IEEE INFOCOM 2023 - IEEE Conference on Computer Communications | 979-8-3503-3414-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/INFOCOMS53939.2023.10228915

Qubit Allocation for Distributed Quantum
Computing

I** Yingling Mao

2" Yy Liu

3" Yuanyuan Yang

Dept. of Electrical and Computer Eng. Dept. of Electrical and Computer Eng. Dept. of Electrical and Computer Eng.

Stony Brook University
New York, USA
yingling.mao @stonybrook.edu

Abstract—With the advancements in quantum communication,
optically connected quantum processors can form a distributed
quantum computing system. Distributed quantum computing
provides a scalable path to execute more complicated compu-
tational tasks that a single quantum processor cannot handle.
Yet, distributed quantum computing needs a new compiler to
map logical qubits of a quantum circuit to different quantum
processors in the system. This paper formulates and studies
the qubit allocation problem for distributed quantum comput-
ing (QA-DQC). We prove the NP-hardness of the formulated
problem. Moreover, we show there is no polynomial-time n“-
approximation algorithm for any a < 1 unless P = N P, where
n is the number of processors in the quantum network. We
first propose a heuristic local search algorithm for QA-DQC.
Furthermore, we design a multistage hybrid simulated annealing
algorithm (MHSA) by combining the local search algorithm and a
simulated annealing meta-heuristic algorithm. Lastly, we perform
extensive simulations to evaluate the proposed MHSA under
various real quantum circuits and different network topologies.
Results show that MHSA outperforms popular baselines.

I. INTRODUCTION

Quantum computing can solve problems that are probably
impossible or highly inefficient on classical servers. For ex-
ample, Shor’s algorithm can factorize integers around expo-
nentially faster than algorithms on conventional servers [1],
which gives Shor’s algorithm the potential to break public-
key cryptography schemes such as RSA. Many governments
have invested enormous funds in quantum computing research
in recent years. For example, the US Government signed a
law that allows a $1.2 billion investment in quantum infor-
mation [2], and the European Commission approved a $1-
billion program to support quantum research [3]. In addition,
large companies like IBM and Google are also competing
in building commercial quantum computers. There have been
lots of achievements in quantum computing in recent years.
Google Al Quantum has achieved quantum supremacy, where
performing calculations on their Sycamore quantum computer
is 3,000,000 times faster than on a classical supercomputer [4].
IBM has presented a 127-Qubit (the quantum analog of
the classical bit) Quantum Processor named IBM Eagle in
November 2021, which any classical computer can access [5].

Despite the benefits and achievements of quantum comput-
ing, building a single large processor in terms of the number
of qubits is challenging. One difficulty in building quantum

Stony Brook University
New York, USA
yu.liu.3 @stonybrook.edu

Stony Brook University
New York, USA
yuanyuan.yang @stonybrook.edu

processors is quantum decoherence due to qubits interacting
with their environments, leading to system errors. The more
qubits there are, the more system errors. As the number
of qubits in a processor increases, the classical resource
required by the processor increases exponentially [6]. Practical
applications of quantum computers require thousands, or even
millions, of physical qubits, so it will be challenging for
individual quantum processors to reach such qubit numbers.
For example, when it comes to the unique shortest vector
problem in cryptography [12], the circuit grows large: lattice
dimension 3 already requires 842 qubits, which is far larger
than the current biggest quantum processor capacity.

Thanks to the advancement of quantum communication [7],
it is promising to build a distributed large-scale quantum pro-
cessor by connecting different processors of relatively small
scales [8]. We can perform gates on two qubits in different
processors by exploiting quantum entanglements between the
two processors (details can be found in Section III). A quan-
tum state can be in a superposition of many states, which is
exponential to the number of qubits. Therefore, as the number
of connected processors increases, the computational power of
the distributed quantum computer increases exponentially.

One critical problem when realizing distributed quantum
computing is qubit allocation. Specifically, quantum circuits
manipulate qubits, which are called logical qubits, since they
exist as abstractions within a quantum circuit. Qubit allocation
refers to the problem of mapping the logical qubits of a
quantum circuit into physical qubits, which are the actual
hardware units that store quantum bits. The qubit allocation
problem in a single quantum processor has been solved by
works [9], [10]. Besides, a mature qubit allocator called
ibmmapper has been proposed as part of IBM’s compiler and
runtime infrastructure. But these techniques are all limited to
the qubit allocation in a single quantum processor. The qubit
allocation in distributed quantum computing is different due to
quantum communication between different processors. So far,
few works have been devoted to the qubit allocation problem
in distributed quantum computing. At the same time, they are
all limited to some special quantum circuits, specific quantum
processors, or particular quantum network topologies.

In this paper, we focus on a general Qubit Allocation prob-
lem for Distributed Quantum Computing (QA-DQC), which

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 19:21:43 UTC from IEEE Xplore. Restrictions apply.

can adapt all possible quantum circuits, quantum processors,
and quantum network topologies. Since local qubit allocation
has been successfully solved, in our model of QA-DQC, we
mainly focus on how to map the logical qubits of a quantum
circuit to different processors. The goal of QA-DQC is to
minimize the cost of remote operations between different
processors, which is the overhead of quantum communication
in the network. After determining the map of logical qubits
and quantum processors, the existing local qubit allocation
techniques can solve the rest local allocation problems, i.e.,
mapping logical qubits allocated to a quantum processor to
the physical qubits of the processor.

Before solving QA-DQC, we first prove its NP-hardness.
In addition, we show that there is no polynomial-time n°-
approximation algorithm for any ¢ < 1 unless P = NP.
Here n is the number of processors in the distributed quantum
computing system. Since quantum gates accumulate noise,
the compilation of quantum circuits in distributed quantum
computing demands high compiler optimization precision. It
implies that even the lowest approximation ratio, i.e., O(n),
is still far from reaching the precision requirement of real-
world compilers in QA-DQC. Thus, in the design of our
heuristic algorithm, we pay more attention to pursuing better
average performance rather than the worst-case bound. To
pursue great optimization performance, we take meta-heuristic
algorithms into consideration. We choose a meta-heuristic
algorithm called simulated annealing (SA). To further improve
optimization performance, we design a heuristic local search
algorithm for QA-DQC and combine it with SA to generate
a multistage hybrid simulated annealing algorithm (MHSA),
which has better performance than isolated SA or heuristic
local search algorithm.

Our main contributions are listed as follows.

« We formulate the QA-DQC problem, which can adapt
all possible quantum circuits, quantum processors, and
quantum network topologies.

o We prove the NP-hardness of QA-DQC and further prove
there is no polynomial-time n“-approximation algorithm
for any a < 1 unless P = NP, where n is the number
of processors in the quantum network.

e We design an MHSA algorithm for QA-DQC, which
combines a meta-heuristic algorithm called simulated
annealing and a heuristic local search algorithm designed
for QA-DQC.

« We perform extensive simulations on various real quan-
tum circuits and different network topologies, demon-
strating that MHSA outperforms popular baselines.

The remainder of this paper is organized as follows. Section
I reviews the related works. In Section III, we give some
background knowledge on quantum computing. Section IV
states the architecture of distributed quantum computing.Based
on the architecture, we formulate the QA-DQC problem in
Section V. Afterward, Section VI a MHSA algorithm for
QA-DQC. Then Section VII is the performance evaluation of
MHSA. Finally, we conclude the paper in Section VIII.

II. RELATED WORK

Quantum computing [11] harnesses quantum mechanics
to gain the ability to solve problems that are too complex
for classical computers. The complexity of these targeted
problems, like the unique shortest vector problem in cryp-
tography [12], typically demands many physical qubits but
building a monolithic quantum system with lots of qubits
has technological limitations. These limitations are one of
the reasons for moving toward distributed quantum computing
[13].

In distributed quantum computing, different quantum pro-
cessors are connected to generate more computational power
than an isolated processor. But the communication between
different processors produces overhead in the compiler of
quantum circuits. Thus, the qubit allocation problem becomes
a hot spot in distributed quantum computing. Because the
concept of distributed quantum computing is so recent, so
is the interest in the qubit allocation problem for distributed
quantum computing. To the best of our knowledge, there have
been these previous attempts [14]-[16], [18]-[20] to solve this
problem.

Among them, three works [14]-[16] have a similar main
idea, which is to formulate the QA-DQC problem as a graph
partition problem. Zomorodi-Moghadam et al. [14] propose a
general approach, based on the Kernighan-Lin algorithm for
graph partitioning, to optimize the number of teleportations
for a distributed quantum computing architecture consisting of
two spatially separated and long-distance quantum subsystems.
Andres-Martinez et al. [15] develop an automated method to
distribute quantum circuits, which turns the quantum circuit
into a hypergraph, then finds a partitioning utilizing the KaHy-
Par solver [17] to minimize the number of cuts. Davarzani
et al. [16] put forward a dynamic programming algorithm
to reduce the number of communications in a distributed
quantum circuit. But such a basic idea and these proposed
solutions have some drawbacks. In particular, they ignore
the influence of quantum network topology on the overhead,
which is unpractical. We consider quantum network graph and
formulate QA-DQC as a generalization problem of Quadratic
Assignment Problem.

Besides, the other existing related works try to design
approximation algorithms for QA-DQC and achieve some
performance guarantee. Yimsiriwattana et al. [18] present a
distributed implementation of Shor’s quantum factoring algo-
rithm on integer N on a distributed quantum network model
and prove this distributed version of Shor’s algorithm requires
an additional overhead of O((logIN)?) communication com-
plexity. Beals et al. [19] provide approximation algorithms
for efficiently moving and addressing quantum memory in
parallel, enabling the standard circuit model to be simulated
with a low overhead by a more realistic model of a distributed
quantum computer (DQC). And they prove as for the DQC
model with graph G, N processors, and O(log N) qubits per
processor, the overhead can be bounded by O(N). Ferrari et
al. [20] derive an upper bound O(n) of the overhead induced

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 19:21:43 UTC from IEEE Xplore. Restrictions apply.

by quantum compilation for distributed quantum computing in
the network of linear topology, where n denotes the number
of logical qubits. However, they have two main shortcomings:
One is that the proven approximation ratios are too large to sat-
isfy the demand for extremely accurate compiler optimization
in distributed quantum computing; the other is that they are
all limited to some special quantum circuits, special quantum
network topologies, or special quantum processors. Different
from them, we design a meta-heuristic-based algorithm, which
can solve QA-DQC with any quantum circuits, quantum pro-
cessors, and network topologies. Besides, the meta-heuristic-
based algorithm has a performance advantage, adapting to high
compiler optimization precision demands in QA-DQC.

III. BACKGROUND
A. Qubit

In quantum computing, a qubit, short for a quantum bit, is a
basic unit of quantum information, like the binary digit in clas-
sical computers. A qubit is a two-state quantum-mechanical
system. In a classical system, the binary digit must be either
0 or 1. However, quantum mechanics allows the qubit to be in
a coherent superposition of both states simultaneously, which
is a fundamental property of quantum computing. We can use
two orthogonal basis vectors of a 2D complex vector space,
|0) = ((1]) and |1) = ((1)), to represent the two basic states of
a qubit, then the state of a single qubit can be described by a
linear combination of |0) and |1):

o|0) + B[1) =a(é> +5® - <g>

where o and /3 are complex numbers and [|a||? + ||3]|? = 1.
When we measure this qubit in the standard basis of |0) and
|1), according to the Born rule, the probability of outcome |0)
is |||, and the probability of outcome |1) is ||3]|%.

B. Quantum Gate and Circuit

Quantum logic gates, simply called quantum gates, are
basic quantum operators on qubits to change their states. For
example, in the standard basis, the Hadamard-Wash gate H

1
i ix L
can be represented by unitary matrix 75 L

-1
the basis state |0) to Vo [1) to %. Similarly, any

single-qubit gates, i.e., the gates applied on a single qubit, can
be represented as a 2 X 2 matrix.

The CNOT, short for Controlled Not, gate applies on two
qubits. CNOT (g1, g2) indicates that qubit g; control qubit go
by negating ¢ if and only if ¢ is |1). Specifically,

CNOT(q1,q2) = (01,01 P 2).

Quantum gates are also the building blocks of quantum
circuits like classical logic gates are for conventional digital
circuits. Fig. 1 shows a quantum circuit, which implements
2-qubit Glover’s search algorithm for searching |00). This
circuit has two logical qubits qg, g1, which are represented
as horizontal lines. It uses three different types of quantum

and maps

[O)+[1)

@
@

Fig. 1: Quantum circuit of 2-qubit Glover’s search algorithm

gates, i.e., H, X, and CNOT, and the final two measurements
to operate these two qubits.

Work [21] shows all single-qubit gates and the CNOT gate
form a universal set of gates that can implement arbitrary
circuits.

C. Quantum Processor

In practice, quantum processors based on superconducting
qubits (or NV center qubits) technology are modes of solid-
state circuits that only allow local interactions between the
physical qubits are connected together [22], [23]. Technical
reasons restrict the number of physical qubits, the number of
coupling connections, and their organization topology. [24] So
far, the biggest quantum processor is IBM’s Eagle processor,
which packs 127 qubits in its quantum-computing chip.

In a quantum processor, the physical qubits are divided
into two kinds: the computation qubits, devoted to running
the quantum circuit, and the communication qubits, used for
communication between processors.

D. Quantum Network / Cluster

A quantum network facilitates information transmission in
the form of qubits between physically separated quantum
processors. It works in a similar way to the classical network.
The main difference is the communication method based on
quantum entanglement.

Quantum entanglement is the physical phenomenon that
occurs when a group of particles shares spatial proximity in a
way that the quantum state of each particle of the group cannot
be described independently of the state of the others, even
when the particles are separated by a large distance. In quan-
tum network communication, we only employ a special case
of maximally entangled two-qubit states called EPR (short
for Einstein-Podolsky-Rosen) pairs. On the standard basis, the
states of EPR pairs can be written as [@+) = 1024111

In a quantum network /cluster, which is represented by
a graph H = (V,E), two processors v1,v2 € V can
communicate directly only when there is a classical channel,
a quantum channel, and at least one pair of communication
qubits between them. If so, we consider these two quantum
processors are connected directly, i.e. (vy,v2) € E. Note that
the quantum channel here is used for EPR pair generation.

IV. DISTRIBUTED QUANTUM COMPUTING

A. The Architecture of Distributed Quantum Computing

Distributed quantum computing can leverage the power of
interconnected quantum processors to create a virtual quantum
machine with processing capabilities that surpass its physi-
cal constituents alone. It is analogous to connecting several

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 19:21:43 UTC from IEEE Xplore. Restrictions apply.

remote

Quahtum
" Conngction

(vijve)

Quantum Processor v:

Quantum Processor v:

(a) A virtual quantum processor built by a 2-node cluster. Here two
quantum processors v1, ve are both IBM Yorktown quantum processors
with 5 physical qubits. Letting Q2, Q% work as the communication
qubits, we can build the quantum connection between v; and vg. Based
on this quantum connection, these two 5-qubit processors constitute an
8-qubit virtual quantum processor, where qubits interact via local and
remote CNOT.

Quantum Processor v:

.....................................

E Q @— ECompu.Qubit

i Q. —4 = iCommu.Qubit
oy §

i Q. — > iCommu.Qubit

é Q' D Ir_X—II ECompu.Qubit

Quantum Processor v:

(b) The circuit for the remote CNOT operation between the two
computation qubits Qo, Qf, from two different but directedly connected
quantum processors v1, v2. Here Q2, QY are the pair of communication
qubits for the connection (v1,v2). Based on this connection, an EPR
pair |®*) can be generated on Q2, QY. The double line denoted the
transmission of one bit of classical information, i.e., the measurement
outcome, between two processors v, v2.

Fig. 2: Toy-model for distributed quantum computing of 2-node cluster

classical computers to form a computer cluster in classical
computing. Distributed quantum computing works by linking
multiple Less powerful quantum processors through quantum
connections to create one more powerful virtual quantum
processor, or called a quantum computing cluster. For example,
Fig. 2a shows a virtual quantum processor built by linking two
5-qubit IBM Yorktown quantum processors vi, v by a quan-
tum connection based on the pair of communication qubits
Q2,Q%. It can also be called a 2-node quantum computing
cluster. We can see the constituted cluster has 5 +5—2 =8
computation qubits by subtracting the two communication
qubits, having more computation power than each component
processor. Like classical computing, this system is scalable by
adding more and more quantum processors to the cluster.

Like classical distributed computing, an essential require-
ment for distributed quantum computing is the possibility of
remote operations, the operations between logical qubits stored
at different processors. Recall arbitrary quantum circuits can
be built based on the CNOT gate and all single-qubit gates.
Since a single-qubit gate can be implemented locally on a
single computation qubit of any processor, we focus on the
possibility of the remote CNOT gates, like CNOT(Qo, Qf)
in Fig. 2a. Below we will show how remote CNOT works
based on a pair of maximally entangled communication qubits
between two directly connected quantum processors (Seen in
Section IV-B) and further how remote CNOT works via a
routing path between two remote quantum processors (Seen
in Section IV-C).

B. Remote CNOT via A Quantum Connection

A quantum connection means a classical channel, a quantum
channel, and at least one pair of communication qubits. For
example, in Fig. 2a, there is a quantum connection (v1, v3) be-
tween quantum processor vy, ve and the pair of communication
qubits are 2, Q%. Then based on this quantum connection, an
EPR pair |®*) can be generated on the pair of communication
qubits Q2, Q5. Now, Q2, Q% are maximally entangled and their

current state is exactly |®+) = %

Work [25], [26] shows the claim that if there is a pair
of maximally entangled communication qubits between two
quantum processors, remote CNOT can be successfully im-
plemented on any pair of computation qubits from these
two quantum processors. Fig. 2b shows the circuit for the
remote CNOT operation between the two computation qubits
Qo, Qy in Fig. 2a. After an EPR pair is available on the pair
of communication qubits (2, %, we can implement remote
CNOT on Qg,Qf through a local CNOT on (Qo,Q2) and
(@4, Q) at each processor, followed by some shown single-
qubit gates and measurements. Note that the double line shown
in the figure does not mean a two-qubit operation like CNOT. It
is the transmission of one bit of classical information, i.e., the
measurement outcome, between two processors vi,ve. And
X,Z are both single-qubit gates controlled by the received
measurement outcome, i.e., X, Z is implemented only when
the received classical digit is 1; if not, keep the state as it is.

Below, we will give a brief proof to show that the circuit in
Fig. 2b realizes the remote CNOT on Qg, Q. Assume @y =
al0) + B 11), Q = ']0) + ' |1), by CNOT operation, the
state of QpQ}, should be

|6) = a[0) (a’]0) + B[1)) + BI1) (@' [1) + 57 0)).

According to the circuit in Fig. 2b, the initial state is
Qo |PT) Qf. After two local CNOT on (Qo, Q2) and (Q%, Q})

at each processor, the state of QyQ2Q%5Q should be
1) :% 10) [100) ([0) + 8" [1)) + [11) (" [1) + B"(0))]
+% 1) [110) (@' [0) + 8" [1)) +[01) (a’ [1) + 8" |0))] -

If the measure of Q2 is 0, X is not implemented on), now
the state of QuQ5Q) is

B
V2
If the measure of ()3 is 1, X is implemented on Q) so
B
V2

|62) = % 100) (a’10) + B'[1)) + —= [11) (o’ [1) + 5']0)).

[62) = T=101) (o [0) + 5" |1)) + 7= [10) (o' [1) + 5" [0)).

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 19:21:43 UTC from IEEE Xplore. Restrictions apply.

Now we can see in two cases of |¢2), the states of Qo Q) are
both exactly what we want (|¢)). Now our task is to collapse
@Y, without changing the state of QyQj. It can be successfully
done by the Hadamard gate on)5, the followed measurement,
and Z gate controlled by the measurement outcome on Q.

In all, if two quantum processors are directly connected,
a pair of maximally entangled communication qubits can be
generated through quantum connection and helps implement
remote CNOT between two processors.

C. Remote CNOT via A Routing Path

In order to implement the remote CNOT between the two
processor nodes that are not directly connected, the key is
to build a pair of maximally entangled communication qubits
between them.

Vi V2 Vi Vi Va2 Vs

Lof-teok-{o Jmm L8 9 (&
a oQ Q.. Q. Q:..-"Q

Fig. 3: An example of entanglement swapping.

The technology of entanglement swapping can help us make
it. Fig. 3 presents an example of entanglement swapping,
where the red dotted lines represent a pair of maximally
entangled qubits. In the figure, we can see processors v; and
vo share an EPR pair 01, Q2 while processors vy and v3 share
an EPR pair Q}, Q3. Then we can make an entanglement
swapping by running a Bell-state measurement circuit on the
two communication qubits Qs, @5 at processor Q2 so that
communication qubits 1, Q)3 become an EPR pair, a pair of
maximally entangled qubits [27]. Suppose there are more than
one mid-nodes, like processor node vs. In that case, we can
make simultaneous entanglement swapping by simultaneously
running a Bell-state measurement circuit at each mid-processor
node so that an EPR pair appears between the starting and
ending nodes [28].

In all, we can implement the remote CNOT between two
remote quantum processors by the following steps:

Step 1: Find the shortest routing path 7" between the two
targeted processor nodes on the graph of the cluster;
Generate an EPR pair for each quantum connection
that belongs to the path T';

Simultaneously run a Bell-state measurement cir-
cuit at each mid-processor node on the path T’;
Implement the circuit for the remote CNOT be-
tween the two targeted processors, like Fig. 2b.

Step 2:
Step 3:

Step 4:

V. QUBIT ALLOCATION
A. Problem Formulation

This section will formulate the qubit allocation problem for
distributed quantum computing. Specifically, decide how to
allocate the logical qubits of the targeted quantum circuit to
the different processors in a quantum computing cluster.

As we mentioned in Section IV, we need additional oper-
ations for communication, such as the EPR pair generation,
the Bell-state measurement circuit, and the remote CNOT

circuit, to realize the remote operation (CNOT) between
different processors in a quantum computing cluster. However,
in quantum computing, decoherence and noise effects severely
constrain the execution time and the operation procedures. Un-
like classical digital gates that are inherently self-stabilizing,
quantum gates accumulate noise. Although quantum error-
correcting codes (QEC) hold the promise to address deco-
herence issues [29], current hardware does not provide nearly
enough resources to implement realistic QEC [30]. The longer
a quantum program runs and the more operations it performs,
the more it is susceptible to noise. Therefore, minimizing the
communication overhead, i.e., minimizing the total cost of the
remote CNOT gates, is crucial. It affects not only the real
running time of quantum programming but also the accuracy
of the quantum circuit. For these reasons, the compilation of
quantum circuits in distributed quantum computing demands
extremely accurate compiler optimization with the objective
of minimizing the total cost of the remote CNOT gates
(communication overhead).

The input to the optimization problem consists of the
following:

1) The network graph of the quantum computing cluster
H = (V,E), where each node v € V corresponds to
quantum processors and each edge e = (vy,v3) € E,
where v1,v9 € V, corresponds to quantum connections.

2) A set of logical qubits @ and the set of CNOT gates
G, where each CNOT gate ¢ = CNOT(q1,q2) € G
operates on a pair of qubits q1,q2 € (. Note that
CNOT(q1,q2) # CNOT (g2, q1)-

3) The EPR pair generation cost Cgp,, the cost of a Bell-
state measurement circuit Cy,,, and the cost of a remote
CNOT circuit Cy.qp,.

For all ¢ € @ and v € V, we define a binary variable
240 € {0, 1}, which takes the value 1 if and only if the logical
qubit ¢ € @ resides at the node v € V. To make sure that
each logical qubit is located at exactly one node, we have the
following constraint:

Z T =1, Vg€ Q. (qubit) (1)
veV

In addition, since the quantum processor v € V has n,
computation qubits, we have the following constraint to make
sure that node v can host at most n, logical qubits:

Z Tgw <Ny, Yv € V. (node) 2)
q€Q
For all ¢1,¢2 € Q, we denote the number of CNOT gates
operated on logical qubits q1, g2 as y(q1,q2) € N.
y(q1,q2) = G.count(CNOT(q1,q2)).!

Denote the cost of a remote CNOT gate between processors
vy and v € V as ¢(vy,v2). Based on the graph H, we can
compute the distance between any two nodes vi,v9 € V,

list.count(value) function returns the number of elements with the
specified value in the list.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 19:21:43 UTC from IEEE Xplore. Restrictions apply.

i.e., the number of hops of the shortest path between vy, vo
on graph H, denoted as dist(vi,v2). Then, according to
Section IV-C, we can get if vy # vo, i.e., dist(vy,vg) > 1,

1) +Crcn .
(3)

c(v1, v2) = Cepp-dist(v1, v2)+Chrsm - (dist (v, va)—

And it is trivial to see c¢(v,v) = 0,Vv € V.
Thus, the total cost of all remote CNOT gates after qubit
allocation, i.e., the communication overhead, is

E= > > v
q1,92€Q v1,v2€V
In all, the QA-DQC problem can be formulated as the below

Y Y

q1,92€Q v1,v2€V

s.t. Z Tgo =1, VqgeEQ,

eV
qu’v <Ny, YoeV.
q€eqQ
B. Proof of NP-hardness
This section shows that QA-DQC is NP-hard through a

reduction from the Quadratic Assignment Problem (QAP). It

means QA-DQC cannot be solved in deterministic polynomial
time unless P = NP.

Theorem 1. QA-DQC is NP-hard.

q17Q2 Uhv?) “Tgy v Taree (4

min Q1, QQ U17 U2) *Lgy,v1 " L,z

Proof. As for any QAP problem with facility set P, location
set L, a weight function w : P x P — R and a distance
function d : L x L — R, we can generate a QA-DQC
problem in polynomial time by setting @ = P,V = L,y(:) =
w(-),c(-) = d(-),n, = 1(Vv € V). Here, the generated QA-
DQC problem and the given QAP are exactly the same, and
thus obviously, they are equivalent.

In all, QAP <p QA-DQC. Since QAP is NP-hard, QA-DQC
is also NP-hard. O

C. Problem Complexity and Analysis

Theorem 2. Unless P = N P, there is no polynomial-time n®-
approximation algorithm for QA-DQC, for any a < 1. Here
n is the number of processors in the quantum network.

Proof. Hassin et al. [31] has proved there is no polynomial-
time n®-approximation algorithm for the QAP when the graph
of locations is a tree, for any a < 1, unless P = N P. Here n
is the number of location nodes in the graph. Below we will
prove by contradiction based on this known conclusion.
Assume there is an polynomial-time n®-approximation al-
gorithm, noted as Aj;, for any QA-DQC for some a < 1.
Here n is the number of processors in the quantum network.
In the proof of Thm. 1, we have proved for any problem
p € QAP, there exist a p’ € QA-DQC, such that p’ = p.
Denote the QAP when the graph of locations is a tree as
QAP|¢yce- Thus, for any problem p € QAP|irce C QAP, there
exist a p’ € QA-DQC, such that p’ = p. Since p’ € QA-
DQC, A; is an polynomial-time n®-approximation algorithm

for p’. So, it is also an polynomial-time n*-approximation
algorithm for p, for any any problem p € QAP|;pee. In all,
A; is a polynomial-time n®-approximation algorithm for the
QAP when the graph of locations is a tree, which contradicts
the conclusion proved by Hassin et al. By contradiction, we
have proved our theorem. O

As we said before, the compilation of quantum circuits in
distributed quantum computing demands extremely accurate
compiler optimization. Thus, approximation algorithms with
approximation ratios larger than or equal to n are unaccept-
able. Pursuing more accurate optimization, we resort to a meta-
heuristic algorithm called Simulated Annealing.

V1. META-HEURISTIC ALGORITHM FOR QA-DQC
A. The framework for MHSA

Simulated Annealing algorithm (SA) [32] simulates the fast
heating and slow cooling of metal so that a uniform crystalline
state can be achieved to guide the search for an optimal
solution to an optimization problem. In general, it is divided
into two stages. In the beginning, the solution moves relatively
freely in the solution set, where a downhill move is always
accepted, while an uphill move can also be accepted by a
probability defined by Boltzmann’s law. Then the probability
of accepting an uphill move will attenuate as time goes on
in the slow cooling process. After a certain point, almost
no uphill move is accepted, which is considered the second
stage. But the problem is that the SA algorithm determines the
next move by random selection from the neighborhood of the
current solution. Thus, the process of searching for a downbhill
move is inefficient in this stage.

Inspired by work [33], we plan to design a heuristic Local
Search algorithm (NS) developed for QA-QDC and use it to
replace the inefficient second stage of SA, generating a hybrid
simulated annealing algorithm. Specifically, at the beginning
of the cooling process, we first capitalize on the SA algorithm
until a stopping point: We stop SA when the random move
from the current solution has been continuously rejected by
fixed times, i.e., the algorithm has stuck in the current solution
for a certain number of consecutive trials. It reflects SA goes
into the insufficient second process. Thus, we exchange to the
heuristic NS algorithm that can quickly converge to a local
optimum of the current solution area.

What’s more, it should be noted that, in the state-of-the-
art SA algorithms, the temperature changes periodically rather
than decreases monotonically [34], which implies a sequence
of fast heating and slow cooling is considered instead of
straight-forward annealing. Thus, to further improve algorithm
performance, we exploit periodic cooling, also called the
multistage annealing process.

In general, we design a multistage hybrid simulated anneal-
ing algorithm. It starts from a randomly generated solution
and first resorts to NS for a local optimum. Then we initialize
the temperature (heating process) and call the SA algorithm
(cooling process) until a stopping point. Next, employ the NS
algorithm to let the current solution fast converge to a local

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 19:21:43 UTC from IEEE Xplore. Restrictions apply.

optimum. Afterward, repeat the heating, cooling, and local
search processes a fixed number of times noted as ngqge.

Below we will first introduce the designed NS algorithm for
the QA-DQC problem.

B. Local Neighborhood Search Algorithm

We plan to design the local search algorithm based on
the neighborhood. It is a kind of gradient descent approach.
Specifically, we always select a move that maximizes the
decrease of the overhead.

We first define a move and the neighborhood for a solution
of QA-DQC. In QAP, the popularly-used solution move is
realized by a location swap between two facilities. However,
QA-DQC is a bit more complicated than QAP. The main
difference is that multiple logical qubits may be assigned to
the same quantum processor. The maximal number of logical
qubits that can be assigned to a quantum processor is limited
by the processor’s capacity, i.e., the number of computation
qubits in this processor.

Like QAP, a qubit swap can help make a solution move in
QA-DQC, but the swap must be limited between two logical
qubits assigned to different quantum processors. But it is not
enough. Only swaps can not produce all solution moves in
QA-DQC. There is another kind of essential move, which
is realized by moving a certain logical qubit to a different
quantum processor with idle computation qubits.

For simplification, we unite these two kinds of solution
moves by adding some pseudo logical qubits to occupy all idle
computation qubits in all processors of the quantum cluster. By
doing so, all solution moves can be realized by a qubit swap
between a real logical qubit and another real logical qubit or
a pseudo logical qubit. Specifically, moving a certain logical
qubit of processor V), to a different quantum processor V;, with
idle computation qubits can be considered as a swap between
the logical qubit of processor V,, and a pseudo logical qubit
of processor V.

In all, we redefine the solution f,(q) : Q@ — V, by
extending its domain @ to Q'(Q C Q') so that each processor
node v € V has exactly n, different ¢ € Q" mapped to it.
The physical meaning is adding some pseudo logical qubits
to occupy all idle computation qubits in all processors of the
quantum cluster. Then a move is exactly a swap between two
(real or pseudo) logical qubits that are assigned to a different
quantum processor. And the neighborhood of a solution f,(q)
is defined by N(f,) = {filfi(a) = fu(a), file) =
fol@), Va1, q2 € @, folqr) # folaz); fi(a) = fu(a),Vq €
Q',q # q1,q2.}. Our local neighborhood search algorithm
works as follows: Find the solution f! with minimal overhead
among the neighborhood of the current solution N'(f,). If the
overhead of the newfound solution f] is lower than that of
the current solution f,,, move to the found solution f;, mark
it as the current solution, i.e., f, = f/, and repeat the above
steps. Otherwise, a local optimum has been found, and the
local neighborhood search ends.

C. Multistage Hybrid Simulated Annealing Algorithm

a) Principle of the Simulated Annealing: The principle
of the Simulated Annealing is as follows: Given a solution
fv, randomly select a neighbouring solution f] € {c and
compute the difference between their corresponding overhead,
AE = E(f!)—E(f,). (Recall that E(-) here is the optimization
objective function defined in Eq. 4.) If the solution overhead
is reduced, i.e., AE < 0, then replace the current solution f,
by the new one f/, i.e., perform a move, which is a downhill
move, and use resulting configuration as the starting point for
the next trial. If AE > 0, which means the move will increase
the solution overhead, then accept such an uphill move with
probability. i

P(AE) = e+, (5)
where ¢ is the current temperature value. Note that such
accepting probability computation follows Boltzmann’s law.
Regarding the probabilistic acceptance of uphill move, it
is achieved by generating a random number in [0,1] and
comparing it against the threshold P(ARE).

This procedure is repeated until the termination criterion is
satisfied. And finally, the “best-so-far” (BSF) solution, rather
than the current solution, is regarded as the result of the
algorithm.

b) Cooling Schedule: The cooling schedule consists of
(1) an initial value of the temperature, (2) an updating function
for changing the temperature, and (3) an equilibrium test.

The “behavior” of the simulated annealing algorithm de-
pends on the temperature. Perhaps the most important thing
is to select a suitable initial temperature ty. Since in the
framework of our MHSA, the employed simulated annealing
algorithm always starts from a local optimum. And at the
beginning of the slow cooling process, we want it to move
relatively freely so that it can escape from the current local
optima and move to another possible good solution area. Thus,
it asks for a relatively high initial temperature ¢,. But a
too high initial temperature may lead to some meaningless
move and unprofitable time cost. So choosing a relatively
high, but not too high, initial temperature is essential for the
performance of our MHSA.

The temperature updating function we choose is

tht1 = - ty, Yk >0, (to = const,a < 1) (6)

which is a popularly used schedule [32] in SA.

Besides, Kirkpatrick et al. proposed that, at each tem-
perature, the cooling schedule must allow the simulation to
proceed long enough for the process to reach a steady state
— equilibrium. A simple but typically used equilibrium test is
that the temperature is decreased after a fixed number of trials,
noted as 1neqip.

c) Termination Criterion: According to the framework
of MHSA, the termination criterion is that the move from
the current solution has been continuously rejected by a fixed
number of times, i.e., the algorithm has stuck in the current
solution for a certain number of consecutive trials, noted as

Nstuck-

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 19:21:43 UTC from IEEE Xplore. Restrictions apply.

o
o
o
o
o

Overhead
w w
o w
o o
o o
o o

—— SimulatedAnnealing 395001 —— Overhead r8
—— LocalSearch

---- so-far-best results

—— Runtime

o

39000

Runtime

IS

Overhead
w
©
w
o
o

38000 4

0 100 200 300 400
Iterations

2000 4000
Initial Tempture

500 600 700

(a) The heating, cooling and local search process of our MHSA with 10 stages (nstage = 10). The red line is the (b) The initial temperature selection
local search part of MHSA, while the blue line is the cooling process of SA in MHSA. At the point where the red process
line becomes blue, there is an instant heating process. The green line exhibits the so-far-best results.

Fig. 4: Performance evaluation of MHSA. (The tested quantum circuit is haml5, while the quantum cluster is star topology.)

VII. PERFORMANCE EVALUATION

In this section, we perform extensive simulations to evaluate
the performance of the MHSA and compare it with the
benchmarks.

A. Simulation Setting

a) Tested Quantum Circuits: In our simulations, we
test 8 different quantum circuits listed in Table. I. They
are functions taken from RevLib [35] and the corresponding
compiled .qasm? file can be founded in [36].

Name | num. of qubits | num. of CNOTs | initial temp. to
410184 14 104 300
clip 14 14772 20000
cm42a 14 771 1100
sao2 14 16864 20000
haml5 15 3858 4000
dc2 15 4131 5000
col4 15 7840 10000
misex] 15 2100 4000

TABLE I: Different tested quantum circuits

b) Quantum Cluster and Network Topology: We con-
sider all the processors in the quantum cluster have 5 physical
qubits, like IBM Yorktown, Vigo, Burlington, etc. Since each
quantum link needs to occupy 2 physical qubits work as
communication qubits and our tested quantum circuits need
14-15 computation qubits, we implement our simulations on
the following 8 different network topologies with 5 nodes
and at most 5 links, shown in Fig. 5: 1) star (4 links, 17
computation qubits), 2) line (4 links, 17 computation qubits),
3) cross (4 links, 17 computation qubits), 4) ring (5 links, 15
computation qubits), 5) quad (5 links, 15 computation qubits),
6) star-traingl (5 links, 15 computation qubits), 7) line-triangl
(5 links, 15 computation qubits), 8), cross-triangl (5 links, 15
computation qubits).

c) Parameters Setting: We set the EPR pair generation
cost C¢pr = 7, the cost of a Bell-state measurement circuit
Chsm = 3 and the cost of a remote CNOT circuit C,.,, = 5.
Besides, in MHSA, we set the cooling parameter o = 0.9, the
fixed number of trials for equilibrium test 1.4 = 5, the stop
point ng,cr = 9, the number of repeated heating and cooling
stages Nsiqge = H0.

2QASM is a quantum programming language

>~ T Ty 7

(a) star (b) line (c) cross (d) ring

S A

(e) quad (f) star-triangl (g) line-triangl ~ (h) cross-triangl

Fig. 5: Different quantum cluster / network topologies

d) Benchmarks: We will compare MHSA with the
following 3 solutions for QA-DQC: 1) RanDom feasible
solution (Rd): the algorithm returns a random feasible solution
for QA-DQC; 2) isolated Neighborhood Search algorithm
(NS): the algorithm is exactly the local neighborhood search
part in our MHSA introduced in Section VI-B; 3) isolated
Simulated Annealing algorithm (SA): the algorithm is a
popularly-used meta-heuristic algorithm.

Note that since the randomly produced initial solution will
affect the performance of NS, SA, and MHSA to some extent,
we always use the average value of 100 groups of simulations
to show moderate cases in all the plots below except Fig. 4a.

B. Performance Evaluation of MHSA

We first use a tested quantum circuit called haml5 and the
topology of the quantum cluster called star to evaluate the
performance of MHSA in Fig. 4.

Fig. 4a shows the 10 stages of the heating, cooling, and local
search process of our MHSA, where the x-axis value is the
index of each iteration, or to say, each solution move, and the
y-axis value is the overhead, i.e., the total cost of all remote
CNOT operations. In the plot, the red line is the local search
part of MHSA, while the blue line is the cooling process of SA
in MHSA. At the point where the red line becomes blue, which
is the beginning of a stage of the heating, cooling, and local
search process, there is an instant heating process. The green
line exhibits the so-far-best results. In this plot, we can see that
after each red-to-blue point, which is also the local optimal
point, there are some uphill moves that help escape the local
optimal point. Afterward, as the cooling process (the blue line),
more and more downhill moves appear. To some stuck point
(the blue-to-red point), the MHSA turns to employ the local
neighborhood search algorithm (the red line) to realize a fast
drop to the local optimal solution (the next red-to-blue point).

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 19:21:43 UTC from IEEE Xplore. Restrictions apply.

3000 1 350000 -

450000

—+ Rd —+ Rd — Rd
-4 SA 200001 -$- SA 400000 -$- sA
2500
-4 NS 300000 1 -4 NS 4- NS
® | - MHsA | g T 4 mmsa | 3 350000 - MHSA
@ 2000] @ 15000 2 200000
';E, f". 250000 £ §
2 15001 g g > 250000
° ° 200000 © 100001 °
J O S 1 _ 200000
e I s A _ vl 4 *--1--4\,_-4 e v
P RTRRE SXIE TR SE n E B S o T oty TEF Ty ke S 150000 4 Pl L R L
o (Pt pobiaicd] g [e BT] s ety . -
str Ine crs rng qud s-tg Itg c-tg str Ine crs rng qud s-tg I-tg c-tg str Ine crs rng qud s-tg I-tg c-tg str Ine crs rng qud s-tg I-tg c-tg
Different Topologies Different Topologies Different Topologies Different Topologies
(a) 410184 (b) clip (c) cm42a (d) sao2
100000 200000 55000
90000 1 90000 1 180000 50000
5 80000 T 80000 -5 160000 4 g 450007
8 3 3 $ 40000 1
2 2 2 140000 A 2
£ 70000 4 £] < <
< = 70000 = % 35000 4
£ 60000 | 2 2 1200001 2
30000 4
° © 600004 © 100000 °
50000 4 + 25000 -
) 80000 ... T g,
40000 50000 : *—i—"—*"\#—i 20000
60000

T T T T T T T T
str Ine crs rng qud stg I-tg c-tg
Different Topologies

T T T T T T T T
str Ine crs rng qud s-tg I-tg c-tg
Different Topologies

(e) haml5 (f) dc2

T T T T T T T T
str Ine crs rng qud stg I-tg c-tg
Different Topologies

T T T T T T T T
str Ine crs rng qud s-tg I-tg c-tg
Different Topologies

(g) col4 (h) misexl

Fig. 6: Performance Comparisons of MHSA and three benchmarks when allocating qubits of 8 different quantum circuits to

the processors of quantum clusters with 8 different topologies

The whole process realizes our expectations when designing
MHSA in Section VI-A.

Fig. 4b exhibits different initial temperature selections and
the corresponding overhead and run-time, which reveals that
as the selected initial temperature increases, the overhead
first decreases and then becomes steady while the run-time
monotonically increases. It is consistent with our analysis
in Section VI-C(b): relatively high initial temperature helps
escape from the current local optima to exploit better solutions,
but the too high initial temperature may cause unprofitable
time cost without performance improvement. In Fig. 4b, we
can see the cost-efficient initial temperature for quantum
circuit haml5 and a star-topology quantum cluster is 3500.
Considering other cluster topologies, the final selected initial
temperatures for each quantum circuit are shown in Table 1.

C. Performance Comparison on Different Topologies

Fig. 6 lists the performance comparison of MHSA and three
benchmarks when allocating qubits of 8 different quantum
circuits to the processors of quantum clusters with 8 different
topologies, where each subplot is the case of qubit allocation
of each quantum circuit on 8 different cluster topologies.
As we can see from Fig. 6, MHSA always maintains better
performance than the benchmarks regardless of the quantum
circuits and cluster topologies. Besides, the standard variances
of all overhead results of MHSA in all subplots of Fig. 6
are near zero, which implies the results of MHSA are close
to the optimal outcomes. It is because local optima always
depend on the randomly produced initial solution to some
extent, which will cause large variance. In 100 groups of
repeated simulations, only global optima will always maintain
the same, producing zero variance. It can also be reflected by
the phenomenon that the results of benchmarks with worse
performance have larger standard variance in the plots.

Additionally, the best suitable cluster topology, i.e., the
topology with the lowest overhead by MHSA, for different
quantum circuits are different. As for the quantum circuits
410184, misexl, dc2, clip, haml5, the best cluster topology
is ring, while the best cluster topology for the other quantum
circuits, i.e., sao2, cm42a, col4 is line. Such results shed some
light on the design of distributed quantum networks, i.e., how
to connect quantum processors to produce clusters.

VIII. CONCLUSION AND FUTURE WORK

With the development of quantum communication, dis-
tributed quantum computing can produce more computational
power, where different quantum processors can communicate
and cooperate in executing more complicated computational
tasks that a single quantum processor cannot handle. But it
also brings challenges to the special compiler design, i.e.,
how to allocate logical qubits to different quantum processors.
This paper builds a model for a general qubit allocation
problem for distributed quantum computing. We first prove
its NP-hardness. Moreover, we further prove there is no
polynomial-time n®-approximation algorithm to solve it for
any a < 1 unless P = NP, where n is the number of
processors in the quantum network. To deal with this issue,
we design a multistage hybrid simulated annealing algorithm,
which combines a meta-heuristic algorithm called simulated
annealing and a designed heuristic local search algorithm for
QA-DQC. Lastly, we perform extensive simulations on various
real quantum circuits and different network topologies, which
demonstrates that the proposed MHSA always outperforms the
baselines and is close to the optimal results.

IX. ACKNOWLEDGE

This research work was supported in part by the National
Science Foundation under grant number CNS-2231040.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 19:21:43 UTC from IEEE Xplore. Restrictions apply.

[1]

[2

—

[3]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

REFERENCES

A. Politi, J. C. Matthews, and J. L. O’brien, “Shor’s quantum factoring
algorithm on a photonic chip,” Science, vol. 325, no. 5945, pp. 1221,
2009.

E. Gibney, “The quantum gold rush,” Nature, vol. 574, no. 7776, pp. 22—
24, 2019.

D. Cuomo, M. Caleffi, and A. S. Cacciapuoti, “Towards a distributed
quantum computing ecosystem,” IET Quantum Communication, vol. 1,
no. 1, pp. 3-8, 2020.

F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
et al, “ Quantum supremacy using a programmable superconducting
processor,” Nature, vol. 574, no. 7779, pp. 505-510, 2019.

J. Chow, O. Dial, and J. Gambetta, “ IBM Quantum breaks the 100-qubit
processor barrier,” IBM Research Blog, 2021.

Y. Zhou, E. M. Stoudenmire, and X. Waintal, “What limits the simulation
of quantum computers?,” Physical Review X, vol. 10, no. 4, pp. 041038,
2020.

'W. Kozlowski, and S. Wehner, “Towards large-scale quantum networks,”
Proceedings of the Sixth Annual ACM International Conference on
Nanoscale Computing and Communication, pp. 1-7, 2019.

A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini,
and G. Bianchi, “Quantum internet: networking challenges in distributed
quantum computing,” IEEE Network, vol. 34, no. 1, pp. 137-143, 2019.
M.Y. Siraichi, V.ED. Santos, C. Collange, and FEM.Q. Pereira, “Qubit
allocation,”Proceedings of the 2018 International Symposium on Code
Generation and Optimization, pp. 113-125, 2018.

A. Ash-Saki, M. Alam, and S. Ghosh, “QURE: Qubit re-allocation in
noisy intermediate-scale quantum computers,’Proceedings of the 56th
Annual Design Automation Conference, pp. 1-6, 2019.

P. Benioff, “The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing
machines,”Journal of statistical physics, vol. 22, no. 5, pp. 563-591,
1980.

O. Regev, “ Quantum computation and lattice problems,”SIAM Journal
on Computing, vol. 33, no. 3, pp. 738-760, 2004.

R. Van Meter, S. J. Devitt, “The path to scalable distributed quantum
computing,”Computer, vo. 49, no. 9, pp. 31--42, 2016.

M. Zomorodi-Moghadam, M. Houshmand, and M. Houshmand, ”Opti-
mizing teleportation cost in distributed quantum circuits,”International
Journal of Theoretical Physics, vol. 57, no. 3, pp. 848-861, 2018.

P. Andres-Martinez, and C. Heunen, ”Automated distribution of quantum
circuits via hypergraph partitioning,” Physical Review A, vol. 100, no. 3,
pp- 032308, 2019.

Z. Davarzani, M. Zomorodi-Moghadam, M. Houshmand, and M. Nouri-
baygi, A dynamic programming approach for distributing quantum
circuits by bipartite graphs,’Quantum Information Processing, vol. 19,
no. 10, pp. 1-18, 2020.

Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag, “Engineering a
direct k-way hypergraph partitioning algorithm.,”Proceedings of the Nin-
teenth Workshop on Algorithm Engineering and Experiments (ALENEX).
Society for Industrial and Applied Mathematics, pp. 28-42, 2017.

A. Yimsiriwattana, and S.J. Lomonaco Jr, “Distributed quantum com-
puting: A distributed Shor algorithm,”Quantum Information and Com-
putation II, vol. 5436, pp. 360-372, SPIE, 2004.

R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin, N. Linden,
D. Shepherd, and M. Stather, “Efficient distributed quantum comput-
ing,”Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 469, no. 2153, pp 20120686, 2013.

D. Ferrari, A.S. Cacciapuoti, M. Amoretti, and M. Caleffi, "Compiler
design for distributed quantum computing,”/EEE Transactions on Quan-
tum Engineering, 2020.

A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J.A. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” Physical review A, vol. 52, no. 5, pp. 3457,
199s.

M.H. Devoret, A. Wallraff, and J.M. Martinis, “Superconducting qubits:
A short review,” arXiv preprint cond-mat/0411174, 2004.

J. Koch, M.Y. Terri, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer,
A. Blais, M.H. Devoret, S.M. Girvin, and R.J. Schoelkopf, “Charge-
insensitive qubit design derived from the Cooper pair box,” Physical
Review A, vol. 76, no. 4, pp. 042319, 2007.

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[36]

J.M. Gambetta, J.M. Chow, and M. Steffen, “Building logical qubits in a
superconducting quantum computing system,” npj Quantum Information,
vol. 3, no. 1, pp. 1-7, 2017.

Y.F. Huang, X.F. Ren, Y.S. Zhang, L.M. Duan, and G.C. Guo, “Experi-
mental teleportation of a quantum controlled-NOT gate,” Physical review
letters, vol. 93, no. 24, pp. 240501, 2004.

G.F. Dang, and H. Fan, “Remote controlled-NOT gate of d-
dimension,’arXiv preprint arXiv:0711.3714, 2007.

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Exper-
imental entanglement swapping: entangling photons that never inter-
acted,”Physical review letters, vol. 80, no. 18, pp. 3891, 1998.

A. M. Goebel, C. Wagenknecht, Q. Zhang, Y.A. Chen, K. Chen,
J. Schmiedmayer, and J. W. Pan, “Multistage entanglement swap-
ping,’Physical Review Letters, vol. 101, no. 8, pp. 080403, 2008.

D. A. Lidar, and T. A. Brun, “Quantum error correction,”Cambridge
university press, 2013.

M. Mohseni, P. Read, H. Neven, S. Boixo, V. Denchev, R. Babbush,
A. Fowler, V. Smelyanskiy, and J. Martinis, “Commercialize quantum
technologies in five years,”Nature, vol. 543, no. 7644, pp. 171-174,
2017.

R. Hassin, A. Levin, and M. Sviridenko, “Approximating the mini-
mum quadratic assignment problems,”ACM Transactions on Algorithms
(TALG), vol. 6, np. 1, pp. 1-10, 2009.

S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by
simulated annealing,”science vol. 220, no. 4598, pp. 671-680, 1983.
0O.C. Martin, and S.W. Otto, “Combining simulated annealing with local
search heuristics,”Annals of operations research, vol. 63, no. 1, pp. 57—
75, 1996.

A. MiseviCius, “A modified simulated annealing algorithm for the
quadratic assignment problem,”Informatica, vol. 14, no. 4, pp. 497-514,
2003.

R. Wille, D. Grof3e, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
An online resource for reversible functions and reversible circuits,’38th
International Symposium on Multiple Valued Logic (ismvl), pp. 220-225,
2008. RevLib is available at http://www.revlib.org.
https://github.com/cda-tum/qmap/tree/main/examples.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 19:21:43 UTC from IEEE Xplore. Restrictions apply.

