
predictive and observed values. In such a case, the mid-
point P-value will consider half of the tied posterior pre-
dictive values to be more extreme than observed and
half to be less extreme than observed. In this study, we spe-
cifically focused on the lower, one-tailed, midpoint P-value.
All 10,000 simulated datasets were analyzed to character-
ize the behavior of posterior predictive analyses for data-
based test statistics, while 1,000 datasets were analyzed
for inference-based test statistics due to their more com-
putationally intensive calculation.

Effect Sizes

While we have largely focused our attention in this study
on the distribution of posterior predictive P-values, be-
cause such values have received the most attention in
the statistical literature, an alternative measure of absolute
model fitis the posterior predictive effect size (PPES; Doyle
et al. 2015; Hohna et al. 2018). Complementary to
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posterior predictive P-values, posterior predictive effect
sizes capture the magnitude of differences between ob-
served and expected test statistic values on a broader scale.
While posterior predictive tests using two different test
statistics for the same dataset may both produce
P-values of 0, one observed value may fall just outside
the tails of the corresponding posterior predictive distribu-
tion, while the other observed value may be very, very far
away from its predicted values. Effect sizes differentiate be-
tween these two situations, and are calculated as

IT() — M(p(TG™) [y))|

PPES =
a(p(T(y"*) y))

6))

where y is the observed dataset, y"™ is a posterior predict-
ive dataset, T(y) is a test statistic calculated with y,
p(T(y"®) |y) is the posterior predictive distribution of T,
M is the median of a distribution, and ¢ is the standard de-
viation of a distribution. In other words, a posterior pre-
dictive effect size is the absolute value of the difference
between the observed test statistic value and the median
of the posterior predictive distribution of test statistic va-
lues, normalized by the posterior predictive distribution’s
standard deviation. Using the same simulations and ana-
lyses that we used to understand the expected behavior
of posterior predictive P-values, we also examined the ex-
pected distributions of posterior predictive effect sizes.
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