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Abstract
Semicontinuous data are characterized by a mixture of a point probability mass at zero and a continuous

distribution of positive values. This type of data is often modeled using a two-part model where the first part
models the probability of dichotomous outcomes -zero or positive- and the second part models the distribution
of positive values. Despite the two-part model’s popularity, variable selection in this model has not been fully
addressed, especially, in high dimensional data. The objective of this study is to investigate variable selection and
prediction performance of penalized regression methods in two-part models. The performance of the selected
techniques in the two-part model is evaluated via simulation studies. Our findings show that LASSO and ENET
tend to select more predictors in the model than SCAD and MCP. Consequently, MCP and SCAD outperform
LASSO and ENET for β-specificity, and LASSO and ENET perform better than MCP and SCAD with respect to
the mean squared error. We find similar results when applying the penalized regression methods to the prediction
of crime incidents using community-based data.

Keywords: two-part model, semicontinuous data, variable selection, penalized regression, LASSO,
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1. Introduction

As a subclass of non-negative data, semicontinuous data comprises a continuous distribution of posi-
tive values and a probability mass function of a nonnegligible number of zero values. We encounter
semicontinuous data widely in various applications. Health care expenditures and medical costs are
well-known applications (Duan et al., 1983; Liu, 2009; Mullahy, 1998; Smith et al., 2014; Tu and
Zhou, 1999), where a considerable portion of healthy people incur no health care expenditures, while
clinic or hospital visitors spend a wide range of medical costs. Other applications include substance
abuse (Brown et al., 2005), alcohol consumption (Olsen and Schafer, 2001), and smoking behavior
(Zhao et al., 2016).

The presence of two heterogeneous distributions of semicontinuous data makes ordinary least
squares (OLS) estimation biased and inefficient. The two-part model (TPM) has gained popularity as
an alternative to OLS. The TPM separately models the binary response (either zero or positive) and
the mean response given that it is positive (Duan et al., 1983; Cragg, 1971). Recent TPM studies

Kim is partially supported by NSF Grants 1719498 and 2100729.
1Corresponding author: Department of Statistics, Sungshin Women’s University, 2 Bomun-ro 34da-gil, Seongbuk-gu,

Seoul 02844, Korea. E-mail: mansikpark@sungshin.ac.kr

Published 31 July 2024 / journal homepage: http://csam.or.kr
© 2024 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



442 Seong-Tae Kim, Man Sik Park

include deep learning-based feature importance (Zou et al., 2023), TPM quantile regression (Merlo
et al., 2022), and multivariate TPM model (Frees et al., 2013). Similar to the TPM, Tweedie mod-
els can model semicontinuous data using a single unified distribution, called a Tweedie distribution
(Dunn and Smyth, 2005; Kokonendji et al., 2021; Tweedie, 1984). Despite the widespread use of
the TPM for semicontinuous data, researchers have paid relatively little attention to variable selection
and prediction performance of the TPM. Variable selection of identifying a best subset of predictors
is a backbone of predictive regression modeling, and it is increasingly important to deal with high
dimensionality in the era of big data. Our study aims to explore the variable selection and prediction
performance of the two-part model using selected regularized regression methods in high-dimensional
data.

Penalized (or regularized) regressions are useful in high-dimensional data in which a few number
of predictors may contribute to modeling the response. Penalized regressions simultaneously perform
variable selection and parameter estimation. Popular penalized regression methods based on soft
thresholdinging include the least angle shrinkage and selection operator (LASSO) (Tibshirani, 1996),
elastic net (ENET) (Zou and Hastie, 2005), adaptive LASSO (Zou, 2006), group LASSO (Yuan and
Lin, 2006), Dantzig selector (Candes and Tao, 2007), smoothly clipped absolute deviation (SCAD)
(Fan and Li, 2001), and minimax concave penalty (MCP) (Zhang, 2010). Since recent variations
of penalized regressions (Hao et al., 2018; Fan and Lv, 2008) mainly incorporate LASSO, ENET,
SCAD, and MCP, we focus on these methods for the variable selection and prediction of TPM. We will
compare these methods to traditional variable selection methods such as Akaike information criterion
(AIC) and Bayesian information criterion (BIC) in simulation and empirical studies. The selected
penalized regressions are estimated using the coordinate descent algorithm (CDA) was introduced
(Wu and Lange, 2008; Breheny and Huang, 2011). The CDA optimizes a single parameter with
others held fixed, cycling until the solution path stabilizes.

The TPM offers several intriguing characteristics. First, the two models for binary outcome and
continuous positive response utilize the same predictor variables. However, the significance of indi-
vidual predictors may differ between the two response models. Second, modeling the binary response
uses a larger number of observations than the continuous positive response. In other words, not only
is the entire sample size important, but the proportion of the positive values is important to modeling
TPM. The conditional linear model for the continuous positive response may suffer from a smaller
sample size. Last, the marginal mean of the response is a function of the probability that the responses
are positive and the marginal mean of the positive responses. These characteristics deserve thorough
investigation while performing variable selection and prediction in the TPM.

The simulation study probes the effects of various statistical scenarios in controlled settings. Our
empirical study considers the prediction of crime incidents. In recent years, there have been sig-
nificant advances in predictive modeling of crime incidents because of its societal implications and
importance. Crime prediction has employed a broad spectrum of machine learning algorithms and
data sources. These prediction algorithms encompass nonparameteric regression, support vector ma-
chine, and deep neural network, and the crime data include spatiotemporal data, social media data, and
community-based data (Kang and Kang, 2017 and references therein). Our predictive modeling incor-
porates penalized regression using community-based data. The regression approach has advantages
of identification and interpretation of the predictors associated with crime incidents.

The remaining sections are as follows. Section 2 briefly introduces the two-part model and its
mean squared error. Section 3 describes regularized regression-based variable method and estimation.
Section 4 describes the design and result of simulation study using the methods. Section 5 implements
empirical data analysis using the community-based crime data. Last, Section 6 discusses the findings
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Table 1: Variable selection of parameter space P1 in the two-part model for two covariance structures

n p Method
Independent covariance structure

Logistic regression Linear regression
β-sensitivity β-specificity β-sensitivity β-specificity

500

20

AIC 1(0) 0.832(0.007) 0.838(0.016) 0.803(0.008)
BIC 1(0) 0.984(0.002) 0.983(0.006) 0.979(0.002)

LASSO 1(0) 0.774(0.021) 1(0) 0.590(0.014)
ENET 1(0) 0.720(0.021) 1(0) 0.443(0.013)
SCAD 1(0) 0.938(0.007) 1(0) 0.914(0.010)
MCP 1(0) 0.964(0.006) 1(0) 0.957(0.007)

100

LASSO 1(0) 0.930(0.007) 1(0) 0.828(0.006)
ENET 1(0) 0.896(0.008) 1(0) 0.743(0.007)
SCAD 1(0) 0.975(0.003) 1(0) 0.961(0.003)
MCP 1(0) 0.989(0.002) 1(0) 0.982(0.002)

1000

LASSO 1(0) 0.992(0.001) 1(0) 0.977(0.001)
ENET 1(0) 0.990(0.001) 1(0) 0.968(0.001)
SCAD 1(0) 0.994(0.000) 1(0) 0.990(0.001)
MCP 1(0) 0.998(0.000) 1(0) 0.998(0.000)

1000

20

AIC 1(0) 0.834(0.006) 0.840(0.015) 0.812(0.008)
BIC 1(0) 0.989(0.002) 0.993(0.003) 0.985(0.002)

LASSO 1(0) 0.806(0.019) 1(0) 0.587(0.014)
ENET 1(0) 0.732(0.020) 1(0) 0.428(0.013)
SCAD 1(0) 0.952(0.007) 1(0) 0.949(0.008)
MCP 1(0) 0.954(0.007) 1(0) 0.960(0.007)

100

LASSO 1(0) 0.914(0.009) 1(0) 0.849(0.006)
ENET 1(0) 0.888(0.010) 1(0) 0.766(0.006)
SCAD 1(0) 0.981(0.003) 1(0) 0.976(0.003)
MCP 1(0) 0.990(0.002) 1(0) 0.991(0.002)

1000

LASSO 1(0) 0.993(0.001) 1(0) 0.983(0.001)
ENET 1(0) 0.988(0.001) 1(0) 0.972(0.001)
SCAD 1(0) 0.997(0.000) 1(0) 0.996(0.001)
MCP 1(0) 0.999(0.000) 1(0) 0.999(0.000)

AR(1) covariance structure

500

20

AIC 1(0) 0.810(0.007) 0.817(0.016) 0.801(0.008)
BIC 1(0) 0.987(0.002) 0.978(0.006) 0.979(0.003)

LASSO 1(0) 0.814(0.017) 1(0) 0.669(0.013)
ENET 1(0) 0.694(0.021) 1(0) 0.538(0.013)
SCAD 1(0) 0.921(0.007) 1(0) 0.916(0.008)
MCP 1(0) 0.970(0.005) 1(0) 0.953(0.007)

100

LASSO 1(0) 0.938(0.008) 1(0) 0.868(0.005)
ENET 1(0) 0.910(0.008) 1(0) 0.804(0.006)
SCAD 1(0) 0.957(0.003) 1(0) 0.955(0.003)
MCP 1(0) 0.984(0.002) 1(0) 0.985(0.002)

1000

LASSO 1(0) 0.992(0.001) 1(0) 0.985(0.001)
ENET 1(0) 0.992(0.001) 1(0) 0.975(0.001)
SCAD 1(0) 0.992(0.000) 1(0) 0.991(0.001)
MCP 1(0) 0.998(0.000) 1(0) 0.998(0.000)

1000

20

AIC 1(0) 0.820(0.007) 0.832(0.015) 0.807(0.008)
BIC 1(0) 0.989(0.002) 0.988(0.005) 0.986(0.002)

LASSO 1(0) 0.797(0.019) 1(0) 0.657(0.013)
ENET 1(0) 0.672(0.020) 1(0) 0.523(0.013)
SCAD 1(0) 0.945(0.007) 1(0) 0.943(0.009)
MCP 1(0) 0.969(0.005) 1(0) 0.967(0.007)

100

LASSO 1(0) 0.923(0.008) 1(0) 0.872(0.006)
ENET 1(0) 0.896(0.008) 1(0) 0.811(0.006)
SCAD 1(0) 0.970(0.003) 1(0) 0.975(0.003)
MCP 1(0) 0.987(0.002) 1(0) 0.991(0.002)

1000

LASSO 1(0) 0.995(0.001) 1(0) 0.984(0.001)
ENET 1(0) 0.993(0.001) 1(0) 0.976(0.001)
SCAD 1(0) 0.995(0.000) 1(0) 0.995(0.000)
MCP 1(0) 0.998(0.000) 1(0) 0.999(0.000)

The table reports the simulation mean (standard error) based on 200 iterations.

and related issues from both simulation study and empirics, concludes the study, and suggests further
research areas.
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2. Two-part model

Let y = (y1, . . . , yn)T be an n × 1 response vector, where yi, i = 1, . . . , n, are independently observed
semicontinuous responses such that, for 0 < πi < 1, yi > 0 with probability πi,

yi = 0 with probability 1 − πi.

Let X = (x1, . . . , xp) be the n × p matrix of predictors, where x j is a n × 1 vector of the jth pre-
dictor for j = 1, . . . , p. The TPM requires two sets of parameter spaces, α = (α1, . . . , αp)T and
β = (β1, . . . , βp)T . Let A1 = { j : α j , 0} with cardinality |A1| = p1, and A2 = { j : β j , 0} with
cardinality |A2| = p2, where j is an element of the index set A = {1, 2, . . . , p}. Then αA1 and βA2

are subvectors of α and β, respectively. Also, XA1 and XA2 be submatrices of X. We also define two
indicator functions associated with the response as follows:

I0 =

 1 if yi = 0

0 if yi > 0
and I1 =

 0 if yi = 0

1 if yi > 0.

A conventional two-part model of yi is defined as

f (yi) = (1 − πi)I0 ×
[
πih (yi | yi > 0, xi)

]I1 , i = 1, 2, . . . , n, (2.1)

where h(yi|yi > 0, xi) is any continuous density function for yi > 0. In the TPM in (2.1), πi = P(Yi > 0)
can be modeled by a parametric binary probability model such as logit or probit using predictors, that
is, πi = P(Yi > 0|xi). In this article, the logit model is used as follows:

logit(πi) := log
(

πi

1 − πi

)
= xT

i α. (2.2)

The logistic regression in (2.2) is the first part of the TPM. Consequently, the positive values of yi are
modeled by the parameterization of h(yi|yi > 0, xi) as follows:

h (yi | yi > 0, xi) = ln(yi) = xT
i β + εi, (2.3)

where the error terms εi are independent and identically normally distributed with mean 0 and variance
σ2. The positive values of the response are often skewed right, so they are modeled through a log-
transformation of Y . The log-normal assumption is widely applied, but it is often restrictive, which can
be relaxed by the log-skew-normal assumption (Smith et al., 2014). This linear model is the second
part of the TPM. The TPM of (2.2) and (2.3) is sometimes called the Bernoulli-log-normal regression
model (Neelon et al., 2016). The two regression models of the TPM are independently fitted. We can
see the independence of fitting the two models via their likelihood functions. The likelihood function
of the two-part model for the random sample of n independent observations is

L(α,β, σ) =

n∏
i=1

f (yi) =

{ n∏
i=1

(1 − πi)I0 × [πih(yi | yi > 0, xi)]I1

}
=

{ n∏
i=1

(1 − πi)I0 · πI1
i

}
×

{ n∏
i=1

h(yi | yi > 0, xi)I1

}
= L(α) × L(β, σ).

(2.4)
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Table 2: Prediction performance of parameter space P1 for two covariance structures

n p
Independent covariance structure

Mean squared error Classification

Method
Positive All Accuracy Sensitivity Specificity

500

20

AIC 23.08(0.21) 23.83(0.22) 0.874(0.001) 0.852(0.002) 0.889(0.001)
BIC 22.68(0.21) 23.24(0.21) 0.877(0.001) 0.857(0.002) 0.892(0.001)

LASSO 23.17(0.20) 24.12(0.19) 0.876(0.001) 0.865(0.002) 0.884(0.001)
ENET 23.21(0.20) 24.16(0.19) 0.874(0.001) 0.871(0.002) 0.877(0.002)
SCAD 24.04(0.19) 25.24(0.19) 0.878(0.001) 0.858(0.002) 0.893(0.001)
MCP 25.34(0.18) 25.23(0.18) 0.879(0.001) 0.859(0.002) 0.892(0.001)

100

LASSO 22.91(0.2) 23.62(0.20) 0.862(0.001) 0.861(0.002) 0.864(0.002)
ENET 22.87(0.21) 23.56(0.20) 0.859(0.001) 0.876(0.002) 0.851(0.002)
SCAD 23.77(0.18) 24.83(0.17) 0.867(0.001) 0.845(0.002) 0.881(0.001)
MCP 24.84(0.16) 24.85(0.17) 0.867(0.001) 0.845(0.002) 0.881(0.001)

1000

LASSO 23.55(0.22) 24.16(0.21) 0.860(0.001) 0.865(0.002) 0.859(0.002)
ENET 23.52(0.22) 24.08(0.22) 0.852(0.001) 0.885(0.002) 0.837(0.002)
SCAD 24.90(0.19) 26.04(0.18) 0.867(0.001) 0.846(0.002) 0.882(0.001)
MCP 26.14(0.17) 25.96(0.18) 0.868(0.001) 0.846(0.002) 0.882(0.001)

1000

20

AIC 25.62(0.26) 26.18(0.25) 0.875(0.001) 0.853(0.001) 0.891(0.001)
BIC 25.58(0.26) 26.11(0.26) 0.878(0.001) 0.854(0.001) 0.894(0.001)

LASSO 27.19(0.23) 28.40(0.23) 0.877(0.001) 0.863(0.001) 0.886(0.001)
ENET 27.08(0.23) 28.30(0.23) 0.876(0.001) 0.867(0.001) 0.882(0.001)
SCAD 28.39(0.24) 29.76(0.24) 0.878(0.001) 0.854(0.001) 0.894(0.001)
MCP 29.99(0.24) 29.76(0.24) 0.878(0.001) 0.854(0.001) 0.894(0.001)

100

LASSO 25.70(0.20) 26.59(0.19) 0.868(0.001) 0.858(0.001) 0.874(0.001)
ENET 25.61(0.21) 26.44(0.20) 0.867(0.001) 0.868(0.002) 0.867(0.001)
SCAD 26.96(0.17) 28.21(0.16) 0.870(0.001) 0.850(0.001) 0.883(0.001)
MCP 28.50(0.15) 28.22(0.16) 0.870(0.001) 0.850(0.001) 0.883(0.001)

1000

LASSO 25.03(0.22) 25.69(0.21) 0.873(0.001) 0.871(0.002) 0.874(0.001)
ENET 24.97(0.22) 25.54(0.22) 0.868(0.001) 0.885(0.002) 0.860(0.001)
SCAD 26.56(0.17) 27.72(0.16) 0.875(0.001) 0.856(0.002) 0.888(0.001)
MCP 27.85(0.15) 27.78(0.16) 0.875(0.001) 0.856(0.002) 0.888(0.001)

AR(1) Covariance structure

500

20

AIC 26.66(0.23) 27.54(0.24) 0.884(0.001) 0.866(0.002) 0.898(0.001)
BIC 26.02(0.22) 26.62(0.22) 0.889(0.001) 0.872(0.002) 0.902(0.001)

LASSO 26.66(0.19) 27.72(0.18) 0.887(0.001) 0.876(0.002) 0.896(0.001)
ENET 26.67(0.19) 27.72(0.18) 0.886(0.001) 0.876(0.002) 0.893(0.002)
SCAD 27.42(0.18) 28.64(0.17) 0.889(0.001) 0.873(0.002) 0.902(0.001)
MCP 28.74(0.16) 28.62(0.17) 0.889(0.001) 0.873(0.002) 0.902(0.001)

100

LASSO 26.98(0.21) 27.82(0.20) 0.876(0.001) 0.875(0.002) 0.877(0.002)
ENET 26.86(0.22) 27.67(0.20) 0.873(0.001) 0.885(0.002) 0.867(0.002)
SCAD 28.09(0.19) 29.30(0.18) 0.880(0.001) 0.867(0.002) 0.889(0.001)
MCP 29.30(0.16) 29.31(0.18) 0.880(0.001) 0.867(0.002) 0.889(0.001)

1000

LASSO 27.19(0.22) 27.88(0.21) 0.880(0.001) 0.876(0.002) 0.884(0.002)
ENET 27.12(0.22) 27.74(0.22) 0.875(0.001) 0.888(0.002) 0.868(0.002)
SCAD 28.97(0.17) 30.29(0.16) 0.880(0.001) 0.862(0.002) 0.894(0.001)
MCP 30.21(0.15) 30.21(0.16) 0.882(0.001) 0.864(0.002) 0.896(0.001)

1000

20

AIC 28.73(0.22) 29.36(0.22) 0.886(0.001) 0.867(0.001) 0.900(0.001)
BIC 28.64(0.22) 29.20(0.22) 0.888(0.001) 0.870(0.001) 0.902(0.001)

LASSO 30.20(0.19) 31.43(0.19) 0.886(0.001) 0.873(0.001) 0.896(0.001)
ENET 30.16(0.20) 31.36(0.19) 0.886(0.001) 0.875(0.001) 0.894(0.001)
SCAD 31.16(0.19) 32.56(0.19) 0.888(0.001) 0.870(0.001) 0.902(0.001)
MCP 32.61(0.17) 32.56(0.19) 0.888(0.001) 0.869(0.001) 0.902(0.001)

100

LASSO 30.09(0.21) 31.24(0.20) 0.883(0.001) 0.871(0.001) 0.892(0.001)
ENET 29.90(0.21) 30.98(0.20) 0.881(0.001) 0.877(0.001) 0.885(0.001)
SCAD 31.77(0.18) 33.24(0.18) 0.884(0.001) 0.865(0.001) 0.898(0.001)
MCP 33.43(0.17) 33.25(0.18) 0.884(0.001) 0.866(0.001) 0.898(0.001)

1000

LASSO 29.50(0.26) 30.36(0.25) 0.888(0.001) 0.880(0.001) 0.894(0.001)
ENET 29.32(0.26) 30.07(0.25) 0.885(0.001) 0.888(0.001) 0.884(0.001)
SCAD 31.15(0.24) 32.48(0.23) 0.889(0.001) 0.874(0.001) 0.901(0.001)
MCP 32.66(0.23) 32.51(0.23) 0.889(0.001) 0.874(0.001) 0.901(0.001)

The table reports the simulation mean (standard error) based on 200 iterations.

The likelihood function of the two-part model in (2.4) is decomposed into two multiplicative terms
(Duan et al., 1983; Min and Agresti, 2002). The first term solely depends on the parameters, α, in
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(2.2), and the second term solely depends on the parameters, β, as in (2.3). This multiplicity allows
to separately achieve the maximum likelihood estimate (MLE) of α and the MLE of β and σ for the
TPM. The log-likelihood function of TPM, denoted l(·) = log L(·), is given as

l(α,β, σ) = l(α) + l(β, σ). (2.5)

The expected value of the response variable, Y , is defined as

E[Y | x] = E[Y | Y > 0, x] × P(Y > 0) + E[Y | Y = 0, x] × P(Y = 0)
= E[Y | Y > 0, x] × P(Y > 0).

(2.6)

Plugging (2.2) and the expected value of (2.3) into (2.6) yields

E[Y | x] =
{
1 + exp

(
−xTα

)}−1
xTβ. (2.7)

As mentioned in the introduction, the expected value in (2.7) is a function of the probability that
Y > 0 and the expected value of Y for y > 0. Furthermore, the independence of the likelihood
functions of two part model leads to the predicted value of Y for the TPM as follows:

Ŷ =
{
1 + exp

(
−xT α̂

)}−1
xT β̂, (2.8)

where α̂ and β̂ can be estimated by various estimation methods, which are described in the following
section. The mean squared error (MSE) is defined as

MSE = E
[(

Y − Ŷ
)2
| Y > 0

]
, (2.9)

which will be used to evaluate prediction performance in the following sections.

3. Variable selection with regularized TPM

In this section, we will discuss how we select and estimate αA1 and βA2
, each of which are subvectors

of α and β, respectively. Variable selection is a key analytical component in predictive regression
analysis. Numerous variable selection techniques have been proposed, and this trend will remain
steady in the data-centered era. Variable selection techniques include stepwise methods (forward,
backward, and stepwise selection methods), pretesting method (univariate t-test), prediction-oriented
criteria (minR2, maxR2, Mallow’s Cp, and adjusted R2), information criterion methods (AIC, BIC,
and AIC for a small-sample correction (AICc)), and penalized regression methods (LASSO, Ridge,
ENET, SCAD, and MCP). Limited space restricts us to cover selected methods that have been the
most used in practice, which include four penalized regression methods (LASSO, ENET, SCAD, and
MCP).

For the purpose of variable selection and prediction via penalized regression, we consider a penal-
ized log-likelihood of TPM, denoted lp(·), using (2.5) as follows:

lp

(
αA1 ,βA2

, σ
)

= l
(
αA1

)
− P1

(
αA1

)
+ l

(
βA2

, σ
)
− P2

(
βA2

)
, (3.1)

where the nonnegative penalty functions are defined as

P1
(
αA1

)
=

∑
j∈A1

P
(
λ, γ;

∣∣∣α j

∣∣∣) and P2

(
βA2

)
=

∑
j∈A2

P
(
λ, γ;

∣∣∣β j

∣∣∣) ,
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Table 3: Variable selection of parameter space P2 via 200 for two covariance structures

n p Method
Independent covariance structure

Logistic regression Linear regression
β-sensitivity β-specificity β-sensitivity β-specificity

500

20

AIC 0.944(0.004) 0.815(0.012) 0.823(0.008) 0.809(0.013)
BIC 0.847(0.004) 0.986(0.004) 0.982(0.002) 0.984(0.004)

LASSO 0.976(0.003) 0.426(0.024) 0.994(0.001) 0.129(0.012)
ENET 0.981(0.003) 0.388(0.024) 0.994(0.001) 0.098(0.011)
SCAD 0.959(0.004) 0.663(0.021) 0.965(0.003) 0.485(0.022)
MCP 0.941(0.005) 0.758(0.020) 0.954(0.004) 0.549(0.026)

100

LASSO 0.928(0.005) 0.801(0.011) 0.941(0.004) 0.579(0.007)
ENET 0.930(0.005) 0.772(0.011) 0.946(0.003) 0.514(0.007)
SCAD 0.906(0.004) 0.909(0.003) 0.913(0.004) 0.851(0.004)
MCP 0.876(0.005) 0.961(0.002) 0.879(0.004) 0.933(0.003)

1000

LASSO 0.814(0.005) 0.982(0.001) 0.720(0.009) 0.952(0.002)
ENET 0.816(0.005) 0.978(0.001) 0.691(0.010) 0.951(0.002)
SCAD 0.850(0.004) 0.981(0.000) 0.843(0.005) 0.968(0.001)
MCP 0.815(0.004) 0.995(0.000) 0.805(0.004) 0.990(0.000)

1000

20

AIC 0.977(0.002) 0.817(0.012) 0.832(0.007) 0.842(0.012)
BIC 0.916(0.003) 0.991(0.003) 0.982(0.002) 0.986(0.004)

LASSO 0.988(0.002) 0.499(0.025) 0.999(0.001) 0.116(0.012)
ENET 0.986(0.002) 0.479(0.025) 0.999(0.001) 0.083(0.010)
SCAD 0.991(0.002) 0.595(0.022) 0.986(0.002) 0.503(0.022)
MCP 0.980(0.003) 0.676(0.024) 0.976(0.003) 0.605(0.025)

100

LASSO 0.966(0.004) 0.824(0.011) 0.985(0.002) 0.589(0.007)
ENET 0.967(0.003) 0.810(0.012) 0.987(0.002) 0.509(0.007)
SCAD 0.959(0.003) 0.901(0.004) 0.957(0.003) 0.875(0.005)
MCP 0.941(0.004) 0.955(0.003) 0.930(0.004) 0.943(0.003)

1000

LASSO 0.881(0.005) 0.983(0.001) 0.872(0.004) 0.945(0.001)
ENET 0.863(0.005) 0.982(0.001) 0.864(0.005) 0.932(0.001)
SCAD 0.917(0.004) 0.984(0.001) 0.909(0.004) 0.977(0.001)
MCP 0.893(0.004) 0.995(0.000) 0.874(0.004) 0.994(0.000)

AR(1) Covariance structure

500

20

AIC 0.876(0.004) 0.797(0.015) 0.800(0.008) 0.785(0.014)
BIC 0.789(0.003) 0.976(0.006) 0.972(0.004) 0.971(0.006)

LASSO 0.952(0.004) 0.652(0.025) 0.979(0.003) 0.282(0.017)
ENET 0.980(0.003) 0.617(0.027) 0.982(0.002) 0.231(0.016)
SCAD 0.899(0.005) 0.688(0.020) 0.931(0.004) 0.549(0.022)
MCP 0.863(0.006) 0.776(0.020) 0.919(0.005) 0.588(0.024)

100

LASSO 0.936(0.004) 0.906(0.009) 0.970(0.003) 0.746(0.007)
ENET 0.977(0.002) 0.907(0.008) 0.978(0.002) 0.704(0.007)
SCAD 0.85(0.004) 0.902(0.003) 0.875(0.005) 0.863(0.004)
MCP 0.794(0.004) 0.957(0.002) 0.826(0.005) 0.936(0.003)

1000

LASSO 0.905(0.005) 0.989(0.001) 0.929(0.004) 0.964(0.001)
ENET 0.950(0.004) 0.989(0.001) 0.950(0.004) 0.956(0.001)
SCAD 0.755(0.005) 0.985(0.000) 0.803(0.004) 0.970(0.001)
MCP 0.669(0.005) 0.995(0.000) 0.747(0.004) 0.991(0.000)

1000

20

AIC 0.934(0.004) 0.817(0.013) 0.816(0.008) 0.800(0.014)
BIC 0.843(0.003) 0.982(0.005) 0.991(0.002) 0.988(0.004)

LASSO 0.986(0.002) 0.639(0.025) 0.992(0.002) 0.302(0.018)
ENET 0.996(0.001) 0.589(0.026) 0.994(0.001) 0.264(0.017)
SCAD 0.941(0.004) 0.646(0.021) 0.953(0.004) 0.593(0.023)
MCP 0.924(0.005) 0.724(0.021) 0.939(0.005) 0.638(0.025)

100

LASSO 0.973(0.003) 0.885(0.009) 0.989(0.002) 0.745(0.006)
ENET 0.995(0.001) 0.870(0.010) 0.992(0.002) 0.691(0.006)
SCAD 0.900(0.004) 0.906(0.003) 0.908(0.004) 0.902(0.004)
MCP 0.852(0.004) 0.959(0.002) 0.867(0.004) 0.949(0.003)

1000

LASSO 0.959(0.003) 0.990(0.001) 0.970(0.003) 0.966(0.001)
ENET 0.985(0.002) 0.992(0.001) 0.984(0.002) 0.956(0.001)
SCAD 0.841(0.004) 0.980(0.001) 0.866(0.004) 0.978(0.001)
MCP 0.786(0.004) 0.994(0.000) 0.815(0.004) 0.994(0.000)

The table reports the simulation mean (standard error) based on 200 iterations.

in which the tuning parameter λ > 0 controls a trade-off between the likelihood (or loss function)
and the penalty. The tuning parameter can be determined by many different methods such as BIC
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and cross-validation. The shrinkage parameter γ determines the degree of shrinkage of parameters in
the concave penalty methods, which is either fixed or estimated. A similar setting of the penalized
likelihood in (3.1) was introduced for zero-inflated Poisson model (Tang et al., 2014). The structure of
the two penalty functions, P1(αA1 ) and P2(βA2

), are the same except the parameters α and β. Hence,
we discuss only P2(βA2

) in this article. A type of the penalty function is the bridge penalty function
which has the following functional form

P2

(
βA2

)
= λ

∑
j∈A2

|β j|
γ, (3.2)

where the value of γ is related to famous regression methods. When γ = 2 in penalty (3.2), the
penalized likelihood in (3.1) becomes ridge regression which was proposed to solve multicollinearity
among predictors in the 1970s. Unfortunately, the ridge regression does not achieve variable selection
because the parameter estimate could be close to zero but never achieves the zero value. When γ = 1,
(3.1) is called LASSO regression, which simultaneously achieves variable selection and parameter
estimation. ENET regression proposed by Zou and Hastie (2006) incorporated a convex combination
of ridge and LASSO penalties to take advantage of both methods.

P2

(
βA2

)
= λ1

∑
j∈A2

|β j| + λ2

∑
j∈A2

β2
j = (1 − δ)

∑
j∈A2

|β j| + δ
∑
j∈A2

β2
j ,

where δ = λ1/(λ1 + λ2).
Although the LASSO regression has substantial advantages, this method suffers from biased esti-

mate under a certain condition (Zou, 2006). The solution of the bridge penalty is only continuous if
γ ≥ 1, and sparse only if γ = 1. When γ = 1, the LASSO solution is shifted by a constant value of
λ. In order to simultaneously satisfy mathematical conditions for unbiasedness, sparsity, and continu-
ity, non-convex penalty functions were introduced. We consider two important non-convex methods,
SCAD (Fan and Li, 2001) and MCP (Zhang, 2010). The SCAD penalty function is given

P(λ, γ; |β j|) =



λ|β j|, if |β j| ≤ λ,

2γλ|β j| − (β2
j + λ2)

2(γ − 1) , if λ < |β j| ≤ γλ,

λ2(γ2 − 1)
2(γ − 1) , if |β j| > γλ,

(3.3)

for λ ≥ 0 and γ > 2. The MCP penalty is given:

P(λ, γ; |β j|) =


2λ|β j| − β

2
j

2γ , if |β j| ≤ γλ,

γλ2

2 , if |β j| > γλ,

(3.4)

for λ ≥ 0 and γ > 1.
The original LASSO solution employed quadratic programming in Tibshirani (1996). Efron et

al. (2004) demonstrated that the LASSO solution is a variant of the Least Angle Regression (LARS)
algorithm, which is a computationally efficient stagewise procedure based on piecewise linearity. The
coordinate descent algorithm proposed by Wu and Lange (2008) is significantly faster than LARS.
This algorithm is incorporated in glmnet and ncvreg packages in R, where the former is for LASSO-
type estimators, and the latter is for non-convex penalty estimators. Nonconvexity bares a burden of
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numerical optimization, but the coordinate descent algorithm provides faster, stable numerical solu-
tions.

The regularized regression method simultaneously achieves variable selection and parameter esti-
mation, which are encompassed in the oracle property that an oracle estimator must hold asymptotic
consistency in both variable selection and parameter estimation. Fan and Li (2001) and Zou (2006)
posited that a good selection and estimation procedure should hold these two oracle properties. If
λn/n → 0 and λn/

√
n → ∞, the LASSO estimator achieves a correct selection of the set of true non-

zero parameters. However, Zou (2006) showed that when λn = O(
√

n), lim supn P(Â = A) < 1. To
overcome this issue, Zou (2006) introduced the adaptive LASSO (ALASSO) under the assumption
that λn/

√
n → 0, which satisfies the oracle property. The SCAD and MCP penalty methods also

achieve the oracle property.
Numerical optimization is a serious challenge in the regularized regression. Tibshirani (1996)

used quadratic programming (QP) with a convex constraint as a special case of convex optimization
to find the LASSO solution. The LARS algorithm is another technique to find the piecewise linear
path, where the LARS algorithm is a homotopy method in the sense that the piecewise linear path
is sequentially constructed. Meanwhile, SCAD and MCP encountered more serious challenge due
to the nonconvexcity of penalties. The local linear approximation (LLA) algorithm using the LARS
algorithm was proposed to find the solution for SCAD and MCP (Zou and Li, 2008). Regardless of
the convexity or nonconvexity of the penalties, the CDA method was proposed as a fast and compu-
tationally efficient optimization method. The CDA method achieves the optimization of an objective
function for a single parameter with fixing all other parameters and iteratively cycling through all pa-
rameters until convergence is achieved. The computational efficiency of CDA is O(np), which is even
better than the linear regression with QR decomposition (O(np2)). Detailed rationale behind the CDA
approach to MCP and SCAD is available in Breheny and Huang (2011). In this study, we incorporated
the CDA method to compare the regularized regression methods.

The goal of parameter estimation is to achieve an (asymptotically) unbiased and consistent es-
timator. However, the goal of variable selection is more complex. The possible goals of variable
selection include sensitivity, specificity, predictability, and selection consistency (Dziak et al. ,2012).
Sensitivity measures how a method accurately includes the set of predictors with non-zero coeffi-
cients. Specificity measures how a method accurately excludes the set of predictors with zero coef-
ficients. Predictability measures a certain degree of prediction error. Selection consistency indicates
how a set of selected predictors approaches to the true set of predictors with non-zero coefficients as
n → ∞. As pointed out in many studies (Ng, 2013 and references therein), these four goals may not
be achieved simultaneously in the sense that a high sensitivity (or specificity) does not guarantee a
high predictability, and vice versa. Therefore, we compare sensitivity, specificity, and MSPE in the
subsequent simulation study.

4. Simulation studies

Our simulation study aimed to investigate the performance of selected methods described in the pre-
vious section under various situations. The selected methods included LASSO, ENET, SCAD, and
MCP. If p = 100, 2p ≈ 1.27 × 1030 in which subset selection based on an information criterion is
almost prohibited due to computational complexity. LASSO and ENET were implemented in the
R glmnet package (Friedman et al., 2009) and SCAD and MCP were implemented in the R ncvreg
package (Breheny, 2013).

The design of the simulation study for the two-part model considered the following issues. First,
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Table 4: Prediction performance of parameter space P2 for two covariance structures

n p Method
Independent covariance structure

Mean squared error Classification
Positive All Accuracy Sensitivity Specificity

500

20

AIC 30.26(0.31) 31.04(0.31) 0.890(0.001) 0.878(0.002) 0.899(0.001)
BIC 29.89(0.32) 30.47(0.32) 0.888(0.001) 0.875(0.002) 0.897(0.001)

LASSO 32.79(0.26) 34.10(0.25) 0.888(0.001) 0.880(0.002) 0.894(0.001)
ENET 32.79(0.26) 34.14(0.25) 0.889(0.001) 0.885(0.002) 0.892(0.001)
SCAD 33.41(0.26) 34.74(0.26) 0.889(0.001) 0.876(0.002) 0.899(0.001)
MCP 35.00(0.25) 34.77(0.25) 0.889(0.001) 0.876(0.002) 0.899(0.001)

100

LASSO 30.81(0.30) 31.90(0.29) 0.878(0.001) 0.874(0.002) 0.881(0.002)
ENET 30.74(0.30) 31.82(0.29) 0.875(0.001) 0.879(0.002) 0.873(0.002)
SCAD 33.80(0.30) 35.29(0.30) 0.883(0.001) 0.868(0.002) 0.895(0.001)
MCP 35.51(0.30) 35.20(0.31) 0.884(0.001) 0.870(0.002) 0.895(0.001)

1000

LASSO 30.74(0.26) 31.44(0.26) 0.844(0.001) 0.864(0.002) 0.834(0.002)
ENET 30.58(0.27) 31.22(0.26) 0.836(0.001) 0.878(0.003) 0.815(0.002)
SCAD 33.66(0.23) 35.14(0.23) 0.862(0.001) 0.847(0.002) 0.873(0.002)
MCP 34.81(0.21) 34.81(0.22) 0.864(0.001) 0.850(0.002) 0.875(0.002)

1000

20

AIC 29.62(0.24) 30.22(0.24) 0.897(0.001) 0.882(0.001) 0.908(0.001)
BIC 29.59(0.24) 30.15(0.24) 0.896(0.001) 0.881(0.001) 0.908(0.001)

LASSO 31.62(0.21) 32.97(0.20) 0.897(0.001) 0.886(0.001) 0.904(0.001)
ENET 31.62(0.21) 32.97(0.20) 0.896(0.001) 0.889(0.001) 0.902(0.001)
SCAD 31.95(0.20) 33.33(0.20) 0.897(0.001) 0.882(0.001) 0.908(0.001)
MCP 33.50(0.19) 33.30(0.20) 0.897(0.001) 0.882(0.001) 0.908(0.001)

100

LASSO 30.05(0.23) 30.95(0.22) 0.886(0.001) 0.875(0.001) 0.894(0.001)
ENET 30.09(0.23) 30.99(0.22) 0.885(0.001) 0.880(0.001) 0.889(0.001)
SCAD 30.84(0.21) 32.04(0.19) 0.890(0.001) 0.875(0.001) 0.902(0.001)
MCP 31.97(0.18) 32.07(0.19) 0.890(0.001) 0.875(0.001) 0.902(0.001)

1000

LASSO 28.77(0.20) 29.40(0.19) 0.872(0.001) 0.873(0.001) 0.872(0.001)
ENET 28.78(0.20) 29.38(0.20) 0.868(0.001) 0.883(0.001) 0.859(0.001)
SCAD 30.08(0.15) 31.35(0.14) 0.881(0.001) 0.864(0.001) 0.894(0.001)
MCP 31.34(0.13) 31.24(0.14) 0.882(0.001) 0.865(0.001) 0.895(0.001)

AR(1) covariance structure

500

20

AIC 45.94(0.43) 47.15(0.44) 0.914(0.001) 0.907(0.001) 0.920(0.001)
BIC 43.84(0.35) 44.65(0.36) 0.912(0.001) 0.906(0.001) 0.918(0.001)

LASSO 46.37(0.31) 47.97(0.31) 0.914(0.001) 0.907(0.001) 0.921(0.001)
ENET 46.22(0.31) 47.92(0.31) 0.915(0.001) 0.910(0.001) 0.921(0.001)
SCAD 47.20(0.31) 48.92(0.31) 0.913(0.001) 0.906(0.001) 0.919(0.001)
MCP 49.08(0.30) 48.93(0.31) 0.913(0.001) 0.907(0.001) 0.919(0.001)

100

LASSO 46.56(0.44) 47.86(0.42) 0.911(0.001) 0.910(0.002) 0.912(0.002)
ENET 46.42(0.43) 47.76(0.42) 0.911(0.001) 0.913(0.002) 0.911(0.002)
SCAD 49.63(0.49) 51.37(0.49) 0.906(0.001) 0.900(0.002) 0.911(0.002)
MCP 51.56(0.50) 51.36(0.50) 0.907(0.001) 0.900(0.002) 0.912(0.002)

1000

LASSO 42.57(0.27) 43.49(0.26) 0.904(0.001) 0.912(0.002) 0.899(0.002)
ENET 42.40(0.28) 43.27(0.26) 0.906(0.001) 0.920(0.002) 0.896(0.002)
SCAD 47.06(0.25) 48.68(0.25) 0.890(0.001) 0.886(0.002) 0.894(0.002)
MCP 48.28(0.24) 48.19(0.24) 0.892(0.001) 0.888(0.002) 0.896(0.002)

1000

20

AIC 45.49(0.39) 46.30(0.39) 0.922(0.001) 0.913(0.001) 0.930(0.001)
BIC 45.16(0.39) 45.76(0.39) 0.921(0.001) 0.911(0.001) 0.930(0.001)

LASSO 49.20(0.41) 50.71(0.41) 0.922(0.001) 0.916(0.001) 0.927(0.001)
ENET 49.18(0.40) 50.7(0.41) 0.922(0.001) 0.918(0.001) 0.925(0.001)
SCAD 49.79(0.41) 51.36(0.41) 0.922(0.001) 0.912(0.001) 0.930(0.001)
MCP 51.33(0.4) 51.37(0.41) 0.922(0.001) 0.912(0.001) 0.930(0.001)

100

LASSO 44.13(0.24) 45.43(0.22) 0.927(0.001) 0.924(0.001) 0.930(0.001)
ENET 44.07(0.24) 45.32(0.23) 0.927(0.001) 0.927(0.001) 0.927(0.001)
SCAD 46.24(0.21) 47.82(0.20) 0.926(0.001) 0.917(0.001) 0.933(0.001)
MCP 47.91(0.19) 47.84(0.19) 0.926(0.001) 0.917(0.001) 0.933(0.001)

1000

LASSO 45.54(0.29) 46.65(0.28) 0.914(0.001) 0.909(0.001) 0.919(0.001)
ENET 45.42(0.30) 46.49(0.28) 0.914(0.001) 0.912(0.001) 0.916(0.001)
SCAD 48.74(0.24) 50.41(0.23) 0.910(0.001) 0.900(0.001) 0.918(0.001)
MCP 50.57(0.22) 50.33(0.23) 0.912(0.001) 0.902(0.001) 0.920(0.001)

The table reports the simulation mean (standard error) based on 200 iterations.

we considered two different sample sizes, n = 500, and 1000, for both the training and test data, which
means that the ratio of both the data is one to one. The different sample sizes allowed to check the
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behavior of variable selection and prediction performance as sample size varied. Second, the length
of the parameter space, or the number of predictors, are p = 20, 100, 1, 000 without the intercept. We
consider two parameter spaces as follows:

P1 :(3, 1.5, 0, 0, 2, 0, . . . , 0︸  ︷︷  ︸
p−5

)

P2 :(1.51, 1.78, 1.58, 1.80, 1.05, 0.54, 0.82, 1.14, 1.52, 1.98, 0.31, 0.52, 1.54, 0.25, 0.93︸                                                                                                       ︷︷                                                                                                       ︸
15

, 0, . . . , 0︸  ︷︷  ︸
p−15

).

The first parameter space comprises few strong coefficients, which was used in the seminal LASSO
paper (Tibshirani, 1996) and many other studies (Fan and Li, 2005; Zou and Hastie, 2001). The
second parameter space was introduced to investigate how the selected penalized regression methods
perform for diverse coefficient values.

Third, the covariance structure among predictors is one of the most important factors affecting the
variable selection performance. We considered the independent and AR(1) covariance structures as
follows:

1. Independence: Σx = σ2Ip.

2. AR(1) correlation: σ2σi j = ρ|i− j| for i = 1, . . . , p and j = 1, . . . , p.

Our simulation study used that σ = 3 and ρ = 0.5. Fourth, all predictors were standardized after
being generated from a multivariate normal distribution, which was implemented in the R mvrnorm
package. Fifth, in TPM, LM and GLM share the same data set where LM uses a less portion of the
data. Hence, the proportion of zero values could affect the performance. In our case, we set 50–60
% data positive by controlling the intercept value in the simulation because a small portion of zeros
or positive values can cause biased estimation in logistic regression. The shrinkage parameter (γ)
in SCAD and MCP used the default value in the package, and the tuning parameter was estimated
using a 10-fold cross-validation in the training data. All other options used the default values in the
packages.

We focus on the two types of performance evaluation: Variable selection and prediction per-
formances. These performance measures are closely related to the oracle properties. The variable
selection performance is measured by β-sensitivity and β-specificity, which are defined as:

β − Sensitivity =
1
R

R∑
r=1

I
(
Â = A

)
, (4.1)

β − Specificity =
1
R

R∑
r=1

I
(
Âc = Ac

)
, (4.2)

where A is either A1 or A2 described in section 2, Â = { j : θ̂ j , 0} and Âc = { j : θ̂ j = 0} for
the estimated parameter space θ̂ using any selected method, and R indicates the number of iterations,
which is 200 in our study. The β-sensitivity measures how accurately a selection method includes the
predictors with non-zero coefficients in the model, and the β-specificity measures how accurately a
selection method exclude the predictors with zero coefficients from the model.

The prediction performance for the GLM and LM is measured separately using accuracy, sensitiv-
ity, and specificity as metrics for the GLM, and the mean squared prediction error (MSPE) for the LM.
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The GLM metrics are used for the classification between zero and positive values. The mean absolute
deviation serves as an alternative to the MSPE. These metrics are all evaluated in the testing data set.
It is considered that the lower the MSPE, the better the prediction performance of the LM, while for
the GLM, values of accuracy, sensitivity, and specificity closer to one indicates better classification
performance.

Tables 1–4 reported the average and standard error of the performance measures obtained from
200 simulations to evaluate variable selection and prediction performance in the test data set. Table 1
presented the average values of β-sensitivity and β-specificity for the logistic regression (GLM) and
linear regression (LM) for the parameter space P1. Table 2 presented the two MSPE values for the
positive values and all values of y and the classification measures such as accuracy, sensitivity, and
sprecificity for the binary responses in the GLM. Similarly, we presented the variable selection and
prediction performance for the paramter space P2 in Tables 3 and 4, respectively. The performance
results for AIC and BIC were only reported for the small number of predictors, p = 20.

As evident in Table 1, all the methods achieved better β-sensitivity average values although they
showed various results in β-specificity for the parameter space P1, which contains strong coefficient
values. The AR(1) covariance strucucture showed slightly lower performance than the independent
covariance structure. In Table 2, the prediction results showed slightly different performance among
the selected methods. For the average test MSPE, the LASSO and ENET methods outperformed the
SCAD and MCP methods. However, the methods demonstrated no clear differences in classification
between the zero and positive values. All the standard error values had no significant differences
across the selected methods.

For the parameter space P2, which contains coefficients generated from the uniform distribution
between 0.5 and 2, the selected methods overall presented underperformance in variable selection and
prediction assessment, as can be seen Tables 3 and 4. Unlike the results of P1, P2 demonstrated that
the LASSO and ENET methods outperform the SCAD and MCP methods in terms of β-sensitivity.

Our simulation results showed that penalized TPMs achieve better performance in both variable
selection and prediction in high-dimensional data, regardless of covariance structures and sample
sizes. The selected nonconvex methods such as SCAD and MCP exhibited better performance in β-
specificity than the LASSO-type methods. The LASSO-type methods exhibited better performance
in prediction than the nonconvex methods, regardless of the parameter spaces. Meanwhile, traditional
variable selection methods based on AIC and BIC achieved better performance in β-specificity and
MSPE than penalized methods for low-dimensional data.

5. Empirical studies

Our empirical study for TPM was conducted using community-based crime data. Crime data can be
collected in many ways. One common way is to collect crime data for each community such as city or
town. Each community possesses its idiosyncratic characteristics with respect to demographics and
socioeconomic status. Redmond and Baveja (2002) generated a comprehensive community-based
crime data which is available at UC Irvine Machine Learning Repository(https://archive.ics.uci.ed
u/ml/datasets/Communities+and+Crime). The data set contains 2,215 observations (communities),
124 predictors, and 18 response variables (9 different types of crimes with the original frequency and
the frequency per 100,000 inhabitants) from multiple original data sources such as socio-economic
data from the 1990 Census, law enforcement data from the 1990 Law Enforcement Management and
Administrative Statistics (LEMAS), and crime data from the 1995 FBI Uniform Crime Report (UCR)
Statistics.
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(a) Original semicontinuous data (b) Zero values and log-transformed data

Figure 1: Semicontinuous distribution of murder per 100,000 habitants.

The Census data include age-, race-, income-, family-, and house-related variables. The UCR
data contained the original counts and the counts per 100,000 inhabitants for murder, rape, robbery,
assault, burglary, larceny, auto theft, and arson. The LEMAS data collected policing-related data from
state and local law enforcement agencies, including all those that employ 100 or more sworn police
officers and a nationally representative sample of smaller agencies. Many communities with a small
number of sworn officers had missing values for the predictors from the LEMAS data.

Among the 9 types of crime, murder, arson, and rape showed semicontinuous distributions, where
these types of crime contained a considerable number of zero values over 10% of the total number
of observations and demonstrated a skewed right distribution as the mean is much greater than the
median. This empirical study focused on the response variable of the murder incidents per 100,000
habitants of which semicontinuous property is demonstrated in Figure 1. In Figure 1, the right-side
figure illustrated the zero values and a bell-shaped curve of log-transformed positive values, which was
modeled via the TPM. After removing the 23 LEMAS variables and any communities with significant
amount of missing values, our final analytical data set consisted of one dependent variable and 101
predictors in 1,901 communities.

In order to check multicollinearity among 101 predictors, first we identified the perfect linear-
ity (and hence, multicollinearity) between OwnOccQrange and OwnOccLowQuart/OwnOccHiQuart
as well as RentQrange and RentLowQ/RentHighQ using the alias function for the lm function in R.
Therefore, we removed two variables, OwnOccQrange and RentQrange. Using the variance influence
factor (VIF), we examined multicollinearity among 99 predictors. The variance inflation factor (VIF)
analysis shows that the 83 out of 99 predictors had the squared VIF value greater than 2, which in-
dicates that the community-based crime data presented severe multicollinearity among predictors. In
summary, the community-based crime data was characterized by skewed-right responses with semi-
continuity and a fairly large number of predictor with multicollinearity. We identified a set of pre-
dictors via various variable selection methods and evaluated their prediction performance described
in the previous sections. We split the whole data into the training and test data sets with 1 : 1 ratio,
which resulted in a slightly different sample sizes for the linear regression in the training and test data
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Table 5: MSPE and the number of selected predictors

Sample size Selection Methods
Train Test AIC BIC LASSO ENET SCAD MCP

GLM 941 941 30 10 23 44 9 7
LM 492 530 38 4 30 34 25 22

MSPE 77.48 61.15 45.28 44.74 43.26 43.37

* LASSO, least absolute shrinkage and selection operator; ENET, Elastic NeT; MCP, Minimax Concave Penalty; SCAD,
Smoothly Clipped absolute Deviation; MSPE, Mean squared prediction error; The integer values in Selection Methods
denote the number of predictors selected by each method.
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Figure 2: Venn diagram of predictors selected by four penalized methods.

sets.
In Table 5, we demonstrated the MSPE and the number of predictors selected by each methods.

This result should be cautiously interpreted because a different sampling of training and test data
may lead to a different result. Overall, the folded concave penalty methods of SCAD and MCP
outperformed other methods with respect to the MSPE. The MSPE of MCP is 12% lower than the
ENET one. AIC and ENET methods tend to select a higher number of predictors, and BIC and MCP
tend to select a smaller number of predictors, which is consistent to the simulation results reported in
the previous section.

In Figure 2, we presented two Venn diagrams of predictors selected by the four penalized methods
from both GLM and LM in Table 5 to closely look at the patterns among the selected predictors. The
LASSO predictors were mostly selected by the ENET method, and the MCP predictors were mostly
selected by SCAD. The LASSO and ENET selected more predictors than SCAD and MCP in both
models. The four penalized methods in both GLM and LM commonly selected seven predictors,
although their compositions were different. The commonly selected variables from the logistic re-
gression among four methods included population, blackPerCap, PersPerOwnOccHous, PersPerRen-
tOccHous, MedNumBR, LandArea, and racePctWhite, and the commonly selected variables from the
linear regression among four methods included PersPerFam, NumKidsBornNeverMar, NumImmig,
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PersPerOwnOccHous, PopDens, racePctWhite, and PctWorkMomYoungKids where the two predic-
tors, PersPerOwnOccHous(mean persons per owner occupied household) and racePctWhite (percent-
age of population that is Caucasian) were common for both models. For further information, refer to
the dictionary of these predictors at the UCI Machine Learning Repository mentioned above.

6. Discussion

In this study, we investigated penalized regression-based variable selection methods for two-part mod-
els. We conducted simulation studies under diverse statistical assumptions and an empirical study
using community-based crime data. Our analytical results demonstrated that penalized TPMs achieve
better performance in both variable selection and prediction in high-dimensional data, regardless of
covariance structures and sample sizes. Moreover, the LASSO-type methods such as LASSO and
ENET outperformed the nonconvex methods such as SCAD and MCP in mean squared error. In sim-
ulation studies, for a small number of predictors, for example, p = 20, traditional variable selection
methods based on information criteria achieved better performance in β-specificity and MSE than
penalized methods.

Variable selection in the TPM is affected by several unique features in addition to conventional
matters, such as high dimensionality, multicollinearity, covariance structure, and sparsity. These
TPM-specific features include the same pool of predictors for both models in (2.2) and (2.3), a smaller
sample size for modeling positive values, and the mean squared error as a function of the probability
of a positive value and the marginal mean of the positive values. Our simulation was designed such
that positive values were 50–60% of the total sample size. Simulation results showed that the sensi-
tivity of LM was as good as those of GLM while the specificity of LM was similar to or worse than
those of GLM. As can be seen in (2.8), the probability of a positive value results in a smaller MSE for
TPM compared to that of the linear regression for the positive values.

Additionally, the simulation study also showed that the best variable selection may not be associ-
ated with the least prediction error. The trade-off between consistent variable selection and efficient
prediction is well addressed in Ng (2013) and references therein. The convex penalty methods and
the folded concave penalty methods show different behaviors in sensitivity and specificity. When the
coefficients are quite different from zero as in Table 1, both penalty methods performed well for sen-
sitivity. On the other hand, when coefficients were generated from Uniform[0.25, 2] as in Tables 3
and 4, the two methods exhibited similar sensitivities, or the convex methods marginally performed
better. The folded concave methods outperformed the convex penalty methods in the specificity per-
formance regardless of parameter spaces and covariance structures. This result is partly because the
convex penalty methods are inclined to include more predictors with non-zero coefficient estimates,
as explained in Breheny and Huang (2011).

Our current study can be extended in several directions. First, as we only considered the selected
number of methods, it is worthwhile to consider recently developed variable selection methods espe-
cially for high dimensional data such as interaction selection (Hao et al., 2018) and screening methods
(Fan and Lv, 2008; Pan et al., 2019; Tibshirani et al., 2012). In particular, screening out insignificant
predictors is expected to help improve the specificity issue of penalized regression methods. Second,
the positive values of a semicontinuous variable might follow the log-skewed normal distribution,
necessiating a generalized regression beyond a linear regression under the normality assumption. It
is desirable to consider regularized GLM with gamma or skewed lognormal distribution for various
degrees of positive skewness.
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