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ABSTRACT

Detecting strongly connected components (SCCs) is an important

step in various graph computations. The fastest GPU and CPU im-

plementations from the literature work well on graphs where most

of the vertices belong to a single SCC and the vertex degrees follow

a power-law distribution. However, these algorithms can be slow

on the mesh graphs used in certain radiative transfer simulations,

which have a nearly constant vertex degree and can have signi�cant

variability in the number and size of SCCs. We introduce ECL-SCC,

an SCC detection algorithm that addresses these shortcomings.

Our approach is GPU friendly and employs innovative techniques

such as maximum ID propagation and edge removal. On an A100

GPU, ECL-SCC performs on par with the fastest prior GPU code

on power-law graphs and outperforms it by 7.8× on mesh graphs.

Moreover, ECL-SCC running on the GPU outperforms fast parallel

CPU code by three orders of magnitude on meshes.
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1 INTRODUCTION

A strongly connected component (SCC) of a directed graph � =

(+ , �) is a maximal subset ( of its vertices that are all reachable

from each other. That is, ∀0, 1 ∈ ( , there exists a directed path both

from 0 to 1 and from 1 to 0. The subset must be maximal, meaning

it cannot be extended by including additional vertices of� . SCCs

have the following properties: every vertex E ∈ + belongs to exactly

one SCC, and contracting each SCC into a single vertex turns �

into a directed-acyclic graph (DAG). Moreover, every vertex in a

non-trivial SCC (i.e., an SCC with more than 1 vertex) has at least 1

adjacent in-neighbor and 1 adjacent out-neighbor in the same SCC.

Finding SCCs is a key building block in many applications, in-

cluding complex food web analysis [2], data compression [23, 25],

�nite element simulations [15], and community detection [21]. Due

to its signi�cance and the ever-increasing graph sizes, it is impor-

tant to be able to compute SCCs quickly in parallel.

Tarjan’s algorithm [24], a well-known sequential approach for

detecting SCCs, runs in linear time in the number of edges and

nodes of � . However, it is based on depth-�rst search, which pre-

vents e�cient parallelization. A practical parallel approach called

Forward-Backward (FB) was introduced by Fleischer [8]. It ran-

domly selects a pivot vertex and conducts a breadth-�rst search

(BFS) in both the forward and the backward direction starting from

the pivot. This partitions the graph into one SCC and three sub-

graphs that can be processed recursively and in parallel (cf. Section 2

for more details). McLendon [15] added a trim step to boost the

performance. The FB-Trim approach starts out by removing (trim-

ming) small SCCs comprising just one or two vertices and then

employs the conventional FB algorithm.

Both BFS steps and the recursive subdivision gradually build up

parallelism but start with none. This is not a problem on CPUs,

where relatively little parallelism is needed to load all cores. How-

ever, the initially low parallelism of FB and FB-Trim can be an

issue on GPUs that require 100,000s of threads to achieve good per-

formance. The problem is exacerbated by input graphs with high

diameters (which lowers the parallelism of BFS) or whose SCCs

form a deep DAG (which increases the number of recursive steps).
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We present a new approach for detecting SCCs, called ECL-SCC,

in which all vertices concurrently act as pivots. Hence, our algo-

rithm has a high degree of parallelism from the start, making it

more suitable for devices like GPUs. ECL-SCC assigns two “sig-

nature” values to each vertex: (1) the maximum vertex ID on all

incoming paths and (2) the maximum vertex ID on all outgoing

paths. It then removes all edges from the graph that do not connect

vertices with the same signature, which cannot be in the same SCC.

The algorithm iterates until no more edges are removed. The �nal

signatures specify to which SCC each vertex belongs.

Although early parallel SCC codes achieve good speedups on

synthetic graphs, their performance is limited and sometimes slower

than serial code when processing large-scale real-world graphs [4,

14]. This is because real-world graphs, especially thosewhose vertex

degrees follow a power-law distribution (e.g., social networks),

have unique features that di�er from traditional synthetic graphs:

they often contain a single giant SCC and several small SCCs. As

a consequence, most recent parallel SCC implementations target

graphs with one SCC of size $ ( |+ |) and numerous small SCCs.

In contrast, our work focuses on graphs from thermal radiative

transfer simulations, which are widely used to study the behavior

of both charged and neutral particle species as well as their inter-

actions with the surrounding media [12]. The radiative transfer

equation (RTE) is a hyperbolic partial di�erential equation that de-

scribes the probability of �nding a particle belonging to the energy

group _, at the position x, in the direction Ω, at time C . The RTE

can often be e�ciently solved by performing “transport sweeps”

across multiple (discrete) light propagation directions or ordinates

[1, 16, 26]. Given an unstructured mesh of the target geometry

in which we want to solve the RTE, the sweeping algorithm for

each ordinate induces a directed graph whose traversal, starting

from nodes with no incoming edges, gives the solution. The oc-

currence of cycles in these induced graphs can cause signi�cant

accuracy, physics, and performance problems [22, 26] that, if not

addressed, can lead to livelock during a sweep. Hence, the identi�-

cation of SCCs is a critical �rst step in such sweeping algorithms.

Note that SCC detection must be performed separately for each

discrete ordinate.

In most applications, the resulting meshes tend to have only

small SCCs. In the case of linear elements, which are convex, all

SCCs are trivial and only encompass a single vertex. However,

meshes generated with high-order curved elements tend to produce

clusters of small SCCs [10, 15, 22]. Moreover, the SCCs typically

form a reasonably deep DAG and the mesh diameters are not small.

In other words, the properties of these graphs di�er substantially

from those targeted by existing parallel SCC codes. Furthermore,

none of the existing parallel algorithms for SCC detection in the

RTE community target GPUs. We have designed our ECL-SCC

approach with these mesh graphs in mind. The method proposed

in this work outperforms prior SCC codes by over a factor of 7 on

such inputs.

This paper makes the following main contributions.

• We describe a GPU-friendly SCC algorithm called ECL-SCC

that is more parallel than prior approaches.

• ECL-SCC is based on a new technique (maximum vertex

ID propagation combined with edge removal) and typically

detects multiple SCCs concurrently.

• We present domain-speci�c code optimizations to speed up

our CUDA implementation of ECL-SCC.

• On meshes from radiation transport simulations, it outper-

forms prior approaches by several factors. On other inputs,

it performs on par with the fastest codes from the literature.

The latest version of our ECL-SCC CUDA implementation is avail-

able in open source through GitHub [5] and on the web [6].

The rest of this paper is organized as follows. Section 2 provides

background information and summarizes related work. Section 3

explains our algorithm in detail. Section 4 describes the evaluation

methodology. Section 5 presents and discusses the results. Section 6

concludes the paper with a summary.

2 BACKGROUND AND RELATED WORK

In 1972, Robert Tarjan [24] presented the concept of depth-�rst

search and illustrated how it can help improve various graph algo-

rithms. Among these is an algorithm for detecting SCCs, which is

perhaps the most well-known serial SCC algorithm. It works by

visiting the graph in depth-�rst search (DFS) order and maintains a

stack of the vertices that have not yet been assigned to any compo-

nent. The algorithm keeps track of the “low-link” value for each

vertex. This value is the smallest index of any vertex reachable in

one step from that vertex, including itself. The low-link determines

which nodes will be removed from the stack to form a new SCC.

Upon termination, all nodes will have been visited and all SCCs

will have been identi�ed.

Since DFS is di�cult to parallelize, several other approaches

have been proposed to enable parallel SCC detection. Most of them

follow the Forward-Backward (FB) algorithm outlined in the intro-

duction [8]. It performs both a forward and a backward breadth-�rst

search (BFS) starting from a randomly selected pivot to determine

two sets of reachable vertices. The intersection of the two sets

demarcates the SCC containing the pivot vertex. The remaining

vertices are separated into three subgraphs: the vertices that are

only in the forward set, the vertices that are only in the backward

set, and the vertices that are in neither set. Next, the three subgraphs

are independently processed in parallel using the same algorithm,

i.e., by selecting a pivot in each of them. Figure 1 shows an example

of this procedure.

McLendon [15] improved the parallel FB algorithm by adding a

Trim step. This step detects SCCs with one or two vertices. Trim-

ming often reduces the size of the graph signi�cantly, which speeds

up the traversals in the BF algorithm. The Trim-1 step identi�es

SCCs with only one vertex. If a vertex has no in-edges or no out-

edges, it is guaranteed to be a trivial SCC of size one. The Trim-2

step identi�es SCCs with two vertices. Any two vertices that have

no incoming or outgoing edges aside from a bidirectional edge con-

necting them to each other fall in this category. A Trim-3 step was

introduced by Yuede [13] to reduce the size of the graph further. It

detects SCCs with 3 vertices based on �ve patterns. The trim steps

can be repeated multiple times because new trivial SCCs might

appear after removing other small SCCs from the graph. Figure 2

shows examples of SCCs that can be detected by these trim steps.
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Figure 1: Example illustrating the steps of the FB algorithm: (a) selecting vertex 0 as the pivot, (b) reachable set of forward BFS,

(c) reachable set of backward BFS, (d) resulting SCC (intersection of both sets (yellow)), forward-only set (orange), backward-only

set (blue), and unreachable set (uncolored)

(a) Vertex zero forms a size-1 SCC (b) Vertices 0 and 1 form a size-2 SCC (c) Vertices 0, 1, and 2 form a size-3 SCC
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Figure 2: Examples of small SCCs that can be detected by the trim step: (a) a size-1 SCC, (b) a size-2 SCC, and (c) a size-3 SCC

Hong et al. [11] proposed an e�cient parallel CPU SCC detection

method. This algorithm is one of the �rst to handle real-world

power-law graphs well and uses weakly connected components

(WCCs) to detect small SCCs. It is based on the FB algorithm with

a trim phase. The authors employ two auxiliary data structures:

“mark” and “color”. They set themark �ag of a vertex to true once the

vertex has been assigned to an SCC. Vertices that belong to the same

subgraph have the same color assignment. Furthermore, they mark

vertices that have been visited during the forward and backward

traversals. Since they target graphs with one giant SCC and many

small SCCs, they employ two phases of parallelism, one based on

data parallelism to process the single giant SCC and another based

on task parallelism to detect the remaining SCCs.

Yuede et al. [13] proposed a di�erent parallel CPU algorithm for

identifying SCCs. Their algorithm, called iSpan, uses a spanning

tree instead of DFS or BFS to identify the SCCs. To optimize the

spanning tree approach, they introduce a new synchronization

paradigm called relaxed synchronization (Rsync). Rsync combines

both synchronous and asynchronous traversal strategies and is able

to not only reduce the amount of synchronization but also to balance

theworkload. iSpan incorporates two phases. The �rst phase detects

large SCCs using the spanning-tree algorithm. The second phase

detects small SCCs of up to size 3 using trim techniques and the

remaining small SCCs using the spanning-tree approach. iSpan

runs Trim-1 before the large SCC detection and Trim-1, Trim-2,

and Trim-3 after the large SCC detection. Yuede et al. implemented

iSpan in both OpenMP and MPI.

Barnet et al. [4] present the �rst GPU algorithm for computing

SCCs. Their CUDA implementation is based on the FB algorithm

and includes the aforementioned trim and coloring enhancements.

Moreover, they designed a new GPU-aware pivot selection ap-

proach. It works by having all threads concurrently write the ID of

all vertices of a subgraph to a singlememory location. The “winning”

IDs determine the pivots (one per subgraph).

Li et al. [14] proposed another GPU method for detecting SCCs

that is also based on FB with trim. However, the authors parallelized

the algorithm by dividing the graph into subgraphs and process-

ing each subgraph simultaneously on di�erent threads. Note that,

unlike in the FB algorithm, SCCs can span multiple subgraphs in

this algorithm. The algorithm selects several pivots, one for each

subgraph. It follows Hong’s approach of using di�erent paralleliza-

tion strategies for detecting large and small SCCs. For large SCCs,

Li et al. employ a topology-driven approach with load balancing,

whereas for small SCCs, they found load balancing to not be needed.

3 ECL-SCC ALGORITHM AND
IMPLEMENTATION

Alg. 1 outlines how ECL-SCC works. It operates on a directed graph

with unique vertex IDs and computes two signature values for

each vertex E , called E8= and E>DC . At the end of the computation,

either value will uniquely identify the SCC to which E belongs.

The algorithm comprises an outer loop (Lines 2 to 21) that iterates

until the computation has converged. Each iteration goes through

three phases: signature initialization, maximum-value propagation,

and edge removal. The �rst phase (Lines 3 to 6) initializes the two

signature values of each vertex to the ID of the corresponding vertex.

The second phase (Lines 7 to 14) propagates the maximum signature

values along the edges. For every directed edge, the >DC value of

the source vertex is updated to the >DC value of the destination

vertex if it is larger. Similarly, the 8= value of the destination vertex

is updated to the 8= value of the source vertex if it is larger. This
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phase repeats until a �xed point is reached, that is, until no 8= or >DC

value changes anymore. The third phase (Lines 15 to 19) removes

the edges whose source and destination vertices belong to di�erent

SCCs. Detecting this condition is simple. If the signatures of the

source and destination di�er, the two vertices are guaranteed to

not be in the same SCC, and the edge can safely be removed. Then

the three phases repeat on the reduced graph that has the same

vertices but fewer edges. The algorithm terminates once all vertices

have a signature where the 8= value matches the >DC value.

Phase 1 performs $ ( |+ |) work, Phase 2 performs $ (2 |� |) work,

where 2 = ;>=64BC 2~2;4 ;4=6Cℎ, and Phase 3 performs $ ( |� |) work.

The phases iterate up to 3 times, where 3 = ��� 34?Cℎ of the DAG

that results when contracting each SCC into a single vertex. Thus,

the base algorithm performs $ (32 |� | + 3 |+ |)) work in the worst

case. The presence of 2 explains why our algorithm is more e�cient

on graphs with small SCCs. We expect the average work complex-

ity to be $ (;>6(3);>6(2) |� | + ;>6(3) |+ |) for the following reasons.

First, if the vertex IDs are randomly distributed, the outer itera-

tions quickly break the DAG into separate pieces (cf. Section 3.2),

thus roughly halving the DAG depth in each step and resulting in

only ;>6(3) iterations. Our experimental results corroborate this

behavior. Second, the cycles can be traversed in as few as ;>6(2)

steps using a “path compression” approach (cf. Section 3.3). Since

the three phases are parallel (cf. Section 3.4), the expected span of

our algorithm, which re�ects the length of the longest dependence

chain, is $ (;>6(3);>6(2)).

Algorithm 1 ECL-SCC

Input: Directed graph � = (+ , �) with unique vertex IDs

1: 2>=E4A643 ← 5 0;B4

2: while not 2>=E4A643 do

⊲ initialize vertex signatures

3: for all vertices E ∈ + do

4: E8= ← E83
5: E>DC ← E83
6: end for

⊲ propagate max values

7: D?30C43 ← CAD4

8: while D?30C43 do

9: for all edges (D → E) ∈ � do

10: D>DC ← max(D>DC , E>DC )

11: E8= ← max(D8=, E8=)

12: end for

13: D?30C43 ← at least one E8= or D>DC value changed

14: end while

⊲ remove edges that span SCCs

15: for all edges (D → E) ∈ � do

16: if D8= ≠ E8= or D>DC ≠ E>DC then

17: � ← � \ (D → E)

18: end if

19: end for

20: 2>=E4A643 ← all E8= = E>DC
21: end while

Output: ∀E : E8= (and E>DC ) denotes to which SCC vertex E belongs

3.1 Algorithm Illustration

We demonstrate the steps of the ECL-SCC algorithm on the input

graph shown in Fig. 3a, which has 12 vertices and 15 edges. Each

vertex is labeled with a unique ID between 0 and 11. The graph

contains two clusters of vertices that are not reachable from each

other. Fig. 3b shows the result of Phase 1, which initializes the two

signature values (shown separated by a colon). The vertex color is

a function of the signature and not part of the algorithm. We only

colored the vertices to make it easier to see which of them have the

same signature. Fig. 3c shows the result of Phase 2, that is, after the

signature propagation has reached a �xed point. All vertices with

a single color are done because their two signature values match.

Fig. 3d shows the result of Phase 3, where the removed edges are

grayed out and dashed. The ECL-SCC algorithm terminates after

repeating these three phases a couple more times. Fig. 3e shows the

�nal signatures and edges. Note how all vertices belonging to the

same SCC have the same signature, how each SCC has a di�erent

signature, and how all edges within an SCC remain intact whereas

all edges between SCCs have been removed.

This example also illustrates how our ECL-SCC algorithm di�ers

from the FB approach described above. Considering only the “left”

part of the graph in Fig. 3 that looks like a linked list, picking any of

the vertices as the pivot in the FB algorithm will yield either 2 or 3

subgraphs, namely the trivial SCC containing the pivot, all vertices

“above” it, and all vertices “below” it. In contrast, ECL-SCC is able

to split the linked list into 4 subgraphs in a single step as shown in

Fig. 3d, thus potentially speeding up the convergence.

3.2 ECL-SCC Guarantees

3.2.1 Correctness. The SCCs in an input graph are generally clus-

tered together in the sense that some SCCs can be reached from

others. A graph may contain multiple such clusters that cannot be

reached from each other, as is the case in our example in Fig. 3.

One SCC in each cluster must contain the highest-ID vertex of the

cluster due to the uniqueness of the vertex IDs. They are vertices

9 and 11 in our example. We refer to the SCCs that contain these

vertices as “max” SCCs.

Since, by de�nition, every vertex in an SCC can be reached by

every other vertex in the same SCC and we are computing the

maximum reachable ID, all vertices in the max SCCs must end up

with the respective highest vertex ID in their E8= and E>DC signature

values (after Phase 2). No SCC in a di�erent cluster can have this

ID in any of its signatures, no ancestor SCC in the same cluster can

have it in any of its E8= values, and no descendant SCC in the same

cluster can have it in its E>DC values. Moreover, all ancestor SCCs in

the same cluster must have this ID in all of their E>DC values, and all

descendant SCCs in the same cluster must have it in their E8= values.

Fig. 3c illustrates this. Consequently, all vertices in a max SCC must

meet the condition E8= = E>DC and all remaining SCCs must meet

the condition E8= ≠ E>DC . Therefore, each iteration of the ECL-SCC

algorithm will concurrently detect at least the max SCC in each

cluster and separate them out (meaning all edges to and from those

SCCs will be removed in Phase 3 as their signatures do not match).

For example, in Fig. 3d, the SCCs “rooted” in vertices 9 and 11 are

detected and separated out. The edge removal splits up each cluster

into a max SCC and zero or more smaller clusters that contain the
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Each phase of the ECL-SCC algorithm depends on the result of

the prior phase, which is why three global barriers are needed in

the body of the outer loop, one after each named code section in

Alg. 1. The three “for all” loops are parallel. Phase 1 is embarrass-

ingly parallel, meaning it requires no synchronization. The only

synchronization needed in Phase 3 is an atomic add to request a

new worklist entry if a thread �nds that the edge it is processing is

still needed.

Phase 2 can easily be implemented with two atomic max op-

erations. However, as it represents the most performance critical

section of our code, we opted for a faster atomic-free implemen-

tation [17]. Since the signature propagation is monotonic and any

change in a signature value triggers a follow-on iteration, Phase 2

is resilient to temporary priority inversions [18]. This means that

all threads with a higher value for a signature can write their value

without synchronization. One of the writes will “win”, though not

necessarily the one with the highest value. However, any written

value represents an improvement, and the “losing” thread(s) will

try again in the next iteration until the thread with the highest

value succeeds. Whereas this may increase the number of iterations

needed, it often speeds up the code because no explicit synchro-

nization is performed.

ECL-SCC launches all kernels with 512 threads per block. This

number tends to work well on most modern NVIDIA GPUs, which

support 1024, 1536, or 2048 threads per streaming multiprocessor

(SM). Moreover, we use a persistent-thread approach [9], that is, we

launch as many threads as the GPU can concurrently schedule on

its SMs (rather than one thread per edge). This means a thread may

have to process multiple edges, which is bene�cial in combination

with our asynchronous Phase-2 implementation.

4 EVALUATION METHODOLOGY

We compared the performance of ECL-SCCwith SCC-GPU [14] and

iSpan [13], which, respectively, are the fastest GPU and the fastest

parallel CPU code we could �nd. We instrumented each code to

measure the SCC computation time, excluding everything else, such

as reading in the graph, outputting the result, and verifying the

result. Whenever reasonable, we ran each experiment nine times

and report the median runtime. Due to very long runtimes, we were

only able to run iSpan once on some of the inputs. We veri�ed the

solutions of all ECL-SCC runs by comparing them to the results

obtained by Tarjan’s algorithm. Our primary performance metric

is the throughput, which is the number of vertices divided by the

runtime. We focus on the throughput because it is a higher-is-better

metric, which is more intuitive, and it is normalized by the graph

size. This makes the results less input-size dependent.

We evaluated the GPU codes on two generations of NVIDIA

GPUs. The �rst GPU is a Volta-based Titan V with 5120 processing

elements distributed over 80 multiprocessors. Each multiprocessor

has 96 kB of L1 data cache/shared memory, and the 80 multiproces-

sors share a 4.5 MB L2 cache as well as 12 GB of global memory with

a peak bandwidth of 652 GB/s. The second GPU is an Ampere-based

A100 with 6912 processing elements distributed over 108 multipro-

cessors. Each multiprocessor has 192 kB of L1 data cache/shared

memory, and the 108 multiprocessors share a 40 MB L2 cache and

40 GB of global memory with a peak bandwidth of 1555 GB/s.

We also used two systems to evaluate the CPU code. One is AMD-

based and the other is Intel-based. The �rst system has a 16-core 3.5

GHz AMD Ryzen Threadripper 2950X CPU with hyperthreading

enabled, allowing the 16 cores to run 32 threads simultaneously.

Each core has a 32 kB L1 data cache, a 512 kB uni�ed L2 cache, and

all cores share a 32 MB L3 cache. The main-memory size is 48 GB.

The second system is based on dual 16-core 2.9 GHz Intel Xeon

Gold 6226R CPUs with hyperthreading enabled, allowing the 32

cores to run 64 threads simultaneously. Each core has a 32 kB L1

data cache, a 1 MB uni�ed L2 cache, and the cores on a socket share

a 44 MB L3 cache. The main-memory size is 64 GB. Both systems

run the Fedora 37 operating system. To compile the GPU codes,

we used nvcc 12.0 with the “-O3 -arch=sm_70” �ags for the Titan V

and the “-O3 -arch=sm_80” �ags for the A100 GPU. We compiled

the CPU code with gcc/g++ 12.2.1 using the “-O3 -fopenmp” �ags.

We used two types of graphs as inputs for our evaluation, the

mesh graphs listed in Tables 1 and 2 and the power-law graphs listed

in Table 3. The latter graphs were obtained from the SuiteSparse

Matrix Collection (SMC) [7]. We selected them because they were

also used in prior work [13, 14]. The tables list the name, number

of vertices, number of edges, average degree, maximum in-degree,

maximum out-degree, number of SCCs, number of size-1 SCCs,

number of size-2 SCCs, the size of the largest SCC, and the depth

of the DAG formed by the SCCs. For the mesh graphs, some of

this information is shown as a minimum and maximum value over

two columns since each mesh type includes multiple ordinates. The

number of ordinates is denoted by #Ω , which is equivalent to the

number of graphs. We provide additional information about the

meshes in Section 4.1.

These tables highlight some important di�erences between mesh

and power-law graphs. For instance, the meshes have only low-

degree vertices whereas most of the power-law graphs have some

high-degree vertices. Most of the meshes have very small SCCs

whereas most of the other graphs have one very large SCC that

encompasses the majority of the vertices. Finally, the DAG formed

when collapsing the SCCs is quite deep for most of the meshes but

shallow for most of the power-law graphs.

To compute the throughputs for the 10 power-law graphs, we

used the median runtime of 9 runs. For mesh graphs, we timed the

166 small and 205 large meshes and calculated the throughput based

on the average runtime of each mesh group. For example, in Table 1,

the beam-hex group comprises 30 mesh graphs. We �rst measured

the average runtime for these 30 graphs and then computed the

corresponding throughput based on this average. Note that these

runtimes do not include any data transfer to/from the GPU as we

are not advocating using GPU code for �nding SCCs of graphs

stored on the CPU. Rather, we are targeting environments where

the graph is already on the GPU from a prior processing step and

the SCC result is needed on the GPU for the next processing step.

4.1 Graphs for Radiative Transfer Applications

This subsection describes the graphs that form the basis of any

sweeping algorithm for the RTE. Given an unstructured mesh, the

sweeping algorithm associates to each ordinate a directed graph

that orders the mesh elements to achieve an upwind discretiza-

tion of the RTE. For an ordinate Ω3 , the computation proceeds
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Table 1: Information about the small mesh graphs

Avg Max Max Min Max Min size- Max size- Min size- Max size- Min largest Max largest Min DAG Max DAG

Graph #Ω Vertices Edges 346 38= 3>DC SCCs SCCs 1 SCCs 1 SCCs 2 SCCs 2 SCCs SCC size SCC size depth depth

beam-hex 30 262,144 769k 2.93 3 3 262,144 262,144 262,144 262,144 0 0 1 1 318 318

star 8 327,680 654k 2.00 2 2 327,680 327,680 327,680 327,680 0 0 1 1 1,534 1,534

torch-hex 32 264,064 782k 2.96 4 5 263,213 263,519 262,551 262,999 504 626 5 8 286 364

torch-tet 32 515,360 1,008k 1.96 3 3 513,410 514,425 511,527 513,501 916 1,847 4 6 484 1,335

toroid-hex 32 196,608 581k 2.96 4 4 189,045 193,745 188,693 193,602 1 15 32 420 220 697

toroid-wedge 32 196,608 486k 2.47 4 4 189,981 193,467 184,625 190,326 3,141 5,524 2 200 282 346

Table 2: Information about the large mesh graphs

Avg Max Max Min Max Min size- Max size- Min size- Max size- Min largest Max largest Min DAG Max DAG

Graph #Ω Vertices Edges 346 38= 3>DC SCCs SCCs 1 SCCs 1 SCCs 2 SCCs 2 SCCs SCC size SCC size depth depth

klein-bottle 8 8,388,608 19M 2.24 4 4 1 75,750 0 75,746 0 3 8,312,856 8,388,608 1 4

mobius-strip 8 4,194,304 11M 2.98 4 4 758,836 4,194,304 695,463 4,194,304 0 102,243 1 3,246,558 1 15,652

torch-hex 32 2,112,512 6M 2.98 4 5 2,109,019 2,110,311 2,106,301 2,108,211 2,013 2,463 6 16 583 752

torch-tet 32 4,122,880 6M 1.98 3 3 4,113,688 4,117,636 4,104,680 4,112,482 5,092 8,912 4 6 1,019 2,745

toroid-hex 32 1,572,864 5M 2.98 4 4 1,535,516 1,561,334 1,534,396 1,560,997 5 37 64 1,504 444 1,865

toroid-wedge 32 1,572,864 4M 2.48 4 4 1,542,117 1,560,181 1,520,331 1,547,498 12,683 22,539 2 747 570 703

twist-hex 61 6,291,456 19M 3.00 5 5 1 1 0 0 0 0 6,291,456 6,291,456 1 1

Table 3: Information about the power-law graphs

Avg Max Max No. Size-1 Size-2 Largest DAG

Graph Vertices Edges 346 38= 3>DC SCCs SCCs SCCs SCC size depth

cage14 1,505,785 27,130,349 18.02 41 41 1 1 0 1,505,785 1

circuit5M 5,558,326 59,524,291 10.71 1,290,501 1,290,501 647 15 453 5,555,791 1

com-Youtube 1,134,890 2,987,624 2.63 28,576 4,256 1,134,890 1,134,890 0 1 704

�ickr 820,878 9,837,214 11.98 8,549 10,272 277,277 269,944 4,345 527,476 5

Freescale1 3,428,755 18,920,347 5.52 25 27 1,061 1 0 3,408,803 1

Freescale2 2,999,349 23,042,677 7.68 30,478 30,167 55,085 1 54,423 2,888,522 1

soc-LiveJournal1 4,847,571 68,993,773 14.23 13,906 20,293 971,232 947,776 16,875 3,828,682 24

web-Google 916,428 5,105,039 5.57 6,326 456 412,479 399,605 4,169 434,818 34

wiki-Talk 2,394,385 5,021,410 2.10 3,311 100,022 2,281,879 2,281,311 529 111,881 8

wikipedia 3,148,440 39,383,235 12.51 168,685 6,576 1,040,035 1,037,369 2,001 2,104,115 85

by sweeping �uxes through the elements of the mesh with data

entering elements through their upwind faces and exiting through

downwind faces. The notion of upwind and downwind faces is

taken relative to the ordinate Ω3 and is determined by the outward

normal vector n(x) restricted to points along the face of every

element. The vertices of the graph represent the elements of an un-

structured mesh, while the edges represent a shared face between

pairs of neighboring elements. The order in which these elements

are traversed forms a directed (possibly cyclic) graph. In the case

of high-order curved elements, the normal vector changes its ori-

entation relative to the ordinate at di�erent locations on the same

face. This creates the notion of a re-entrant face, where neighboring

elements are simultaneously upwind of one another, which induces

cyclic dependencies in the graph. An example of a high-order mesh

with re-entrant faces, which would induce an SCC, is shown in

Figure 4.

Our input meshes listed in Tables 1 and 2 were constructed using

the MFEM library [3]. We used a collection of meshes, including

several sample meshes from MFEM as well as two di�erent rep-

resentations of the geometry of a plasma torch generated with

low-order tetrahedral and hexahedral elements. While the meshes

associated with the torch geometry do not contain cycles, the pro-

posed algorithm should also be able to rapidly identify the absence

of SCCs. Table 4 provides a summary of the di�erent meshes used

in the experiments. Given a mesh and ordinate Ω3 , we construct

each graph by iterating through interior faces and extracting the

pair of elements (41, 42) that share this face along with the corre-

sponding face transformation. Then, for each point x8 along this

face, we compute the outward unit normal vector n(x8 ) on 41. Note

that we always use the convention that 41 points into 42. Using this

normal vector, we can �nd its orientation relative to the ordinate

by checking the sign of the dot product Ω3 · n(x8 ). In particular,

if Ω3 · n(x8 ) > 0, then we create an edge pointing from 41 to 42.

Otherwise, the edge points from 42 to 41.

5 RESULTS

In this section, we evaluate the performance of ECL-SCC and com-

pare it to the leading GPU and CPU SCC codes from the literature.

We calculated the throughput on each mesh graph based on the

average runtime across all ordinates as listed in Tables 5 and 6. For

the power-law graphs, we used the runtimes presented in Table 7.

5.1 Throughput Comparison

This subsection compares the performance of ECL-SCC with GPU-

SCC, the fastest GPU code from the literature, and iSpan, the fastest

parallel CPU code from the literature, on two GPUs and two CPUs.

In the result charts, the x-axis lists the inputs and the geometric

mean over all of them whereas the y-axis displays the throughput

in millions of completed vertices per second. Note that, in some

cases, we use a logarithmic scale for the y-axis.
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