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ABSTRACT

Graph analytics has become a major workload in recent years. The

underlying core algorithms tend to be irregular and data depen-

dent, making them challenging to parallelize. Yet, these algorithms

can be implemented and parallelized in many ways for CPUs and

even more ways for GPUs. We took 6 key graph algorithms and

created hundreds of CUDA, OpenMP, and parallel C++ versions of

each of them, most of which have never been described or stud-

ied. To determine which parallelization and implementation styles

work well and under what circumstances, we evaluated the result-

ing 1106 programs on 2 GPUs and 2 CPUs using 5 input graphs.

Our results show which styles and combinations perform well and

which ones should be avoided. We found that choosing the wrong

implementation style can yield over a 10× slowdown on average.

The worst combinations of styles can cost 6 orders of magnitude in

performance.
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1 INTRODUCTION

With the rise of social networks, search engines, recommender

systems, GPS navigators, and data science, graph algorithms for

computing communities, shortest paths, frequent motifs, centrality,

and so on have become an important workload. However, many of

these algorithms exhibit irregular behavior, meaning the resulting

control-�ow and memory-access patterns are data dependent [11].

As a consequence, their behavior cannot be statically predicted and

may change throughout the computation. This makes optimizing

and especially parallelizing irregular codes di�cult as the amount

of parallelism depends on the input and can change dynamically.

Despite these challenges, there are numerous ways to parallelize

irregular programs. In fact, the complexities due to their irregular

nature create opportunities for dozens of implementation styles.

In this paper, we study the hundreds of resulting combinations

between parallelization and implementation styles and evaluate

how well they perform on various devices and inputs.

An example of di�erent parallelization styles is using thread,

warp, or block granularity in GPU codes [48]. Each granularity has

bene�ts and drawbacks. Thread-based parallelization is typically

the easiest to implement butmay not performwell in the presence of

load imbalance. Switching to warps (a group of 32 threads) requires

more complex synchronization but enables the use of fast warp-

level primitives. Using blocks (a group of up to 1024 threads) further

complicates synchronization but can better exploit the fast “shared

memory”, a software-managed L1 data cache.

An example of di�erent implementation styles is push versus

pull, which is common in both CPU and GPU codes [6]. When

updating the values stored in the vertices of a graph, a push-style

implementation will use the value of a vertex E to compute a new

value with which to update a neighboring vertex. In contrast, a pull-

style implementation will use the value of a neighbor to compute a

new value with which to update vertex E .

We di�erentiate code optimizations from parallelization/imple-

mentation styles as follows. Parallelization and implementation

styles are broadly applicable to many graph algorithms. In contrast,

code optimizations tend to be speci�c to individual programs or a

particular implementation of an algorithm. Due to this di�erence,
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programmers are more likely to be able to apply a given paralleliza-

tion or implementation style when writing a new graph algorithm

than they are to be able to apply a given code optimization.

Most of the parallelization and implementation styles we study

(cf. Section 2) are orthogonal and can be combined. This yields a

large number of unique implementations for a given graph algo-

rithm. In this manner, we have written 100s of versions of 6 key

irregular graph algorithms for both CPUs and GPUs. The resulting

source codes are available in the Indigo2 benchmark suite [31, 32].

Several widely-used benchmark suites with parallel implemen-

tations of irregular graph algorithms already exist, including Lon-

estar [25] with 14 parallel implementations of 11 graph algorithms

and Gardenia [45], an extended version of GAP [7], with 126 paral-

lel implementations of 14 graph algorithms. These suites provide

a range of interesting algorithms and inputs to study. However,

none of them are designed to provide a large variety of each algo-

rithm, nor do they include enough variations to perform an in-depth

evaluation of parallelization and implementation styles.

Our Indigo2 suite �lls this gap. We estimate that well over 90%

of the code versions it includes have never been studied before.

Our performance analysis of these codes reveals that parallelization

and implementation styles are an important factor to be taken into

account when writing parallel graph codes. This paper makes the

following main contributions.

• We describe 13 largely orthogonal parallelization and imple-

mentation styles for CPUs and GPUs.

• We combine these styles in hundreds of meaningful ways

and apply them to 6 graph analytics problems.

• We evaluate the over 1000 resulting codes on 2 GPUs, 2 CPUs,

and 5 input graphs from di�erent domains.

• We provide guidelines for programmers on which styles and

combinations to use and under what conditions.

The rest of this paper is organized as follows. Section 2 describes

the parallelization and implementation styles we consider. Sec-

tion 3 summarises related work. Section 4 presents the experimental

methodology, including the codes, inputs, and systems used for the

measurements. Sections 5 evaluates and discusses the performance

of the various parallelization and implementation styles. Section 6

summarizes our �ndings and draws conclusions.

2 PARALLELIZATION AND
IMPLEMENTATION STYLES

The following subsections describe the styles we investigated. We

studied many parallel graph codes and the related literature to

extract these styles. Hence, we believe we captured many of the

frequently used styles, but more styles almost certainly exist.

We illustrate each style on the example of the Bellman-Ford

single-source-shortest-path (SSSP) algorithm [12]. Given an undi-

rected weighted graph with no negative cycles and a source ver-

tex, the algorithm computes the shortest distance (i.e., the sum

of the edge weights) from the source to every vertex. It starts by

setting the distance of the source vertex to 0 and all other dis-

tances to∞. For each 4364 (D, E), a new distance is calculated (i.e.,

38BC0=24 [D] +F486ℎC (D, E)) in each iteration. The distance of E is

updated if the new distance is shorter. These edge relaxation opera-

tions repeat until the algorithm converges.

We wrote our graph codes using three parallel programming

models: CUDA, OpenMP, and C++ threads. CUDA programs op-

erate at multiple levels of parallelism. 32 contiguous threads form

a warp and execute the same instruction in the same cycle (or are

disabled). Sets of up to 32 warps (up to 1024 threads) form a block,

and the blocks are grouped into a grid. CUDA provides built-in

variables for the thread and block indices as well as the block and

grid dimensions. These values are often combined by computing

CℎA403�3G .G + 1;>2:�3G .G ∗ 1;>2:�8<.G to form a global index for

assigning work to each thread, which we call “gidx” in our codes.

OpenMP is based on ?A06<0 compiler directives. Each such

directive consists of a name followed by optional clauses. For exam-

ple, a clause can specify the scheduling to be used or a reduction

operation. In Listing 12b below, it selects dynamic scheduling.

C++11 supports multithreading in the standard library. It in-

cludes built-in classes and functions for threading, atomics, mutual

exclusion, and more. For instance, std::this_thread::get_id() returns

the unique thread ID. It enables di�erent scheduling policies (e.g.,

blocked and cyclic) to be implemented.

2.1 Vertex-based vs. edge-based

Since graphs consist of vertices and edges, we can iterate across

either the vertices or the edges [47]. Listing 1a shows vertex-based

code where every thread processes a di�erent vertex E and iterates

over all neighbors D. Listing 1b shows edge-based code that assigns

a di�erent edge 4 = (E,D) to each thread.

The algorithm to be implemented and the graph representation

(e.g., CSR format [21]) typically determine which style is preferable.

For instance, if the graph is represented by a set of adjacency lists,

it is more natural to employ the vertex-based style. To streamline

the discussion, we use this style in the following subsections.

(a) Vertex-based

v = g idx ;

i f ( v < nodes ) {

beg = nbr_ idx [ v ] ;

end = nbr_ idx [ v + 1 ] ;

f o r ( i = beg ; i < end ; i ++) {

u = n b r _ l i s t [ i ] ;

. . .

} }

(b) Edge-based

e = g idx ;

i f ( e < edges ) {

v = s r c _ l i s t [ e ] ;

u = d s t _ l i s t [ e ] ;

. . .

}

Listing 1: Vertex- and edge-based computations

2.2 Topology-driven vs. data-driven

This style describes two ways in which a program can process the

data-structure elements that need processing [41]. If all elements

are processed, the computation is topology-driven. In contrast, a

data-driven computation would only process the elements that

likely need to be updated, which are usually stored in a worklist.

For example, topology-driven SSSP applies the relaxation function

to all vertices of the graph in each iteration as shown in Listing 2a.

Data-driven SSSP only applies the relaxation function to the vertices

in the worklist as outlined in Listing 2b. Those vertices were placed

in the worklist because their distance changed in the prior iteration.

The topology-driven style tends to yield more parallelism and is

easier to implement. The data-driven style is more work e�cient

and, therefore, often results in better performance, especially for

iterative algorithms that operate on high-diameter graphs.
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(a) Topology-driven

v = g idx ;

i f ( v < nodes ) {

. . .

}

(b) Data-driven

i d x = g idx ;

i f ( i d x < w o r k l i s t _ s i z e ) {

v = wo r k l i s t [ i dx ]

. . .

}

Listing 2: Topology- and data-driven computations

2.3 Duplicates in worklist vs. no duplicates in
worklist

This style, which only applies to data-driven implementations, speci-

�es whether or not duplicate items are allowed on the worklist [37].

In programs that allow duplicates, as shown in Listing 3a, each

thread can push a vertex onto the worklist regardless of whether

the worklist already contains that vertex. In programs that do not

allow duplicates, as shown in Listing 3b, the threads may only add

a vertex to the worklist if it is not already on the worklist.

Disallowing duplicates eliminates redundant work in the next

iteration. Moreover, it caps the size of the worklist. However, it

incurs more synchronization overhead and requires extra state

tracking to determine whether a vertex is already on the worklist.

(a) Duplicates in worklist

i d x = atomicAdd (& wo r k l i s t _ s i z e , 1 ) ;

w o r k l i s t [ i dx ] = v ;

(b) No duplicates in worklist

i f ( atomicMax (& s t a t [ v ] , i t r ) != i t r ) {

i d x = atomicAdd (& wo r k l i s t _ s i z e , 1 ) ;

w o r k l i s t [ i dx ] = v ;

}

Listing 3: Duplicates and no duplicates in worklist

2.4 Push vs. pull

In programs that update the vertex data, the data �ow can be either

push (from a vertex to its neighbors) or pull (from the neighbors to

the vertex) [8]. For example, in push-style SSSP, shown in Listing 4a,

a thread reads the vertex distance, adds the edgeweight, and updates

the neighbor if the new distance is shorter. In pull-style SSSP, shown

in Listing 4b, the thread reads the neighbor’s distance, adds the

edge weight, and updates the vertex distance if it is shorter.

Using the push style, di�erent threads may update the same

neighboring vertex. In contrast, the pull style guarantees that there

is only a single writer per vertex. Moreover, it allows the update to

be factored out of the loop (not done in Listing 4b), thus reducing

(atomic) memory accesses. Having said that, push is sometimes a

more natural �t for the underlying algorithm and preferred in com-

bination with a data-driven approach because only the neighbors

that were actually updated need to be placed on the worklist.

(a) Push

for ( i = beg ; i < end ; i ++) {

u = n b r _ l i s t [ i ] ;

new_d i s t = d i s t [ v ] + e_weight [ i ] ;

atomicMin (& d i s t [ u ] , new_d i s t ) ;

}

(b) Pull

for ( i = beg ; i < end ; i ++) {

u = n b r _ l i s t [ i ] ;

new_d i s t = d i s t [ u ] + e_weight [ i ] ;

atomicMin (& d i s t [ v ] , new_d i s t ) ;

}

Listing 4: Push and pull data �ow

2.5 Read-write vs. read-modify-write

Many graph algorithms conditionally update vertex data, that is, a

thread reads the current value, performs a computation with it, and

writes the new value if it meets a certain condition. For example, in

SSSP, the vertex distance is updated if the new distance is shorter.

Since other threads may be updating the same distance value in

parallel, simply reading and then independently writing, as is done

in the read-write style outlined in Listing 5a, only works in some

situations. In particular, the updates must be monotonic and the

algorithm must be resilient to temporary priority inversions [35].

The read-modify-write style shown in Listing 5b is more general

as it does not su�er from this problem, but it requires an atomic

read-modify-write operation, which may be slower and hamper

parallelism. Note that, throughout this paper, we assume the shared

data values (e.g., the distances) to be scalars and assume load and

store instructions to atomically read and write these values [10].

(a) Read-write

o l d _ d i s t = atomicRead (& d i s t [ v ] ) ;

i f ( new_d i s t < o l d _ d i s t )

a tomicWr i t e (& d i s t [ v ] , new_d i s t ) ;

(b) Read-modify-write

atomicMin (& d i s t [ v ] , new_d i s t ) ;

Listing 5: Read and write operations

2.6 Non-deterministic vs. deterministic

The unpredictability of thread timing can cause (internal) non-

determinism in some parallel codes [9]. For example, in the SSSP

code shown in Listing 6a, one threadwill read38BC [E] whilemultiple

other threads may write that same memory location. Depending

on when the read takes place relative to the writes, it will load

a di�erent value, resulting in the computation of a di�erent new

distance with which the neighbors will be updated. This is not a

problem in SSSP as any non-�nal distance value will be overwritten

in a later iteration. Hence, the ultimate result of the computation

is deterministic, but it is unpredictable after how many iterations

the code will converge. Note that we only study programs in this

paper where the �nal result is deterministic.

Using two arrays, one that is only read (38BC1[]) and another that

is updated (38BC2[]), as shown in Listing 6b, makes the code inter-

nally deterministic. However, in this approach, the computation can

no longer take advantage of results generated in the same iteration,

which may slow down the execution. On the upside, the determin-

istic code will always require the same number of iterations for a

given input, which can simplify debugging [4].

(a) Non-deterministic

new_d i s t = d i s t [ v ] + edge_weight ;

atomicMin (& d i s t [ u ] , new_d i s t ) ;

(b) Deterministic

new_d i s t = d i s t 1 [ v ] + edge_weight ;

atomicMin (& d i s t 2 [ u ] , new_d i s t ) ;

Listing 6: Non-deterministic and deterministic updates

2.7 Persistent vs. non-persistent

This variation only applies to GPU codes. The persistent style

uses as many threads as the GPU can concurrently schedule on its

SMs [23]. Hence, a thread may have to process multiple vertices.

The non-persistent style launches at least as many threads as the

input has vertices and assigns no more than one vertex to each

thread. For graphs where the number of vertices exceeds the num-

ber of threads that can concurrently run on the SMs, the GPU will

automatically schedule batches of threads until all threads have exe-

cuted. The persistent style is a little more complex to implement but

may improve performance in cases where common subexpressions

can be precomputed or common data preloaded and then reused.
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(a) Persistent

t h r e a d s = blockDim . x ∗ gridDim . x ;

for ( v = g idx ; v < nodes ; v += t h r e a d s )

. . .

(b) Non-persistent

v = g idx ;

i f ( v < nodes )

. . .

Listing 7: Persistent and non-persistent threads

2.8 Thread vs. warp vs. block

This variation only applies to GPU codes. It refers to the granularity

at which the program processes the vertices. Three frequently used

granularities in CUDA programs are threads, warps, and blocks.

For example, in thread-based SSSP, each thread is responsible for

processing all the neighbors of a vertex as shown in Listing 8a.

In warp-based SSSP, the,( threads making up a warp together

process a single vertex by simultaneously operating on di�erent

neighbors of that vertex as shown in Listing 8b. Block-based SSSP,

as outlined in Listing 8c, works similarly except the entire block pro-

cesses the neighbors of a single vertex. Both warp- and block-based

processing yields a two-level parallelization scheme: the vertices are

distributed across the warps or blocks while the neighbors are dis-

tributed across the threads within the warp or block. This approach

is useful for reducing load imbalance when processing high-degree

vertices in power-law graphs [2]. However, it is typically not useful

for low-degree graphs such as road networks.

(a) Thread

beg = nbr_ idx [ v ] ;

end = nbr_ idx [ v + 1 ] ;

for ( i = beg ; i < end ; i ++)

. . .

(b) Warp

l a n e = t h r e a d I d x . x % WS;

beg = nbr_ idx [ v ] ;

end = nbr_ idx [ v + 1 ] ;

for ( i = beg + l ane ; i < end ; i += WS)

. . .

(c) Block

beg = nbr_ idx [ v ] ;

end = nbr_ idx [ v + 1 ] ;

for ( i = beg + t h r e a d I d x . x ; i < end ; i += blockDim . x )

. . .

Listing 8: Thread, warp, and block parallelization

2.9 Atomic vs. CudaAtomic

This variation only applies to CUDA codes. To avoid data races,

CUDA provides a set of atomic functions. For example, Listing 9a

employs an 0C><82"8=() to atomically update a memory location.

However, these atomics cannot be used in the host code running on

the CPU. As a remedy, CUDA recently introduced libcu++, a C++

Standard Library that can be used both in and between CPU and

GPU code [1]. The corresponding ‘CudaAtomic’ solution shown

in Listing 9b requires a data type as well as optional memory-

ordering and scope speci�cations, which were not available for

atomic operations before. The memory order restricts how the

surrounding memory accesses can be ordered with respect to the

atomic operation. The scope determines whether the operation is

atomic at the block, grid, or system level (including host code).

CudaAtomic’s default scope and memory ordering are chosen

to ensure program correctness in the most cases, which is also the

slowest setting. Hence, when using CudaAtomic, the programmer

may need to �gure out a safe but narrower scope and a more relaxed

memory order to achieve good performance.

(a) Atomic

__g l o b a l _ _ type d i s t [ . . . ] ;

. . .

atomicMin (& d i s t [ u ] , new_d i s t ) ;

(b) CudaAtomic

__g l o b a l _ _ cuda : : a tomic < type > d i s t [ . . . ] ;

. . .

d i s t [ u ] . f e t ch_min ( new_d i s t ) ;

Listing 9: Atomic and CudaAtomic

2.10 Reduction styles

Reductions combine multiple values into a single value using a

binary associative operator [30]. For example, multiple threads may

need to add the partial sums they computed to a global sum.

2.10.1 Global-add vs. block-add vs. reduction-add. We employ three

reduction styles in our GPU codes. The �rst approach performs

atomic operations that directly update the shared global variable

as shown in Listing 10a. The second approach makes use of the

faster block-level atomics. All threads of a block �rst compute a

block-local solution in the ‘shared memory’, and only one thread

updates the global solution as shown in Listing 10b. This minimizes

the number of slower global atomics. The third approach utilizes

not only shared-memory bu�ers for local results but also warp-

level primitives to quickly perform warp and block reductions as

outlined in Listing 10c. This implementation is more complex but

tends to be faster as it avoids most memory accesses.

(a) Global-add

atomicAdd (& c t r , v a l ) ;

(b) Block-add

atomicAdd_b lock (& b l o c k _ c t r , v a l ) ;

_ _ sync th r e ad s ( ) ; / / b l o c k b a r r i e r

i f ( t h r e a d I d x . x == 0 )

atomicAdd (& c t r , b l o c k _ c t r ) ;

(c) Reduction-add

warp_c t r = warp_reduc t i on ( v a l ) ;

_ _ sync th r e ad s ( ) ; / / b l o c k b a r r i e r

b l o c k _ c t r = b l o c k _ r e du c t i o n ( warp_c t r ) ;

_ _ sync th r e ad s ( ) ; / / b l o c k b a r r i e r

i f ( t h r e a d I d x . x == 0 )

atomicAdd (& c t r , b l o c k _ c t r ) ;

Listing 10: Di�erent reductions in CUDA

2.10.2 Atomic-reduction vs. critical-reduction vs. clause-reduction.

We also employ three reduction styles in our CPU codes. OpenMP

and C++ provide atomic operations as well, making it possible for

each thread to atomically update a shared variable as shown in List-

ing 11a. They also provide mutex support, allowing the programmer

to update the shared variable in a critical section as shown in List-

ing 11b. Finally, OpenMP provides a reduction clause as shown in

Listing 11c that can be used in certain cases. Using a critical section

typically results in substantial overhead and poor performance, but

it is the most general of the three approaches.

(a) Atomic reduction

#pragma omp p a r a l l e l for

for ( i = beg ; i < end ; i ++) {

. . .

# pragma omp atomic

sum += va l ;

}

(b) Critical reduction

#pragma omp p a r a l l e l for

for ( i = beg ; i < end ; i ++) {

. . .

# pragma omp c r i t i c a l

sum += va l ;

}

(c) Clause reduction

#pragma omp p a r a l l e l for r e du c t i o n ( + : sum )

for ( i = beg ; i < end ; i ++) {

. . .

sum += va l ;

}

Listing 11: Di�erent reductions in OpenMP
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2.11 Default scheduling vs. dynamic scheduling

OpenMP can automatically parallelize certain for loops with a “par-

allel for” directive. By default, shown in Listing 12a, it statically

assigns each thread a chunk of iterations. In contrast, the dynamic

schedule in Listing 12b assigns the loop iterations to the threads at

runtime. This improves the load balance but incurs overhead.

(a) Default scheduling

#pragma omp p a r a l l e l for

for ( v = 0 ; v < nodes ; v ++) {

. . .

}

(b) Dynamic scheduling

#pragma omp p a r a l l e l for s chedu l e ( dynamic )

for ( v = 0 ; v < nodes ; v ++) {

. . .

}

Listing 12: Default and dynamic loop scheduling

2.12 Blocked vs. cyclic

When parallelizing the iterations of a for loop, a blocked schedule

assigns a contiguous chunk of iterations to each thread, as shown

in Listing 13a. If the iterations’ running times correlate with their

loop index, a block distribution can lead to load imbalance. The

cyclic schedule in Listing 13b assigns the iterations in a round-

robin fashion to the threads, which improves the load balance in

this scenario. A blocked schedule usually has better data locality in

CPUs because one thread accesses contiguous memory addresses.

However, a cyclic schedule has better data locality in GPUs because

of coalesced memory accesses (i.e., combining multiple memory

accesses into a single memory transaction).

(a) Blocked scheduling

beg = t i d ∗ nodes / t h r e a d s ;

end = ( t i d + 1 ) ∗ nodes / t h r e a d s ;

for ( v = beg ; v < end ; v ++) {

. . .

}

(b) Cyclic scheduling

for ( v = t i d ; v < nodes ; v += t h r e a d s ) {

. . .

}

Listing 13: Blocked and cyclic scheduling

3 RELATED WORK

A plethora of prior publications on parallelizing irregular graph

codes exist. Many of them discuss and evaluate at least some imple-

mentation styles, but no systematic study of a large number of styles

exists. Becchi et al. propose workload consolidation schemes [44]

and di�erent parallelization templates [28] to increase the GPU

utilization of programs with nested parallelism. Wang et al. charac-

terize dynamically formed parallelism and evaluate codes designed

to exploit them [43]. Nasre et al. present morph algorithms and

provide insights into how other morph algorithms can be e�ciently

implemented for GPUs [39]. Similar to these works, we also study

general styles that are applicable to a wide range of algorithms.

Most if not all of the parallelization and implementation styles

we investigate have been described before. For example, Hong et

al. [24] propose a warp-centric programming method to improve

the performance of applications with heavily imbalancedworkloads.

Nasre et al. study data-driven and topology-driven implementations

to understand the tradeo�s [38] and investigate high-level methods

to eliminate atomics in irregular programs [36]. Pingali et al. discuss

di�erent styles to process nodes (e.g., topology-driven and data-

driven) and operators that modify the graph (e.g., morphs and

local computations) [41]. Our work takes many of these styles and

combines them in hundreds of new ways.

3.1 Benchmark suites of irregular programs

There are many benchmark suites of irregular graph codes with pro-

grams that are optimized for CPUs or GPUs. Lonestar [26], which

contains 14 parallel C++ and CUDA implementations of 11 irregu-

lar algorithms, mostly aims to include fast implementations of as

many domains as possible. Pannotia [13] includes 8 graph codes

implemented in OpenCL from diverse domains. It was designed

to show that irregular codes can be parallelized and implemented

on GPUs. GraphBIG [34] selects representative data structures,

workloads, and data sets from 21 real-world use cases. GAPBS [7]

consists of OpenMP implementations of 6 important graph algo-

rithms. This benchmark suite aims to standardize the evaluation of

graph processing. GBBS [17] comprises scalable, provably-e�cient

implementations of over 20 fundamental graph problems for shared-

memory multicore machines. Having primarily been designed with

performance and diversity in mind, these suites tend to be based

on highly optimized codes from various domains. They generally

do not include many di�erent styles of the same algorithm.

Indigo [33] is the largest related benchmark suite and the pre-

decessor of the Indigo2 suite presented in this paper. It contains

thousands of parallel codes representing 6 common data-access

patterns that occur frequently in irregular graph computations.

However, they are all microbenchmarks that do not compute any-

thing useful, i.e., they are not complete graph algorithms. GAR-

DENIA [45] includes emerging graph-processing workloads. It is

an extended version of GAPBS and comprises 126 parallel imple-

mentations of 11 irregular graph algorithms written in OpenMP,

CUDA and OpenCL. With over one hundred implementations, it

covers the most parallelization and implementation styles of any

prior benchmark suite. However, the included implementations are

speci�cally tuned to optimize a given algorithm. The focus is not

on generic implementation styles that are applicable to a large body

of graph codes. In fact, many publications describe ways to opti-

mize the performance of speci�c parallel graph codes. For example,

focusing just on GPUs, there is work presenting high-performance

implementations of breadth-�rst search [18], single-source shortest

path [15], minimum spanning trees [42], community detection [29],

strongly connected components [5], graph coloring [3], triangle

counting [22], and PageRank [19] to name a few.

In contrast to most of the related work, our benchmark suite is

designed for comparing parallelization and implementation styles

that broadly apply to graph algorithms. Hence, our focus is on

providing a wide diversity of styles. This is why our suite includes

between 90 and 256 versions of each of 6 graph algorithms.

4 EXPERIMENTAL METHODOLOGY

4.1 Codes

We selected the 6 graph problems shown in Table 1 for our study.We

chose them because they are the most common graph codes in prior

benchmark suites (e.g., Lonestar [26] and GBBS [17]). Since not all

implementation styles are applicable to every problem, Table 2 lists

the included styles.

Since combining the applicable styles yields hundreds of varia-

tions, we automated the code-generation process and use con�gu-

ration �les to select the desired versions (i.e., a subset of the codes)

as we have done in the predecessor Indigo suite [33].
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Table 1: Graph problems used in our study

Category Name and abbreviation

Connectivity Connected Components (CC)

Covering Maximal Independent Set (MIS)

Eigenvector PageRank (PR)

Substructure Triangle Counting (TC)

Shortest path
Breadth-First Search (BFS),

Single Source Shortest Path (SSSP)

Table 2: Included implementation styles

Styles CC MIS PR TC BFS SSSP

Vertex-based, edge-based +, + +, + +, - +, + +, + +, +

Topology-driven, data-driven +, + +, + +, - +, - +, + +, +

Duplicates in WL, no duplicates in WL +, + -, + -, - -, - +, + +, +

Push, pull +, + +, + +, + +, - +, + +, +

Read-write, read-modify-write +, + -, + -, + -, + +, + +, +

Deterministic, non-deterministic +, + +, + +, + +, - +, + +, +

Persistent, non-persistent +, + +, + +, + +, + +, + +, +

Thread, warp, block + + + + + + +, +, + +, +, + +, +, + +, +, +

Atomic, CudaAtomic +, + +, + +, - +, + +, + +, +

Global-add, block-add, reduction-add -, -, -, -, -, - +, +, + +, +, + -, -, - -, -, -

Atomic-red., critical-red., clause-red. -, -, -, -, -, - +, +, + +, +, + -, -, - -, -, -

Default scheduling, dynamic scheduling +, + +, + +, + +, + +, + +, +

Blocked, cyclic +, + +, + +, + +, + +, + +, +

Table 3: Number of code versions (32-bit data type)

Language CC MIS PR TC BFS SSSP Total

CUDA 168 112 54 72 180 168 754

OpenMP 36 36 18 12 38 36 176

C++ threads 36 36 18 12 38 36 176

To keep the running times and the number of code versions man-

ageable, we tested our suite only with 32-bit data types (int, �oat).

However, the 64-bit data-type versions are included in Indigo2. Ta-

ble 3 shows the breakdown of the 1106 CUDA, OpenMP, and C++

programs we evaluated. Each code veri�es its computed solution

by comparing it to the solution of a simple serial algorithm.

4.2 Inputs

Since the control-�ow and memory-access patterns of irregular pro-

grams are input dependent, we selected 5 graphs of various types,

origins, sizes, and degree-distributions as inputs. The graph names

and other information about them are shown in Tables 4 and 5.

We picked these graph sizes to keep the running times reasonable.

The majority of them exceed the cache sizes of all tested CPUs

and GPUs (Section 4.3). The smaller graphs (USA-road-d.NY and

2d-2e20) have a large diameter, which increases the running time of

some graph algorithms. The Indigo2 suite contains more and larger

graphs. We obtained these inputs from the Center for Discrete

Mathematics and Theoretical Computer Science at the University

of Rome (Dimacs) [20], the Galois framework (Galois) [40], the Stan-

ford Network Analysis Platform (SNAP) [27], and the SuiteSparse

Matrix Collection (SMC) [16]. For all of our vertex-based codes,

the graphs are stored in compressed-sparse-row (CSR) format [21].

For the edge-based codes, they are stored in coordinate (COO) for-

mat [14]. Every undirected edge is represented by two directed

edges in both formats.

Table 4: Graph information

Name Type Origin Vertices Edges Size (MB)

2d-2e20.sym grid Galois 1,048,576 4,190,208 37.7

coPapersDBLP publication SMC 540,486 30,491,458 124.1

rmat22.sym RMAT Galois 4,194,304 65,660,814 542.1

soc-LiveJournal1 community SNAP 4,847,571 85,702,474 362.2

USA-road-d.NY road map Dimacs 264,346 730,100 6.9

Table 5: Graph degree information

Name 30E6 3<0G 3 ≥ 32 3 ≥ 512 �80<4C4A

2d-2e20.sym 4.0 4 0.0% 0.000% 2047

coPapersDBLP 56.4 3,299 52.5% 0.092% 24

rmat22.sym 15.7 3,687 12.4% 0.045% 19

soc-LiveJournal1 17.7 20,333 14.0% 0.125% 21

USA-road-d.NY 2.8 8 0.0% 0.000% 721

4.3 Hardware

We present results from 2 systems, i.e., 2 CPUs and 2 GPUs. System

1 has a 3.5 GHz Ryzen Threadripper 2950X CPU with 16 hyper-

threaded cores, a 32 MB L3 cache, and 64 GB of main memory. It

houses a 1.2 GHz TITAN V GPU with 12 GB of global memory, a

4.5 MB L2 cache, and 5120 processing elements distributed over 80

streaming multiprocessors (SMs). System 2 has dual 2.9 GHz Xeon

Gold 6226R CPUs with a total of 32 hyperthreaded cores, two 22

MB L3 caches, and 64 GB of main memory. It houses a 1.74 GHz

RTX 3090 GPU with 24 GB of global memory, a 6 MB L2 cache,

and 10,496 processing elements distributed over 82 SMs. We use 16

threads for the OpenMP and C++ codes on the �rst system and 32

threads on the second system. We do not employ hyperthreading

as it tends to hurt or not improve the performance of our codes.

4.4 Software

On both machines, the operating system is Fedora Linux 34. We

used GCC 11.3.1 with the “-O3 -fopenmp” �ags to compile the

OpenMP codes and the “-O3 -pthread1” �ags for the C++ codes on

both systems. On System 1, we compiled the GPU programs using

NVCC 11.7 with the “-arch=sm_70” �ag. On System 2, we compiled

the GPU programs using NVCC 11.6 with the “-arch=sm_86” �ag.

4.5 Metrics

We ran each of our 1106 programs on the 5 input graphs, resulting

in a total of 5530 tests. If a program takes less than 10 minutes for a

given input, we ran it 9 times and use the median for computing the

throughputs. For the few longer-running codes, we only measured

one run. To improve readability, we report the throughputs in giga-

edges per second. This is the number of edges in the input graph

divided by the runtime and then divided by one billion.

In many cases, we compute ratios of the throughputs to investi-

gate how the di�erent styles a�ect performance. To visualize the

thousands of resulting ratios, we use a boxen plot to show the dis-

tribution and other pertinent information. It recursively divides the

dataset into halves and presents di�erent quantile values. Thicker

boxes indicate more data points in the given range. For example, in

Figure 1a, the thickest box represents the middle 50% of the ratios

1We are not using pthreads per se, but this �ag is required by the C++ threading library.
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