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Global change influences scavenging and
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Carrion decomposition is fundamental to nutrient cycling in terrestrial ecosystems
because it provides a high-quality resource to diverse organisms. A conceptual
framework incorporating all phases of carrion decomposition with the full commu-
nity of scavengers is needed to predict the effects of global change on core ecosys-
tem processes. Because global change can differentially impact scavenger guilds
and rates of carrion decomposition, our framework explicitly incorporates complex
interactions among microbial, invertebrate, and vertebrate scavenger communities
across three distinct phases of carcass decomposition. We hypothesize that
carrion decomposition rates will be the most impacted when global change affects
carcass discovery rates and the foraging behavior of competing scavenger guilds.

An integrative perspective for carrion decomposition

An animal’s death activates carrion decomposition (see Glossary), providing energy and nutrient
resources to a broad diversity of scavengers [1-4]. By creating localized biodiversity hotspots, carrion
drives interkingdom competition and facilitation and mediates nutrient cycling [1,3-5]. The speed of
carrion decomposition is variable, ranging from 2 h to 82 days (see the supplemental information on-
line). Scavenger communities are affected by global change factors, especially climate and land-use
change, and species introductions, that alter carrion availability [6-9], scavenger community diversity
[10-13], and the context in which decomposition occurs [14—18]. Decomposition involves action by
microbes, invertebrates, and vertebrates (i.e., the necrobiome [1]), and the occurrence and foraging
efficiency of these organisms are affected by the environment. Understanding how global change
affects decomposition therefore requires an interdisciplinary perspective that scales from microbes
to vertebrates and integrates animal behavior with population, community, and ecosystem ecology.
While distinct carrion decomposition stages have been described for invertebrates and microbes
[19-21], the participation of vertebrate scavengers is not integrated into these frameworks. Similarly,
while the necrobiome framework describes how microbes, invertebrates, and vertebrates shape
decomposition [1], it lacks detail on scavenging behavior and global change factors.

Here we present a framework that captures alternate pathways of terrestrial carrion decomposition
and accounts for scavenger behavior across three phases of decomposition (i.e., discovery, con-
sumption, and nutrient delivery). We outline environmental factors, and their sensitivity to human-
induced change, that govern carrion decomposition across each phase. Finally, we suggest how
our framework can generate testable predictions of how global change and scavenger behavior
alter carrion decomposition and nutrient cycling in the Anthropocene.

Effects of global change across phases of carrion decomposition

Phase 0: carcass production

Recent estimates indicate that the total biomass of domestic mammals [630 metric tons (Mt)] far
outweighs that of wild mammals (20 Mt) [22]. Within wild populations, large carcasses account for
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most vertebrate carrion (globally, seven of the top ten contributors are even-hoofed mammals)
[22]. While carrion production (Figure 1) is unpredictable in populations where most animals die
randomly of individual causes such as predation, it may be predictably pulsed where many
animals die during a specific season or mass mortality event [6,23,24]. While most mass mortality
events are associated with disease, human perturbation, or biotoxicity [8], their effects can ripple
through ecosystems [7,25]. For example, when 2700 kg of feral pig (Sus scrofa) carcasses were
used to simulate a mass mortality event, increases in consumer diversity altered the food web
structure [7]. Extreme weather is also predicted to increase the frequency of mass mortality
events in populations ranging from insects and fish to large vertebrates, making the functional
role of scavengers increasingly important [26].

Other global change factors may alter spatiotemporal patterns in carrion production, particularly
for large carcasses (Table 1). For example, ungulate carrions produced by livestock, roadkill, and
hunting are more spatially concentrated than carrion produced by natural sources (e.g., predation,
disease) [27]. The global decline of apex predator populations may also affect spatiotemporal
patterns of carrion production because predation is a key source of mortality for many animals
[11,28-30]. We expect predator declines will reduce spatial and diel concentrations of carrion
because predators mediate when and where carrion is produced [29,31]. For example, in systems
where carrion production peaks during winter, warmer winters may reduce the production of this
resource to scavengers, but apex predators could buffer these effects by producing carrions
throughout the winter that subsidizes scavenger communities [16]. We expect predator declines
willincrease the pulsed nature of carrion availability, particularly when prey are vulnerable to disease
or resource limitation [32].

Phase 1: carcass discovery

Changes in carrion availability alter scavenger-resource encounter rates, the ability of scaven-
gers to track carrion [7,23,32,33], and species pools [21]. These factors, along with environ-
mental conditions [11,19], determine how quickly carrion is discovered (Figure 1). For
instance, priority effects shape competition among scavengers [11,34-36] (e.g., carcasses
that are rapidly discovered by vertebrates may be consumed before invertebrates initiate feed-
ing). Similarly, some species defend carcasses against other scavengers — such as European
wasps (Vespula germanica) that aggressively exclude flies and dingoes (Canis lupus dingo)
(Box 1 and Table 1) — while microbial decomposers chemically modify carcasses in ways that
may make them unpalatable for animal consumption [37,38]. As a result, environmental conditions
that increase microbial activity [39,40] could promote carcass monopolization by microbes [38]
(Table 1). While global change factors (e.g., land-use and climate change, species introductions
[12-14,41,42]) directly affect scavenging species pools and carcass discovery rates (Figure 1
and Table 1), shifts in the diel activity periods of scavengers in response to humans [39,40] could
also alter carcass discovery (Table 1). Human disturbance increases the nocturnality of large verte-
brates [39], which may reduce the likelihood that vertebrates monopolize carrion produced in the
daytime. Within vertebrate scavenging communities, apex predator declines can lengthen diel
activity windows, increasing the probability of discovery by mesopredators [11].

Environmental and anthropogenic factors that affect the ability of vertebrate and invertebrate
scavengers to detect olfactory and visual cues will also modulate carcass discovery rates
(Table 1). For example, volatile organic compounds (VOCs) produced during decomposition
[41,42] can serve as olfactory cues for carcass detection by scavengers at long distances
[1,41,43-45]. Increases in precipitation due to climate change could inhibit carcass detection
by dampening olfactory cues and increasing the dissolution and microbial uptake of volatile
compounds [46,47]. By contrast, elevated temperatures could promote carcass detection by
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Glossary

Biogeochemical hotspots: regions
within the soil matrix with
disproportionately high reaction rates
and biogeochemical transformations
of energy and/or nutrients.
Biological process rates: the speed
at which biological processes, such as
respiration and photosynthesis, occur.
Abiotic factors (climate, temperature,
moisture availability) and ecological
interactions (competition, predation)
influence process rates. Important
necrobiome process rates are growth
and respiration, exoenzyme synthesis
and kinetics (.., Vinax, the maximum
velocity of an enzymatic reaction, and K,
enzymatic substrate affinity), and
microbial carbon use efficiencies (the
amount of carbon in microbial biomass
vs. substrate). Biological process rates
indirectly govern other

biogeochemical processes, including N
cycling (ammonification, nitrification,
denitrification, immobilization, NoO
production, and consumption) and soil
properties (redox, pH, Fe oxidation and
reduction, and mineral weathering).
Carrion decomposition: the process
by which dead animal organic matter is
broken down into smaller constituent
parts by microbial, invertebrate, and
vertebrate consumers.

Exploitation competition: the use of a
shared resource by one individual or
group reduces the amount available for
other individuals or groups. Competition
therefore occurs indirectly rather than
through aggressive, physical interactions.
Interference competition: individuals
or groups compete directly for
resources through aggressive, physical
interactions.

Landscapes of fear: the spatial
variation in prey perception of predation
risk.

Necrobiome: refers to the community
of species associated with carcass
decomposition (bacteria, fungi,
nematodes, invertebrates, and
vertebrates) and their interactions with
the necromass, each other, and their
ecosystem.

Scavenging: consumption of dead
animal organic matter by animals
(kingdom Animalia).

Volatile organic compounds (VOCs):
a broad group of compounds that have
high vapor pressure and evaporate at
ambient temperature. VOCs are
released during carcass decomposition,
and a significant proportion of these
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Figure 1. Conceptual model synthesizing the phases of carrion decomposition and the most important factors
(black icons) that shape carcass production (top yellow panel), discovery (pink panel), and consumption
(green panel) rates by microbial, invertebrate, and vertebrate consumers. Icons in red represent common global
change factors that can alter carcass production, discovery, or consumption rates. Red arrows describe which operating
factors at each phase are affected by each global change factor. Carcass production (Phase 0) shapes the availability and
predictability of carcasses for scavengers. Global change factors that affect spatiotemporal patterns in mortality will affect
carcass production. Carcass discovery rates (Phase 1) can determine whether carcasses are primarily consumed by
invertebrates or vertebrates. Global change factors that alter discovery rates can consequently alter consumer identity and

(Figure legend continued at the bottom of the next page.)
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increasing the emission of volatile compounds [42]. Visual cues are impacted by habitat structure
(vegetative ground cover and canopy cover [14,44,48]), which shapes carcass visibility and may
be affected by global change (Table 1). For example, carcass discovery by birds could be
reduced by the spread of introduced shrubs that conceal carcasses [49], but reductions in
canopy cover caused by deforestation or wildfire may increase carcass discovery (Table 1)
[14]. Predicted declines in snow cover may have contrasting impacts on carcass discovery
depending on the primary sensory modalities of scavengers (see Outstanding questions). As a
result, environmental changes that modify the efficacy of different scavenging sensory modalities
could shape species evolution in olfactory, visual, or auditory acuity.

Phase 2: carcass consumption

The identity and behavior of scavengers that consume carrion impact decomposition rates
[45,50]. In general, large vertebrates consume carcasses more rapidly than invertebrates and mi-
crobes [51-53], whereas carcasses consumed by invertebrates and microbes decompose faster
than those consumed by microbes alone [9,54,55] (Figure 1). Variation in body and group size
among scavengers influences ecological interactions [1,11,45,56,57] and the probability that
carcasses are monopolized by dominant scavengers (Table 1). Complex interactions among
scavenger guilds are shaped by carcass size [58], how well scavengers track carcass availability
[59], and the degree of temporal overlap among competitors [60]. Dominant scavengers can
outcompete subordinate ones via two primary mechanisms. In exploitation competition,
monopolization by dominant scavengers should yield the highest decomposition rates [11,61,62].
For example, Tasmanian devils (Sarcophilus harrisii) outcompete mesoscavengers through rapid
carcass discovery and consumption. In Tasmania, the spread of a highly transmissible and lethal
cancer has resulted in Tasmanian devil population crashes, leading to substantial decreases
in carrion decomposition rates (Box 1, [11]). Elevated rates of decomposition could benefit
wildlife conservation efforts, for example, by limiting the prevalence of disease-causing bacteria
(e.g., Mycobacterium bovis) [2,63]. By contrast, with interference competition, monopolization
could reduce carrion decomposition rates. For example, the physical defense of carcasses by
European wasps reduces consumption by other scavengers, slowing overall decomposition
(Box 1, [183]). In this case, carcass monopolization could reduce carrion availability for other
scavengers [2,3,64] via competitive exclusion, potentially leading to population decline and a re-
duction in biodiversity. We hypothesize that the decline [11] or introduction [13,65] of competitively
dominant scavengers will predictably alter carrion decomposition (Box 1) depending on the behaviors
used to outcompete subordinates. Our framework predicts that global declines in dominant
scavengers may increase carrion availability for mesoscavengers [11] and decrease natal
dispersal, while relaxed interspecific competition could increase intraspecific competition and
natal dispersal. In either case, altering dispersal patterns can affect gene flow, population
genetic structure, and the evolutionary potential of scavenging subpopulations.

Scavengers can also facilitate carcass consumption by other species [66,67]. Carcass degrada-
tion by microbes often follows a successional trajectory whereby bacterial communities resemble
the host microbiome during the initial stages of carrion decomposition, but increasingly resemble
soil microbiomes as decay progresses [41]. During this ecological succession, the concentration
and chemical diversity of VOCs increase, facilitating carrion detection by invertebrates and
vertebrates. Ground-dwelling invertebrates, such as beetles and ants, can also facilitate microbial

carcass consumption rates. Carcass consumption rates (Phase 2) and the identity of carcass consumers determine the rate
and spatial spread of nutrient delivery (blue panel). Hence, global change factors that alter rates of carcass discovery and
consumption, and the identity of consumers can have cascading effects on spatiotemporal patterns in nutrient delivery
(Phase 3).
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Table 1. Predictions for how different global change factors will affect environmental variables operating at different phases of carrion decomposition

Operating
factors

Environmental
variables

Carcass production

Senescence

Predators,
pathogens,
and parasites

Resource
limitation

Physiological
thresholds

Demographic
structure

Presence/absence
and population cycle
of predators,
pathogens, and
parasites

Availability of
resources

Daily and annual
temperature and
precipitation

Carcass discovery

Temporal
overlap of
competing
scavengers
and carcass
production

Olfactory cues
from volatile
organic
compounds

Scavenger
population
densities

Visual cues

Climate, daily
weather, and
predation risk

Microbial activity,
precipitation, and
wind speed through
the landscape

Scavenger population
cycles and
spatiotemporal
patterns in habitat use

Characteristics of
habitat structure that
shape carcass
visibility: canopy
cover and ground
cover

Trends in Ecology & Evolution

Aspects of global change that affect environmental variables

Climate change

Range expansion
of predators,
pathogens, and
parasites

Extreme weather
events

(e.g., drought) or
changes in
climate alter
resource
availability

Extreme weather
events or
seasonal shifts in
temperature
and/or
precipitation

Shifts in species
phenology and
length of daily
activity windows

Microbial activity
increases with
temperature and
precipitation

Scavenger range
expansions/
contractions due
to climate

Extreme
weather events
alter habitat
structure

(e.g., fire)

Shifts in diel Species
activity introduction or
decline
Temporal Gain/loss of
overlap with predators,
predators, pathogens, or
pathogens, and  parasites
parasites
Temporal Gain/loss of
overlap with competitors or

resources/prey prey

Shifts in
temporal
overlap with
competitors
and carcass
production

Gain/loss of
scavenger
population

Introduced
shrubs increase
ground cover
and decrease
carcass visibility
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Land-use
change

Gain/loss of
spatial refugia

Reduction or
increase in land
cover of habitat

Increased airflow
and wind speed
in human-
modified
habitats, such as
agricuttural fields
and tree
plantations

Deforestation
increases the
visibility of carrion
by decreasing
canopy cover.
Fire suppression
decreases
visibility by
increasing
canopy cover

Linear Human subsidies

landscape

features
Alternative
resources for
predators may
reduce predation
pressure
Increased
availability of
resources

Increased air

flow and wind

speed through

linear features

increase the

spatial spread

of volatile cues
Scavenger
populations

increase due to
human subsidies

Carcasses are
more visible
when located
along linear
features

Selective
harvest

Selective
harvest of
age/stage
groups alters
demography
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Table 1. (continued)

Environmental
variables

Operating
factors

Characteristics of
habitat structure that
impede movement:
habitat complexity,
vegetation cover,
slope, snow depth,
and woody debris.
Landscape features
that facilitate or
impede movement:
habitat edges,
corridors, or
impervious surfaces

Scavenger
movement
efficiency

Inclusion of
carrion in
individual diet

Avalilability of carrion
versus alternative
resources,
competition, and
degree of individual
diet specialization in
population

Carcass consumption

Temporal Climate, daily

overlap of weather, and

competing predation risk

scavengers

and carcass

production

Consumer Rate of discovery and

identity competitive/facilitative
interactions among
scavengers

Consumer Scavenger population

density density and
intraspecific
competition or
facilitation

Site fidelity Predation risk,

resource availability,
and competitive
interactions

Aspects of global change that affect environmental variables

Climate change

Extreme
weather events
alter habitat
structure and
landscape
composition.
Increased
temperatures
and changes in
precipitation
alter snow
depth

Shifting
phenology of
alternative
resources

Shifts in daily
activity windows
due to changes
in daily
temperature

Climate-induced
shifts in carcass
discovery rates.
Climate-induced
shifts in microbial
scavenger
activity

Climate-induced
shifts in
scavenger
population
densities and
microbial
scavenger
activity

Shifts in diel Species

activity introduction or
decline

Contraction or

expansion of

activity

windows due

to shifts in diel

activity periods.

Shifts in

temporal

overlap with

competitors

and carcass

production
Gain/loss of
scavenger
population
Gain/loss of
scavenger
population
Introduced
predators may
lead to
subordinate
scavengers
abandoning
carcasses
sooner

Land-use
change

Scavengers may
move more
efficiently in
habitats with less
vegetative
ground cover
(e.g., fire-prone
habitats and
agricuttural land)

Human-modified
habitats may
have different
microclimates
than original
habitat, thus
altering the

temporal niche of

scavengers

Changes in
discovery rates
caused by
land-use
change

Scavengers may
bbe more (or less)
active in human-
modified habitats

Apex predators
are more likely
to abandon
carcasses near
human activity

Trends in Ecology & Evolution, February 2024, Vol. 39, No. 2
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Selective
harvest

Linear Human subsidies
landscape

features

Scavenger
movement
efficiency is
higher along
linear features

Scavengers
include less
carrion in their
diets due to the
availability of
human subsidies

Scavengers with
alternative
human-subsidized
resources may be
less likely to
abandon
carcasses sooner

(continued on next page)
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Table 1. (continued)

Aspects of global change that affect environmental variables

Operating Environmental Climate change  Shifts in diel Species Land-use Linear Human subsidies  Selective
factors variables activity introduction or change landscape harvest
decline features
Foraging time ~ Predation risk, The decline of Scavengers may Scavengers with
budgets resource availability, apex predators  spend less time alternative
competitive may lead to foraging in human-subsidized
interactions, and increased habitats near resources may
physiological foraging time for ~ human activity. spend less time
thresholds subordinate Human-modified foraging at
scavengers. habitats may be carcasses
Predator perceived as

introduction may  more or less risky
have aninverse  to attack by

effect predators
Physical The ability for Gain/loss of
defense individuals or groups scavenger
to defend carcass population with
against competitors physical-defense
abilities

decomposition by removing hide [43], while aerial invertebrates can influence carrion decompo-
sition both directly (flesh consumption) and indirectly (flies laying eggs). While fly larvae rapidly
convert carcass flesh into biomass, they also release organic matter and nutrients to the soil
and increase internal carcass temperatures [68,69], which could simultaneously facilitate
bacterial decomposition and deter vertebrate consumers by putrefying flesh [43]. Declines in
the abundance and diversity of scavengers that facilitate carrion discovery could slow decompo-
sition by constraining invertebrate and vertebrate consumers [50]. More work is needed to under-
stand how shifts in microbial activity modulate competition among scavenger guilds (see
Outstanding questions).

Scavenger foraging behavior, including the duration of foraging bouts and site fidelity,
shapes carcass consumption and is directly affected by global change. Anthropogenic
disturbance can generate landscapes of fear that alter the foraging behavior of large
vertebrates [70,71]. For example, pumas (Puma concolor) forage less and are less likely
to return to kill sites, near areas of high human activity [70,71], which may increase carcass
consumption by subordinate scavengers. Furthermore, fear of apex predators increases the
time mesoscavengers allocate to vigilance while foraging, reducing carrion consumption
[11,72]. Predator declines may thus increase carrion consumption by mesoscavengers (Box 1),
although it remains unclear whether these shifts in behavior alter rates of carrion decomposition
and nutrient delivery.

Phase 3: nutrient delivery

Scavenger behavior determines rates of nutrient delivery from carrion to the ecosystem. In the
absence of hide disruption, microbially mediated decomposition occurs within the carcass until
the bloat and seepage stage, when nutrients are released belowground [73]. The influx of soluble
organic matter into the soil could relieve nutrient constraints on microbial metabolism and plant
growth. Production of nutrient-rich plant litter near carrion sites can also promote microbial
growth and decomposition, enhancing carbon storage aboveground through greater net primary
productivity and belowground via soil organic matter formation [29,74]. By contrast, vertebrate
scavengers rapidly and diffusely deliver carrion-derived nutrients to ecosystems via the excretion

158 Trendsin Ecology & Evolution, February 2024, Vol. 39, No. 2


CellPress logo

Trends in Ecology & Evolution

of waste [28], which could dampen localized biogeochemical hotspots under carcasses but
support greater ecosystem function by increasing net primary productivity overall (Figure 1).

Preferential feeding by vertebrate versus invertebrate scavengers may also alter the delivery of
key nutrients (see Outstanding questions). Animal bones contain minerals such as calcium and
phosphorus that broadly constrain ecosystem productivity. In the absence of direct bone
consumption, which requires behavioral and/or digestive specialization [75-77], large bones
can persist from decades to millennia [78,79]. The decline of scavengers that can consume
and digest large bones (e.g., Tasmanian devils; Box 1) could reduce the delivery of these nutrients
to sails, with implications for plant productivity [80] and soil carbon sequestration [81].

The identity and behavior of scavengers determine the spatial spread of carrion-derived nutrients
(Box 2), but few studies capture interactions among scavenging guilds [1,43]. When carrion is
primarily decomposed by microbes and invertebrates, nutrients will be delivered directly below
the carcass, creating biogeochemical hotspots [82,83]. Fungal decomposition may increase
the spread of carcass-derived nutrients and bacterial communities via extensive hyphal networks
[84]. By contrast, carrion consumption by invertebrates induces variable spatial patterns in
nutrient delivery. During consumption, dipteran larvae excrete large amounts of ammonia as
waste and deliver soluble nitrogen to the soil under a carcass [85], but after consumption,
dispersing larvae carry large quantities of nutrients several meters from the carcass [86]. Adult
flies and carrion beetles (Silphidae) can fly multiple kilometers from a carcass after consumption,
dispersing nutrients across the landscape as frass and dead biomass [9,86], or concentrating
nutrient delivery along wind and storm pathways [87]. Vertebrate scavenging could result in
random nutrient dispersal up to several kilometers from the carcass, or induce biogeochemical
hotspots if species concentrate their urine and feces in latrines. The extent of mammal movement
is reduced in human-modified landscapes [88], so the delivery of nutrients by mammals may be
spatially restricted in areas with a high human footprint. It thus remains an open question whether
the activity of vertebrate or aerial invertebrate scavengers maximizes the spatial diffusion of

Box 1. Case studies of carcass decomposition in the Anthropocene
Apex predator and scavenger decline: Tasmanian devil (S. harrisii)

Within vertebrate scavenging communities, top predators can also be competitively dominant scavengers [12]. Top pred-
ator declines may therefore induce trophic cascades that alter the nature and rate of carrion decomposition. For example,
the rapid decline of Tasmanian devil populations due to the emergence of a highly transmissible cancer is predicted to alter
the nature and rate of carrion decomposition. A recent study found that carcasses persist three times longer in regions
where devil populations have declined relative to regions with intact populations [11]. The activation of compensatory
scavenging pathways following devil declines increased consumption by less efficient mesoscavengers [e.g., native quolls
(Dasyurus maculatus) and ravens (Corvus tasmanicus)], invertebrates, and microbial communities [12]. We therefore pre-
dict that Tasmanian devil declines will reduce the rate and spatial spread of nutrient delivery across the landscape (Figure ).
As devils are among the few carnivore species morphologically adapted to completely consume larger bones, their decline
should also directly reduce the delivery of nutrients concentrated within bone material (i.e., calcium and phosphorus).

Species introduction: European wasp (V. germanica)

The European wasp is a generalist opportunistic insect that is native to Europe, northern Africa, and Asia and has been
introduced to Australia, New Zealand, North America, and South America [14]. Recent experiments in the European
wasp’s introduced range in Australia suggest that they can detect fresh carcasses within minutes of deployment and
may monopolize carrion by physically excluding native scavengers [13]. European wasps were reported to kill native adult
blowflies (Calliphoridae) [13], eliminating fly larvae at carcasses monopolized by European wasps [13]. European wasps
also reduced carcass consumption by native dingoes (Canis dingo) [13]. By preventing the establishment of larval masses
on carcasses and consumption by large vertebrates, European wasps may thus reduce the rate of carrion consumption
and nutrient delivery in their introduced ranges (Figure ), but the magnitude of these effects will depend on how they impact
native scavenging communities.
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Outstanding questions

A Microbial consumers can facilitate
carcass discovery by invertebrates
and vertebrates by producing VOCs,
but they can also chemically modify
flesh to make it unpalatable or unsafe.
Will increased microbial consumption
rates due to increases in temperature
and precipitation enhance or impede
consumption by invertebrates and
vertebrates?

Increased rate of nutrient
delivery
+

Since snow cover simultaneously
affects visual and olfactory cues, will
reduced snow cover favor carcass
discovery by scavengers with strong
O P N visual acuity? How will such changes

4 in cue strength mediate competition
among scavengers, and will scavengers
be able to adapt to these changing
conditions through behavior or
evolution?

Does preferential feeding depend on
competition (i.e., do species only
preferentially feed when in competi-
tive environments)? What are the
consequences for shifts in competitive
interactions (e.g., the introduction of a
new competitor) for preferential feeding
and nutrient delivery belowground?

Decreased rate of nutrient
delivery
I

Biogeochemical hotspots under
carcasses are typically rich in nitrogen,
O + and nitrogen limitation is predicted to
increasingly limit ecosystem productivity

. . under global change. Will nitrogen
Decreased spatial spread of Increased spatial spread of lritietien be aledaed T sysems

nutrient delivery nutrient delivery with high carcass inputs, and will this
translate to substantial increases in

ecosystem productivity?
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Figure I. Aspects of global change, including the decline or introduction of scavenging species can alter the How will global change affect aquatic
rate and spatial spread of nutrient delivery within ecosystems. Each axis represents a dimension of nutrient delivery. carrion decomposition and the delivery
The intersection of the axes represents baseline conditions in a system, in the absence of a given global change factor. Positive of carrion-derived nutrients to both
values (+) indicate that a global change factor leads to an increase in the rate (y-axis) or spatial spread (x-axis) of nutrient aquatic and terrestrial ecosystems?

delivery. Ellipses illustrate the range of potential outcomes, which may be context dependent (e.g., broad ellipses
represent more variability). We predict that the decline of Tasmanian devils (Sarcophilus harrisii; blue ellipsis) will lead to
decreased decomposition rates and spatial delivery of nutrients. We predict the introduction of European wasps (Vespula
germanica) will lead to decreased rates of nutrient delivery, but their effect on the spatial spread of nutrient delivery remains
uncertain.

nutrients (see Outstanding questions). Global change factors that alter which scavenging taxon
dominates consumption and the rate at which carrion is consumed will dramatically alter the
spatiotemporal dynamics of nutrient delivery (Figure 1).

Concluding remarks
Our framework illustrates how global change will differentially affect carcass discovery by competing

scavenging guilds, alter carcass decomposition rates, and generate cascading effects on nutrient
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Box 2. Spatiotemporal patterns in nutrient delivery by different scavengers

The temporal rate and spatial spread of nutrient delivery from carrion decomposition broadly depend on which
taxonomic groups are the dominant consumers (Figure IA). The flush of carcass-derived nutrients belowground can
stimulate the microbial necrobiome by inducing a biogeochemical hotspot. Based on ecological stoichiometry theory,
opportunistic bacteria should capitalize on this pulsed resource because carrion-derived organic matter has a lower
carbon-to-nitrogen ratio than plant litter and more closely reflects bacterial demand (Figure IB). Microbial use of
carcass-derived nutrients could stimulate organic matter turnover (via ‘priming’ effects) or increase soil organic matter
formation by stabilizing microbial-derived materials (e.g., metabolites, necromass) on the mineral matrix (Figure IB).
Invertebrate communities may consume carcass-derived material more rapidly than microbial communities, reducing
the depth of nutrient delivery belowground, but increasing the spatial delivery of nutrients via frass deposition and
dispersal (Figure IC). Vertebrate consumers broadly disperse carcass-derived organic matter via excrement and urine de-
position (Figure ID). Sloppy feeders that break up and leave behind small pieces of carrion (e.g., avian and mammalian
scavengers) could increase the delivery of nutrients belowground relative to efficient feeders that rapidly ingest and
translocate carrion-derived organics.
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Figure |. Conceptual diagram depicting the spatial (upper panel) and temporal (lower panel) delivery of
carcass-derived nutrients across different taxonomic groups of scavengers. The distance away from the

carcass (A) and distance below the carcass (i.e., belowground depth; B-D) that carcass-derived nutrients are delivered
depend on scavenger identity.

cycling (Figure 1). We hypothesize that carrion decomposition rates will be most impacted in
systems where global change affects both carcass production and discovery rates by different
scavenger guilds (Table 1), generating substantial shifts in the identity of carcass consumers.
Even in cases where scavenger communities remain unchanged, global change that alters scavenger
behavior will affect rates of carrion decomposition.

Understanding the effects of global change on carrion decomposition requires research that
tracks the community of scavenging taxa, as well as the trajectory of carrion across all
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phases of decomposition. Newsome et al. [3] provide details on experimental methods that
could test key hypotheses that emerge from our perspective. We suggest experimental
carcasses be deployed across various environmental contexts (e.g., human-modified vs. un-
disturbed habitats), at different densities (e.g., discrete vs. simulated mass mortality events),
and/or under various, experimentally manipulated global change scenarios (see Table 1 for
testable predictions). For example, to evaluate whether deforestation increases carcass dis-
covery by visual scavengers, empiricists should manipulate carcass visibility in both logged
and intact forests. They can then evaluate cascading effects on scavenger interactions by
manipulating avian access to carcasses in both forest types and quantifying decomposition
rates. Similarly, shifts in mean annual precipitation or temperature could be simulated in the
field (e.qg., via rain-out shelters or experimental warming) to measure how abiotic conditions
impact scavenger behavior and carcass decomposition.

While our framework is focused on terrestrial ecosystems, global change also affects
aquatic carrion decomposition [89,90], which can facilitate nutrient transport within and
across aquatic and terrestrial ecosystems. For example, mass migration and mortality of
salmon subsidize productivity in both aquatic and terrestrial systems [90]. We anticipate
many of the general concepts within our framework can predict how aquatic carrion decom-
position will change in the Anthropocene (see Outstanding questions). Finally, as biological
process rates increase with rising temperatures, we suspect the delivery of carcass-
derived nutrients will play a key role in alleviating plant and microbial nutrient limitations
[91]. These effects will be most pronounced in systems with strong nutrient (e.g., tropical
forests with depleted soils) or environmental (e.g., temperature in high-latitude systems or
moisture in arid sites) constraints on biological productivity. Our framework can also be
used to guide restoration or conservation interventions in these sensitive ecosystems. Man-
agement efforts must first be focused on restoring native scavenger communities either
through species protection or reintroductions. We emphasize that ecosystems where mul-
tiple aspects of global change operate in tandem to shift carcass discovery and consump-
tion should be prioritized for management (Table 1). For example, fire suppression can
reduce the visibility of carcasses and the movement efficiency of scavengers (Table 1),
which could result in declines in carrion decomposition rates (Figure 1). Prescribed fires
may be used in such contexts to improve detection, and thereby decomposition, by both
invertebrates and vertebrates (Table 1). Management efforts to improve the carcass discov-
ery and consumption rates of scavengers will promote rapid nutrient delivery. Such efforts
may include prohibiting human activity in sensitive habitats during periods when scavengers
are active or prioritizing population control of introduced predators or competitors of native
scavengers (Table 1). In summary, we suggest that sensitive ecosystems may benefit from
management efforts that are focused on maintaining intact scavenging communities and
efficient scavenging behavior.
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