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Solution processing of 2D materials such as graphene is important for applications thereof, yet a
DOI:00.0000/000000000x complete fundamental understanding of how 2D materials behave dynamically in solution is lacking.
Here, we extend previous work by Silmore et al., Soft Matter, 2021, 17(18), 4707-4718 by adding
short-ranged Lennard-Jones interactions to 2D sheets in shear flow. We find that the addition of
these interactions allows for a rich landscape of conformations which depend on the balance between
shear strength, bending rigidity, and interaction strength as well as the initial configuration of the
sheet. We explore this conformational space and classify sheets as flat, tumbling, 1D folded, or
2D folded based on their conformational dynamics. We use a kinetic and energetic argument to
explain why sheets adopt certain conformations within the folded regime. Finally, we calculate the
stresslet and find that, even in the absence of thermal fluctuations and multiple sheet interactions,

shear-thinning followed by shear-thickening behavior can appear.

1 Introduction

Solution processing and liquid exfoliation are important as-
pects of the production and application of 2D materials such as
graphene, graphene oxide, transition metal dichalcogenides, and,
more recently, 2D polymers 119, but fundamental understanding
of many properties of suspended 2D sheets is lacking. For exam-
ple, much work has been devoted to the transition from a flat to
a crumpled state with increasing temperature29-28 but there is
still debate as to whether self-avoiding sheets crumple or are flat
at all temperatures2?~42. The introduction of attractive interac-
tions, which appear in real systems in the form of, for example,
dispersion forces, has been explored as a potential way to induce
conformational changes in sheets36:43:44 and a series of folding
transitions have also been theorized and observed in thermal sim-
ulations#°.

One can also apply a flow field to sheets, resulting in dynam-
ics which are even less well understood than the equilibrium be-
havior. Xu and Green studied the rotation of semi-flexible sheets
under shear and extensional flows and found shear-thinning rhe-
ological behavior#®*7. Yu and Graham found coil-stretch-like
and compact-stretched transitions for stiff sheets in extensional
flows 4849 They found that flexible sheets in extensional flows
additionally exhibit wrinkling which significantly modifies the
aforementioned transitions. Salussolia and Botto characterized
the separation of multi-sheet systems (although in 2D) with long-
and short-range hydrodynamics in shear and found that separat-
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ing sheets can reassemble under certain conditions>C. Recently,
Perrin and Botto also showed (again in 2D) that, despite multi-
layer sheets having a higher bending rigidity than single-layer
sheets®!, a lateral hydrodynamic force at moderate sheet sepa-
rations can cause the sheets to bend for shear rates much lower
than expected 2.

Previous work by Silmore et. al.>3°% showed that Jeffery’s
equations for the rotation of rigid ellipsoids in shear®> matched
well with the behavior of semi-flexible sheets in shear under
certain conditions®3. Introducing thermal energy resulted in
shear-thinning followed by shear-thickening rheological behav-
ior>* which has been observed in dilute graphene suspensions>®
as well as dilute graphene oxide suspensions®’. These experi-
ments showed the same stronger shear-thinning at higher tem-
peratures. Because these simulations involved only single sheets,
they show that conformational changes may contribute to this
non-monotonic rheological behavior in addition to sheet-sheet in-
teractions (e.g. the buildup and breakdown of agglomerates or
the formation of lamellar layers).

In many real systems, however, such as graphene, bending
rigidity is several orders of magnitude greater than thermal en-
ergy®8>9 (graphene oxide being an exception, with bending
rigidity about the same as thermal energy at room tempera-
ture®). This raises the question as to whether non-monotonic
rheological behavior can be generated in the athermal limit. As
discussed earlier, self-interactions are a potential method of pro-
ducing conformational changes in sheets.

In this work, we study athermal, semi-flexible sheets with
long-range hydrodynamics using the model developed in previ-
ous work>3 but with the addition of attractive self-interactions.
We show that single sheets with attractive self-interactions can
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Fig. 1 (a-d) Example conformations for (a) flat, (b) tumbling, (c) 1D folded, and (d) 2D folded sheets. x is the flow direction and y is the shear
direction. (e-h) Square root of the eigenvalues of the gyration tensor, A;, over time for the (e) flat, (f) tumbling, (g) 1D folded, and (h) 2D folded
sheets. Green is the smallest, orange is the second largest, and blue is the largest characteristic length.

exhibit diverse and interesting conformational and rotational be-
haviors. Parameters in the system allow us to define two dimen-
sionless groups which map out the conformational space. We
show that the conformational behavior is intimately related to
sheet bending and rotation, with the manifestation of kinetically
trapped folds due to attractive interactions. These conformational
changes, together with rotation, give rise to non-monotonic rhe-
ological behavior. We use kinetic and energetic arguments to ex-
plain our results.

2  Models and methods

2.1 Simulation method

Similar to the model employed in previous work®>3->4

struct hexagonal sheets with circumradius L = 39a with beads of
radius a such that each interior bead has 6 tangent neighbors, to-
talling N = 1141 beads. We also apply many of the same forces to
beads within the sheets. We use harmonic forces between neigh-
boring beads with in-plane stiffness k and dihedral forces between
neighboring triangles of beads with bending rigidity (out-of-plane
stiffness) x. This discrete bending rigidity can be mapped to a
continuum bending rigidity (for this specific triangulation) with
& =K/1/361. We set the in-plane stiffness of the sheets to be much
larger than their out-of-plane stiffness, as in true in many real sys-
tem. This can be quantified using the F6ppl-von Kairman number,
FvK ~ kL?/x, which was between 10° and 107 for the simula-
tions in this paper. Thus, the sheets are inextensible relative to
bending. We also apply hard-sphere interactions between non-
neighboring beads with a pair-potential which places overlapping
beads tangent to each other under Rotne-Prager-Yamakawa dy-
namics, which give long-range hydrodynamics (see below).

, wWe con-

Finally, we apply a short-ranged interaction in the form of
a truncated Lennard-Jones potential between non-neighboring
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beads:
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where ¢ is the interaction strength and o is the interaction range.
We use a turn-on distance of r,, = 2a and cut-off radius of r., =
2.50. For all simulations, we set o = 4\/6a/3.

Beads can interact via this potential along the sheet surface,
which may affect the effective in-plane stiffness of the sheets. For
a single line of beads along a flat sheet, extending the bead will
have an energetic cost due to the harmonic and interaction po-
tentials. With just a harmonic potential the force required to ex-
tend the beads a distance ¢ from their equilibrium due to goes
as ko (L/a), where ko is the force per bead and (L/a) goes as the
number of beads along the line. The force from self-interaction
goes as (¢/0)(o/a)(L/a), where (¢/0) goes as the force per bead
pair and (o/a) goes as the number of other beads each bead in-
teracts with along this line. For the largest interaction strength
used in these simulations, this force is two orders of magnitude
smaller than the force from the harmonic potential. Therefore, we
expect that self-interactions along the sheet surface do not affect
the extensibility of the sheet significantly.

We integrate this system forward in time using an Euler-
Maruyama integrator with the following equations of motion for
Brownian dynamics with hydrodynamics:

oU
dx; = (—;%JaXJ—Q-LXI)dZ, 2
where (L), = Y010, is the velocity gradient tensor with shear
rate 7 and U is the sum of the applied potentials on bead .
To achieve long-range hydrodynamics, we use the Rotne-Prager-
Yamakawa tensor ©2 for .#; j» which is given analytically by
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Fig. 2 Conformational phase map of sheets with initial conditions (a) ¢ =0° and (b) ¢ =45°.

€))]

3a a 3a _ 3d3 \aaT
1 ﬂ+ﬁ)l+(ﬂ—ﬁ)rr r>2a
T
! 3

6zna k%)ﬂmw r<2a,

where F is the unit vector pointing from particle i to particle j.

The Rotne-Prager-Yamakawa tensor models long-range, pair-
wise hydrodynamic interactions between beads, with each bead
acting as a regularized Stokeslet®3. Thus, finite discretizations of
these beads as sheets have some degree of permeability. However,
Yu and Graham recently showed that, for similarly discretized
sheets, the permeation velocity (i.e. the fluid velocity normal
to the sheet surface) in extensional flows tends to be small (on
the order of 1% relative to the bead size and strain rate, assum-
ing this is the normalization they used) *°. We expect shear flows
to carry similar permeation velocities. Second, for small enough
sheets, lubrication forces are relatively small compared to the
forces from self-interaction. We discuss this assumption and the
sheet size limit in Appendix A. Conceptually, because the applied
self-interaction includes a repulsive component and equilibrium
distance, small enough sheets do not approach closely enough for
lubrication forces to be significant.

Initially flat sheets aligned with the flow-vorticity plane were
rotated by an angle 6 = 5° about the vorticity axis and then by
a varying angle ¢ about the flow axis. We sample from ¢ = 0°
to ¢ = 90° with samples at every 5°. In averages over ¢, we
give relative weights to each ¢ proportional to sin ¢, correspond-
ing to initially randomly oriented sheets. We use a time step of
YAt =2 x 10~ for all simulations. Simulations were run for 2000
strain cycles (¢ =2000) and results were calculated using the last
200 strain cycles using data from every 1007z, as analysis of the
autocorrelation of sheet properties such as the radius of gyration
at small interaction strengths (i.e. for tumbling sheets, as de-
scribed later, as they have the slowest decaying autocorrelations)
showed that approximately every 1007+ are independent. Simula-
tions were run using HOOMD-blue on NVIDIA GeForce GTX 1080
Ti’s63 with a custom package from Ref.33 which was adapted
from Ref.%. All images of sheets were rendered using Ovito 5.

2.2 Dimensionless groups

The addition of self-interaction adds two new parameters to the
system: the interaction strength, €, and interaction range, . To
give a roughly continuous energy landscape for two sheets sliding
parallel to each other, we require 6 >> a. As mentioned earlier, for
all sheets in this work, we choose 6 = 41/6a/3 ~ 3.27a. While ¢ is
the energy scale for interactions between two beads, the energy
scale for the interaction of a bead with a plane of beads separated
by the equilibrium distance of ¢ is

2 o’

€0 =e——,
2\/§a2

where & = £/2+/34 is the interaction energy density of the sheet.
For two parallel sheets of characteristic size L aligned with the
shear-vorticity plane and separated by a distance o, shear acts as
a force trying to separate the two sheets by sliding them along
each other, while their interaction resists this sliding. Taking the
ratio of these two forces gives a dimensionless group characteriz-
ing the ability of attractive interaction to resist shear:

g0? L
L= emnitte <E) )

€]

where 7 is the fluid viscosity and 7 is the shear rate. This dimen-
sionless group characterizes the ability of nearby sections of the
sheet to slide along each other. A more detailed derivation of this
dimensionless quantity can be found in Appendix B.

We note the existence of the bead radius, «, in this dimension-
less number. In previous work®3°4 4 was the smallest resolv-
able length scale and did not play a role in the dynamics. Here,
because interactions happen between individual beads, « is rel-
evant. The quantity L/a is proportional to the number of in-
teractions along the edge of the sheet. In a physical system, a
now corresponds to the interacting elements of a sheet, for exam-
ple, individual carbon atoms in a graphene sheet interacting via
van der Waals forces. Typical solution-processed sheets have sizes
ranging from nanometers to micrometers® and may interact at a
wide range of distances®”. Further control over the shear rate in
experiments means that this dimensionless number can span sev-
eral orders of magnitudes, and we thus expect this dimensionless
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Fig. 3 Sequential snapshots showing a 180° rotation of a "teacup" sheet rotating in the counterclockwise direction with y =2.42x 1073, K = 0.01,
and ¢ =85°. x is the flow direction and y is the shear direction. A single bead is colored red to guide the eye.

number to reveal interesting transitions in real systems.

While the ratio of bending rigidity to shear, denoted S in previ-
ous work >34 with

K

is a relevant dimensionless group for the dynamics of this sys-
tem, as we discuss in the results, we find that another illuminat-
ing group is the ratio between bending rigidity and interaction
strength:

K= % 7
go

Interaction tries to move sections of the sheet together by fold-
ing, while bending rigidity resists this folding. Thus, when K > 1,
attraction interactions cannot overcome bending rigidity, and we
expect the sheet to behave as in previous work>3>4, This di-
mensionless group is also convenient because it is a function of
a material properties, while )} can be tuned experimentally by
adjusting shear rate.

Plots varying K and y~' thus have a convenient physical in-
terpretation: moving along the first axis adjusts the material
property of bending rigidity to interaction strength, while mov-
ing along the second axis changes the experimental property of
shear force relative to interaction strength. The value of S can be
determined from the values of x, K, o and a.

3 Conformational properties

3.1 Identifying sheet conformations

The conformational properties of sheets are highly sensitive to
experimental conditions (), material properties (K), and initial
conditions (e.g. the initial orientation of the sheets relative to
the flow axis, ¢). We identify four different conformations that
sheets can exhibit: flat, tumbling, 1D folding, and 2D folding. An
example of each is shown in Figure 1. Videos of simulations for
each conformation along with their corresponding average signed
local mean curvature (see Section 3.3) are included in the ESIf.
We examine how the values of x, K, and ¢ lead to each of these
conformations in a future section. In this section, we show how
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each conformation can be characterized.

We identify these conformations by looking at the square root
of the eigenvalues of the gyration tensor, 4; (i = 1,2,3 with 4; >
Ay > 2A3), which correspond to the three characteristic lengths of
the conformation. We take averages of each A; over the last 250y¢
of the simulation every 0.257¢, denoted 2.

Flat sheets have almost no bends and therefore 1, and A, are
near their maximum value of 0.456L at all times, corresponding
to a flat hexagonal mesh. We categorize sheets as flat if 2, > 0.4L.
They are the only sheet conformation we observe which are not
necessarily continuously rotating about the vorticity axis.

Tumbling sheets are characterized by impermanent folds which
cause their 4; to fluctuate significantly throughout the simulation.
We categorize sheets as tumbling if, regardless of A;, the smallest
standard deviation in A; (over the last 200y) is greater than 7 x
1073L or the largest standard deviation in A; is greater than 3 x
1072L.

1D folded sheets are characterized by a series of parallel folds,
resulting in a 4; close to the maximum value, but a much smaller
A>. We categorize sheets as 1D folded when A; > 0.4L and 1, <
0.4L.

2D folded sheets are characterized by the appearance of non-
parallel folds, causing A; to deviate significantly from its maxi-
mum value. We categorize sheets as 2D folded when A; < 0.4L.
1D folded and 2D folded sheets are referred to together as folded
sheets. Folded sheets are distinct from tumbling sheets, which
also have folds, because their folds are persistent over time.

The boundaries between different sheet conformations were
chosen by looking at histograms of 4; and the standard deviation
in A;, included in the ESIf. There is a clear gap in the histogram
of A, at 0.4L, making A, > 0.4L a natural choice for character-
izing a sheet as flat. The transition between 1D and 2D folded
sheets appears continuous in that sheets can have both parallel
and non-parallel folds. The cutoff between these conformations
was therefore chosen by eye by finding a value of A; which seems
to correspond to the beginning of the appearance of non-parallel
folds. For tumbling sheets, the cutoffs were chosen again by eye
such that each distribution of standard deviations for tumbling
sheets appears normal-like.
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Fig. 4 Average signed local mean curvatures for sheets during the last 20077 with (a) ¢ =0° and (b) ¢ =45°. Signed local mean curvatures for sheets
at their initial flip with (c) ¢ =0° and (d) ¢ =45°. Diagonal lines running up and to the right correspond to sheets with constant S. Moving right or
down corresponds to increasing S by about a factor of 3. The arrow in the top right corner of each plot indicates the direction of maximally increasing

S. For reference, the sheet at K =1.0, y ' = 1.4 has § x 10° = 153.

3.2 Phase map of sheet conformations

We performed a parameter sweep across x, K, and ¢ and cat-
egorized each conformational state as flat, tumbling, 1D folded,
or 2D folded. We plot using y ! instead of y as increasing y~!
corresponds to increasing shear rate, as one might see in a rheo-
logical experiment. As this is a large, 3D phase space, we present
2 slices at ¢ = 0° and ¢ = 45°, shown in Figure 2. First looking
at the phase plot for ¢ = 0°, we see clear divisions between each
conformation. For large K (> 1), attractive interactions cannot
overcome bending rigidity, and sheets tend to be flat. At large
2~' (> 100) and low K (< 1), shear is able to break local attrac-
tive interactions, and the sheets tumble. At low y~! (<£100) and
low K (< 1), shear is unable to break local attractive interactions,
so folds are permanent and the sheets are 1D or 2D folded. Lower
values of y ! atlow K (< 1) correspond to less well-aligned folds,
leading to more 2D folded sheets.

At ¢ =45°, the features of the plot remain the same with one
notable exception. The tumbling region expands to occupy the
high x~! (> 100), high K (> 1) regime, similar to Figure 6 in
previous work>3, where the continuously tumbling regime was

larger for larger ¢. The specific sheets which tumble for K 2 1 are
unpredictable, but on average tumbling behavior is more com-
mon at larger ¢ and y~!. This makes sense, as larger ¢ mean
larger initial deformations from the flat conformation and larger
x~! at constant K mean stronger initial buckling due to a re-
duced value of S, the dimensionless ratio of bending rigidity to
shear strength. However, the tumbling behaviors in the sheets
in this work are notably different than in previous work>3 due
to the presence of self-interaction. For example, in Figure 3, the
sheet forms several, slowly sliding folds which continuously flip
in sequence. We term this "teacup" behavior. This behavior was
observed for many initial orientations near the tumbling/folded
boundary (1.4 x 10? < y ! < 1.4 x 10%). Teacup behavior is usu-
ally transient in the sense that sheets alternate between it and
more typical tumbling behavior over long time scales (several
hundred jr). It is classified as tumbling due to the existence of
non-persistent folds and is difficult to distinguish from typical
tumbling behavior using the values of A; and the standard devia-
tions of A;. A video of a simulation with this behavior is included
in the ESI.
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Fig. 5 Example of a 1D folded sheet that adopts a rolled-up conforma-
tion. x is the flow direction and y is the shear direction.

Within a given region (flat, tumbling, and folded), sheet be-
havior can be predicted reliably. Near the boundaries between
regions, sheet behavior may be highly sensitive to initial orienta-
tion.

3.3 Bending modes of 1D folded sheets
As in previous work®3, we calculate the signed local mean cur-
vature of the sheets and calculate the average over 101 equally
spaced snapshots during the last 2007z, giving an average signed
local mean curvature (ASLMC). We plot these for the ¢ = 0° and
¢ = 45° conditions in Figure 4. These plots correspond well to the
characterizations given in the previous section. Flat sheets have
no local mean curvature, and thus have an ASLMC of about 0
at all points. Tumbling sheets have significant but non-persistent
folds, and their ASLMC’s thus appear noisy. Folded sheets have
persistent folds, and thus are characterized by sharp bands of high
magnitude ASLMC. 1D folded sheets have folds which are aligned
along a single axis, while 2D folded sheets have non-parallel folds
which can branch off into more folds. Some sheets, especially for
¢ = 45° have characteristics of both.

1D folded sheets at the boundary with tumbling sheets (e.g.
2~ ' = 1.4 x 10?) typically have two close parallel folds and mod-
erate curvature throughout the rest of the sheet. These 1D folded
sheets take on a "rolled-up" conformation, as seen in Figure 5.
A video of a simulation of a rolled-up sheet is included in the
ESIf. Interaction is strong enough to cause an initial folding of
the sheet, but shear is strong enough to anneal all but the last
two folds. This results in rolled-up sheets being an even more
energetically favorable state due to the high degree of contact for
self-interactions and gentle folding throughout. 1D folded sheets
have a number of folds ranging from 2-folds in rolled up sheets,
to 6, evenly spaced folds. There appears to be no clear pattern to
the exact number of folds that will appear, although roughly the
number appears to increase with decreasing y~! unless the sheet
2D folds.

We can estimate the expected number of folds using a simple
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energetic argument balancing the bending and interaction ener-
gies of a 1D folded sheet, which is detailed in Appendix C. Doing
so, we obtain the following estimate for the optimal number of
folds, ”}ol 4> in a rectangular 1D folded sheet:

I2L/Wfold+]
* ~ ) _
Nfola & 17[)’+06K L, ®)

where a and f are fit parameters. o is a measure of the relative
importance of bending to interaction strength and f8 is a mea-
sure of the interaction energy of beads within a fold. We find
o =0.0618+0.0010 and 8 = 0.528 +0.003 (& one standard devi-
ation). wy,y is a correlation length characterizing the width of
a fold, which is an unknown function of the system parameters,
including perhaps the Foppl-von Kdrmdn number. We observe
that all folded sheets have wy,q ~ 6a, which corresponds to the
smallest fold a sheet can have. This means that folds under the
conditions in this work are controlled by the smallest length scale,
a.

For small ! (< 41), shear is not strong enough to break up
folds, and the sheet can obtain an energetically stable configu-
ration. In the small K limit for sheets with L = 394, Equation
8 approaches about 4.46, which is close to 4, the most common
number of folds observed. For sheets with L = 79a, Equation 8
approaches about 6.62. A series of simulations run with L = 79a
and ¢ = 0° in the 1D folded regime showed 6 folds at higher y !
(shear rates) and 8 folds at lower y~!.

For slightly higher y ~!' (= 141), shear is strong enough to form
a more energetically favorable rolled-up sheet, which is not mod-
elled by Equation 8. At even higher y~! (> 410), shear is strong
enough to continuously break new folds which form as the sheet
tumbles.

Because o =~ 0.05, the number of folds predicted by Equation 8
does not decrease significantly until K ~ 20. The sheets flatten-
ing at about K = 3.0, a full order of magnitude lower, is therefore
likely a kinetic phenomenon, which we explore in the next sec-
tion.

3.4 Creation of persistent folds in 1D folded sheets
To explain why sheets in shear adopt configurations with parallel
folds as opposed to other configurations (e.g. the "double folded"
configuration from Ref.#®), we return to previous work >3, which
calculated the buckling modes of sheets in shear as a function
of the ratio of bending rigidity to shear, S = k/anyL3, at ¢ = 0°
and at the maximal in-plane stress for a flipping sheet, 6 = 45°.
This analysis did not consider attractive interactions, which could
change the buckling behavior, however we believe it to still be
useful. Lines of constant S correspond to lines of slope 1 in plots
of K versus x . In our simulations, § x 10° ranges from 9.4 x 10~*
to 2.8 x 10*, which covers more than 10 of the first buckling tran-
sitions. Notably, the calculated buckling modes from previous
work®3 have alternating signs in curvature, just like what is ob-
served in the 1D folded sheets in this work.

Figure 4 shows the local mean curvature for sheets averaged
over the last 200y and during their initial flip (determined as
when the average normal vector of the triangles in the sheet is
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closest to 8 = 45°). As x~' decreases for low K, the number
of folds at the initial buckle decreases, as expected due to the
larger effective bending rigidity relative to shear strength (given
by S). In the 1D folded regime, sheets have folds which which are
sharper in the initial buckle than the buckles that appear in the
absence of interactions, showing that interaction is strong enough
to affect the initial buckling. In this regime, the number of folds
often decreases from the initial buckle to the final conformation,
showing annealing to a more energetically stable configuration.
As K increases, the magnitude of the curvature in the initial flip
decreases, again due to an increasing S, until the sheet eventually
appears flat. While the analysis done in previous work >3 was only
done for sheets with ¢ = 0°, the same trends are seen in sheets
with any value of ¢.

We propose that persistent folds in 1D folded sheets are formed
during the initial buckling of the sheet during the first flip fol-
lowed by annealing caused by shear towards a energetically sta-
ble state. If shear is too strong (! 2> 410), the folds formed
during buckling are not persistent, and the sheet tumbles or flat-
tens. At an intermediate value of shear (y ! ~ 140), folds form
during buckling but most are broken up by shear, resulting in a
rolled-up sheet. At lower values of shear (y~! < 41), shear an-
neals the sheets towards their energetically preferred number of
folds. If shear is too weak, it can only anneal partially (thus why
some 1D folded sheets have more than 4 folds). Annealing can
only decrease the number of folds. So, if the number of bends
in the initial buckle is less than the energetically ideal number
of folds, it is kinetically trapped with that number of folds. Be-
cause the buckling modes of sheets in shear have parallel folds,
the resulting conformation has parallel folds.

At low K, interactions are stronger than buckling, so buckling
will propagate into folds. For K > 1, interactions are not strong
enough to overcome bending, so the extent of buckling is de-
termined by the competition between bending rigidity and shear
(i.e. the value of S). This explains how sheets can transition from

flat to 1D folded and back to flat with increasing shear at K = 3.0.
At low shear, the sheets do not buckle strongly, and interactions
are insufficient to fold the sheet. As shear increases, S decreases,
and the sheets buckle more strongly. Only if the buckling is strong
enough can it initiate folding through interactions. Once shear
becomes too strong, however, interaction is not strong enough to
create persistent folds, so the sheet is flat. The critical value of
S x 10° above which sheets will not buckle if K ~ 3 is about 943
(which is indeed the lowest value of S in these simulations above
the first buckling transition determined in previous work®>3). The
critical value of y x 10° below which shear is too strong for sheets
to fold is approximately 710.

S=6xK(a/L)(c/L), so depending on the size of a given sheet,
the 1D folded region between two flat regions may be inacces-
sible. Specifically, given a critical $* and x*, we require S < S*,
x > x* and K ~ 1. As L increases, S decreases relative to yx,
and we expect the 1D folded region to increase in width. Sim-
ilarly, the region decreases in width with increasing o. There-
fore, this region increases in size as the size of the sheet in-
creases relative to interaction range. Because y* ~ S*, K ~ 1, and
(L/a) > 1, this region should exist if ¢ is not much larger than L
(f (o/L) < (1/K)(S*/6x*)(L/a)), that is, if sheets are not much
smaller than the range of their interactions. In such a system,
is no longer the relevant dimensionless parameter as each bead
would interact with every other bead in the sheet.

If both ¥x~! and K are small, small deviations from the align-
ment of the folds caused by finite-size, edge, and/or initial orien-
tation effects will cause the spontaneous formation of more folds,
and the sheet can 2D fold. This is supported by the 2D folded
sheets in Figure 4c, which are already in their 2D folded configu-
ration at the first flip.

It is important to consider how sheet behavior would change
with sheet shape. The equation for the optimal number of folds
was derived for a rectangular sheet but the overall arguments are
valid as long as the number of beads vertically along the folds
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does not change quickly across the width of the sheet (relative to
the width of folded regions). This, along with the equation match-
ing with the hexagonal sheet simulations in this work, suggest
that Equation 8 is applicable for a broad range of sheet shapes
with slowly changing widths.

Changing the sheet shape will affect the bending modes of the
sheet and therefore the critical values of S corresponding to dif-
ferent buckling modes. This might affect the shape of the right
edge of the folded/flat boundary due to the earlier discussion of
the importance of S. Additionally, as discussed earlier, sheets with
more than n;‘, 14 folds are likely kinetically trapped with a certain
number of folds due to shear being insufficient to break them.
Visually, many of the 1D folded sheets’ folds lie at the corner of
the hexagon, suggesting that this point serves as the kinetic bot-
tleneck for the breaking of folds. In this case, sharper corners
would likely restrict this process further, resulting in more folds
at higher shear rates. Indeed, videos of 1D folded sheets (see
the ESI}) show that the process of a 1D folded sheet losing folds
involve these folds "sliding" along the width of the sheet until it
hits the edge of the sheet, where the fold disappears. Simulations
with different sheet shapes (e.g. rectangular or circular) would
be valuable in illuminating the effects of changing widths on the
formation and breaking of 1D folds.

4 Rheological properties

4.1 Sheet viscosity calculations
The stress of a dilute suspension of force-free rigid particles is

Y= —p(I) +2nE* +n(E), ()]

where p is the pressure, E* is the rate-of-strain tensor, n is the
number density of particles, and £ is the stresslet (the first mo-
ment of the stress on a particle) ®8. As in previous work>*, we
calculate an approximate upper bound on the stresslet using the
minimum-bounding ellipsoid of the sheet, its Jeffrey orbits>>, and
the stress for an ellipsoidal particle as found in Kim and Karilla®®.
The resulting average off-diagonal (flow-gradient) contribution to
the stress over the last 2007, which is expected to grow linearly
with the viscosity of a dilute suspension of these sheets, is shown
in Figure 6.

The sheet viscosity shows 2 different behaviors based on K. For
K > 10.0, sheets have a small sheet viscosity at low ! (i.e. low
shear rates). Flat sheets which rotated about the vorticity axis
contributed a higher stress than flat sheets in the flow-vorticity
plane, with £,,/(6xn7L3?) > 1.5. These sheets were ones initially
oriented with their normal close to the voriticty axis (¢ = 85° or
90°). Finally, once shear is strong enough to induce tumbling,
shear-thickening behavior begins.

For K < 1.0, there is steady shear-thinning followed by shear-
thickening behavior which appears near the same critical y ! as
for the high K behavior. We discuss the origin of these behaviors
in the next section.

4.2 Explanation of non-monotonic rheological properties
The nature of this shear-thinning into shear-thickening behavior
is different than that with thermal energy but no interactions,



which resulted from higher shear rates more strongly suppressing
thermal fluctuations from a flat conformation aligned with the
shear-vorticity plane and from the "u-turn" radius of a flipping
sheet>4. In our current work, sheets in the shear-thinning regime
are 1D or 2D folded.

We calculate three summary statistics, the radius of gyration,
Rg/L, the relative shape anisotropy, {2, and the orientation of the
largest axis of the minimum bounding ellipsoid of the sheet dot-
ted with the vorticity axis, |v; - 2|, which we term the "alignment"
of the sheet. The relative shape anisotropy varies from 0 to I,
with 0 occurring only if all beads are on the same line, and 1 oc-
curs only if the beads have spherical symmetry. The alignment
also varies from 0 to 1, with 0 occurring if the largest axis of the
sheet is in the shear-flow plane, and 1 occurring if the largest axis
of the sheet in along the vorticity axis. Scatter plots of the sheet
viscosity versus each of these quantities are included in the ESI¥,
however we note several notable features of these plots in the
following discussion.

In Figure 7, we plot these three summary statistics as a function
of x~! and K to explain the observed rheological behavior.

4.2.1 Folded: low y ' <1.4x10%, low K < 3.0 behavior

In this regime, sheets are 1D or 2D folded. Below y ' ~ 1.4 x 10!,
Rg/L and §? increase with shear rate. This corresponds to fewer
sheets adopting the 2D folded conformation at higher shear rates.
However, at even higher y~!, these values plateau despite the
existence of shear-thinning. Peculiarly, there appears to be no
strong correlation between radius of gyration and sheet viscosity
for folded sheets. Instead, the 1D folded sheets form two distinct
clusters, one with a higher sheet viscosity (~ 0.35) and one with
a lower sheet viscosity (~ 0.2).

This can be explained by looking at the alignment of the sheets,
which increases with shear rate. Note that the decrease in align-
ment at x ! ~ 1.4 x 10? is due to the rare appearance of tumbling
sheets at this value of y~!. For prolate spheroids (ellipsoids with
one large axis and two small axes) such as the minimum bound-
ing ellipsoid of 1D folded sheets, large alignment ("log-rolling")
behavior is favored, which is why large alignments result in lower
sheet viscosities. Conceptually, this is because the distance the
sheet "sticks out" into the shear axis is lower. These two types of
motions (high and low alignment) were observed in the past as
the long-time behavior for ellipsoidal particles in shear”°.

Indeed, for 1D folded sheets, most sheets have an average
alignment close to either 1 or 0, indicating that they the reach one
of these terminal behaviors. The mechanism for these sheets devi-
ating from their Jeffrey orbits to reach this high or low alignment
state is possibly the deformability of the sheets, which has been
shown to influence the orbit sheets take in this manner”%-72, 1D
folded sheets with high average alignments have lower stresses
than 1D folded sheets with low average alignments, explaining
the two clusters observed in a scatter of sheet viscosity versus the
Rg/L. The behavior of individual sheets is erratic, necessitating
an average over initial condition. Thus, shear-thinning is due to
a statistical average over many initial conditions. At higher shear
rates, sheets on average adopt more log-rolling behavior, caus-
ing shear-thinning. This makes sense, as stronger shears cause

greater perturbations in sheets, and thus allow for them to be
more likely to be able to access the more favorable, lower stress,
rotational behavior.

4.2.2 Tumbling: high y ' > 1.4 x 102, low K < 3.0 behavior

Once shear increases enough to cross the tumbling/folded bound-
ary, R /L decreases slightly before recovering to close to the 1D
folded value. ¢? and the average alignment, however, both de-
crease drastically. While the trend upon increasing y ! further
is noisy and depends on the specific value of K, {2 continuously
decreases with shear rate. Thus, shear thickening is caused by
sheets with lower values of {2 sticking out further into the shear
axis at larger shear rates. This makes sense, as lower values of {2
correspond to more spherically symmetric sheets, where the ef-
fect of increasing alignment on sheet viscosity is lower. Thus, the
sheet viscosity is higher for the same values of R,/L and align-
ment. Note that an average alignment value of approximately
0.52 corresponds to random orientation, which is around where
the alignments hover past the tumbling transition, suggesting that
there is less preference for a particular rotational behavior. This
is explained by the small values of 2.

Sheets exhibiting teacup behavior have similar sheet viscosi-
ties to folded sheets. This behavior is seen as a low sheet viscos-
ity cluster of low alignment tumbling sheets at a range of R, /L.
This behavior decreases in frequency at higher shear rates as it is
a self-interaction-dependent behavior, which could contribute to
the shear-thickening behavior. However, because this behavior is
relatively rare, we expect that its effect is small. A detailed study
of teacup behavior, its frequency as a function of y ~!' and K, and
its effects on the sheet viscosity would be enlightening.

Another interesting aspect of tumbling sheets is their tumbling
time, which is roughly the time for a sheet to make half a revolu-
tion about the vorticity axis. Scaling arguments and confirmation
with simulations for the tumbling time of 2D polymers has been
conducted in previous work>* for flipping sheets. These scaling
arguments are indeed only valid for relatively inflexible sheets.
Because tumbling sheets are constantly deforming, it is difficult
to both develop scaling arguments for the tumbling time as well
as calculate it in simulations. This is further complicated by the
existence of self-interactions in these sheets, which can change
the effective macroscopic bending rigidity of the sheets and affect
their conformational behaviors. However, we believe that a de-
tailed study on tumbling times for these sheets would be valuable
and merits further investigation. Flipping times for folded sheets
could likely be predicted using the average rotational velocity of
its corresponding Jeffrey orbit. However, because the sheets are
deformable, they are likely to adopt different trajectories accord-
ing to an effective orbit constant and aspect ratio”3. A study of
the flipping dynamics of folded sheets was not conducted in this
work, but would also be valuable in the future.

4.2.3 Flat: high K > 3.0 behavior

For large enough values of K, bending rigidity overcomes interac-
tion strength, and sheets are flat. The deviation from zero sheet
viscosity, which would be the case for an infinitely thin sheet in
the flow-vorticity plane, comes from a fraction of the flat sheets
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which lie in the flow-shear plane and rotate like a discus about the
vorticity axis. Because these sheets stick out into the shear axis
by the maximum amount possible for inextensible sheets, these
sheets produce the highest sheet viscosities of any other confor-
mational or rotational behavior. As shear increases, this behavior
becomes less likely, again resulting in overall shear-thinning be-
havior. In Figure 6, the sheet viscosity curves for low y !
K > 10.0 are flat. To observe shear-thinning behavior here, we
suspect that more initial conditions need to be sampled. Past
the tumbling transition, some sheets begin to tumble, resulting
in shear-thickening as before.

The value of K ~ 3.0 appears to be right at the boundary be-
tween low K and high K behaviors and exhibits a mix of both be-
haviors, resulting in complex trends in R, /L, {2, and alignment.

In Figure 6, we scale the sheet viscosity to L3. However, given
two additional length scales, @ and o, this is not necessarily the
proper scale. Furthermore, the proper scale for the sheet viscosity
might be different for flat vs. tumbling vs. folded sheets. We have
not confirmed any such scalings in this work, but we believe it
warrants investigation and discuss predicted scalings in Appendix
D.

Note that thermal energy would cause deviations from this
which would decrease with shear rate, resulting in the shear-
thinning behavior seen in previous work>4.

and

5 Conclusions

In this work, we examined the role of short-ranged attractive in-
teractions for semi-flexible, athermal sheets in shear flow. We
found a rich set of conformations which depend on two dimen-
sionless groups: the material properties of the sheet (K) and
experimental conditions (x). We characterized these sheets as
flat, tumbling, 1D folded, or 2D folded based on the eigenval-
ues of the gyration tensor. We found that usually sheets folded
when K < 0(1) and ¥ ' < €(10?), tumbled when K < &(1) and
x ! > 0(10%), and were flat otherwise.

We used the average signed local mean curvature of the sheets
to show the nature of each type of sheet. Specifically, we identi-
fied parallel folds in 1D folded sheets and non-parallel folds in 2D
folded sheets. We used a simple energetic argument to estimate
the number of folds in a 1D folded sheet and showed that our
equation matched well with the number of folds for these sheets
in the low K limit. We also showed the relevance of the bend-
ing rigidity to shear (S) in inducing folding when K ~ 3. From
this, we proposed a mechanism of an initial buckling followed
by shear-induced annealing towards the energetically favorable
number of folds. The strength of shear determines the degree of
annealing which is possible. We also discussed the expected effect
of changing L on the rheological properties of the sheet based on
the predicted number of folds in a 1D folded sheet.

Finally, we calculated an approximate upper-bound on the
stresslet, which is expected to grow linearly with the viscosity
of a dilute suspensions of these sheets. We found shear-thinning
followed by shear-thickening behavior with increasing shear rate,
with different behavior depending on whether K is greater than or
less than 1. This shear-thinning is present in the absence of sheet-
sheet interactions and thermal fluctuations. Instead, it is a result
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of the average rotational behavior of folded sheets. The changes
in the conformation of a sheet with changing initial conditions
follow trends, but are chaotic in the sense that small changes in
the initial conformation can cause unpredicted changes in the fi-
nal conformation near the boundaries between different confor-
mations, similar to previous work>3. We have yet to study the
effect of changes in 0, the initial orientation of the sheet about
the vorticity axis.

We note here that thermal fluctuations cause out-of-plane stiff-
ening for sheets20-22:58.74 which can change their bending rigid-
ity quite significantly. Translating this work from the athermal
limit to real systems, therefore, requires careful consideration of
the effective bending rigidity of the system.

This type of shear-thinning into shear-thickening behavior is
often attributed to the buildup and breakdown of agglomerates
or other multi-sheet structures. However, we show that even in
the dilute limit, this behavior can still emerge. We will use this
model in the future to study the conformations of stacks of sheets
subjected to shear.
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Appendix A: Neglecting lubrication forces

As parallel sections of sheet approach each other, a lubrication
force is generated. Consider two parallel sections of sheet of area,
A, approaching due to shear and initially separated by a distance,
20. The strongest lubrication forces will be generated when the
characteristic length of these sheet sections is L. The lubrication
force goes as the lubrication pressure, py,;, times the area of the
sheet sections:

Flup ~ pruvA. (10)

The scaling for py,;, can be obtained from the lubrication equa-
tion:

puy __0%u
ox 1 Er
The x direction goes laterally along the sheets and the z direction
goes perpendicularly from the sheets. Therefore, dx ~ L and dz ~
o. u is the lateral velocity. The maximum relative velocity of
the two sheet sections due to shear is 6. The lateral velocity, to
satisfy the continuity equation, thus goes as u ~ Ly. Together,

(1mn

(12)

The energetic benefit of bringing a bead from non-interacting



to interacting with a neighboring sheet section goes as £62. The
distance it must travel to go from non-interacting to interacting
goes as o. In bringing two parallel sheet sections together, the
number of beads which become interacting with the neighboring
sheet section goes as A/a®>. Therefore, the force of interaction
goes as
. ,1A
Fp~ &0 P (13)

Taking the ratio between the lubrication and interaction forces
gives their relative strength:

Fup n 7L2a2

. 1
Fine go? (14

Our simulations, which neglect lubrication forces, are valid
when this ratio is much less than unity. For example, graphene
has inter-atom separation, a ~ & <1 A), and athermal Lennard

Jones interaction strength, & ~ & (0.1eVA) with interaction

range ¢ ~ ¢(1 nm) %7, We use the above approximation for the lu-
brication force even though the continuum approximation breaks
down at these length scales. This means that even at high shear
rates, Yy~ O (103 5*1), lubrication forces are small for graphene
sheets in water as long as the sheet size, L < 10 um. This is
reasonable for the ¢'(um) flakes produced by exfoliation tech-
niques7>~77 and becomes better for smaller shear rates or larger
interaction ranges. Furthermore, the repulsive nature of the
Lennard-Jones interaction at small distances restricts sheet seg-
ments from getting too close, similarly to lubrication forces. For
purely attractive potentials, lubrication forces would fill a similar
role in restricting the distance between neighboring sheet seg-
ments. Thus, we believe our decision to neglect lubrication forces
is valid for real systems.

Appendix B: Derivation of y

Consider 2 parallel sheets of characteristic size L interacting via
a short-ranged potential of range ¢ and separated by their equi-
librium distance, o. If the sheets are sheared such that the flow-
vorticity plane cuts between them, the shear force trying to sepa-
rate the sheets can be approximated as

Fhear = 6nnaGYNbeadsv (15)

where o7 is the relative velocity induced on the sheets due to
shear (67macy is the Stokes’ drag on a sphere) and Nyeugs ~
(L/a)? is the number of beads in each sheet.

We now consider the force required to slide the sheets and
break the short-ranged interactions between them. Assuming the
sheet is large (L > a) and the separation is large (o > a), the
energy of the beads in the bulk of the sheet does not change as
the sheets slide relative to each other — only beads which are at
the leading and trailing edges of the slide matter. The number of
beads which separate as a result of a slide of distance ¢ can be
approximated as

Lo

ANgiige ~ 7 (16)

The change in energy for each of these beads is approximately

AEpeq ~ E0°. a7
Thus, the force required to separate the beads is approximately
ANbeadsAEbead ~ 2 Lo 1
Fylide ~ — 5 a5 (18)
Taking the ratio of these two forces gives the dimensionless

parameter we desire to an order 1 geometry-, orientation-, and
packing-specific constant:

Fylie o’ L
= ~—>—|—]. 1
x E%hear 67”7 '}./LZG ( a ) ( 9)

Appendix C: Derivation and confirmation of n},,
scaling

We wish to obtain an approximation for the optimal number of
folds in a 1D folded sheet. We make the following simplifying as-
sumptions. First, the folds are parallel and equally spaced across
the length of the sheet, with regions of flat sheet between them.
Second, only neighboring parallel sections of sheet will interact
with each other (i.e. the interaction is short-ranged). Third, the
sheet is rectangular with characteristic length 2L and characteris-
tic width 2W. Fourth, that there is no stretching or compression of
the sheet. We define .4 to be the number of folds in the sheet,
Wotq to be the width of a fold, and wy;, to be the width of a flat
region. With these assumptions, we obtain the following balance
for the length of the sheet:

2L = ngoiawold + (Mfora + D)Wiar- (20)

The energy of bending roughly goes as the number of triangles
which are within folds times the bending rigidity,

Ww 1d
Ebending ~ anold( 2;20 ) @2n

The energy of interaction goes as

Ww
~ 2 flat
Einteraction ~ €0 Nfold < 22

Ww Id
+p 2;; ) (22)

where the first term sums interactions for beads between par-
allel regions and the second term sums interactions for beads
within folds. The parameter §’ is a fold geometry-specific pa-
rameter added as a measure of the strength of interactions for
beads within folds. We wish to minimize the quantity

/
E=oa Ebending — Linteraction (23)

with respect to ny, to obtain the optimal number of folds, NSold-
The term @' is a fold geometry-specific parameter added as a
measure of the relative strength of bending rigidity to interaction
strength. Doing so, we obtain

[2L/wW o1 +1
* ~
Mold = 1—B+ak -1, 24)

where a = o//2 and B = B’/2 have been redefined for conve-
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nience. We note that the the characteristic width of the sheet, 2W,
disappears from the final equation as all interactions are linear
in this term. For non-rectangular sheets which are wide enough
such that edge effects are irrelevant (i.e. most beads are interior
beads), the changing width affects the energy because folds and
flat regions can be in locations with different widths. This effect
is small for slowly-changing widths and thin folds and/or thin flat
regions.

We confirm this scaling by generating rectangular sheets (such
that each interior bead of these sheets has 6 neighbors) and find-
ing their optimal number of folds. All neighboring beads in these
sheets, even the ones in folds, are a constant distance, 2a, apart,
and neighboring parallel regions of sheet are a constant distance,
o, apart. We choose w,y = 6a and ¢ = 4+/6a/3 for consistency
with our simulations. A folded region consists of 1 row of beads
within a flat region, 1 row at the "crease" of the fold, and 1 row
within the neighboring flat region. We find the optimal number of
folds for a given K and L/w s,/ with constant W /w ¢,;4 = 50.0. We
then fit these data to Equation 24 using least-squares regression,
and find a = 0.0618 £0.0010 and B = 0.528 +-0.003. The fit can
be seen in Figure 8. This equation appears to fit the data quite
well, with R? = 0.989. The data also collapse fairly well onto a
master curve, with the largest deviation coming from the small-
est sheet, where edge effects are the most relevant. This suggests
that n

fold ™ VL/W 014, as expected.

Appendix D: Discussion of L dependence of rheolog-
ical properties

Because wg,q ~ a, where a is the equivalent of a molecular or
atomistic length scale in a 2D sheet, the number of folds is ex-
pected to increase for larger sheets, with n},, ~ (L/a)'/?, as de-
rived in Appendix C. For a 1D folded sheet, its largest characteris-
tic size scales as L because this dimension is parallel to the folds.
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Another characteristic size is the width of each folds times the
number of folds: o7 gq ~ o(L/a)"/2. The last characteristic size
is the width of each flat region: wyyy ~ L/nsoiq ~ a(L/a)'/?. The
sheet viscosity will grow roughly as the cross-sectional area of the
sheet in the shear-vorticity plane times the length of the sheet
along the shear axis. If the sheet is log-rolling, for example, its
cross-sectional area in the shear-vorticity plane goes as L3/ and
its length along the shear axis goes as L!/2. The sheet viscosity
would therefore go as L2. Orientations of sheets with their largest
dimension rotating about the vorticity plane have sheet viscosities
which go as L%/2. Rolled-up sheets occupy a roughly circular area
perpendicular to their largest axis which goes as Lo, so its other
characteristic sizes go as /Lo ~ L'/2, so its sheet viscosity will
have the same scaling as sheets with many folds. Assuming each
characteristic size of a tumbling sheet scales with L, the stress
scales as L?, which is stronger than in the 1D folded regime.

If we were to treat a as simply the smallest resolvable length
scale in the system, we would expect wy,;; to grow proportion-
ally to L. In this case, n;?ol 4 is not a function of L, and the three
characteristic sizes of the sheet grow as, from largest to smallest,
L, L, and o. In the limit of L > o, the sheet will preferentially
align itself with the flow-vorticity plane, and behave effectively
as a flat sheet with a small width. The sheet viscosity, assuming
the largest axis is aligned with the vorticity axis, would thus grow
as Lo?, which is weaker than when a is the atomistic or molecu-
lar length scale in the system. This highlights the importance of
treating a as an explicit length scale in these systems.

1

increases, and sheets are pushed toward
8

As L increases, X~
the tumbling regime. Sheet suspensions are often poly-disperse’
and the total contribution to the viscosity in a dilute suspension is
the sum of the individual sheet viscosities. So, the total contribu-
tion to the viscosity is a weighted sum of the sheet viscosity from
each particle size’s sheet viscosity, each of which is non-monotonic



with shear rate.

Appendix E: Movies

Movies of sheet trajectories can be found in the ESIfand include
trajectories for flat, tumbling, 1D folded, and 2D folded sheets.
They also include trajectories for a sheet exhibiting teacup behav-
ior (tumbling) and a rolled-up (1D folded) sheet. All trajecto-
ries are accompanied by movies of the corresponding signed local
mean curvatures of the sheets. Sheet trajectories were rendered
in Ovito©%°.
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