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ABSTRACT

Traditional multi-criteria selection methods are the leading ap-
proach for selecting a set of candidates when multiple criteria de-
termine selection relevancy. For instance, hiring platforms combine
candidates’ proximity, skills, and years of experience to build short-
lists for recruiters. While these methods succeed in efficiently select-
ing candidates, their chosen set may unfairly affect marginalized
candidate groups (e.g., race or gender). Bridging the gap between
traditional fairness-unaware multi-criteria selection and contempo-
rary fairness interventions, we characterize the open problem of
fair multi-criteria selection. We design FAIR&SHARE the first efficient
fairness-tunable multi-criteria selection method. FAIR&SHARE sup-
ports several fair representation notions. The key to FAIR&SHARE is
the design of its group-aware utility objective. FAIR&SHARE uses
a novel fairness calibration component to provide a user-friendly
tuning mechanism for controlling the balance between selection
relevancy (utility) and representation fairness. Our fairness-focused
selection policy iteratively builds the result set by prioritizing can-
didates as aiding either the fair representation or the share-d overall
utility goals. We prove the optimality of FAIR&SHARE, meaning
that FAIR&SHARE selects the best possible candidates such that the
desired fair representation is achieved. Our experimental study
demonstrates that FATR&SHARE achieves the best fairness and util-
ity performance of state-of-the-art alternatives adapted to this new
problem while taking a fraction of the time.
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Figure 1: Fair Multi-Criteria Selection. The goal is to select a
set of candidates fairly representing groups and having high
shared utility (i.e., aggregate scores for selected candidates).

1 INTRODUCTION

Background. Multi-criteria selection sifts through a large volume
of potential candidates, each with multiple criteria (features) asso-
ciated with them, to find a shortlisted set of favorable candidates.
After a shortlist has been established, candidates can be prioritized
via more resource-intensive means, such as ranking [54] or human
subject expertise [58]. Applications from hiring [50, 52], medical
care [30, 36], to modern information access (IA) systems [5, 12, 75]
follow this pattern. In multi-criteria selection, criteria are modeled
as ordered lists of both candidates and each candidate’s correspond-
ing score in the given criteria [1, 25, 26, 42, 70, 73]. The blending of
multiple criteria is accomplished through an aggregation function
[19, 29, 36, 41]. Typically mined [32, 65] or from domain knowl-
edge, this function indicates the relative importance when criteria
are combined into a candidate’s selection relevancy, i.e., the final
aggregate score for each candidate.

Candidate selection is essential for high-stakes decision-making.
It is used to determine clinical trial eligibility [64], who is inter-
viewed for a job [52], who profits from product purchases [55], and
whose creative content becomes popular [20]. Given their societal
influence, selection processes bear the responsibility to not only
find relevant candidates but also to ensure their selections are fair
and unbiased (illustrated in Figure 1). Specifically, opportunities or
resources should not be withheld from protected or marginalized
groups, such as race or gender.

State-of-the-Art. Multi-criteria selection has been extensively
studied [1, 16, 25, 26, 43, 48, 59, 67, 70, 74, 76]. Conventional ap-
proaches focus on efficiently finding the best set of candidates ac-
cording to an apriori domain-specified aggregation function. Their
sole focus has been to maximize set utility, i.e., the total sum of
aggregate scores for selected candidates. As seen in Figure 2a, they
examine the different lists of criteria directly to select candidates
without exhaustively having to combine all the criteria for all can-
didates first. However, these strategies do not ensure fair repre-
sentation for groups of candidates who risk being impacted by
discriminatory bias.

Recent work has introduced fairness into selection settings, in
particular, by developing algorithms [62, 71] and by conducting
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empirical studies [9, 24, 37]. Unfortunately, as shown in Figure
2b, these algorithms are not designed for multi-criteria settings.
Instead, they rely on first having a single pre-computed score for
each candidate, and candidates must be sorted by this score before
using the existing fair selection method. For our multi-criteria use
case, this many-step solution is prohibitively time-consuming and
impractical.

Problem Overview. Our work is the first to consider fair multi-
criteria selection, which is an open impactful real-world problem.
More concretely, we address fair selection directly from multiple
lists representing candidate performance in multiple criteria. Since
aggregation functions are specific to their application contexts, we
utilize the aggregation function exactly as given by the domain;
even in instances, when without fairness intervention, the candidate
set is completely biased towards an advantaged group. Further,
we exploit core efficiency insights from state-of-the-art (fairness-
unaware) multi-criteria selection methods with the aim of bringing
high-speed performance to fair selection in the multi-criteria setting.
This is a multi-objective problem; with the goals of fairness and
utility potentially conflicting. As depicted in Figure 1, the ideal
solution ensures a fair representation of candidates while delivering
as much utility as possible.

Challenges. Despite its potential for societal impact and practi-
cal use, the problem of fair multi-criteria selection remains unad-
dressed. Challenges to address fair multi-criteria selection include:

o Dual objectives: As shown in the quad chart in Figure 1, nu-
merous combinations of fairness and utility exist in selected
sets. Conventional approaches fall into the bottom left quad-
rant - high utility but no fairness guarantees. Simple fairness
interventions, such as traversing the lists from top to bottom
picking candidates based on their group affiliation, fall into
the top right quadrant - fairness but no utility guarantees. In
order to be practically useful, fairness-enhanced solutions
must also ensure as much utility as possible.

o Conflicting objectives: While both fairness and utility are
critical goals, they can contradict each other. This is compli-
cated by the fact that the relative importance of each goal
may change depending on the task at hand. Solutions must
help navigate this tradeoff, even though the severity of this
tradeoff is unknown prior to selection and will vary for each
candidate pool.

o Unknown optimal number of candidates per group: The exact
number of candidates to select per group to ensure fairness is
often unknown prior to selection. For example, popular fair-
ness notions such as the Rooney-Rule [18, 22] only specify a
minimum number of candidates from each group, leaving a
portion of the set "unconstrained". Unfortunately, the simple
solution of running a fairness-unaware multi-criteria selec-
tor [1, 25, 26] once per group, while ignoring candidates not
in the current group, is only feasible when the exact number
of candidates to select per group is known. Otherwise, the
resulting set will provide insufficient utility.

Proposed Method. Addressing the above issues, we propose
the multi-criteria fair selection method FAIR&SHARE. The key to
FAIR&SHARE is the design of its group-aware utility objective. Ad-
dressing the dual and conflicting fairness and utility objectives, we
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Figure 2: Related works in Multi-Criteria and Fair Selection.

design FAIR&SHARE with an easy-to-use fairness tuning parame-
ter 5 € [0, 1]. While traditional multi-criteria selection methods
always pick the utility side of this trade-off, FAIR&SHARE empow-
ers practitioners to seamlessly adjust the balance of fairness and
utility in the candidate set. Complete fairness is achieved when
d = 0, and higher § produces a more minimal fairness intervention,
First, the FairCalibrate component translates the user’s § choice
and the chosen fairness notion from a variety of supported fair-
ness conceptualizations (such as equal, proportional, Rooney-Rule,
and custom groups representations) into one unified model for the
FairSelect policy. Next, the FairSelect policy efficiently computes
which candidates to select, using known constraints per group to
inform optimal selections. Specifically, the policy decides whether
a candidate is flagged as fair and thus helps represent a specific
group or as share and thus helps to maximize the shared maximal
utility objective. We prove the optimality of FAIR&SHARE, meaning,
that FAIR&SHARE selects the best possible candidates such that the
desired fair representation is achieved.

Advancing beyond prior methods (Figure 2), FAIR&-SHARE en-
sures a utility-maximizing fair representation of candidates is effi-
ciently selected directly from multiple criteria. We demonstrate the
generality and extensibility of FAIR&SHARE’s design concepts and
algorithmic strategies by applying them to fairness-enhance the
seminal multi-criteria selection method - Fagin’s algorithm [25].

Contributions. Our contributions are as follows:

e We define the new Fair Multi-Criteria Selection problem,
bridging the gap between modern fairness notions and per-
forming selection directly from lists representing multi-criteria.

e Our FAIR&SHAREs the first solution to this open problem,
integrating a user-friendly tuning mechanism balancing of
fairness and utility with an efficient fair selection policy.

o Utilizing three synthetic and five real-world datasets, we
demonstrate FAIR&SHARE’s ability to efficiently find fair sets
faster than alternate techniques. We also show the efficacy of
FAIR&SHARE for different fairness conceptualizations, along
with its versatility in balancing utility and fairness.
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2 RELATED WORK

Traditional Multi-Criteria Set Selection. Conventional methods
find the best set of candidates according to the provided aggregation
function [1, 25, 26, 42, 70, 73]. The main strategy driving the effi-
ciency of these methods is the Threshold Algorithm (TA) procedure
which was first introduced in [26] and leveraged in additional meth-
ods [1, 42, 73]. In TA, the lists representing the criteria are accessed
sequentially (top to bottom), and the aggregate score for each candi-
date seen is calculated. Then a "threshold" score t is determined by
summing the individual scores of the candidates just encountered.
Once k candidates have aggregate scores greater than ¢ those can-
didates are returned, and this set is guaranteed to have maximum
utility [26]. TA is why multi-criteria selection is extremely efficient
and seldom requires calculating each candidate’s aggregate score.
The literature also studies alternate problem definitions such as:
settings with a partially specified aggregation function [17], prob-
abilistic [53, 61, 67, 69, 74] or XML-based [63] candidate criteria,
and privacy-preserving variants [34]. However, to date, no methods
ensure fair representation for groups of candidates being selected
to avoid discriminatory bias.

Fair Representation in Set Selection. Fairness-enhanced set
selection is an active area of research [6, 9, 10, 13, 24, 31, 37, 44-46,
57, 62, 66]. Broadly, this line of work encompasses several problem
settings described below. Unlike our work, none of these settings
address our problem of representing marginalized groups fairly
when selection relevancy combines multiple criteria.

Multi-winner voting produces a subset of the most preferred can-
didates from either voter rankings or yes/no approvals of candidates.
Recent works have designed voting rules and integer programs
[6, 10, 46] that enforce constraints on the number of candidates
chosen per group. However, they do not select the best-scoring
candidates, thus they are not viable for multi-criteria selection.

Clustering partitions an entire set of items into multiple sets
(clusters). Many works address the problem of finding a fair clus-
tering [3, 4, 14, 15, 33, 38]. In this problem, items are split into k
sets, whereby the sum of the distances from each item to its as-
signed cluster’s center is minimized. This is fundamentally different
from our setting since clusters contain similar items, by distance,
and clusters have identical demographic group compositions. For a
recent survey of fair clustering see [13].

Designing scoring functions is the task of modifying an aggrega-
tion function of multi-criteria until a fair set or ranking is produced
by this function [2]. Outside the scope of our work, this setting
assumes the domain aggregation function can be modified. This
requires the function to be re-designed each time the candidate pool
changes, e.g. each round of hiring Instead, our approach utilizes the
original aggregation function. Moreover, the computation costs of
[2] are polynomial, nz(d_l), with d the number of criteria, whereas
candidate set selection is typically at most linear [1, 19, 26, 73].

Candidate Set Selection from Single Criteria is, as mentioned ear-
lier, the line of work most related to our problem. The DivTopK
algorithm [62] selects a fair candidate set from a score-sorted list of
candidates. While at first sight it can be adapted to our problem, we
will show in Section 5 that our proposed approach runs, on average,
in 2—7% of DivTopK’s runtime. Further, DivTopK [62] does not offer
a mechanism for tuning the balance of fairness and utility. This

154

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

user-friendly feature of our methodology can be directly leveraged
by other algorithms, DivTopk included.

Additional variants of fair single criteria selection include: meth-
ods for when candidates are selected from a continuous data stream
[66], methods for when the group membership of candidates is
noisy [44], empirical studies analyzing the effect of the Rooney-
Rule a hiring bias intervention, i.e., that the "hired" candidate set
include one person from a disadvantaged group [9, 24, 37], metrics
for the social notions of diversity and inclusion [45], methods for
fair judicial selection [31], and legal analysis of selection-based
hiring pipelines [57].

3 PROBLEM FORMULATION

Our setting involves a set X = {x1,xj,...,xn} of n candidates in
consideration for selection. By convention [1, 25, 26, 59], X is rep-
resented via m lists £ = Ly, ...Lp, such that every list L; contains
information about all n candidates. The tuple format is (x;, sj(x;)),
where x; indicates the candidate and s;(x;) is the local score of
candidate x; in that particular criteria list L;. Lists are ordered by
decreasing score, creating different orders among candidates in
each criterion. The aggregate score of candidate x;, denoted by
f(xi), is calculated as f(s1(x;),....sm(xi)). f is an aggregate scor-
ing function given by the application that we must use exactly as
provided. We assume a monotonic function, as is standard [56] and
espoused by popular functions such as max, average, and custom
linear combinations.

Specific to our setting, candidates have an associated categorical
protected attribute p (gender, race, or a combination). The set of
candidates x; € X who have the same value v for attribute p is
denoted by group Gp.y. For instance, Grqace:asian are the candidates
of Asian race. The set of all groups associated with X is G.

Our goal of Fair Multi-Criteria Selection is to select a set K of k
candidates that guarantees all groups are fairly represented while
ensuring the selection contains the best possible candidates as mea-
sured by their aggregate scores. We also want the selection to be
performed as fast as possible. In other words, we seek to efficiently
select a set that guarantees a fair representation of candidates while
delivering as much utility (the sum of aggregate scores) as possible.
What constitutes a fair representation of candidates is a contextual
decision dictated by domain knowledge. Meeting this nuance in the
nature of fairness, we do not assume one single fairness definition.
We support a wide range of popular fairness notions that practi-
tioners can choose from. Table 1 lists the meaning of each of these
contemporary fairness definitions we support. The question of how
much to intervene in terms of fairness is also contextually specific
and best answered by practitioners themselves [21, 60]. Thus, we
seek a tunable solution that enables decision-makers to dial-up or
dail-down fairness according to the task at hand.

4 OUR METHODOLOGY
4.1 Overview of FAIR&SHARE

We introduce FAIR&SHARE, the first fair multi-criteria selection
method. FAIR&SHARE efficiently selects candidate sets guarantee-
ing maximal utility and satisfying user-provided fair representation
criteria. FATR&SHARE is composed of two unique components. The-
FairCalibrate component provides a user-friendly fairness-tuning
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Fairness Notion ¥ ‘ Formulation
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‘ Intuition

Equal Representation [7, 14]
Proportional Representation [23, 51]
Rooney-Rule [18, 22]

Custom (User-provided)

|Gp:i NK| 21, VGpi€G
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IGp:i NK| =K IGI™, VGpi €G
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G

Set contains the same number of candidates per group.
Set contains the same percentage of candidates per group.
Set contains > r candidates per group.

Set contains > g;:; candidates for Gp; group.

Table 1: Defining fairness in Fair Multi-Criteria Selection. Formulations specify absolute fairness in the respective notion.

mechanism, while the FairSelect policy efficiently selects candidates
from £ using our novel fair and share design.

The rest of this section is organized as follows. We first describe
how we reformulate the traditional fairness-unaware multi-criteria
utility notion to be fairness-aware. This allows us to guarantee
FAIR&SHARE always returns the utility-maximizing set satisfying
the given fairness criteria. Then, we describe the architecture of
FAIR&SHARE in detail. Finally, we show the extensibility of the
FAIR&SHARE design concepts by using them to fairness-enhance
the seminal multi-criteria selection method, Fagin’s algorithm [25].

4.2 Reformulating Traditional Utility For
Group-Fairness Awareness

In the traditional fairness-unaware multi-criteria selection setting

[1, 25, 26, 73], selection works by finding the k candidates with the

highest aggregate scores from L. In other words, selectors aim to
find the set K such that:

arg max utility(K) = Z f(xi),

VKellx Vx;eK

1)

where ITx is the set of all possible k-sized sets of candidates X.

To do so, the main principle is the Threshold Algorithm (TA) pro-
cedure [26] described in Section 2. At every iteration, it calculates
a "threshold" score t and keeps the k candidates with the highest
aggregate score from those seen-so-far. Then by the monotonicity
of f() when f(x;) >tV x; € K, set K maximizes Eq.1 [26].

However, Equation 1 cannot be used in our setting to ensure that
we select the best candidates because it is oblivious to what groups
the candidates belong to. Likewise, it ignores candidates’ group
identities and can only guarantee the best k candidates are selected.
Fortunately, we can devise a strategy conserving the TA design
principle of using a threshold and exploiting the monotonicity of
f() for efficiency in our fairness-aware setting. To do so, we now
introduce a new utility maximizing objective, best within-a-group
selection, tailored to fairness concerns.

Definition 4.1 (Best Within-a-group Selection). Set K satisfies best
within-a-group selection if V G,.; € G, each candidate x; with
xi € K, xj € Gp:j and each candidate x;, with x, ¢ K,x, € Gp.j:
f(xi) = f(xp) holds.

Next, we establish that a set satisfying best within-a-group se-
lection guarantees that the selected set’s utility, Eq. 1, is maximized
for the exact representation of groups in the set. For instance, if a
set contains 10 candidates from five racial groups and satisfies, best
within-a-group selection, then that set has the highest utility of any
set with 10 candidates from each group. This is formally stated in
Theorem 4.2 below.
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Figure 3: FAIR&SHARE. Given k the size of the returned set,
candidates X and their values in protected attribute p, the
fairness-utility parameter § € [0, 1], fairness F and lists £
over set X it returns fair utility-maximizing set K.

THEOREM 4.2. A set K, satisfying best within-a-group selection,
has the maximum utility of any set produced from X that has the
same representation of groups, i.e., number of candidates per group.

ProoF. Let K be a set satisfying best within-a-group selection
(Def. 4.1.) and K’ be the set with maximum utility (Eq. 1) such that
K’ and K have the same number of candidates from each group in
G. By contradiction, we show that K = K’. Assume that utility(K)
< utility(K”). Then the lowest scoring candidate x; € K can be
swapped with highest scoring candidate x;, ¢ K such that x, x;, €
Gy, thereby increasing the utility of K. This is a contradiction. By
definition of best within-a-group selection, K contains xj, since it
is higher scoring than x; and they belong to the same group. O

Theorem 4.2 allows us to establish a fairness-aware utility max-
imizing objective for multi-criteria selection. It also serves as the
backbone insight for how we (1.) facilitate a tunable solution that
balances fairness and utility, and (2.) perform fair selection without
knowing the optimal number of candidates per group. For instance,
the Rooney-Rule only specifies to select r candidates per group,
but r x |G| rarely equals k. The remainder of the set could be filled
with candidates from any group. Therefore, each possible set has a
different overall utility. Thus, we don’t a priori know how many
candidates to select per group. Our FAIR&SHARE method embraces
this ambiguity and leverages it to our advantage.

4.3 FAIR&SHARE Architecture

As illustrated in Figure 3, FATR&SHARE features two main compo-
nents: FairCalibrate and FairSelect. Together they instantiate an
efficient fairness-tunable multi-criteria selection method.

First, the FairCalibrate component, detailed in Algorithm 1, trans-
lates the chosen variation of supported fairness conceptualizations
(e.g. equal, proportional, Rooney-Rule, and custom groups repre-
sentations) into one unified model for the FairSelect policy. More
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Algorithm 1 FAIR&SHARE: FairCalibrate

Input: k size of returned set, X set of candidates and their values in
protected attribute p, the fairness-utility parameter ¢ € [0, 1],
fairness ¥, and lists £ over set X.

Output: Set of lower bounds A for G.

1: for each G, € G do

2 if ¥ = Rooney-Rule then Gmin « r

3 if ¥ = custom counts then Gmin « custom value
4: if # = Prop. Rep. then Gmin < ((|Gp.o|\|X]) * k)
5 if ¥ = Equal Rep. then Gmin « (k\|G|),

6: Apw = (1= 6) * Gmin|

7: return A = {/1sz1’ AG,,:lgl}

Algorithm 2 FAIR&SHARE: FairSelect

Input: A set of lower bounds per group, lists £ over candidate set
X, and k size of returned set.
Output: Set K of k candidates.
1: Initialize F = {Fy, ..., F|g|} (fair) and S (share) sets.
2: t «— 0, Initialize bestpositions « 0 //one perl € L.
3: while Every x; € F U Shas f(x;) <tand|F US| < k:do
4: Access candidates in bestpositions.

5: for each candidate x, seen in this iteration do

6: Directly access x4 in unseen lists to determine f(x,).
7: if |FGPIP(xa)| < Acp:p(xa) then

8: Add xg to its (fair) set Fg .5 (x,)

9: else

10: Xmin < lowest agg. score candidate in FG,ip(xa)-
11: if f(xq) > f(xmin) then

12: Xq bumps out x,i,, in FGp:p(xa)'

13: if S is not full then

14: Add xpin to S.

15: else if f(xmin) > min agg. score of S then
16: Xmin bumps out cand. with min agg. score.
17: if S is not full then

18: Add x4 to S.

19: else if Sis full then

20: if f(xq) > min agg. score of S then

21: Xq bumps out cand. with min agg. score.

)

2: Update bestpostions, t = f(bestpostions).
23: return K =F U S,

importantly, it provides the user with a fairness-utility control
mechanism so that they can relax their enforcement of fair rep-
resentation. This serves to empower practitioners to seamlessly
chose the right balance of fairness and utility for their task.

The FairCalibrate step takes as input a fairness notion ¥ from
Table 1 and a fairness-utility parameter § € [0,1]. When § = 0, then
F is strictly enforced. As § increases, ¥ is relaxed so it is less and
less enforced. When 8§ = 1, then ¥ is not enforced.

As seen in Algorithm 1, FairCalibrate determines how many
group members are needed to enforce ¥ considering how the user
has tuned fairness via §. Here we use lower bounds per group.
The sum of the lower bounds rarely sum to k. For instance, in
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specific notions like the Rooney-Rule and when we relax # via §.
Therefore, we create an unconstrained portion of the set that we
use to select candidates that increase our shared utility objective.
Symbol 1., represents the lower bound cardinality on group Gp.y,
and A represents all lower bounds for G. For instances of relaxed
fairness, i.e., § < 1, Gmin is multiplied by 1 — § to decrease the
lower-bound. This is then rounded down to the nearest integer.

The setup of translating fairness notions into a unified repre-
sentation, along with providing a mechanism to seamlessly tune
fairness, is novel for the fair selection literature. Algorithms in
applications from clustering to multiwinner voting take as input a
user-specified exact number of candidates per group [6, 8, 62] or
enforce a single fairness notion strictly [14]. Our FairCalibrate com-
ponent supports both goals and is enhanced with an easy-to-use
mechanism that automatically adjusts the group representation re-
quirement to increase the set utility. Our component could equally
be utilized to determine the input for alternate set selection algo-
rithms. In our experimental study in Section 5, we use it along with
fair single list selector DivTopK [62].

The FairSelect policy detailed in Algorithm 2 is the second part of
FAIR&SHARE. As alluded to earlier (Section 4.2) we use a threshold
procedure that accesses candidates in the lists, calculates their score
and ensures candidates are the best as long as aggregate scores are
greater than the threshold ¢ [1, 26]. Fortunately, we conclude that
how we access (and track) £ and compute ¢ does not affect fairness.
In our experiments and implementation, we use the bpa2 threshold
procedure of [1] as it has demonstrated to have the best efficiency
[1] L. The best position concept is, for a given I € £, the greatest
ordinal position such that every position between it and the first po-
sition has been seen thus far [1]. However, alternate design options
[26, 73] could easily be plugged into the FAIR&SHARE architecture.

FAIR&SHARE guarantees fair sets through our selection policy.
It chooses candidates based on whether a candidate aids the fair
representation objective or aids the shared maximal utility objective.
The set returned by FAIR&SHARE is iteratively built through Fair
sets and a Share set. Specifically, there is one fair set per group,
and each fair set contains up to A candidates per group, where A is
determined during the FairCalibrate step. The share set contains
k — > candidates from any and all groups.

As candidates are initially seen and their aggregate score is
calculated, FAIR&SHARE first considers candidates to be assigned
to their respective fair set. Candidates are added to the fair set if
there are fewer candidates than A, or if the aggregate score of the
just-processed candidate is higher than the aggregate score of any
candidate in the fair set. In the case that a candidate "bumps" another
candidate, the "bumped" candidate is assessed for inclusion in the
share set. Likewise, if an originally processed candidate has a full
fair set or its aggregate score is too low to bump another candidate,
it is also assessed for inclusion in the share set. Candidates are only
added to the share set if the set is unfilled or they have a higher
score than the lowest (aggregate) score candidate. Once a candidate
is removed from the share set, they are excluded from the result
set. Of course, at any time, candidates may have aggregate scores
preventing them from inclusion in either set type and, thus from
the result set. Once all candidates in the fair and share sets have

In Algorithm 2 we mark the bpa2 threshold procedure pseudocode numbers in brow.
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aggregate scores greater than ¢, FAIR&SHARE returns the union of
these sets.

The key invariant of FAIR&SHARE is that at any given iteration,
the union of fair and share sets contain the best within-a-group
candidates that have been seen thus far. This, as captured in Theo-
rem 4.3, proves that FAIR&SHARE returns the highest utility set for
a given (fair) representation of groups.

THEOREM 4.3. If the aggregation function f() is monotonic, then
set K returned by the FAIR&SHARE has the highest utility (Eq. 1) of
any set with the same fair representation, i.e., the required minimum
number of candidates per group.

Proor. To prove that set K has the highest utility of any set with
the same fair representation we need to show FAIR&SHARE satisfies
best within-a-group selection. By definition, each fair set Fg,,,
returned by FAIR&SHARE is the best of the candidates seen in that
group. Likewise, if applicable, the share set S is the best k — 3} A
candidates not in the fair sets. Since the lists are sorted, if a candidate
xy € Gp:p has not been seen by FAIR&SHARE, then its score in list
Lj - sj(xy) is at most the lowest local score (from all the lists) of
a candidate seen in list L;. By monotonicity of f(), we know the
overall score f(x,) < t;, where t; is the last threshold. Then by the
stopping mechanism, #; is < the aggregate scores of candidates in
K. Thus, every candidate in K has an aggregate score higher than
any candidate not in K belonging to the same group. O

Note that when the desired fairness notion requires each can-
didate in the selected set to belong to a specific group, i.e., 3, =k,
then we need not use the share set. FAIR&SHARE would proceed
exactly as above without a share set, except when candidates are
excluded or removed from a fair set, they directly become obsolete.

4.4 F&S-Fagin: The FAIR&SHARE Fagin Solution

Next, we demonstrate that we can apply the proposed insights
underlying FAIR&SHARE into alternate fairness-unaware selection
algorithms to enhance them to also select fair sets. Here, we con-
tinue with multi-criteria candidate selection as our target problem.
Specifically, we leverage the FAIR&SHARE fair and share design in
creating FAIR&SHARE-Fagin, or, in short, F&S-Fagin. Unlike Fagin’s
algorithm itself [25] and its related versions [17], F&S-Fagin is the
first fairness-enhanced Fagin’s algorithm guaranteeing the selec-
tion of fair and utility-maximizing sets directly from multi-criteria.

The traditional Fagin’s algorithm (FA) operates in two steps.
First, it sequentially accesses top to bottom L, tracking which
candidates have been seen, in what list, and each candidate’s score
in that list. This step stops once the algorithm has seen k candidates
in all m criteria lists. At this point, there are potentially many
candidates that have only been seen in one or more lists. Thus, in
the next step, their aggregate scores are calculated. In this way, the
algorithm builds a set Q (where |Q| >> k). Lastly, it returns the
best k candidates from Q. Since the aggregation function f() is
monotonic, the best k candidates are guaranteed to be in Q [25].

We achieve fair multi-criteria selection aligned with the ethos of
FA using the design principles presented in FAIR&SHARE. Specifi-
cally, F&S-Fagin proceeds by leveraging the FairCalibrate compo-
nent of FAIR&SHARE. Then to perform fair selection, we introduce
the Fagin-aligned selection policy - FSP, explained next.
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FSP (step 1) sequentially accesses L to see candidates. Here, F&S-
Fagin stops once it has seen k candidates in all £ and the required
number of candidates per group as modeled by all A € A.

FSP (step 2) calculates aggregate scores for each candidate while
utilizing fair and share sets. As in FAIR&SHARE, fair sets are "full"
once they contain A candidates from their corresponding group,
and the share set is full once it has k — >} X candidates. As ag-
gregate scores are calculated, for candidates seen in FSP (step 1),
F&S-Fagin borrows the key ideas from FAIR&SHARE. In brief, can-
didates are added to their corresponding fair set directly or by
"bumping" another candidate. Bumped candidates are considered
to be added to the share set, as well as candidates that are unable to
be added to the fair set. The invariant property of FAIR&SHAREthat
the union of fair and share sets contains the best within-a-group
candidates seen thus far is also true for F&S-Fagin. Thus, we can
easily prove that F&S-Fagin also returns the highest utility set for
a given fair representation of groups.

THEOREM 4.4. If the aggregation function f() is monotonic, then
set K returned by F&S-Fagin has the highest utility (Eq. 1) of any set
with the same fair representation, i.e., the required minimum number
of candidates per group.

Proor. To prove set K has the highest utility of any set with the
same fair representation, we must show FAIR&SHARE satisfies best
within-a-group selection. Thus, we need to show F&S-Fagin satisfies
best within-a-group selection. Proceeding by contradiction, let x,; ¢
K be a candidate such that f(xq) > f(xp), and x4, x, € Gp.» Where
xp € K. By the monotonicity of f(), the candidate x, must appear
above xj, (i.e., have a higher score) in at least one list. Thus, we
have a contradiction since F&S-Fagin would have seen x, during
its first step, computed its aggregate score, and added it into K. O

5 EXPERIMENTS
5.1 Datasets and Metrics

Three synthetic datasets with 10 criteria are created that cover the

spectrum of correlation. In each dataset, group A is 20% and group
B 80% of the 50, 000 total candidates. Namely:

Gauss: is an independent dataset with mean = 0 and standard
deviation = 1. We set the score for each candidate in each list using
this distribution, and then each list is sorted.

Low Corr and High Corr: create datasets of low and high corre-
lation with a list that disadvantages minority group A.

Five real-world datasets we use are described next:

Adult [39]: is comprised of 1994 Census information with five
racial groups. Since it exhibits large known racial disparities, we
use Adult as a test-bed for the Rooney-Rule.

Bank [47]: holds 41, 188 records from a marketing campaign
with 7 criteria features. We use the marital status attribute to create
“married" and “unmarried" groups.

Credit [68]: dataset contains 29, 623 candidates and 10 features
related to credit card default for males and females.

IIT [11]: contains the math, physics and chemistry scores for
the Joint Entrance Exam (JEE) for 384, 977 applicants applying to
Indian Institutes of Technology (IIT) for undergraduate admission.
Here, the groups are males and females.
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Bean [40]: contains 13,611 beans with 17 criteria. We assign
three bean types to group A, and the remaining 4 types to group B.
Metrics of efficiency, utility, and fairness utilized are:

Time: reports the average of five runs in seconds.

Utility ratio (UtilR): corresponds to the utility (Eq.1) of the
actual set found by the specified technique divided by the utility
of the fairness-unaware (maximum utility) size-k set for the same
task. It has its maximum (best) value at 1 which means no utility is
lost compared to the fairness-unaware utility maximizing set.

Fairness ratio (FairR): captures the fairness of set K. For pro-
portional representation, we use the ratio between the smallest and
the largest group selection rates in Eq. 2. For equal representation,
the ratio is between the smallest and the largest group proportions
of the subset Eq. 3. It has its maximum (best and fairest) value at 1.

min{|K N Gp.;|/|Gp:;j|}
max{|K N Gp:i|/|Gp:il}’
min{|K N Gp.;|/IK|}
max{|K N Gp.i|/IK|[}

Fairness ratio(prop.) = V GpjsGpi (2)

Fairness ratio(equal) = Y Gp.j, Gp:i 3)
For all datasets, we use the sum of all criteria as the aggregation
function f(). Our code and experiment implementation is available

at https://github.com/KCachel/FairAndShare. 2

5.2 Compared Methods

We compare against the following:

Max-Util [1]: is the fairness-unaware multi-criteria set selection
method known as BPA2. We refer to this approach as “Max-Util”
since its sole objective is to maximize utility of the candidate set.

F&S-Fagin: as a baseline, we use our algorithm from Section 4.4.

Group-by-Group (GBG): we construct a baseline that replaces
the FairSelect component of FAIR&SHARE with a trivial fairness
modification of bpa2 [1]. It runs bpa2 once per group, ignoring
candidates not in the group. Then if )} A < k it goes over £ again
and includes the next seen candidates not already in the set.

Greedy: is a baseline that replaces the FairSelect component of
FAIR&SHARE with a fair but greedy selection strategy. It traverses
L, top to bottom, and picks the first seen candidates per group
to satisfy the fair representation requirement. Then if 3} A < k
it includes the next seen candidates not already in the set. This
strategy is simple and fast.

Divtopk [62]: is a single-list set selector. It finds the top scoring
d candidates per group, from a single utility-sorted list, where d is
between a provided lower and upper bound per group. For each
fairness notion, we calculate the lower bound needed by using
our FAIR&SHARE FairCalibrate component and then set the upper
bound to k. This demonstrates the modularity of FAIR&SHARE.

Fa*ir [71]: is a hybrid fair selection and fair ranking algorithm.
It creates a ranking of k candidates from a utility-sorted list of
n > k candidates such that the “protected group” (disadvantaged
relative to equal or proportional representation) is represented near
the inputted proportion p. Following [71] we set the significance
parameter @« = 0.1. Note that Fa*ir ranks up to 400 candidates
[71, 72], so we cannot use it on the large IITdataset.

2All experiments were performed on a Windows 10 machine with 32GB of RAM.
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5.3 Experimental Results

We compare FAIR&SHARE with the methods described above with re-
gard to the utility and fairness of the selected set, and time efficiency.
We do so for three fairness concerns: proportional representa-
tion, equal representation, and the Rooney-Rule. Recall, that
fair multi-criteria selection is a dual-objective problem, with the
additional goal of practical efficiency. Thus, the best-performing
methods ensure a fair representation exhibited by high FairR scores
while maximizing utility exhibited by high UtilR scores, and do
so with short runtimes. Across datasets and fairness concerns, we
show FAIR&SHARE consistently achieves the best fairness and utility
performance and does so faster than the alternatives.

5.3.1 Proportional and Equal Representation Results. Tables 2 and
3 present the proportional and equal representation objectives, re-
spectively. Each is broken down into two settings. The first, strict
fairness, means that proportional or equal representation is exactly
satisfied. The second, relaxed fairness, means that the propor-
tional or equal presentation fairness intervention is lessened, i.e.,
relaxed, so that set utility is increased.

Notably, Divtopk, F&S-Fagin, and FAIR&SHARE are the only meth-
ods that select utility-maximizing sets with the desired fair represen-
tation. This is expected because both F&S-Fagin and FAIR&SHARE find
the utility-maxizing fair set by Theorems 4.4 and 4.3, respectively.
Additionally, as Divtopk converts multi-criteria selection into single
list selection, it also finds fair sets with maximum utility.

The drawback of Divtopk is how slow it is in the multi-criteria
setting. This stems from the fact that every single candidate’s ag-
gregate score has to be calculated to use Divtopk. The observa-
tion that Divtopk is affected by the number of candidates is best
seen in the IIT in Table 3. For strict fairness in Table 3a, IIT has
384,977 candidates and Divtopk takes 1551.0427 seconds compared
to FAIR&SHARE’s 17.1895 seconds. FAIR&SHARE, averaging over
all proportional representation results, runs in 19% of F&S-Fagin’s
runtime, and in 7% of Divtopk’s runtime. And for equal representa-
tion, it runs in 7% of F&S-Fagin’s runtime, and in 2% of Divtopk’s
runtime. In fact, across all of our experiments, FAIR&SHARE takes
at most 27.5% of Divtopk’s runtime. This is in the Gauss dataset for
equal representation in Table 3c, e.g., FAIR&SHARE runs in 25.4241s
and Divtopk runs in 92.555.

The next-best performing methods are GBG and Greedy, depend-
ing on the metric. Greedy is perhaps the most similar method to
FAIR&SHARE in intent, as it aims to enforce that the A per-group
requirements are met. However, Greedy does so by picking the first
candidates encountered in each group, thus Greedy is on par with
FAIR&SHARE in terms of time efficiency, but has drastically lower
UtilR values. An example of this is the Gauss dataset, for equal
representation, where Greedy is faster than FAIR&SHARE and com-
parably fair, but has extremely low utility. Specifically, in Table 3a,
Greedy’s UtilR value is 0.3320 compared to FAIR&SHARE’s 0.9829.

GBG shows that a trivial extension of fairness-unaware bpa2
[1], namely running it once per group, works only when fair rep-
resentation is strictly enforced, e.g., in Tables 2a or 3. However,
when fairness is relaxed, GBG has generally much lower UtilR and
less predictable FairR values than FAIR&SHARE, since its utility de-
grades without an exact count of candidates to select per group.
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Method
Max-Util
Fa*ir

GBG

Greedy
Divtopk
F&S-Fagin
FAIR&SHARE

Method
GBG

Greedy
Divtopk
F&S-Fagin
FAIR&SHARE

Kathleen Cachel & Elke Rundensteiner

Bank k =80 Credit k = 150 Gauss k = 100 High Corr k = 100 Low Corr k = 100
UtilRT FairRT Time(s)] | UtilRT FairRT Time(s)| | UtilRT FairRT Time(s)| | UtiIRT FairRT Time(s)] | UtilRT FairRT Time (s)]
1.0000  0.6969 0.3793 1.0000  0.5595 0.9520 1.0000  0.9405 24.0050 1.0000  0.7619 0.0494 1.0000  0.0747 0.0636
1.0000  0.7382 38.0037 0.9990 0.7115 40.2216 1.0000  0.9405 96.0782 1.0000  0.7619 96.7369 0.9018  0.6429 95.8089
1.0000  0.9784 0.7824 0.9939  0.9872 1.9856 0.9999  1.0000 48.7964 0.9985  1.0000 0.1154 0.8501  1.0000 2.2109
0.9526  0.9784 0.0778 0.4309  0.9872 0.2136 0.3320  1.0000 0.1984 0.9984  1.0000 1.5580 0.8371 1.0000 1.1399
1.0000  0.9784 36.0307 0.9939  0.9872 32.9286 0.9999  1.0000 93.4464 0.9985  1.0000 91.7685 0.8501 1.0000 91.6622
1.0000 0.9784 26.8993 0.9939  0.9872 26.2277 0.9999  1.0000 79.2881 0.9985  1.0000 0.7024 0.8501 1.0000 1.5363
1.0000  0.9784 0.4561 0.9939  0.9872 1.1293 0.9999  1.0000 24.1078 0.9985  1.0000 0.0672 0.8501 1.0000 0.1280

(a) All methods evaluated for strict fairness.

Bank k = 80 Credit k = 150 Gauss k = 100 High Corr k = 100 Low Corr k = 100
UtilRT FairRT Time(s)] | UtiIRT FairRT Time(s)] | UtiIRT FairRT Time(s)] | UtiIRT FairRT Time(s)| | UtilRT FairRT Time (s) |
0.9967  0.9699 0.7918 0.9525  0.9322 1.9648 0.9778  0.9405 48.6802 0.9495  0.8868 1.0234 0.8643  0.7917 0.2753
0.9550  0.9290 0.0744 0.4327  0.9852 0.2146 0.3151  0.8864 0.2112 0.9321  0.8868 5.2296 0.8267  0.7917 1.0944
1.0000  0.9199 36.0129 0.9963  0.8825 32.9238 1.0000  0.9405 93.1338 0.9495  0.8868 92.4114 0.8784  0.7917 91.9251
1.0000  0.9199 27.1521 0.9963  0.8825 26.4878 1.0000  0.9405 81.3413 0.9495  0.8868 1.6088 0.8784  0.7917 1.4733
1.0000  0.9199 0.4679 0.9963  0.8825 1.1363 1.0000  0.9405 24.4989 0.9495  0.8868 0.2345 0.8784  0.7917 0.1308

(b) Methods which model the relaxed fairness of § = 0.05. In Divtopk we extract A from FairCalibrate and use each group’s value for d.

Method
GBG

Greedy
Divtopk
F&S-Fagin
FAIR&SHARE

Bank k = 80 Credit k = 150 Gauss k = 100 High Corr k = 100 Low Corr k = 100
UtilRT FairR7T Time(s)| | UtiiRT FairRT Time(s)] | UtilRT FairRT Time(s)| | UtilRT FairRT Time(s)] | UtilRT FairRT Time (s) |
0.9965  0.9784 0.6920 0.9154 0.907 1.8926 0.9446  0.9405 48.0676 0.9546  0.8182 0.9968 0.8915  0.6429 0.2975
0.9570  0.8825 0.0818 0.4394  0.9322 0.211 0.332 1.0000 0.194 0.9263  0.8182 5.0397 0.8177  0.6759 1.0356
1.0000  0.8255 36.0321 0.9982 0.771 32.905 1.0000  0.9405 93.8609 0.9546  0.8182 92.3676 0.9018  0.6429 92.6525
1.0000  0.8255 27.0901 0.9982 0.771 26.3769 1.0000  0.9405 82.7384 0.9546  0.8182 1.5698 0.9018  0.6429 1.4728
1.0000  0.8255 0.4009 0.9982 0.771 1.0606 1.0000  0.9405 24.5055 0.9546  0.8182 0.2237 0.9018  0.6429 0.1198

(c) Methods which model the relaxed fairness of § = 0.10. In Divtopk we extract A from FairCalibrate and use each group’s value for d.

Table 2: Results for various levels of proportional representation. Across datasets, strict and relaxed fairness only FAIR&SHARE,
F&S-Fagin, and Divtopk find the utility-maximizing fair set. Moreover, FATR&SHARE, averaging over all equal representation
results, finds this set in 7% of F&S-Fagin’s runtime (i.e., 7.4 times faster), and in 2% of Divtopk’s runtime (i.e., 42.5 times faster).

Method
Max-Util
Fa*ir

GBG

Greedy
Divtopk
F&S-Fagin
FAIR&SHARE

Method
GBG

Greedy
Divtopk
F&S-Fagin
FAIR&SHARE

Bean k = 100 IIT k = 1,000 Gauss k = 100 High Corr k = 100 Low Corr k = 100
UtilRT FairRT Time(s)] | UtilRT FairRT Time(s)| | UtilRT FairRT Time(s)| | UtIRT FairRT Time(s)] | UtilRT FairRT Time (s)]
1.0000  0.0000 0.1988 1.0000  0.0661 4.8901 1.0000  0.2658 24.3637 1.0000  0.1905 0.0510 1.0000  0.2987 0.0678
0.8160  0.6667 14.8363 n/a n/a n/a 0.9933  0.6667 96.6851 0.9663  0.6667 96.5867 0.9901  0.6667 96.3776
0.7643  1.0000 0.9946 0.9679  1.0000 19.4830 0.9829  1.0000 48.1552 0.9414  1.0000 0.2747 0.9746  1.0000 0.1366
0.4169  0.6949 0.0980 0.9472  1.0000 29.8275 0.3320  0.2500 0.1882 0.9994  0.2048 1.1127 0.9769  0.8182 0.5037
0.7643  1.0000 10.1369 0.9679  1.0000 1551.0427 | 0.9829  1.0000 94.2728 0.9414  1.0000 92.3978 0.9746  1.0000 92.3948
0.7643  1.0000 7.7521 0.9679  1.0000 229.2420 0.9829  1.0000 85.1758 0.9414  1.0000 1.6676 0.9746  1.0000 2.3005
0.7643  1.0000 0.8682 0.9679  1.0000 17.1895 0.9829  1.0000 24.9692 0.9414  1.0000 0.2439 0.9746  1.0000 0.0978
(a) All methods evaluated for strict fairness.
Bean k = 100 IT k = 1,000 Gauss k = 100 High Corr k = 100 Low Corr k = 100
UtilRT FairR7T Time(s)| | UtiiRT FairRT Time(s)] | UtilRT FairRT Time(s)| | UtilRT FairRT Time(s)] | UtiRT FairRT Time (s) |
0.7364  0.9231 0.986 0.9689  0.9048 20.2478 0.9578  0.9608 48.1885 0.9991  0.9383 0.1112 0.9706  1.0000 0.5105
0.4584  0.9608 0.1264 0.9383 0.938 28.7767 0.3601  0.9608 0.3973 0.995 0.9383 1.2661 0.9614  0.9231 0.5777
0.78 0.8868 10.1209 0.9709  0.9048 1550.554 | 0.9865  0.8868 94.0706 0.9991  0.9383 91.5996 0.9801  0.8868 92.4624
0.78 0.8868 7.9686 0.9709  0.9048 223.1511 | 0.9865 0.8868 86.5603 0.9991  0.9383 0.7304 0.9801  0.8868 2.2417
0.78 0.8868 0.882 0.9709  0.9048 17.0524 0.9865  0.8868 25.5053 0.9991  0.9383 0.0692 0.9801  0.8868 0.0988

(b) Methods which model the relaxed fairness of § = 0.05. In Divtopk we extract A from FairCalibrate and use each group’s value for d.

Method
GBG

Greedy
Divtopk
F&S-Fagin
FAIR&SHARE

Bean k = 100 IT k = 1,000 Gauss k = 100 High Corr k = 100 Low Corr k = 100
UtilRT FairRT Time(s)| | UtilRT FairRT Time(s)] | UtilRT FairRT Time(s)| | UtilRT FairRT Time(s)] | UtilRT FairRT Time (s) |
0.7146  0.8868 0.9704 0.9699  0.8182 19.9121 0.9286  0.9231 47.7748 0.9997 0.878 0.1032 0.9703 1.000 0.5635
0.4499  0.9608 0.1254 0.9332  0.8484 27.9631 0.3596  0.8868 0.3965 0.994 0.878 1.2067 0.9626  0.8519 0.5289
0.7903  0.8182 10.1683 0.9738  0.8182 1546.931 0.9887  0.8182 92.555 0.9997 0.878 91.6638 0.9834  0.8182 92.9469
0.7903  0.8182 7.972 0.9738  0.8182 217.3375 0.9887  0.8182 85.9378 0.9997 0.878 0.6708 0.9834 0.8182 2.2219
0.7903  0.8182 0.8738 0.9738  0.8182 16.0862 0.9887  0.8182 25.4241 0.9997 0.878 0.0594 0.9834 0.8182 0.0898

(c) Methods which model the relaxed fairness of § = 0.10. In Divtopk we extract A from FairCalibrate and use each group’s value for d.

Table 3: Results for various levels of equal representation. Across datasets, strict and relaxed fairness only FAIR&SHARE,
F&S-Fagin, and Divtopk find the utility-maximizing fair set. Additionally, FAIR&SHARE, averaging over all proportional results,
finds this set in 19% of F&S-Fagin’s runtime (i.e., 5.2 times faster), and in 7% of Divtopk’s runtime (i.e., 13.2 times faster).
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Adult withr =5 Adult with r = 10
Method UtilRT White Black Asian Amln Other Time(s)| | UtilRT White Black Asian AmIn Other Time (s) |
Max-Util 1.0000 91 3 4 0 2 0.2237 1.0000 91 3 4 0 2 0.2237
GBG 0.3964 74 9 7 5 5 3.1031 0.4830 57 12 11 10 10 3.9907
Greedy 0.1242 72 6 8 9 5 0.7560 0.1575 53 14 13 10 10 0.8468
Divtopk 0.9423 80 5 5 5 5 31.1826 0.8525 60 10 10 10 10 31.2126
F&S-Fagin 0.9423 80 5 5 5 5 58.0837 0.8525 60 10 10 10 10 68.6917
FAIR&SHARE | 0.9423 80 5 5 5 5 1.7852 0.8525 60 10 10 10 10 1.8830

Table 4: Results for all multi-group methods on the Adult dataset with the Rooney-Rule r = 5and r = 10 criteria. FAIR&SHARE pro-
vides the most efficient selection of the maximum-utility set with the desired fair representation.

This is problematic since the exact number of candidates to select
per group is unknown when fairness is slightly relaxed.

Lastly, Fa*ir is the worst performing method because it was nei-
ther designed for multi-criteria selection nor explicit fair selection.
It exhibits the same time inefficiency as Divtopk. Moreover, its
objective is to create a fair top-k ranking. Fairness in ranking is
inherently about the ordering of groups, whereas in selection it
is about the presence of groups in sets. Thus, when we treat the
top-k ranking as the selected set we find that Fa*ir has the low-
est FairR values of the fairness-oriented methods. In short, since
the fairness concerns are different, the fair ranking approach of
Fa*ir does not perform well for multi-criteria set selection.

5.3.2  Rooney-Rule Results. Table 4 presents the results from all
methods on the Adult dataset with r = 5 and r = 10. As a re-
sult of our prior experiments, we observe the expected behav-
ior that while F&S-Fagin, Divtopk, and FAIR&SHARE all find the
utility-maximizing set satisfying the desired fair representation,
FAIR&SHARE does so dramatically faster. Specifically, FATR&SHARE
runs in 6% (averaging over r = 5, 10) of Divtopk’s time.

Interestingly, GBG and Greedy have notably worse performance
for the Rooney-Rule compared to equal or proportional represen-
tation. The Rooney-Rule is a lighter and more flexible fair repre-
sentation notion compared to proportional or equal representation
since it only asks that r members per group be selected and the
remainder of the set is unconstrained. It is extremely popular in
practice [27, 49], in part because it has demonstrated significant
bias mitigation for such minimal intervention [37]. Unfortunately,
the particularly low UtilR values of GBG and Greedy indicate these
methods do not perform well for the Rooney-Rule. For instance,
when r = 5, FAIR&SHARE, GBG and Greedy all ensure > 5 individu-
als from each group are selected. However, FAIR&SHARE has UtilR of
0.9423, indicating it achieves the fair representation with relatively
high preservation of utility compared to the fairness-unaware Max-
Util method. In contrast, GBG and Greedy have UtilR values 0.3964
and 0.1242, respectively. Thus, neither are viable solutions when
using the Rooney-Rule due to their lack of utility maximization,
which is itself often the main driver for the Rooney-Rule fair repre-
sentation criteria.

6 ETHICAL CONSIDERATIONS

Our work facilitates selecting sets that fairly represent marginalized
groups. This research can benefit groups currently disadvantaged
by selection systems. While we do not foresee negative outcomes of
this work, we are mindful that fairness is a complex sociotechnical
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concept. We have addressed it from the perspective of prioritizing
fair representation, meaning, we are thus limited in producing a
set of utmost utility. The fairness-utility trade-off is real in practice
regardless of the set selection algorithm. Since traditional multi-
criteria selection methods ignore the representation of marginalized
groups in their selection, they always pick the utility side of this
trade-off. In contrast, algorithms like FATR&SHARE allow practition-
ers to balance their own priorities.

7 LIMITATIONS AND FUTURE WORK

We have only begun the study of fair multi-criteria selection and
as such, our approach has potential limitations. First, while FAIR&-
SHARE selects sets guaranteed to maximize utility subject to the
corresponding fair representation criteria; we eschew statements
that FAIR&SHARE finds fair sets with minimal loss to utility as the
tradeoff between fairness and utility is controlled by the dataset
(scores of candiates, group composition, etc). That is, the exact loss
of utility can only be determined by the data and problem at hand.
Future work could study how we might diagnose potential utility
loss or introduce ways to bound it in the FATR&SHARE methodology.

Second, as our work is the initial incorporation of fairness into
multi-criteria set selection, we have formulated our fairness-aware
problem to closely resemble traditional multi-criteria set selection.
Namely, criteria are modeled via m sorted lists, and we assume a
monotonic aggregation function. Future work could address how
we might relax these assumptions. Third, our approach focuses on
three popular notions of group fairness; future work might incor-
porate additional group fairness notions [28, 51] and or individual
fairness [23, 35].

8 CONCLUSION

Our work introduces the Fair Multi-Criteria Selection problem
for contexts where selection relevancy combines multiple criteria.
For solving this problem, we present FAIR&SHARE. It integrates a
user-friendly mechanism for balancing fairness and utility with
a novel fair selection policy. FAIR&SHARE selects sets guaranteed
to maximize utility, subject to the desired fair representation. We
demonstrate that FAIR&SHARE achieves the best fairness and utility
performance, and does so faster than existing alternatives from the
literature and numerous baseline approaches.
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