A High-Performance MST Implementation for GPUs

Alex Fallin
Dept. of Computer Science
Texas State University
San Marcos, Texas, USA
waf13@txstate.edu

Andres Gonzalez
Dept. of Computer Science
Texas State University
San Marcos, Texas, USA
agl548@txstate.edu

ABSTRACT

Finding a minimum spanning tree (MST) is a fundamental graph
algorithm with applications in many fields. This paper presents
ECL-MST, a fast MST implementation designed specifically for
GPUs. ECL-MST is based on a parallelization approach that uni-
fies Kruskal’s and Bortivka’s algorithm and incorporates new and
existing optimizations from the literature, including implicit path
compression and edge-centric operation. On two test systems, it
outperforms leading GPU and CPU codes from the literature on all
of our 17 input graphs from various domains. On a Titan V GPU,
ECL-MST is, on average, 4.6 times faster than the next fastest code,
and on an RTX 3080 Ti GPU, it is 4.5 times faster. On both systems,
ECL-MST running on the GPU is roughly 30 times faster than the
fastest parallel CPU code.

CCS CONCEPTS

« Computing methodologies — Massively parallel algorithms.

KEYWORDS

Minimum spanning tree, minimum spanning forest, parallelism,
performance optimization, GPU implementation

ACM Reference Format:

Alex Fallin, Andres Gonzalez, Jarim Seo, and Martin Burtscher. 2023. A High-
Performance MST Implementation for GPUs. In The International Conference
for High Performance Computing, Networking, Storage and Analysis (SC °23),
November 12-17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3581784.3607093

1 INTRODUCTION

An MST of a weighted, undirected, connected graph G = (V, E, w)
is a subset of the edges E that connects all vertices V and that has
the minimum possible total weight. MSTs have one fewer edge than
there are vertices in the graph. A minimum spanning forest (MSF)
is a generalization to graphs with multiple connected components.
The MSF consists of a separate MST for each connected component.

For illustration, in Figure 1, assume electricity producers and
consumers to be the vertices of the graph, power lines to be the
edges, and the weights to be the cost of maintaining the power

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC °23, November 12-17, 2023, Denver, CO, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0109-2/23/11...$15.00
https://doi.org/10.1145/3581784.3607093

Martin Burtscher
Dept. of Computer Science
Texas State University
San Marcos, Texas, USA
burtscher@txstate.edu

Jarim Seo
Dept. of Computer Science
Texas State University
San Marcos, Texas, USA
j_s1195@txstate.edu

lines. In this example, the cheapest distribution grid that allows
everyone to deliver or receive electricity is the MST shown.

Figure 1: Example of a weighted graph on the left and the
resulting MST on the right

Computing an MST (or MSF!) is a fundamental graph algorithm
with applications in many fields. For instance, it is a key building
block in network analysis [12], chip design [1], eye tracking [17],
route planning [13], and medical diagnostics like tumor recogni-
tion [4]. Since some of these applications repeatedly generate an
MST, increasing the performance of this step is important and has
the potential to speed up lifesaving computations.

There are three classic MST algorithms. Bortivka’s algorithm [11]
iteratively merges the vertices of the graph along their lightest edge
until just one vertex remains. The merged edges form the MST.
Prim’s algorithm [28] builds the tree from an arbitrary starting
vertex one edge at a time by adding the lightest edge that connects
a vertex in the tree to a vertex that is not yet in the tree. Kruskal’s
algorithm [18] sorts the edges by weight. It then processes them
in non-decreasing order and inserts the edges that do not create a
cycle. These three algorithms are greedy and have a time complexity
of O(|E| log |V]), i.e., they run in polynomial time.

Boruvka’s algorithm is the most parallelism friendly of the three
because, in each step, every vertex can be processed independently
and all lightest edges can be added concurrently. The main issues
are that the parallelism decreases rapidly and that building a new,
smaller graph in each iteration is expensive. Prim’s algorithm relies
on the cut property of trees and is, therefore, inherently serial. How-
ever, some of its auxiliary operations can be parallelized to improve
performance [33]. Similarly, Kruskal’s algorithm also appears to
be inherently serial but can be sped up by parallelizing some of its
operations like the sorting step or enhancements like filtering [25]
and partial sorting [3].

Our approach, which we call ECL-MST and describe in detail in
Section 3, fully parallelizes Kruskal’s algorithm and incorporates
key performance optimizations. The resulting CUDA implemen-
tation is several times faster than prior CPU and GPU codes on a
wide variety of real-world and synthetic inputs.

1Unless otherwise noted, we use MST to refer to both MSTs and MSFs.

SC ’23, November 12-17, 2023, Denver, CO, USA

This paper makes the following main contributions.

e We introduce ECL-MST, a high-speed MST implementation
written in CUDA.

e We present key domain-specific optimizations that are es-
sential to the GPU performance of ECL-MST.

e We show that ECL-MST outperforms state-of-the-art CPU
and GPU implementations on many inputs.

e We demonstrate that Kruskal’s and Bortvka’s MST algo-
rithms converge to the same parallelization.

The latest version of our ECL-MST CUDA code is available in open
source through GitHub [5] and on the web [6].

The rest of this paper is organized as follows. Section 2 sum-
marizes related work. Section 3 explains our approach in detail.
Section 4 describes the evaluation methodology. Section 5 presents
and discusses the results. Section 6 concludes the paper with a
summary and future work.

2 RELATED WORK

Being a mature domain, a large amount of related work exists on
the minimum spanning tree problem. Hence, we primarily focus on
the work we build upon, some of the previous parallelizations of
MST, and the implementations we compare to in the result section.

The previous section already introduced the classic (serial) MST
algorithms. Brennan [3] combines Kruskal’s algorithm with quick-
sort (gKruskal). By partitioning the edge list into a lighter and a
heavier part, sorting the light part, and only sorting the heavy part
if the tree is not complete after processing the light part, the tree
can often be built without fully sorting the edge list. This increases
the performance over a version that always fully sorts the edge list.
ECL-MST similarly does not process the entire edge list at once to
potentially save on computation. However, ECL-MST differs in that
it does not perform the sorting step at all.

Osipov et al. [25] demonstrate that, in scenarios where the heav-
iest edge will be in the MST, qKruskal does not perform better
than the conventional implementation. They take advantage of
the partially built tree and the fact that edges can be checked for
cycles faster than they can be sorted and create Filter-Kruskal. By
removing edges that create a cycle from the unsorted chunks, they
reduce the number of edges that must be sorted. They show that
this optimization allows Kruskal’s algorithm to perform well on
both sparse and dense graphs. ECL-MST incorporates this idea.

Setia et al. [31] devised a parallel MST algorithm for CPUs that is
based on Prim’s algorithm. It employs worker threads that start at
a different random vertex and build a tree from that vertex outward.
When the threads collide, the thread with the higher ID is killed
and its tree is merged with that of the thread with the lower ID. The
algorithm takes advantage of the cut property to merge the trees
correctly. Their code makes use of critical sections to perform the
tree merging. In contrast, ECL-MST is lock-free and uses atomic
operations to avoid more expensive synchronization.

Pai and Pingali [26] introduce three throughput optimizations
that are crucial to high performance in graph algorithms like MST.
Moreover, they discuss how these optimizations can be automated
by compilers that generate CUDA code to improve the performance
of many algorithms. One important bottleneck they identify is ker-
nel launch overheads, especially kernel launches inside a while

Alex Fallin, Andres Gonzalez, Jarim Seo, and Martin Burtscher

loop with a condition that is the result of a cudaMemcpy. This
is particularly prescient because ECL-MST as well as the Vascon-
cellos et al. [8] and the Sousa et al. [21] MST codes we compare
against in Section 5 employ this execution pattern. Pai and Pingali
note that, for algorithms using a worklist, programmers must be
careful to avoid bottlenecking by returning to the CPU too often.
Fortunately, this is not a problem in ECL-MST, which is guaranteed
to perform no more than O(log |V|) iterations. They also discuss
traversing graphs that have a large difference between the degree
of individual vertices, e.g., power-law graphs. They suggest that
sticking to a single level of parallelization, such as thread granu-
larity, can cause performance bottlenecks. As a remedy, we use
a hybrid parallelization technique in ECL-MST that is similar to
Merrill’s approach [22].

Vasconcellos et al. [8] introduce a pure MST code for GPUs.
By this, we mean that they target graphs with just a single con-
nected component. They base their implementation on Bortuvka’s
algorithm with a modified stopping condition to generate an MST
instead of an MSF. They employ a vertex-centric, data-driven [23]
algorithm that uses a kernel to find the lightest edge of a vertex
and another kernel to mark it. They then contract the graph and
recalculate the connected components. The main goal of their work
is to produce an efficient general MST algorithm, which is why they
do not use many CUDA specifics other than atomic operations. We
compare to their GPU implementation in Section 5 as Jucele GPU.

Lonestar [20] contains two implementations of Bortaivka’s algo-
rithm. The GPU version, which we do not compare to as it appears
to be incompatible with recent GPU architectures, is based on the
IrGL compiler by Pai and Pingali [26]. It performs indirect edge
relaxation so as not to modify the graph dynamically. This is akin to
how ECL-MST performs its component merging. The CPU version
of Lonestar, which we do compare to in the result section, runs
over the set of disconnected components and loops over their edges.
The first part of the main loop determines the lightest edge of each
component, which is safe to do in parallel because this step is read-
only. The second part of the main loop merges the components
in a lock-free manner. Both of these MST implementations share
the use of the disjoint-set data structure with ECL-MST to avoid
modifying the graph at runtime, which would be slow.

The MST code in the Problem-Based Benchmark Suite (PBBS) [2]
implements elements from both qKruskal and Filter-Kruskal along
with new ideas, in particular deterministic reservations. It executes
the iterations of the original non-parallel algorithm out of order
using a custom speculative for loop. PBBS only performs updates to
the tree once they have been found to be non-conflicting with ear-
lier iterations. The algorithm only sorts the smallest k edges at first,
where k = min(|V|,5|E|/4) is approximated using an edge sample
of size |E|/sqrt(|E|). This k smallest chunk is then processed. If
the MST is not complete, PBBS filters all cyclic edges out of the
remaining chunk before processing it. ECL-MST shares the filtering
optimization with PBBS. Unlike PBBS, it does not sort the chunks
and uses a simpler edge sampling method with a different thresh-
old. ECL-MST employs a similar parallelization strategy based on
deterministic reservations but without speculation.

RAPIDS cuGraph [29] is an industry suite of graph algorithms for
GPUs. It takes advantage of RAFT (Reusable Accelerated Functions
and Tools) [30] in its MST code. Moreover, it uses color propagation

A High-Performance MST Implementation for GPUs

and supervertices to implement Bortivka’s algorithm. We compare
to this vertex-centric, topology-driven [23] code in Section 5.
Sousa et al’s [21] MST code for GPUs is listed by Pai and Pin-
gali [26] as the fastest existing implementation. This code is based
on Bortvka’s algorithm and is vertex-centric and data-driven. It
starts by finding the minimum weighted edge of each vertex and
stores them in a shared data structure. It then removes the mirrored
edges, i.e., the edges where both the outgoing and incoming edges
between the same two vertices are selected. The code is a true
implementation of Boriivka’s algorithm in that it actually merges
vertices (using color propagation) into new supervertices. Finally,
it builds a new edge array for the contracted graph based on the
merged vertices. ECL-MST differs from this implementation in that
it does not create any new graphs and is primarily edge-centric. We
compare to Sousa et al.’s code in Section 5 as UMinho GPU.
Gunrock [24] is a graph analytics suite that includes a vertex-
centric topology-driven MST implementation. It relies on the input
having only a single connected component and, therefore, cannot
generate an MSF. It checks all vertices and evaluates an edge if
its source and destination do not belong to the same connected
component. We also compare to this code in the results section.
All of the GPU-related works described above employ a vertex-
centric implementation. In contrast, our ECL-MST code is edge-
centric, which we found to be substantially faster because it en-
ables important optimizations such as implicit path compression
(see Section 5.3). Additionally, some of the above approaches are
topology-driven, which tends to be slower than the data-driven
implementation that ECL-MST and some other codes use.

3 ECL-MST APPROACH

Since Boruvka’s algorithm is the most amenable to parllelization
of the three classic MST algorithms, many parallel MST codes are
based on this algorithm [8, 20, 21, 29]. In contrast, we set out to
parallelize Kruskal’s algorithm for GPU execution. As we progres-
sively increased the parallelism, something unexpected happened.
Our GPU parallelization of Kruskal’s algorithm converged to that
of Boruvka’s algorithm. We then proceeded to add critical per-
formance optimizations to this combined parallel MST approach,
paying close attention to circumvent the weaknesses of GPUs and
trying to exploit their strengths.

3.1 Parallelization

To avoid the cost of creating a new, smaller graph in each iteration,
Boruvka’s algorithm can be parallelized as follows using disjoint
sets to efficiently represent the merged vertices in the original graph.
Initially, all vertices form their own set. Then, the following steps
repeat until only a single set (per connected component) remains.

e Each vertex determines the set it belongs to using the find
operation. This yields a unique representative for each set
(e.g., the vertex with the highest ID in the set).

e Each vertex identifies the lightest adjacent vertex that be-
longs to a different set. This lightest neighbor is recorded
in the representative if it is lighter than the lightest vertex
already recorded there.

o Each representative merges its set with that of the lightest
recorded neighbor using the union operation.

SC ’23, November 12-17, 2023, Denver, CO, USA

This parallelization of Boruvka’s algorithm is straightforward but
suffers from exponentially decreasing parallelism as the number of
sets is roughly halved in each iteration.

To see whether we can avoid or at least alleviate this shortcom-
ing, we attempted to fully parallelize Kruskal’s algorithm. We also
use a disjoint-set data structure but primarily for cycle detection.
First, we parallelized the sorting of the edges by weight, which is
straightforward [16]. However, the building of the MST by pro-
cessing the edges from lightest to heaviest remained serial. We
gradually parallelized this step in the following way by processing
a chunk of the k lightest edges concurrently.

e Each edge in the chunk determines whether it forms a cycle
by comparing the representatives of its two endpoints. If it
does (i.e., the representatives match), the edge is discarded.

e Each remaining edge records in the representatives of its
endpoints whether it is the first edge in the chunk to connect
to that set. This is done by recording the relative position of
the edge within the chunk (i.e., the edge index), but only if
it is smaller than the smallest index already recorded.

o Each edge checks whether its edge index is stored in at least
one of the two representatives. If it is, the edge is included in
the MST and the sets of its endpoints are merged. Otherwise,
nothing is done with this edge.

The above steps repeat until each edge in the chunk has been either
discarded or included in the MST. Then, the algorithm advances to
the next chunk of k lightest edges. It continues in this manner until
the MST is complete.

This parallelization approach is based on the observation that we
can safely include not only the lightest edge but all edges that are
the first in the chunk to connect to a set. Deterministic reservation
is based on the same observation [2]. This is the case because adding
those edges cannot form a cycle. We found this approach to work
quite well as it often either includes many edges in the MST or
discards many edges from consideration in each iteration. Hence,
it typically does not require many iterations per chunk.

Next, we added two critical optimizations. First, we realized
that, since the edges are sorted by weight, a lower edge index is
tantamount to a lower edge weight. Therefore, we can record the
lightest-weight edge rather than the smallest-index edge in the
representatives without affecting the outcome. Second, we realized
that, since we record the lightest edge in the representative (using
an atomicMin operation), it is no longer necessary for the edges in
the chunk to be sorted. After all, the minimum of the sorted and
unsorted list is the same. By combining these two optimizations
and making the chunk size large enough to encompass all edges,
we were able to eliminate the sorting step altogether.

Interestingly, the resulting parallel MST algorithm is nearly iden-
tical to the parallelization of Bortivka’s algorithm outlined above.
The only remaining difference is that Kruskal’s code skips the
edges that form cycles and processes the remaining edges whereas
Boruvka’s code processes the edges that connect disjoint sets and
skips the remaining edges. However, this is merely a distinction in
viewpoint as there is no actual difference in the codes, both of which
use the exact same disjoint-set data structure and operations for
processing the edges. Thus, the two parallelizations have converged
to the same solution.

SC ’23, November 12-17, 2023, Denver, CO, USA

The resulting parallelization is identical to that of PBBS, which
is based on deterministic reservations [2]. In other words, our par-
allelization of Kruskal’s algorithm has led to an already known
parallelization strategy for MSTs on CPUs. However, we believe
we are the first to employ it on GPUs for accelerating MST compu-
tations and propose important optimizations to speed it up.

3.2 Performance Optimization

We implemented this parallel MST algorithm in CUDA and incorpo-
rated the following main optimizations to boost the performance.

o Our code is lock free, which is crucial for good performance
on GPUs. It employs atomicAdd instructions to obtain the
next available slot in the worklist, atomicCAS instructions
to perform the union operation on the disjoint sets, and
atomicMin instructions to determine the lightest edge of
each set (i.e., to perform the deterministic reservations). The
atomicMin instructions operate on 64-bit values that hold
the edge weight in the most significant bits and the edge ID
in the least significant bits. This is done for two reasons: (1) It
introduces a deterministic tie breaker in case multiple edges
have the same weight, and (2) it provides the necessary edge
ID to identify the lightest edge.

o The code incorporates a hybrid parallelization scheme, which
is important for graph algorithms where some vertices may
have many more neighbors than others. In particular, the
code processes each low-degree vertex (d(v) < 4) with a
single thread and each remaining vertex with an entire warp.
In the latter case, the processing of the vertex’s neighbors is
parallelized across the warp-threads and exploits the CUDA
ballot and shuffle functions to quickly exchange informa-
tion between the warp-threads. Hence, our code processes
the vertices in parallel and, for higher-degree vertices, also
processes the neighbors in parallel.

e We investigated different path-compression schemes to speed
up the find operations, including “intermediate pointer jump-
ing” that is optimized for GPU execution [14]. Interestingly,
we obtained the best performance by not including any ex-
plicit path compression. Instead, our code implicitly performs
path compression when populating the new worklist (see be-
low) by storing the result of the find operations in lieu of the
original vertex IDs. This approach simplifies and accelerates
the code.

e Prior work has demonstrated that filtering can speed up MST
computations [25]. Filtering works by sporadically looking
for and removing edges from consideration that form cycles.
This helps because the cycle checks are computationally
cheap. Since there is still overhead associated with filtering,
we perform only a single filtering step. Specifically, we ran-
domly sample 20 edge weights to estimate the largest weight
w of the c|V| lightest edges in the graph. Then, we process
the edges with a weight under w in the first phase, filter
the remaining edges, and process the edges that were not
filtered out, if any, in the second phase. Values between 2
and 4 seem to work well for ¢, which are likely to include
most of the the MST edges in the first phase since an MST

Alex Fallin, Andres Gonzalez, Jarim Seo, and Martin Burtscher

has |[V| — 1 edges. We use ¢ = 4 in our code, i.e., no filtering
occurs for graphs with an average degree below 4.

e Our code also includes several small optimizations. For ex-
ample, it alternates between two worklists for holding the
edges that still need processing. In each iteration, one of
the worklists is drained while the other is filled. Between
iterations, the two pointers to the worklists are swapped.
Furthermore, our code utilizes edge-centric processing in
several kernels to improve load balancing. Another small
optimization is to only process edges in only one direction.
The code operates on graphs stored in the widely-used CSR
format, in which each undirected edge is represented by two
directed edges. However, these pairs of edges always form a
cycle, so one of the two edges can safely be skipped.

Some of the above optimizations are new (e.g., the implicit path
compression), have not been used in GPU MST codes before (e.g.,
the hybrid parallelization scheme and the deterministic reserva-
tions), or have been implemented in a new way to boost their
efficiency (e.g., the filtering). In Section 5.3, we study the perfor-
mance impact of these optimizations and show that, taken together,
they improve the speed of ECL-MST by a factor of eight on average,
demonstrating the importance of these optimizations.

3.3 ECL-MST Algorithm

The pseudo code in Algs. 1 and 2, where the colon means concate-
nation, illustrates how ECL-MST works for graphs with an average
degree below 4, i.e., without filtering (meaning all weights meet the
threshold condition on Line 6). For graphs with an average degree
of 4 or greater, the filtering threshold is computed as described
above, Algs. 1 and 2 are executed, then the threshold condition is
inverted, and Alg. 2 is executed one more time, using set(v) for v
and set(n) for n in the loop starting on Line 2.

Every for allloop in both algorithms is parallel, with the loop on
Line 3 in Alg. 2 being parallelized across the warp-threads if it per-
forms at least 4 iterations. The union operation on Line 30 involves
an atomicCAS, and the worklist updates on Lines 7 and 18 involve
an atomicAdd. The implicit path compression happens on Line 18,
where the edge’s source and destination vertices are replaced by
the corresponding representatives (i.e., sets) when putting the edge
on the worklist. Note that the worklists WL1 and WL2 hold edges
represented by 4-tuples using the format:

(source vertex, destination vertex, edge weight, edge ID).

Running our algorithm on the graph from Fig. 2 does the follow-
ing. First, it assigns every vertex to its own set, clears the minimum
edge information, and marks all edges as not belonging to the MST.
Next, the worklist is populated with a copy of each edge in the
graph. For example, one entry will be the 4-tuple (B, D, 3, ¢), mean-
ing the edge is between vertices B and D, has a weight of 3, and is
labeled c. Then, the minimum edge is recorded in each set (vertex).
The result is depicted in the left panel of Fig. 2. Finally, the algo-
rithm checks, for each edge on the worklist, whether it is recorded
in either of its endpoints (vertices). The two edges that are recorded
(1e and 2a) are included in the MST, indicated in green in the middle
of Fig. 2, and the corresponding sets are joined, meaning A and D
now form a set that is represented by A, and B and C form a set that
is represented by B. Then the minimum edge information is cleared

A High-Performance MST Implementation for GPUs

and the next iteration starts. It populates a new worklist with the
three remaining edges. However, it uses the set IDs rather than the
vertex IDs. For instance, the edge mentioned above is now stored
as (B, A, 3, ¢) because A is the representative of the set holding D
(and B is the representative of the set holding B). Also, it records
new minimum edge information in the two set representatives (2b).
Upon checking which edges have been recorded, only one edge
remains. This edge is added to the MST and the two sets are joined.
At this point, the algorithm stops because no edges remain that
span two sets. The resulting MST is shown on the right in Fig. 2.

Figure 2: Minimum edge labels (weight and ID pairs) recorded
in each set during the first and second iteration of ECL-MST

Algorithm 1 ECL-MST Initialization

Input: Weighted graph G = (V, E, w) in CSR format
> initialize vertex info

: for all verticesv € V do
minEdge, < oo
set(v) «— {0}

end for

L S

> initialize edge info
s: for all edges e € E do
6: MST, « false
7. end for
Output: Initialized graph G

4 EVALUATION METHODOLOGY

We compare the performance of ECL-MST to the 4 GPU-parallel,
3 CPU-parallel, and 1 CPU-serial MST implementations listed in
Table 1. These are the fastest MST codes from the literature we
could find. All tested GPU codes, including our own, support graph
sizes of up to about 2 billion vertices and edges since larger graphs
do not fit in the main memory of most GPUs. RAPIDS cuGraph is
working on supporting larger graphs.

We evaluated the codes on two systems. System 1 is based on
an AMD Ryzen Threadripper 2950X CPU with 16 cores. Hyper-
threading is enabled, i.e., the 16 cores can simultaneously run 32
threads. The main memory has a capacity of 64 GB. The operating
system is Fedora 34. The GPU in the system is an NVIDIA Titan
V (Volta architecture) with 5120 processing elements distributed
over 80 multiprocessors. Its global memory has a capacity of 12 GB.
The GPU driver version is 515.43. System 2 is based on two Intel
Xeon Gold 6226R CPUs with 16 cores each. Hyperthreading is also
enabled, meaning the 32 cores can run 64 simultaneous threads.

SC ’23, November 12-17, 2023, Denver, CO, USA

Algorithm 2 ECL-MST Algorithm
Input: Initialized graph G from Algorithm 1

> populate worklist
1: WL1 <« 0
2: for all verticesv € V do

3: for all vertices n € adjList(v) do > thread or warp

4 if v < n then > only process in one direction
5 Let e be the edge from v ton

6: if e,, meets threshold condition then

7 WL1 «— WL1 U (v, n, ey, €;4)

8 end if

9 end if

10: end for

11: end for

> iterate until worklist is empty
12: while WL1 # 0 do
> populate second worklist
13: WL2 <0
14: for all (v, n, ey, e;4) € WL1 do

15: p « set(v) > find operation
16: q < set(n) > find operation
17: if p # g then

18: WL2 < WL2 U (p,q, e, e;q) > impl. path compr.
19: val «— ey, : €jq

20: atomicMin(minEdgey, val)

21: atomicMin(minEdgeg, val)

22: end if

23: end for

> swap worklists
24: WL1 « 0
25: swap WL1 and WL2
26: if WL1 # (then
> check if edge belongs to MST

27: for all (v, n, e,,, e;4) € WL1 do
28: val « ey : €jq
29: if (val = minEdgey) || (val = minEdgey) then
30: join set(v) with set(n) > union operation
31 MST;q < true > edge is in MST
32: end if
33: end for
> reset minEdge info
34: for all (v, n, e, €;4) € WL1 do
35: minEdge, < oo
36: minEdge, < o
37: end for
38: end if

39: end while
Output: Minimum spanning tree/forest MST

The main memory has a capacity of 128 GB. The operating system
is Fedora 36. The GPU in this system is an NVIDIA RTX 3080 Ti
(Ampere architecture) with 10,240 processing elements distributed
over 80 multiprocessors. It has 12 GB of global memory. The GPU
driver version is 525.60.

SC ’23, November 12-17, 2023, Denver, CO, USA

Table 1: Third-party MST codes used in experiments

Name Source
Gunrock GPU [34]
Jucele GPU [15]
RAPIDS cuGraph GPU | [29]
UMinho GPU [32]
Lonestar CPU [20]
PBBS CPU [27]
UMinho CPU [32]
PBBS Serial [27]

Table 2: Information about the used input graphs

Graph Name Edges | Vertices | Type CCs | d-avg | d-max
2d-2e20.sym 4,190,208 1,048,576 | grid 1 4.0 4
amazon0601 4,886,816 403,394 cofpurchases 7 12.1 2,752
as-skitter 22,190,596 1,696,415 | Internet topo. 756 13.1 35,455
citationCiteseer 2,313,294 268,495 | publication cit. 1 8.6 1,318
cit-Patents 33,037,894 3,774,768 | patent cit. 3,627 8.8 793
coPapersDBLP 30,491,458 540,486 | publication cit. 1 56.4 3,299
delaunay_n24 100,663,202 | 16,777,216 | triangulation 1 6.0 26
europe_osm 108,109,320 | 50,912,018 | road map 1 2.1 13
in-2004 27,182,946 1,382,908 | web links 134 19.7 21,869
internet 387,240 124,651 | Internet topo. 1 3.1 151
kron_g500-logn21 | 182,081,864 2,097,152 | Kronecker 553,159 86.8 | 213,904
14-2€23.5ym 67,108,846 8,388,608 | random 1 8.0 26
rmat16.sym 967,866 65,536 | RMAT 3,900 14.8 569
rmat22.sym 65,660,814 4,194,304 | RMAT 428,640 15.7 3,687
soc-LiveJournall 85,702,474 4,847,571 | community 1,876 17.7 20,333
USA-road-d.NY 730,100 264,346 | road map 1 2.8 8
USA-road-d.USA 57,708,624 | 23,947,347 | road map 1 2.4 9

We compiled the CPU codes with gce/g++ 11.3.1 on System 1
and 12.2.1 on System 2 using the “-O3 -march=native” flags. For
the CPU-parallel codes, when not selected automatically by the
implementation, we set the thread count to match the number
of cores since we found hyperthreading to hurt performance. We
compiled the GPU codes with nvce 11.7 using the “-O3 -arch=sm_70”
flags on System 1 and with nvcc 12.0 using the “-O3 -arch=sm_86”
flags on System 2.

We used the 17 graphs shown in Table 2 as inputs. Where needed,
we modified the graphs to eliminate self-loops and multiple edges
between the same two vertices. We added any missing back edges
to make the graphs undirected?. For unweighted graphs, we in-
serted random weights so the MST can be computed. Table 2 lists
the name, edge count, vertex count, type, and number of connected
components of each graph along with their average and maximum
degree. The graphs were obtained from the Center for Discrete
Mathematics and Theoretical Computer Science at the University
of Rome (DIMACS) [9], the Galois framework (Galois) [10], the Stan-
ford Network Analysis Platform (SNAP) [19], and the SuiteSparse
Matrix Collection (SSMC) [7]. We selected these graphs because
they cover a wide range of types and sizes.

For all tested codes, we measured the runtime of the MST com-
putation, excluding the time it takes to read in the graphs. In the
GPU codes, we also exclude the time it takes to transfer the graph
to the GPU or to transfer the result back (unless otherwise noted).

2Since the graphs are stored in CSR format, each undirected edge is represented by
two directed edges.

Alex Fallin, Andres Gonzalez, Jarim Seo, and Martin Burtscher

For incompatible inputs, we report “not connected” (NC) if they
contain multiple connected components.

We repeated each experiment 9 times for all codes and inputs and
report the median computation time. The ECL-MST implementation
verifies the solution at the end of each run by comparing it to the
solution of a serial implementation of Kruskal’s algorithm. This
verification time is not included in the measured runtime.

RAPIDS cuGraph includes two MST versions, using either single-
or double-precision edge weights. A large portion of our inputs are
only compatible with the double-precision code due to their large
size and resultant total MST weight. Hence, we present cuGraph
results from the double version but also discuss the float results.
Additionally, cuGraph is incompatible with System 1, so we only
compare to it on System 2.

5 RESULTS

In this section, we first present the absolute runtimes of the vari-
ous MST codes on our input graphs. Then, we show the resulting
throughputs in millions of edges per second. Last, we evaluate the
performance impact of some of our code optimizations.

5.1 Runtime

Tables 3 and 4 list the MST computation times in seconds on Systems
1 and 2, respectively. Lower runtimes are better. Rows labeled “MSF
GeoMean” show the geometric mean over all measured inputs
whereas rows labeled “MST GeoMean” list the geometric mean
over only the inputs that consist of a single connected component.
This is done to make the comparison with the Jucele and Gunrock
GPU codes fair, which can compute MSTs but not MSFs.

For each input, we provide two ECL-MST results, one that does
not include the memory-copy time for transferring the graph to the
GPU or the result to the CPU and another that includes this time.
The former, which is our baseline, is relevant in settings where an
MST is computed as part of a larger data analytics pipeline where
the graph is already on the GPU from a previous processing step
and the resulting MST is needed on the GPU for a later step. The
latter is relevant in settings where only the MST computation is
performed on the GPU and the other steps on the CPU.

On System 1 (Table 3), ECL-MST is faster than the other codes
on every tested input. Its running-time variance between the 9 repe-
titions of each experiment is only 0.0005% on average, and the max-
imum we observed is 0.0028% on as-skitter. Based on the geometric-
mean performance over the MSF inputs, our code is 138 times faster
than serial, 32.3 times faster than the fastest CPU-parallel code
(PBBS), and 38.6 times faster than the UMinho GPU code. On just
the MST inputs, our code is 184.4 times faster than serial, 39.2 times
faster than the fastest CPU-parallel code (UMinho), and 4.6 times
faster than the fastest GPU code (Jucele). ECL-MST does particu-
larly well on the scale-free inputs, where it outperforms the other
codes by at least 19 times on amazon0601, rmat16.sym, and soc-
LiveJournall. Such graphs have some vertices with a much higher
degree than the other vertices, which tends to cause load-balancing
issues in vertex-centric implementations. ECL-MST avoids this
problem through hybrid parallelization in one kernel (where whole
warps share the processing of high-degree vertices) and edge-centric
processing in the other kernels.

A High-Performance MST Implementation for GPUs

SC ’23, November 12-17, 2023, Denver, CO, USA

3,000
2,500
< 2,000
[0
50
T 1,500
[
&
s 1,000
500
- II - - W - . I_ - - |_ L II - | I - .|} | - -I- I, - . . [ll - I -1 - - II -
N X X ™ X X N N Q
%*6‘ & & &F @0\9 Q)\? & 096‘ & & 9 cﬁ@ ($<° q\@ 07} b-é 0(,)?‘ ESEES
q,Q' O(\Q ,"\J{h "\@’ Q%)\‘ \‘9 ’Z$ 4 (24 (\n’ . (’\@' ,\OQO (]:b ! \,\04 (D/ 0\§ & bfb Oé\ Oé\
A I I A R L P O U P NS
N N < S
v & S ¥ b 20 S R S SRR N S
C & B N
&
W ECL-MST Jucele GPU m Gunrock GPU ® UMinho GPU Lonestar CPU mPBBSCPU m Uminho CPU PBBS Serial

Figure 3: System 1 throughput results in millions of edges per second (the ECL-MST bar for coPapersDBLP extends to 7,091)

3,500
3,000
» 2,500
3
& 2,000
o
¢
& 1,500
)
= 1,000
500 |
- II.. _ L I_-_ [N L II-I I -1 . -I. I . N L Ll I ul e Il..
N < oy o Q 1 3 X N 2 Q N Q
N L & L & o & & PS4 & & &S N S & &
o (‘ P 2 > S A er & & 5 > o g S Y s & &
o o g S <) G Q & N . oV g N o 2 b &L &L
SO I G ST U AL S
v @ "\@& & ¥ © 030 ¢ ¢ ¢ e \)("v X @c’ é\%
() O L)O N}
E
M ECL-MST m Jucele GPU m Gunrock GPU cuGraph GPU B UMinho GPU Lonestar CPU mPBBS CPU m Uminho CPU PBBS Serial

Figure 4: System 2 throughput results in millions of edges per second (the ECL-MST bar for coPapersDBLP extends to 12,241

and soc-LiveJournall to 4,611)

The version of ECL-MST that includes the data movement to
and from the GPU (ECL-MST memcpy) is the second fastest code.
Whereas the baseline ECL-MST code is nearly four times faster,
meaning the memory transfers take significantly longer than the
MST computation, ECL-MST memcpy is still faster on every tested
input (8.1 times in the mean) than the fastest CPU code. This shows
that our code can be used to accelerate MST computations even in
cases where the rest of the computation takes place on the CPU.

The results on System 2 (Table 4) are similar to those from System
1. The absolute runtimes are generally lower since the GPU is faster
and newer. The variance is very small with an average of 0.0014%
and a maximum of 0.0107%. ECL-MST is again faster than the other
codes on all tested inputs. According to the geometric mean over
the MSF inputs, our code is 239.8 times faster than serial, 27.1 times

faster than the fastest CPU-parallel code (PBBS), and 12.7 times
faster than the RAPIDS cuGraph GPU code. On the MST inputs,
it is 323.3 times faster than serial, 44 times faster than the fastest
CPU-parallel code (PBBS), and 4.5 times faster than the fastest GPU
code (Jucele). We see the same trends as on System 1: ECL-MST is
particularly fast on large scale-free inputs, and ECL-MST memcpy
is 5.6 times slower than ECL-MST but still faster than the fastest
CPU code on our system. Of course, on systems with a very fast
CPU and slow GPU, the CPU code may outperform the GPU code.

When profiling our code using NVIDIA’s Nsight tool, we found
the initialization kernel to take about 40% of the total runtime on av-
erage. This kernel is relatively slow because it directly accesses the
graph data structure. All remaining kernels only access the worklist,
which contains all needed graph information. This highlights the

SC ’23, November 12-17, 2023, Denver, CO, USA

importance of the hybrid parallelization scheme, as without it, the
initialization takes even longer (see Section 5.3). Of the computation
kernels, all of which are launched multiple times, the first kernel
(Lines 14-23 in Alg. 2) is responsible for about 35% of the total run-
time on average. In contrast, computation kernels two and three
(Lines 27-33 and 34-37, respectively) each take only about 12% of
the runtime on average. The initialization kernel is launched twice
if filtering is used and once otherwise. Depending on the input, the
computation kernels are launched between 4 (kron_g500-logn21)
and 15 times (delaunay_n24). Due to the if statement on Line 26,
the first computation kernel is invoked twice more when filtering
is used and once more otherwise.

As discussed in Section 4, cuGraph has both a float and a double
version of the MST code. The float version cannot run three of
our inputs, which is why we show the results from the double
version. On the remaining inputs, the float version of cuGraph
is, on average, 1.21 times faster than the double version but still
substantially slower than ECL-MST on every input.

In summary, the runtime results show ECL-MST to outperform
the other tested MST codes on a variety of inputs and on different
GPU generations. In fact, ECL-MST is faster on all tested inputs
by a large margin. Additionally, even when including the memory
copy times, ECL-MST outperforms the tested CPU codes, meaning
that it can be used for accelerating MST computations in programs
that mainly run on the CPU.

5.2 Throughput

The throughputs, i.e., the number of edges divided by the runtime,
on the two systems are shown in Figures 3 and 4. In these bar
charts, the inputs are listed along the x-axis and the throughputs in
millions of edges per second along the y-axis. Taller bars are better.

Based on the geometric mean over the MSF inputs on System 1
(Figure 3), we find that ECL-MST processes 1.57 billion edges per
second with the closest performing code being CPU-paralle]l PBBS at
48 million edges per second. ECL-MST reaches its highest through-
put of 7.09 billion edges per second on coPapersDBLP. The lowest
throughput is 0.73 billion edges per second on r4-2e23.sym, which
is still over 3.6 times higher than the highest throughput reached
by the CPU codes (PBBS reaches 0.20 billion edges per second on
kron_g500-logn21). On the MST inputs, ECL-MST’s throughput
increases to a geometric mean of 1.65 billion edges per second with
the next closest code being Jucele at 0.36 billion edges per second.

The throughputs for System 2 (Figure 4) are higher due to the
faster GPU. On average, for both the MSF and MST inputs, ECL-MST
processes 2.54 billion edges per second. The highest throughput is
again reached on coPapersDBLP at 12.24 billion edges per second.
as-skitter yields the lowest throughput of 1.17 billion edges per
second. CPU-parallel PBBS reaches 0.09 billion edges per second,
cuGraph reaches 0.20 billion edges per second, and the Jucele GPU
code reaches 0.59 billion edges per second.

In summary, these results show that ECL-MST can handle both
small and large inputs well, reaching high throughputs on all tested
graphs. When correlating throughput with various graph properties,
we found ECL-MST’s throughput to significantly correlate with
the average degree. This is likely because disqualifying an edge
from the MST is faster than including an edge in the MST and, for

Alex Fallin, Andres Gonzalez, Jarim Seo, and Martin Burtscher

high average-degree graphs, a larger portion of the work is edge
disqualification. Overall, the throughputs are high on both GPUs,
indicating that our performance optimizations are not specific to a
particular GPU or hardware generation.

5.3 Optimization Evaluation

To measure the benefit of the optimizations discussed in Section 3.2,
we wrote additional versions of our code, each with one more opti-
mization removed than the previous. As before, we ran the resulting
codes 9 times for each input, report the median computation time,
and verified the correctness. The runtimes are listed in Table 5.
Figure 5 shows the corresponding throughputs. For reference, we
included the throughput of the fastest MST algorithm from the
literature, which is Jucele. As a consequence, we do not show data
for the inputs that contain multiple connected components. We
only present results for System 2 as it has the faster GPU.

We started with our fully-optimized ECL-MST code and removed
the following optimizations in the listed order.

(1) Since load instructions are generally faster and more parallel

than atomic operations, and the atomics on Lines 20 and 21

in Alg. 2 often do not find a new minimum, the ECL-MST

code first checks with an if statement whether the atomicMin
might lower the value. If not, then there is no reason to exe-
cute the atomicMin. The “No Atomic Guards” version elides
these checks and always executes the atomicMin operations.

For load-balancing reasons, the loop on Line 3 of Alg. 2 is

parallelized across the warp threads if the adjacency list is

sufficiently long. The “Thread-Based” version never paral-
lelizes this inner loop.

(3) ECL-MST uses filtering for all inputs whose average degree
is > 4. The “No Filter” version does not use any filtering.

(4) One of our key optimizations is the implicit path compres-

sion, meaning that, whenever the code places an edge on the

worKklist, it uses the representatives of its endpoints. The “No

Implicit Path Compression” places the actual endpoint vertex

IDs on the worklist and employs explicit path compression

(using the path-halving code for GPUs [14]) whenever those

vertices are used later.

Since the CSR graph representation includes two directed

edges for each undirected edge, which necessarily form a

cycle, ECL-MST only processes one edge of each pair. The

“Both Edge Directions” version processes all edges.

(6) Each element in the worklist is a 4-tuple (Section 3.3). The
“No Tuples” version stores the 4 items in separate arrays.

(7) ECL-MST is data-driven, meaning it only processes the edges
that are on the worklist. The “Topology-Driven” version, in
contrast, always processes all graph edges in every iteration
of the while loop on Line 12 in Alg. 2.

(8) Another key optimization is that most of our code is edge-
centric, that is, the unit of work assigned to a thread is an
edge. This tends to yield good load balance. The “Vertex-
Centric” version assigns a vertex to each thread, and the
thread is responsible for processing all edges of the vertex.

—
oY)
~

—
53)
=

Based on the geometric-mean results, “No Atomic Guards” adds
27% additional runtime, “Thread-Based” adds 9% more, “No Fil-
ter” adds 30%, “No Implicit Path Compression” adds 58%, “Both

A High-Performance MST Implementation for GPUs

SC ’23, November 12-17, 2023, Denver, CO, USA

6,000

5,000
w 4,000
N
w
4]
%ﬂ _
@ 3,000 = =
& = =
o = = "
[9) = = =
> 2000 : :

1,000 ‘ E\ ! IE = IE : ‘E :

- E A B = B B\ B
; : IE Mol 1L HI- 2 IE ”.I oo el MM E ”II B\ HII 2 IE Ml
™ X QA
& & & & o S ¥ &
Y N % @ > ¥ S &
< R $ 2 Y &
A © v © N ©
P & & ¥ L S
S 8 & &

@ ECL-MST B No Atomic Guards = Thread-Based O No Filter m No Implicit Path Comp.

B Both Edge Directions No Tuples

@ Topology Driven

W Vertex-Centric W Jucele

Figure 5: ECL-MST throughput in millions of edges per second when gradually removing performance optimizations

Edge Directions” adds 62%, and “No Tuples” adds 33%. Interestingly,
“Topology-Driven” decreases the runtime by 6% at this point. Finally,
“Vertex-Centric” adds 40%. Clearly, all but one of these optimizations
boost the performance on average, though not necessarily on every
input. Switching from a topology-driven to a data-driven imple-
mentation appears to be a bad idea. However, this switch enables
and simplifies several other optimizations, thus actually improving
performance. Together, all of these optimizations make ECL-MST
over 8x faster. In other words, our code would be significantly
slower than Jucele if we had not included these optimizations.

Processing edges in only one direction is an important opti-
mization as it avoids a significant amount of extra work. A less
obvious but nearly as impactful optimization is our implicit path
compression, which also minimizes unnecessary work. Employ-
ing edge-centric computation improves the load balance and also
reduces the workload as it enables the removal of specific edges
of a vertex from consideration in the following iterations. Using
4-tuples, filtering, and atomic guards are the next most important
optimizations. They either improve memory access time or pre-
vent expensive extra work. The benefit of the hybrid parallelization
strategy, which dynamically assigns the high-degree vertices to
entire warps and the low-degree vertices to individual threads, is
less visible because not all inputs benefit from this optimization.

These results highlight the importance of our optimizations and
show how, by neglecting to include them, our code quickly loses its
advantage over the related work. Even removing just a single opti-
mization has the potential to significantly lower the performance.
Without these optimizations, ECL-MST is substantially slower than
the fastest code from the literature. Hence, the performance benefit
of ECL-MST is primarily due to this set of optimizations.

5.4 Random-Seed Evaluation

As explained in Section 3.3, we sample 20 random edges to compute
the filter threshold. We aim for 3 times the number of edges in the
final tree. In this subsection, we evaluate the impact of this random
selection on the performance of ECL-MST as well as how accurate
the resulting thresholds are.

First, we ran ECL-MST with 99 different random seeds. Figure 6
displays the results. The box-and-whisker plot shows the through-
put distribution due to the various seeds. The maximum speed for
each input is indicated by the top whisker and the minimum by the
bottom whisker. The boxes range from the first to the third quartile.
The line inside the box demarcates the median throughput.

For all inputs except coPapersDBLP, the variance based on the
seed is quite low. The three road maps, internet, and 2d-2e20.sym
have an average degree under 4 (cf. Table 2), meaning the filtering
threshold is not used. Consequently, there is essentially no variation
between the runs other than normal fluctuations. Many of the
scale-free graphs exhibit a noticeable variability. coPapersDBLP
yields by far the largest range. This is our only graph where most
of the vertices have a high degree. On the remaining inputs, the
performance of ECL-MST does not depend much on the chosen
seed. Nevertheless, we used the seed that resulted in the median
throughput for all other experiments reported in this paper.

Next, we took this median seed and measured how close the
resulting threshold ended up being to our target of 3 times the num-
ber of edges in the tree. Figure 7 shows the percentage difference
from this target value for all inputs for which ECL-MST employs
filtering. These results indicate that the random selection rarely
chooses an edge weight that yields more than double or less than
half as many edges being filtered than we intended.

SC ’23, November 12-17, 2023, Denver, CO, USA

9000
8000
7000
6000
5000
4000
3000

2000
e — T -

Mega-edges/s

Alex Fallin, Andres Gonzalez, Jarim Seo, and Martin Burtscher

Figure 6: Throughput variability of ECL-MST with different random seeds

200%
150%
100%

0% I
0% | —_

-50%
-100%
-150%
-200%

Figure 7: Relative distance from the target filtering threshold of 3 times the number of vertices in the MST

6 CONCLUSION

This paper presents ECL-MST, a high-performance MST imple-
mentation designed specifically for GPUs. On our test systems, it
outperforms leading GPU and parallel CPU codes from the liter-
ature on each of 17 inputs from different domains. ECL-MST is a
lock-free implementation that combines new and existing optimiza-
tions from the literature with a parallelization approach that unifies
both Kruskal’s and Boraivka’s algorithm. It works well on different
types of graphs and across recent GPU architectures. On a Titan V
GPU, ECL-MST outperforms the next closest code by a factor of 4.6
on average. On an RTX 3080 Ti GPU, it is 4.5 times faster. ECL-MST
is 12.7 times faster than RAPIDS cuGraph on average.

The ECL-MST CUDA code is publicly available in open source
on the web [6] and on github [6]. It is easy to install and compile
as it does not rely on third-party code. With under 300 statements
(including the serial verification code), the implementation is quite
compact. In fact, it only contains 70 CUDA kernel statements.

We hope our research and the resulting MST code along with
its optimizations will help speed up important computations that
require MSTs. Moreover, we hope it will inspire other researchers to
take a fresh look at some of the classic graph algorithms and devise
faster and more parallel GPU and CPU implementations thereof.

ACKNOWLEDGMENTS

This work has been supported in part by the National Science
Foundation under Award Number 1955367 and by an equipment
donation from NVIDIA Corporation. We thank Randy Cornell for
his help with exploring several MST optimizations and Jerry Rosado
for his help with installing third-party software.

REFERENCES

[1] Charles J Alpert, Te C Hu, Jen-Hsin Huang, Andrew B Kahng, and David Karger.
1995. Prim-Dijkstra tradeoffs for improved performance-driven routing tree
design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 14, 7 (1995), 890-896.

A High-Performance MST Implementation for GPUs SC ’23, November 12-17, 2023, Denver, CO, USA

Table 3: System 1 computation times in seconds

Input ECL-MST | ECL-MST memcpy | Jucele GPU | Gunrock GPU | Uminho GPU | Lonestar CPU | PBBS CPU | Uminho CPU | PBBS Ser.
2d-2e20.sym 0.0049 0.0126 0.0147 0.0195 0.0278 1.0710 0.1063 0.0916 0.5176
amazon0601 0.0026 0.0124 NC NC 0.2895 0.6420 0.0745 0.1674 0.4636
as-skitter 0.0262 0.0721 NC NC 1.5121 2.0230 0.3340 0.8681 1.5179
citationCiteseer 0.0012 0.0056 0.0040 0.0099 0.1666 0.3810 0.0478 0.1070 0.1641
cit-Patents 0.0368 0.1068 NC NC 3.3859 7.7790 0.8081 1.6587 3.2648
coPapersDBLP 0.0043 0.0660 0.0304 0.0633 2.0874 1.8400 0.2505 1.1022 1.9628
delaunay_n24 0.0491 0.2632 0.1938 0.2807 0.3942 9.1230 3.0202 1.0986 15.6779
europe_osm 0.0560 0.3092 0.7843 0.4106 0.0985 12.8640 4.5846 1.6579 18.9955
in-2004 0.0176 0.0736 NC NC 0.8735 1.4530 0.3243 0.3874 1.7615
internet 0.0003 0.0008 0.0015 0.0029 0.0072 0.1290 0.0263 0.0094 0.0295
kron_g500-logn21 0.0979 0.4002 NC NC 3.2057 31.0100 0.8920 3.5448 6.5958
r4-2e23.sym 0.0921 0.2088 0.2087 0.2992 7.4050 18.0720 1.9853 4.8016 9.3615
rmat16.sym 0.0006 0.0019 NC NC 0.1066 0.1770 0.0178 0.0679 0.0526
rmat22.sym 0.0456 0.1600 NC NC 5.9371 20.5680 0.9937 4.1182 5.0334
soc-LiveJournall 0.0353 0.2121 NC NC 11.6288 15.2210 1.0564 4.4213 5.9403
USA-road-d.NY 0.0006 0.0016 0.0030 0.0051 0.0039 0.1590 0.0327 0.0140 0.0741
USA-road-d.USA 0.0283 0.1424 0.1484 0.2358 0.0668 6.5370 2.3909 0.6850 9.4397
MSF GeoMean 0.0103 0.0411 NC NC 0.3978 2.4886 0.3335 0.4775 1.4231
MST GeoMean 0.0070 0.0290 0.0324 0.0485 0.1199 1.8148 0.3465 0.2734 1.2856

Table 4: System 2 computation times in seconds

Input ECL-MST | ECL-MST memcpy | Jucele GPU | Gunrock GPU | cuGraph GPU | UMinho GPU | Lonestar CPU | PBBS CPU | Uminho CPU | PBBS Ser.
2d-2e20.sym 0.0028 0.0086 0.0069 0.0156 0.0399 0.0161 1.1130 0.0682 0.0710 0.5726
amazon0601 0.0016 0.0105 NC NC 0.0177 0.2406 0.6730 0.0448 0.1362 0.5009
as-skitter 0.0190 0.0584 NC NC 0.0616 1.2248 2.0300 0.1549 0.7815 1.6326
citationCiteseer 0.0007 0.0050 0.0026 0.0064 0.0117 0.1215 0.4620 0.0298 0.0902 0.1788
cit-Patents 0.0198 0.0790 NC NC 0.1489 2.8603 8.4130 0.2932 1.4496 3.1998
coPapersDBLP 0.0025 0.0563 0.0203 0.0458 0.0432 1.6820 1.9250 0.1459 1.0472 2.0878
delaunay_n24 0.0329 0.2378 0.1078 0.2817 0.5793 0.2053 7.3370 1.3487 0.9552 17.7500
europe_osm 0.0338 0.2720 0.5195 0.3044 3.7105 0.0590 12.4180 2.1357 1.1169 22.0196
in-2004 0.0126 0.0608 NC NC 0.0593 0.7381 1.4880 0.1576 0.3940 1.8727
internet 0.0003 0.0009 0.0011 0.0020 0.0047 0.0052 0.2360 0.0232 0.0153 0.0328
kron_g500-logn21 0.0509 0.3488 NC NC 0.2519 2.5700 33.3920 0.3694 4.4750 7.4356
14-2€23.sym 0.0482 0.1493 0.1087 0.2424 0.3708 6.0761 16.6760 0.8266 4.2315 10.0535
rmat16.sym 0.0004 0.0018 NC NC 0.0040 0.0761 0.2640 0.0116 0.0617 0.0552
rmat22.sym 0.0241 0.1205 NC NC 0.1929 4.8767 18.0470 0.4096 3.6322 4.8061
soc-LiveJournall 0.0186 0.1867 NC NC 0.2023 9.5606 12.4630 0.4946 4.0870 5.8235
USA-road-d.NY 0.0004 0.0015 0.0022 0.0039 0.0112 0.0030 0.2560 0.0213 0.0214 0.0807
USA-road-d.USA 0.0181 0.1115 0.0768 0.1833 0.7618 0.0385 5.7260 1.0208 0.5242 9.9725
MSF GeoMean 0.0063 0.0346 NC NC 0.0805 0.2924 2.6685 0.1718 0.4506 1.5210
MST GeoMean 0.0044 0.0247 0.0195 0.0373 0.0953 0.0808 2.0036 0.1921 0.2589 1.4110

Table 5: ECL-MST computation times in seconds when gradually removing performance optimizations

Input ECL-MST | No Atomic Guards | Thread-Based | No Filter | No Impl. Path Compr. | Both Edge Dir. | No Tuples | Topology-Driven | Vertex-Centric
2d-2e20.sym 0.0028 0.0032 0.0028 0.0028 0.0043 0.0085 0.0098 0.0151 0.0172
citationCiteseer 0.0007 0.0011 0.0018 0.0025 0.0056 0.0101 0.0124 0.0081 0.0250
coPapersDBLP 0.0025 0.0047 0.0094 0.0187 0.0343 0.0720 0.1517 0.0610 0.1236
delaunay_n24 0.0329 0.0389 0.0314 0.0457 0.0649 0.1041 0.1559 0.1556 0.1460
europe_osm 0.0338 0.0432 0.0438 0.0439 0.0601 0.0784 0.1016 0.1629 0.1397
internet 0.0003 0.0003 0.0003 0.0003 0.0004 0.0006 0.0007 0.0006 0.0024
14-2€23.sym 0.0482 0.0627 0.0622 0.1635 0.2927 0.5576 0.7063 0.4742 0.5099
USA-road-d NY 0.0004 0.0005 0.0004 0.0004 0.0006 0.0007 0.0009 0.0010 0.0010
USA-road-d.USA 0.0181 0.0226 0.0230 0.0227 0.0317 0.0474 0.0653 0.0865 0.0754
MST GeoMean 0.0044 0.0056 0.0061 0.0079 0.0125 0.0203 0.0270 0.0255 0.0358
[2] Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, and Julian Shun. 2012. ACM SIGPLAN symposium on Principles and Practice of Parallel Programming.

Internally deterministic parallel algorithms can be fast. In Proceedings of the 17th

SC ’23, November 12-17, 2023, Denver, CO, USA

(3

=

=

[10]
(1]

[12]

(13

[14]

[15]
[16]

[17]

=
&

[19]

[20

[21

[22]

[23

[24

[25

[26]

[27]
[28

[29]

181-192.

JJ. Brennan. 1982. Minimal spanning trees and partial sorting. Operations Research
Letters 1,3 (1982), 113-116. https://doi.org/10.1016/0167-6377(82)90010-4
Mariel Brinkhuis, Gerrit A Meijer, Paul] Van Diest, Leonard T Schuurmans, and
JP Baak. 1997. Minimum spanning tree analysis in advanced ovarian carcinoma.
An investigation of sampling methods, reproducibility and correlation with
histologic grade. Analytical and quantitative cytology and histology 19, 3 (1997),
194-201.

Martin Burtscher and Alex Fallin. 2023. ECL-MST Git Repository. https://github.
com/burtscher/ECL-MST. Accessed: 2023-08-18.

Martin Burtscher and Alex Fallin. 2023. ECL-MST Website. https://cs.txstate.
edu/~burtscher/research/ECL-MST/. Accessed: 2023-08-18.

Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (dec 2011), 25 pages. https:
//doi.org/10.1145/2049662.2049663

Jucele Franca de Alencar Vasconcellos, Edson Norberto Caceres, Henrique Mon-
gelli, and Siang Wun Song. 2018. A new efficient parallel algorithm for minimum
spanning tree. In 2018 30th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD). IEEE, 107-114.

DIMACS data sets 2007. DIMACS data sets. https://www.diag.uniromal.it/
challenge9/download.shtml

Galois data sets 2018. Galois data sets. https://iss.oden.utexas.edu/?p=projects/
galois

RL. Graham and Pavol Hell. 1985. On the History of the Minimum Spanning
Tree Problem. Annals of the History of Computing 7 (02 1985), 43-57. https:
//doi.org/10.1109/MAHC.1985.10011

Ronald L Graham and Pavol Hell. 1985. On the history of the minimum spanning
tree problem. Annals of the History of Computing 7, 1 (1985), 43-57.

Michael Held and Richard M Karp. 1970. The traveling-salesman problem and
minimum spanning trees. Operations Research 18, 6 (1970), 1138-1162.
Jayadharini Jaiganesh and Martin Burtscher. 2018. A high-performance connected
components implementation for GPUs. In Proceedings of the 27th International
Symposium on High-Performance Parallel and Distributed Computing. 92-104.
Jucele GPU 2018. Jucele GPU. https://github.com/jucele/
NewMinimumSpanningTree/

Peter Kipfer and Rudiger Westermann. 2005. Improved GPU sorting. GPU gems
2 (2005), 733-746.

Oleg V. Komogortsev, Sampath Jayarathna, Do Hyong Koh, and Sandeep Munikr-
ishne Gowda. 2010. Qualitative and quantitative scoring and evaluation of the
eye movement classification algorithms. Proceedings of the 2010 Symposium on
Eye-Tracking Research & Applications (2010), 65 — 68.

Joseph B Kruskal. 1956. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathematical society 7,
1(1956), 48-50.

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.
Lonestar CPU 2022. Lonestar CPU.
IntelligentSoftwareSystems/Galois/

Artur Mariano, Alberto Proenca, and Cristiano Da Silva Sousa. 2015. A generic
and highly efficient parallel variant of boruvka’s algorithm. In 2015 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing.
IEEE, 610-617.

Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU
Graph Traversal. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (New Orleans, Louisiana, USA) (PPoPP ’12).
Association for Computing Machinery, New York, NY, USA, 117-128. https:
//doi.org/10.1145/2145816.2145832

Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Data-Driven Versus
Topology-driven Irregular Computations on GPUs. In 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing. 463—474. https://doi.org/10.
1109/IPDPS.2013.28

Muhammad Osama, Serban D. Porumbescu, and John D. Owens. 2022. Essentials
of Parallel Graph Analytics. In Proceedings of the Workshop on Graphs, Archi-
tectures, Programming, and Learning (GrAPL 2022). 314-317. https://doi.org/10.
1109/IPDPSW55747.2022.00061

Vitaly Osipov, Peter Sanders, and Johannes Singler. 2009. The Filter-Kruskal
Minimum Spanning Tree Algorithm. In Proceedings of the Meeting on Algorithm
Engineering & Expermiments (New York, New York). Society for Industrial and
Applied Mathematics, USA, 52-61.

Sreepathi Pai and Keshav Pingali. 2016. A compiler for throughput optimization of
graph algorithms on GPUs. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications.
1-19.

PBBS Codes 2012. PBBS Codes. https://github.com/cmuparlay/pbbsbench/
Robert Clay Prim. 1957. Shortest connection networks and some generalizations.
The Bell System Technical Journal 36, 6 (1957), 1389-1401.

RAPIDS cuGraph GPU 2022. RAPIDS cuGraph GPU. https://github.com/rapidsai/
cugraph/

https://github.com/

Alex Fallin, Andres Gonzalez, Jarim Seo, and Martin Burtscher

RAPIDS Raft 2022. RAPIDS Raft. https://github.com/rapidsai/raft/

Rohit Setia, Arun Nedunchezhian, and Shankar Balachandran. 2009. A new
parallel algorithm for minimum spanning tree problem. In Proc. International
Conference on High Performance Computing (HiPC). 1-5.

UMinho Codes 2015. UMinho Codes. https://github.com/Beatgodes/
BoruvkaUMinho/

Wei Wang, Yongzhong Huang, and Shaozhong Guo. 2011. Design and implemen-
tation of GPU-based prim’s algorithm. International Journal of Modern Education
and Computer Science 3, 4 (2011), 55.

Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan
Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T. Riffel, and
John D. Owens. 2017. Gunrock: GPU Graph Analytics. ACM Transactions on
Parallel Computing 4, 1 (Aug. 2017), 3:1-3:49. https://doi.org/10.1145/3108140

	Abstract
	1 Introduction
	2 Related Work
	3 ECL-MST Approach
	3.1 Parallelization
	3.2 Performance Optimization
	3.3 ECL-MST Algorithm

	4 Evaluation Methodology
	5 Results
	5.1 Runtime
	5.2 Throughput
	5.3 Optimization Evaluation
	5.4 Random-Seed Evaluation

	6 Conclusion
	Acknowledgments
	References

