

SC ’23, November 12–17, 2023, Denver, CO, USA Alex Fallin, Andres Gonzalez, Jarim Seo, and Martin Burtscher

This paper makes the following main contributions.

• We introduce ECL-MST, a high-speed MST implementation

written in CUDA.

• We present key domain-speci�c optimizations that are es-

sential to the GPU performance of ECL-MST.

• We show that ECL-MST outperforms state-of-the-art CPU

and GPU implementations on many inputs.

• We demonstrate that Kruskal’s and Borůvka’s MST algo-

rithms converge to the same parallelization.

The latest version of our ECL-MST CUDA code is available in open

source through GitHub [5] and on the web [6].

The rest of this paper is organized as follows. Section 2 sum-

marizes related work. Section 3 explains our approach in detail.

Section 4 describes the evaluation methodology. Section 5 presents

and discusses the results. Section 6 concludes the paper with a

summary and future work.

2 RELATED WORK

Being a mature domain, a large amount of related work exists on

the minimum spanning tree problem. Hence, we primarily focus on

the work we build upon, some of the previous parallelizations of

MST, and the implementations we compare to in the result section.

The previous section already introduced the classic (serial) MST

algorithms. Brennan [3] combines Kruskal’s algorithm with quick-

sort (qKruskal). By partitioning the edge list into a lighter and a

heavier part, sorting the light part, and only sorting the heavy part

if the tree is not complete after processing the light part, the tree

can often be built without fully sorting the edge list. This increases

the performance over a version that always fully sorts the edge list.

ECL-MST similarly does not process the entire edge list at once to

potentially save on computation. However, ECL-MST di�ers in that

it does not perform the sorting step at all.

Osipov et al. [25] demonstrate that, in scenarios where the heav-

iest edge will be in the MST, qKruskal does not perform better

than the conventional implementation. They take advantage of

the partially built tree and the fact that edges can be checked for

cycles faster than they can be sorted and create Filter-Kruskal. By

removing edges that create a cycle from the unsorted chunks, they

reduce the number of edges that must be sorted. They show that

this optimization allows Kruskal’s algorithm to perform well on

both sparse and dense graphs. ECL-MST incorporates this idea.

Setia et al. [31] devised a parallel MST algorithm for CPUs that is

based on Prim’s algorithm. It employs worker threads that start at

a di�erent random vertex and build a tree from that vertex outward.

When the threads collide, the thread with the higher ID is killed

and its tree is merged with that of the thread with the lower ID. The

algorithm takes advantage of the cut property to merge the trees

correctly. Their code makes use of critical sections to perform the

tree merging. In contrast, ECL-MST is lock-free and uses atomic

operations to avoid more expensive synchronization.

Pai and Pingali [26] introduce three throughput optimizations

that are crucial to high performance in graph algorithms like MST.

Moreover, they discuss how these optimizations can be automated

by compilers that generate CUDA code to improve the performance

of many algorithms. One important bottleneck they identify is ker-

nel launch overheads, especially kernel launches inside a while

loop with a condition that is the result of a cudaMemcpy. This

is particularly prescient because ECL-MST as well as the Vascon-

cellos et al. [8] and the Sousa et al. [21] MST codes we compare

against in Section 5 employ this execution pattern. Pai and Pingali

note that, for algorithms using a worklist, programmers must be

careful to avoid bottlenecking by returning to the CPU too often.

Fortunately, this is not a problem in ECL-MST, which is guaranteed

to perform no more than $ (log |+ |) iterations. They also discuss

traversing graphs that have a large di�erence between the degree

of individual vertices, e.g., power-law graphs. They suggest that

sticking to a single level of parallelization, such as thread granu-

larity, can cause performance bottlenecks. As a remedy, we use

a hybrid parallelization technique in ECL-MST that is similar to

Merrill’s approach [22].

Vasconcellos et al. [8] introduce a pure MST code for GPUs.

By this, we mean that they target graphs with just a single con-

nected component. They base their implementation on Borůvka’s

algorithm with a modi�ed stopping condition to generate an MST

instead of an MSF. They employ a vertex-centric, data-driven [23]

algorithm that uses a kernel to �nd the lightest edge of a vertex

and another kernel to mark it. They then contract the graph and

recalculate the connected components. The main goal of their work

is to produce an e�cient general MST algorithm, which is why they

do not use many CUDA speci�cs other than atomic operations. We

compare to their GPU implementation in Section 5 as Jucele GPU.

Lonestar [20] contains two implementations of Borůvka’s algo-

rithm. The GPU version, which we do not compare to as it appears

to be incompatible with recent GPU architectures, is based on the

IrGL compiler by Pai and Pingali [26]. It performs indirect edge

relaxation so as not to modify the graph dynamically. This is akin to

how ECL-MST performs its component merging. The CPU version

of Lonestar, which we do compare to in the result section, runs

over the set of disconnected components and loops over their edges.

The �rst part of the main loop determines the lightest edge of each

component, which is safe to do in parallel because this step is read-

only. The second part of the main loop merges the components

in a lock-free manner. Both of these MST implementations share

the use of the disjoint-set data structure with ECL-MST to avoid

modifying the graph at runtime, which would be slow.

The MST code in the Problem-Based Benchmark Suite (PBBS) [2]

implements elements from both qKruskal and Filter-Kruskal along

with new ideas, in particular deterministic reservations. It executes

the iterations of the original non-parallel algorithm out of order

using a custom speculative for loop. PBBS only performs updates to

the tree once they have been found to be non-con�icting with ear-

lier iterations. The algorithm only sorts the smallest : edges at �rst,

where : =<8=(|+ |, 5|� |/4) is approximated using an edge sample

of size |� |/B@AC (|� |). This : smallest chunk is then processed. If

the MST is not complete, PBBS �lters all cyclic edges out of the

remaining chunk before processing it. ECL-MST shares the �ltering

optimization with PBBS. Unlike PBBS, it does not sort the chunks

and uses a simpler edge sampling method with a di�erent thresh-

old. ECL-MST employs a similar parallelization strategy based on

deterministic reservations but without speculation.

RAPIDS cuGraph [29] is an industry suite of graph algorithms for

GPUs. It takes advantage of RAFT (Reusable Accelerated Functions

and Tools) [30] in its MST code. Moreover, it uses color propagation

A High-Performance MST Implementation for GPUs SC ’23, November 12–17, 2023, Denver, CO, USA

and supervertices to implement Borůvka’s algorithm. We compare

to this vertex-centric, topology-driven [23] code in Section 5.

Sousa et al.’s [21] MST code for GPUs is listed by Pai and Pin-

gali [26] as the fastest existing implementation. This code is based

on Borůvka’s algorithm and is vertex-centric and data-driven. It

starts by �nding the minimum weighted edge of each vertex and

stores them in a shared data structure. It then removes the mirrored

edges, i.e., the edges where both the outgoing and incoming edges

between the same two vertices are selected. The code is a true

implementation of Borůvka’s algorithm in that it actually merges

vertices (using color propagation) into new supervertices. Finally,

it builds a new edge array for the contracted graph based on the

merged vertices. ECL-MST di�ers from this implementation in that

it does not create any new graphs and is primarily edge-centric. We

compare to Sousa et al.’s code in Section 5 as UMinho GPU.

Gunrock [24] is a graph analytics suite that includes a vertex-

centric topology-driven MST implementation. It relies on the input

having only a single connected component and, therefore, cannot

generate an MSF. It checks all vertices and evaluates an edge if

its source and destination do not belong to the same connected

component. We also compare to this code in the results section.

All of the GPU-related works described above employ a vertex-

centric implementation. In contrast, our ECL-MST code is edge-

centric, which we found to be substantially faster because it en-

ables important optimizations such as implicit path compression

(see Section 5.3). Additionally, some of the above approaches are

topology-driven, which tends to be slower than the data-driven

implementation that ECL-MST and some other codes use.

3 ECL-MST APPROACH

Since Borůvka’s algorithm is the most amenable to parllelization

of the three classic MST algorithms, many parallel MST codes are

based on this algorithm [8, 20, 21, 29]. In contrast, we set out to

parallelize Kruskal’s algorithm for GPU execution. As we progres-

sively increased the parallelism, something unexpected happened.

Our GPU parallelization of Kruskal’s algorithm converged to that

of Borůvka’s algorithm. We then proceeded to add critical per-

formance optimizations to this combined parallel MST approach,

paying close attention to circumvent the weaknesses of GPUs and

trying to exploit their strengths.

3.1 Parallelization

To avoid the cost of creating a new, smaller graph in each iteration,

Borůvka’s algorithm can be parallelized as follows using disjoint

sets to e�ciently represent themerged vertices in the original graph.

Initially, all vertices form their own set. Then, the following steps

repeat until only a single set (per connected component) remains.

• Each vertex determines the set it belongs to using the �nd

operation. This yields a unique representative for each set

(e.g., the vertex with the highest ID in the set).

• Each vertex identi�es the lightest adjacent vertex that be-

longs to a di�erent set. This lightest neighbor is recorded

in the representative if it is lighter than the lightest vertex

already recorded there.

• Each representative merges its set with that of the lightest

recorded neighbor using the union operation.

This parallelization of Borůvka’s algorithm is straightforward but

su�ers from exponentially decreasing parallelism as the number of

sets is roughly halved in each iteration.

To see whether we can avoid or at least alleviate this shortcom-

ing, we attempted to fully parallelize Kruskal’s algorithm. We also

use a disjoint-set data structure but primarily for cycle detection.

First, we parallelized the sorting of the edges by weight, which is

straightforward [16]. However, the building of the MST by pro-

cessing the edges from lightest to heaviest remained serial. We

gradually parallelized this step in the following way by processing

a chunk of the : lightest edges concurrently.

• Each edge in the chunk determines whether it forms a cycle

by comparing the representatives of its two endpoints. If it

does (i.e., the representatives match), the edge is discarded.

• Each remaining edge records in the representatives of its

endpoints whether it is the �rst edge in the chunk to connect

to that set. This is done by recording the relative position of

the edge within the chunk (i.e., the edge index), but only if

it is smaller than the smallest index already recorded.

• Each edge checks whether its edge index is stored in at least

one of the two representatives. If it is, the edge is included in

the MST and the sets of its endpoints are merged. Otherwise,

nothing is done with this edge.

The above steps repeat until each edge in the chunk has been either

discarded or included in the MST. Then, the algorithm advances to

the next chunk of : lightest edges. It continues in this manner until

the MST is complete.

This parallelization approach is based on the observation that we

can safely include not only the lightest edge but all edges that are

the �rst in the chunk to connect to a set. Deterministic reservation

is based on the same observation [2]. This is the case because adding

those edges cannot form a cycle. We found this approach to work

quite well as it often either includes many edges in the MST or

discards many edges from consideration in each iteration. Hence,

it typically does not require many iterations per chunk.

Next, we added two critical optimizations. First, we realized

that, since the edges are sorted by weight, a lower edge index is

tantamount to a lower edge weight. Therefore, we can record the

lightest-weight edge rather than the smallest-index edge in the

representatives without a�ecting the outcome. Second, we realized

that, since we record the lightest edge in the representative (using

an atomicMin operation), it is no longer necessary for the edges in

the chunk to be sorted. After all, the minimum of the sorted and

unsorted list is the same. By combining these two optimizations

and making the chunk size large enough to encompass all edges,

we were able to eliminate the sorting step altogether.

Interestingly, the resulting parallel MST algorithm is nearly iden-

tical to the parallelization of Borůvka’s algorithm outlined above.

The only remaining di�erence is that Kruskal’s code skips the

edges that form cycles and processes the remaining edges whereas

Borůvka’s code processes the edges that connect disjoint sets and

skips the remaining edges. However, this is merely a distinction in

viewpoint as there is no actual di�erence in the codes, both of which

use the exact same disjoint-set data structure and operations for

processing the edges. Thus, the two parallelizations have converged

to the same solution.

SC ’23, November 12–17, 2023, Denver, CO, USA Alex Fallin, Andres Gonzalez, Jarim Seo, and Martin Burtscher

The resulting parallelization is identical to that of PBBS, which

is based on deterministic reservations [2]. In other words, our par-

allelization of Kruskal’s algorithm has led to an already known

parallelization strategy for MSTs on CPUs. However, we believe

we are the �rst to employ it on GPUs for accelerating MST compu-

tations and propose important optimizations to speed it up.

3.2 Performance Optimization

We implemented this parallel MST algorithm in CUDA and incorpo-

rated the following main optimizations to boost the performance.

• Our code is lock free, which is crucial for good performance

on GPUs. It employs atomicAdd instructions to obtain the

next available slot in the worklist, atomicCAS instructions

to perform the union operation on the disjoint sets, and

atomicMin instructions to determine the lightest edge of

each set (i.e., to perform the deterministic reservations). The

atomicMin instructions operate on 64-bit values that hold

the edge weight in the most signi�cant bits and the edge ID

in the least signi�cant bits. This is done for two reasons: (1) It

introduces a deterministic tie breaker in case multiple edges

have the same weight, and (2) it provides the necessary edge

ID to identify the lightest edge.

• The code incorporates a hybrid parallelization scheme, which

is important for graph algorithms where some vertices may

have many more neighbors than others. In particular, the

code processes each low-degree vertex (3 (E) < 4) with a

single thread and each remaining vertex with an entire warp.

In the latter case, the processing of the vertex’s neighbors is

parallelized across the warp-threads and exploits the CUDA

ballot and shu�e functions to quickly exchange informa-

tion between the warp-threads. Hence, our code processes

the vertices in parallel and, for higher-degree vertices, also

processes the neighbors in parallel.

• We investigated di�erent path-compression schemes to speed

up the �nd operations, including “intermediate pointer jump-

ing” that is optimized for GPU execution [14]. Interestingly,

we obtained the best performance by not including any ex-

plicit path compression. Instead, our code implicitly performs

path compression when populating the new worklist (see be-

low) by storing the result of the �nd operations in lieu of the

original vertex IDs. This approach simpli�es and accelerates

the code.

• Prior work has demonstrated that �ltering can speed upMST

computations [25]. Filtering works by sporadically looking

for and removing edges from consideration that form cycles.

This helps because the cycle checks are computationally

cheap. Since there is still overhead associated with �ltering,

we perform only a single �ltering step. Speci�cally, we ran-

domly sample 20 edge weights to estimate the largest weight

F of the 2 |+ | lightest edges in the graph. Then, we process

the edges with a weight under F in the �rst phase, �lter

the remaining edges, and process the edges that were not

�ltered out, if any, in the second phase. Values between 2

and 4 seem to work well for 2 , which are likely to include

most of the the MST edges in the �rst phase since an MST

has |+ | − 1 edges. We use 2 = 4 in our code, i.e., no �ltering

occurs for graphs with an average degree below 4.

• Our code also includes several small optimizations. For ex-

ample, it alternates between two worklists for holding the

edges that still need processing. In each iteration, one of

the worklists is drained while the other is �lled. Between

iterations, the two pointers to the worklists are swapped.

Furthermore, our code utilizes edge-centric processing in

several kernels to improve load balancing. Another small

optimization is to only process edges in only one direction.

The code operates on graphs stored in the widely-used CSR

format, in which each undirected edge is represented by two

directed edges. However, these pairs of edges always form a

cycle, so one of the two edges can safely be skipped.

Some of the above optimizations are new (e.g., the implicit path

compression), have not been used in GPU MST codes before (e.g.,

the hybrid parallelization scheme and the deterministic reserva-

tions), or have been implemented in a new way to boost their

e�ciency (e.g., the �ltering). In Section 5.3, we study the perfor-

mance impact of these optimizations and show that, taken together,

they improve the speed of ECL-MST by a factor of eight on average,

demonstrating the importance of these optimizations.

3.3 ECL-MST Algorithm

The pseudo code in Algs. 1 and 2, where the colon means concate-

nation, illustrates how ECL-MST works for graphs with an average

degree below 4, i.e., without �ltering (meaning all weights meet the

threshold condition on Line 6). For graphs with an average degree

of 4 or greater, the �ltering threshold is computed as described

above, Algs. 1 and 2 are executed, then the threshold condition is

inverted, and Alg. 2 is executed one more time, using B4C (E) for E

and B4C (=) for = in the loop starting on Line 2.

Every for all loop in both algorithms is parallel, with the loop on

Line 3 in Alg. 2 being parallelized across the warp-threads if it per-

forms at least 4 iterations. The union operation on Line 30 involves

an atomicCAS, and the worklist updates on Lines 7 and 18 involve

an atomicAdd. The implicit path compression happens on Line 18,

where the edge’s source and destination vertices are replaced by

the corresponding representatives (i.e., sets) when putting the edge

on the worklist. Note that the worklists,!1 and,!2 hold edges

represented by 4-tuples using the format:

⟨ source vertex, destination vertex, edge weight, edge ID ⟩.

Running our algorithm on the graph from Fig. 2 does the follow-

ing. First, it assigns every vertex to its own set, clears the minimum

edge information, and marks all edges as not belonging to the MST.

Next, the worklist is populated with a copy of each edge in the

graph. For example, one entry will be the 4-tuple ⟨�, �, 3, 2⟩, mean-

ing the edge is between vertices � and � , has a weight of 3, and is

labeled 2 . Then, the minimum edge is recorded in each set (vertex).

The result is depicted in the left panel of Fig. 2. Finally, the algo-

rithm checks, for each edge on the worklist, whether it is recorded

in either of its endpoints (vertices). The two edges that are recorded

(14 and 20) are included in the MST, indicated in green in the middle

of Fig. 2, and the corresponding sets are joined, meaning � and �

now form a set that is represented by�, and � and� form a set that

is represented by �. Then the minimum edge information is cleared

SC ’23, November 12–17, 2023, Denver, CO, USA Alex Fallin, Andres Gonzalez, Jarim Seo, and Martin Burtscher

Table 1: Third-party MST codes used in experiments

Name Source

Gunrock GPU [34]

Jucele GPU [15]

RAPIDS cuGraph GPU [29]

UMinho GPU [32]

Lonestar CPU [20]

PBBS CPU [27]

UMinho CPU [32]

PBBS Serial [27]

Table 2: Information about the used input graphs

Graph Name Edges Vertices Type CCs d-avg d-max

2d-2e20.sym 4,190,208 1,048,576 grid 1 4.0 4

amazon0601 4,886,816 403,394 co-purchases 7 12.1 2,752

as-skitter 22,190,596 1,696,415 Internet topo. 756 13.1 35,455

citationCiteseer 2,313,294 268,495 publication cit. 1 8.6 1,318

cit-Patents 33,037,894 3,774,768 patent cit. 3,627 8.8 793

coPapersDBLP 30,491,458 540,486 publication cit. 1 56.4 3,299

delaunay_n24 100,663,202 16,777,216 triangulation 1 6.0 26

europe_osm 108,109,320 50,912,018 road map 1 2.1 13

in-2004 27,182,946 1,382,908 web links 134 19.7 21,869

internet 387,240 124,651 Internet topo. 1 3.1 151

kron_g500-logn21 182,081,864 2,097,152 Kronecker 553,159 86.8 213,904

r4-2e23.sym 67,108,846 8,388,608 random 1 8.0 26

rmat16.sym 967,866 65,536 RMAT 3,900 14.8 569

rmat22.sym 65,660,814 4,194,304 RMAT 428,640 15.7 3,687

soc-LiveJournal1 85,702,474 4,847,571 community 1,876 17.7 20,333

USA-road-d.NY 730,100 264,346 road map 1 2.8 8

USA-road-d.USA 57,708,624 23,947,347 road map 1 2.4 9

We compiled the CPU codes with gcc/g++ 11.3.1 on System 1

and 12.2.1 on System 2 using the “-O3 -march=native” �ags. For

the CPU-parallel codes, when not selected automatically by the

implementation, we set the thread count to match the number

of cores since we found hyperthreading to hurt performance. We

compiled the GPU codeswith nvcc 11.7 using the “-O3 -arch=sm_70”

�ags on System 1 and with nvcc 12.0 using the “-O3 -arch=sm_86”

�ags on System 2.

We used the 17 graphs shown in Table 2 as inputs. Where needed,

we modi�ed the graphs to eliminate self-loops and multiple edges

between the same two vertices. We added any missing back edges

to make the graphs undirected2. For unweighted graphs, we in-

serted random weights so the MST can be computed. Table 2 lists

the name, edge count, vertex count, type, and number of connected

components of each graph along with their average and maximum

degree. The graphs were obtained from the Center for Discrete

Mathematics and Theoretical Computer Science at the University

of Rome (DIMACS) [9], the Galois framework (Galois) [10], the Stan-

ford Network Analysis Platform (SNAP) [19], and the SuiteSparse

Matrix Collection (SSMC) [7]. We selected these graphs because

they cover a wide range of types and sizes.

For all tested codes, we measured the runtime of the MST com-

putation, excluding the time it takes to read in the graphs. In the

GPU codes, we also exclude the time it takes to transfer the graph

to the GPU or to transfer the result back (unless otherwise noted).

2Since the graphs are stored in CSR format, each undirected edge is represented by
two directed edges.

For incompatible inputs, we report “not connected” (NC) if they

contain multiple connected components.

We repeated each experiment 9 times for all codes and inputs and

report themedian computation time. The ECL-MST implementation

veri�es the solution at the end of each run by comparing it to the

solution of a serial implementation of Kruskal’s algorithm. This

veri�cation time is not included in the measured runtime.

RAPIDS cuGraph includes two MST versions, using either single-

or double-precision edge weights. A large portion of our inputs are

only compatible with the double-precision code due to their large

size and resultant total MST weight. Hence, we present cuGraph

results from the double version but also discuss the �oat results.

Additionally, cuGraph is incompatible with System 1, so we only

compare to it on System 2.

5 RESULTS

In this section, we �rst present the absolute runtimes of the vari-

ous MST codes on our input graphs. Then, we show the resulting

throughputs in millions of edges per second. Last, we evaluate the

performance impact of some of our code optimizations.

5.1 Runtime

Tables 3 and 4 list theMST computation times in seconds on Systems

1 and 2, respectively. Lower runtimes are better. Rows labeled “MSF

GeoMean” show the geometric mean over all measured inputs

whereas rows labeled “MST GeoMean” list the geometric mean

over only the inputs that consist of a single connected component.

This is done to make the comparison with the Jucele and Gunrock

GPU codes fair, which can compute MSTs but not MSFs.

For each input, we provide two ECL-MST results, one that does

not include the memory-copy time for transferring the graph to the

GPU or the result to the CPU and another that includes this time.

The former, which is our baseline, is relevant in settings where an

MST is computed as part of a larger data analytics pipeline where

the graph is already on the GPU from a previous processing step

and the resulting MST is needed on the GPU for a later step. The

latter is relevant in settings where only the MST computation is

performed on the GPU and the other steps on the CPU.

On System 1 (Table 3), ECL-MST is faster than the other codes

on every tested input. Its running-time variance between the 9 repe-

titions of each experiment is only 0.0005% on average, and the max-

imum we observed is 0.0028% on as-skitter. Based on the geometric-

mean performance over the MSF inputs, our code is 138 times faster

than serial, 32.3 times faster than the fastest CPU-parallel code

(PBBS), and 38.6 times faster than the UMinho GPU code. On just

the MST inputs, our code is 184.4 times faster than serial, 39.2 times

faster than the fastest CPU-parallel code (UMinho), and 4.6 times

faster than the fastest GPU code (Jucele). ECL-MST does particu-

larly well on the scale-free inputs, where it outperforms the other

codes by at least 19 times on amazon0601, rmat16.sym, and soc-

LiveJournal1. Such graphs have some vertices with a much higher

degree than the other vertices, which tends to cause load-balancing

issues in vertex-centric implementations. ECL-MST avoids this

problem through hybrid parallelization in one kernel (where whole

warps share the processing of high-degree vertices) and edge-centric

processing in the other kernels.

SC ’23, November 12–17, 2023, Denver, CO, USA Alex Fallin, Andres Gonzalez, Jarim Seo, and Martin Burtscher

importance of the hybrid parallelization scheme, as without it, the

initialization takes even longer (see Section 5.3). Of the computation

kernels, all of which are launched multiple times, the �rst kernel

(Lines 14-23 in Alg. 2) is responsible for about 35% of the total run-

time on average. In contrast, computation kernels two and three

(Lines 27-33 and 34-37, respectively) each take only about 12% of

the runtime on average. The initialization kernel is launched twice

if �ltering is used and once otherwise. Depending on the input, the

computation kernels are launched between 4 (kron_g500-logn21)

and 15 times (delaunay_n24). Due to the 8 5 statement on Line 26,

the �rst computation kernel is invoked twice more when �ltering

is used and once more otherwise.

As discussed in Section 4, cuGraph has both a �oat and a double

version of the MST code. The �oat version cannot run three of

our inputs, which is why we show the results from the double

version. On the remaining inputs, the �oat version of cuGraph

is, on average, 1.21 times faster than the double version but still

substantially slower than ECL-MST on every input.

In summary, the runtime results show ECL-MST to outperform

the other tested MST codes on a variety of inputs and on di�erent

GPU generations. In fact, ECL-MST is faster on all tested inputs

by a large margin. Additionally, even when including the memory

copy times, ECL-MST outperforms the tested CPU codes, meaning

that it can be used for accelerating MST computations in programs

that mainly run on the CPU.

5.2 Throughput

The throughputs, i.e., the number of edges divided by the runtime,

on the two systems are shown in Figures 3 and 4. In these bar

charts, the inputs are listed along the x-axis and the throughputs in

millions of edges per second along the y-axis. Taller bars are better.

Based on the geometric mean over the MSF inputs on System 1

(Figure 3), we �nd that ECL-MST processes 1.57 billion edges per

secondwith the closest performing code being CPU-parallel PBBS at

48 million edges per second. ECL-MST reaches its highest through-

put of 7.09 billion edges per second on coPapersDBLP. The lowest

throughput is 0.73 billion edges per second on r4-2e23.sym, which

is still over 3.6 times higher than the highest throughput reached

by the CPU codes (PBBS reaches 0.20 billion edges per second on

kron_g500-logn21). On the MST inputs, ECL-MST’s throughput

increases to a geometric mean of 1.65 billion edges per second with

the next closest code being Jucele at 0.36 billion edges per second.

The throughputs for System 2 (Figure 4) are higher due to the

faster GPU. On average, for both theMSF andMST inputs, ECL-MST

processes 2.54 billion edges per second. The highest throughput is

again reached on coPapersDBLP at 12.24 billion edges per second.

as-skitter yields the lowest throughput of 1.17 billion edges per

second. CPU-parallel PBBS reaches 0.09 billion edges per second,

cuGraph reaches 0.20 billion edges per second, and the Jucele GPU

code reaches 0.59 billion edges per second.

In summary, these results show that ECL-MST can handle both

small and large inputs well, reaching high throughputs on all tested

graphs.When correlating throughputwith various graph properties,

we found ECL-MST’s throughput to signi�cantly correlate with

the average degree. This is likely because disqualifying an edge

from the MST is faster than including an edge in the MST and, for

high average-degree graphs, a larger portion of the work is edge

disquali�cation. Overall, the throughputs are high on both GPUs,

indicating that our performance optimizations are not speci�c to a

particular GPU or hardware generation.

5.3 Optimization Evaluation

To measure the bene�t of the optimizations discussed in Section 3.2,

we wrote additional versions of our code, each with one more opti-

mization removed than the previous. As before, we ran the resulting

codes 9 times for each input, report the median computation time,

and veri�ed the correctness. The runtimes are listed in Table 5.

Figure 5 shows the corresponding throughputs. For reference, we

included the throughput of the fastest MST algorithm from the

literature, which is Jucele. As a consequence, we do not show data

for the inputs that contain multiple connected components. We

only present results for System 2 as it has the faster GPU.

We started with our fully-optimized ECL-MST code and removed

the following optimizations in the listed order.

(1) Since load instructions are generally faster and more parallel

than atomic operations, and the atomics on Lines 20 and 21

in Alg. 2 often do not �nd a new minimum, the ECL-MST

code �rst checks with an if statement whether the atomicMin

might lower the value. If not, then there is no reason to exe-

cute the atomicMin. The “No Atomic Guards” version elides

these checks and always executes the atomicMin operations.

(2) For load-balancing reasons, the loop on Line 3 of Alg. 2 is

parallelized across the warp threads if the adjacency list is

su�ciently long. The “Thread-Based” version never paral-

lelizes this inner loop.

(3) ECL-MST uses �ltering for all inputs whose average degree

is ≥ 4. The “No Filter” version does not use any �ltering.

(4) One of our key optimizations is the implicit path compres-

sion, meaning that, whenever the code places an edge on the

worklist, it uses the representatives of its endpoints. The “No

Implicit Path Compression” places the actual endpoint vertex

IDs on the worklist and employs explicit path compression

(using the path-halving code for GPUs [14]) whenever those

vertices are used later.

(5) Since the CSR graph representation includes two directed

edges for each undirected edge, which necessarily form a

cycle, ECL-MST only processes one edge of each pair. The

“Both Edge Directions” version processes all edges.

(6) Each element in the worklist is a 4-tuple (Section 3.3). The

“No Tuples” version stores the 4 items in separate arrays.

(7) ECL-MST is data-driven, meaning it only processes the edges

that are on the worklist. The “Topology-Driven” version, in

contrast, always processes all graph edges in every iteration

of the while loop on Line 12 in Alg. 2.

(8) Another key optimization is that most of our code is edge-

centric, that is, the unit of work assigned to a thread is an

edge. This tends to yield good load balance. The “Vertex-

Centric” version assigns a vertex to each thread, and the

thread is responsible for processing all edges of the vertex.

Based on the geometric-mean results, “No Atomic Guards” adds

27% additional runtime, “Thread-Based” adds 9% more, “No Fil-

ter” adds 30%, “No Implicit Path Compression” adds 58%, “Both

A High-Performance MST Implementation for GPUs SC ’23, November 12–17, 2023, Denver, CO, USA

Table 3: System 1 computation times in seconds

Input ECL-MST ECL-MST memcpy Jucele GPU Gunrock GPU Uminho GPU Lonestar CPU PBBS CPU Uminho CPU PBBS Ser.

2d-2e20.sym 0.0049 0.0126 0.0147 0.0195 0.0278 1.0710 0.1063 0.0916 0.5176

amazon0601 0.0026 0.0124 NC NC 0.2895 0.6420 0.0745 0.1674 0.4636

as-skitter 0.0262 0.0721 NC NC 1.5121 2.0230 0.3340 0.8681 1.5179

citationCiteseer 0.0012 0.0056 0.0040 0.0099 0.1666 0.3810 0.0478 0.1070 0.1641

cit-Patents 0.0368 0.1068 NC NC 3.3859 7.7790 0.8081 1.6587 3.2648

coPapersDBLP 0.0043 0.0660 0.0304 0.0633 2.0874 1.8400 0.2505 1.1022 1.9628

delaunay_n24 0.0491 0.2632 0.1938 0.2807 0.3942 9.1230 3.0202 1.0986 15.6779

europe_osm 0.0560 0.3092 0.7843 0.4106 0.0985 12.8640 4.5846 1.6579 18.9955

in-2004 0.0176 0.0736 NC NC 0.8735 1.4530 0.3243 0.3874 1.7615

internet 0.0003 0.0008 0.0015 0.0029 0.0072 0.1290 0.0263 0.0094 0.0295

kron_g500-logn21 0.0979 0.4002 NC NC 3.2057 31.0100 0.8920 3.5448 6.5958

r4-2e23.sym 0.0921 0.2088 0.2087 0.2992 7.4050 18.0720 1.9853 4.8016 9.3615

rmat16.sym 0.0006 0.0019 NC NC 0.1066 0.1770 0.0178 0.0679 0.0526

rmat22.sym 0.0456 0.1600 NC NC 5.9371 20.5680 0.9937 4.1182 5.0334

soc-LiveJournal1 0.0353 0.2121 NC NC 11.6288 15.2210 1.0564 4.4213 5.9403

USA-road-d.NY 0.0006 0.0016 0.0030 0.0051 0.0039 0.1590 0.0327 0.0140 0.0741

USA-road-d.USA 0.0283 0.1424 0.1484 0.2358 0.0668 6.5370 2.3909 0.6850 9.4397

MSF GeoMean 0.0103 0.0411 NC NC 0.3978 2.4886 0.3335 0.4775 1.4231

MST GeoMean 0.0070 0.0290 0.0324 0.0485 0.1199 1.8148 0.3465 0.2734 1.2856

Table 4: System 2 computation times in seconds

Input ECL-MST ECL-MST memcpy Jucele GPU Gunrock GPU cuGraph GPU UMinho GPU Lonestar CPU PBBS CPU Uminho CPU PBBS Ser.

2d-2e20.sym 0.0028 0.0086 0.0069 0.0156 0.0399 0.0161 1.1130 0.0682 0.0710 0.5726

amazon0601 0.0016 0.0105 NC NC 0.0177 0.2406 0.6730 0.0448 0.1362 0.5009

as-skitter 0.0190 0.0584 NC NC 0.0616 1.2248 2.0300 0.1549 0.7815 1.6326

citationCiteseer 0.0007 0.0050 0.0026 0.0064 0.0117 0.1215 0.4620 0.0298 0.0902 0.1788

cit-Patents 0.0198 0.0790 NC NC 0.1489 2.8603 8.4130 0.2932 1.4496 3.1998

coPapersDBLP 0.0025 0.0563 0.0203 0.0458 0.0432 1.6820 1.9250 0.1459 1.0472 2.0878

delaunay_n24 0.0329 0.2378 0.1078 0.2817 0.5793 0.2053 7.3370 1.3487 0.9552 17.7500

europe_osm 0.0338 0.2720 0.5195 0.3044 3.7105 0.0590 12.4180 2.1357 1.1169 22.0196

in-2004 0.0126 0.0608 NC NC 0.0593 0.7381 1.4880 0.1576 0.3940 1.8727

internet 0.0003 0.0009 0.0011 0.0020 0.0047 0.0052 0.2360 0.0232 0.0153 0.0328

kron_g500-logn21 0.0509 0.3488 NC NC 0.2519 2.5700 33.3920 0.3694 4.4750 7.4356

r4-2e23.sym 0.0482 0.1493 0.1087 0.2424 0.3708 6.0761 16.6760 0.8266 4.2315 10.0535

rmat16.sym 0.0004 0.0018 NC NC 0.0040 0.0761 0.2640 0.0116 0.0617 0.0552

rmat22.sym 0.0241 0.1205 NC NC 0.1929 4.8767 18.0470 0.4096 3.6322 4.8061

soc-LiveJournal1 0.0186 0.1867 NC NC 0.2023 9.5606 12.4630 0.4946 4.0870 5.8235

USA-road-d.NY 0.0004 0.0015 0.0022 0.0039 0.0112 0.0030 0.2560 0.0213 0.0214 0.0807

USA-road-d.USA 0.0181 0.1115 0.0768 0.1833 0.7618 0.0385 5.7260 1.0208 0.5242 9.9725

MSF GeoMean 0.0063 0.0346 NC NC 0.0805 0.2924 2.6685 0.1718 0.4506 1.5210

MST GeoMean 0.0044 0.0247 0.0195 0.0373 0.0953 0.0808 2.0036 0.1921 0.2589 1.4110

Table 5: ECL-MST computation times in seconds when gradually removing performance optimizations

Input ECL-MST No Atomic Guards Thread-Based No Filter No Impl. Path Compr. Both Edge Dir. No Tuples Topology-Driven Vertex-Centric

2d-2e20.sym 0.0028 0.0032 0.0028 0.0028 0.0043 0.0085 0.0098 0.0151 0.0172

citationCiteseer 0.0007 0.0011 0.0018 0.0025 0.0056 0.0101 0.0124 0.0081 0.0250

coPapersDBLP 0.0025 0.0047 0.0094 0.0187 0.0343 0.0720 0.1517 0.0610 0.1236

delaunay_n24 0.0329 0.0389 0.0314 0.0457 0.0649 0.1041 0.1559 0.1556 0.1460

europe_osm 0.0338 0.0432 0.0438 0.0439 0.0601 0.0784 0.1016 0.1629 0.1397

internet 0.0003 0.0003 0.0003 0.0003 0.0004 0.0006 0.0007 0.0006 0.0024

r4-2e23.sym 0.0482 0.0627 0.0622 0.1635 0.2927 0.5576 0.7063 0.4742 0.5099

USA-road-d.NY 0.0004 0.0005 0.0004 0.0004 0.0006 0.0007 0.0009 0.0010 0.0010

USA-road-d.USA 0.0181 0.0226 0.0230 0.0227 0.0317 0.0474 0.0653 0.0865 0.0754

MST GeoMean 0.0044 0.0056 0.0061 0.0079 0.0125 0.0203 0.0270 0.0255 0.0358

[2] Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, and Julian Shun. 2012.
Internally deterministic parallel algorithms can be fast. In Proceedings of the 17th

ACM SIGPLAN symposium on Principles and Practice of Parallel Programming.

SC ’23, November 12–17, 2023, Denver, CO, USA Alex Fallin, Andres Gonzalez, Jarim Seo, and Martin Burtscher

181–192.
[3] J.J. Brennan. 1982. Minimal spanning trees and partial sorting. Operations Research

Letters 1, 3 (1982), 113–116. https://doi.org/10.1016/0167-6377(82)90010-4
[4] Mariel Brinkhuis, Gerrit A Meijer, Paul J Van Diest, Leonard T Schuurmans, and

JP Baak. 1997. Minimum spanning tree analysis in advanced ovarian carcinoma.
An investigation of sampling methods, reproducibility and correlation with
histologic grade. Analytical and quantitative cytology and histology 19, 3 (1997),
194–201.

[5] Martin Burtscher and Alex Fallin. 2023. ECL-MST Git Repository. https://github.
com/burtscher/ECL-MST. Accessed: 2023-08-18.

[6] Martin Burtscher and Alex Fallin. 2023. ECL-MST Website. https://cs.txstate.
edu/~burtscher/research/ECL-MST/. Accessed: 2023-08-18.

[7] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (dec 2011), 25 pages. https:
//doi.org/10.1145/2049662.2049663

[8] Jucele França de Alencar Vasconcellos, Edson Norberto Cáceres, Henrique Mon-
gelli, and Siang Wun Song. 2018. A new e�cient parallel algorithm for minimum
spanning tree. In 2018 30th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD). IEEE, 107–114.

[9] DIMACS data sets 2007. DIMACS data sets. https://www.diag.uniroma1.it/
challenge9/download.shtml

[10] Galois data sets 2018. Galois data sets. https://iss.oden.utexas.edu/?p=projects/
galois

[11] R.L. Graham and Pavol Hell. 1985. On the History of the Minimum Spanning
Tree Problem. Annals of the History of Computing 7 (02 1985), 43–57. https:
//doi.org/10.1109/MAHC.1985.10011

[12] Ronald L Graham and Pavol Hell. 1985. On the history of the minimum spanning
tree problem. Annals of the History of Computing 7, 1 (1985), 43–57.

[13] Michael Held and Richard M Karp. 1970. The traveling-salesman problem and
minimum spanning trees. Operations Research 18, 6 (1970), 1138–1162.

[14] Jayadharini Jaiganesh andMartin Burtscher. 2018. A high-performance connected
components implementation for GPUs. In Proceedings of the 27th International
Symposium on High-Performance Parallel and Distributed Computing. 92–104.

[15] Jucele GPU 2018. Jucele GPU. https://github.com/jucele/
NewMinimumSpanningTree/

[16] Peter Kipfer and Rüdiger Westermann. 2005. Improved GPU sorting. GPU gems
2 (2005), 733–746.

[17] Oleg V. Komogortsev, Sampath Jayarathna, Do Hyong Koh, and Sandeep Munikr-
ishne Gowda. 2010. Qualitative and quantitative scoring and evaluation of the
eye movement classi�cation algorithms. Proceedings of the 2010 Symposium on
Eye-Tracking Research & Applications (2010), 65 – 68.

[18] Joseph B Kruskal. 1956. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathematical society 7,
1 (1956), 48–50.

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[20] Lonestar CPU 2022. Lonestar CPU. https://github.com/
IntelligentSoftwareSystems/Galois/

[21] Artur Mariano, Alberto Proenca, and Cristiano Da Silva Sousa. 2015. A generic
and highly e�cient parallel variant of boruvka’s algorithm. In 2015 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing.
IEEE, 610–617.

[22] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU
Graph Traversal. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (New Orleans, Louisiana, USA) (PPoPP ’12).
Association for Computing Machinery, New York, NY, USA, 117–128. https:
//doi.org/10.1145/2145816.2145832

[23] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Data-Driven Versus
Topology-driven Irregular Computations on GPUs. In 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing. 463–474. https://doi.org/10.
1109/IPDPS.2013.28

[24] Muhammad Osama, Serban D. Porumbescu, and John D. Owens. 2022. Essentials
of Parallel Graph Analytics. In Proceedings of the Workshop on Graphs, Archi-
tectures, Programming, and Learning (GrAPL 2022). 314–317. https://doi.org/10.
1109/IPDPSW55747.2022.00061

[25] Vitaly Osipov, Peter Sanders, and Johannes Singler. 2009. The Filter-Kruskal
Minimum Spanning Tree Algorithm. In Proceedings of the Meeting on Algorithm
Engineering & Expermiments (New York, New York). Society for Industrial and
Applied Mathematics, USA, 52–61.

[26] Sreepathi Pai and Keshav Pingali. 2016. A compiler for throughput optimization of
graph algorithms on GPUs. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications.
1–19.

[27] PBBS Codes 2012. PBBS Codes. https://github.com/cmuparlay/pbbsbench/
[28] Robert Clay Prim. 1957. Shortest connection networks and some generalizations.

The Bell System Technical Journal 36, 6 (1957), 1389–1401.
[29] RAPIDS cuGraph GPU 2022. RAPIDS cuGraph GPU. https://github.com/rapidsai/

cugraph/

[30] RAPIDS Raft 2022. RAPIDS Raft. https://github.com/rapidsai/raft/
[31] Rohit Setia, Arun Nedunchezhian, and Shankar Balachandran. 2009. A new

parallel algorithm for minimum spanning tree problem. In Proc. International
Conference on High Performance Computing (HiPC). 1–5.

[32] UMinho Codes 2015. UMinho Codes. https://github.com/Beatgodes/
BoruvkaUMinho/

[33] Wei Wang, Yongzhong Huang, and Shaozhong Guo. 2011. Design and implemen-
tation of GPU-based prim’s algorithm. International Journal of Modern Education
and Computer Science 3, 4 (2011), 55.

[34] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan
Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T. Ri�el, and
John D. Owens. 2017. Gunrock: GPU Graph Analytics. ACM Transactions on
Parallel Computing 4, 1 (Aug. 2017), 3:1–3:49. https://doi.org/10.1145/3108140

	Abstract
	1 Introduction
	2 Related Work
	3 ECL-MST Approach
	3.1 Parallelization
	3.2 Performance Optimization
	3.3 ECL-MST Algorithm

	4 Evaluation Methodology
	5 Results
	5.1 Runtime
	5.2 Throughput
	5.3 Optimization Evaluation
	5.4 Random-Seed Evaluation

	6 Conclusion
	Acknowledgments
	References

