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Abstract—With the advancements in quantum communication,
optically connected quantum processors can form a distributed
quantum computing system. Distributed quantum computing
provides a scalable path to execute more complicated compu-
tational tasks that a single quantum processor cannot handle.
Yet, distributed quantum computing needs a new compiler to
map logical qubits of a quantum circuit to different quantum
processors in the system. This paper formulates and studies
the qubit allocation problem for distributed quantum comput-
ing (QA-DQC). We prove the NP-hardness of the formulated
problem. Moreover, we show there is no polynomial-time n

a-
approximation algorithm for any a < 1 unless P = NP , where
n is the number of processors in the quantum network. We
first propose a heuristic local search algorithm for QA-DQC.
Furthermore, we design a multistage hybrid simulated annealing
algorithm (MHSA) by combining the local search algorithm and a
simulated annealing meta-heuristic algorithm. Lastly, we perform
extensive simulations to evaluate the proposed MHSA under
various real quantum circuits and different network topologies.
Results show that MHSA outperforms popular baselines.

I. INTRODUCTION

Quantum computing can solve problems that are probably

impossible or highly inefficient on classical servers. For ex-

ample, Shor’s algorithm can factorize integers around expo-

nentially faster than algorithms on conventional servers [1],

which gives Shor’s algorithm the potential to break public-

key cryptography schemes such as RSA. Many governments

have invested enormous funds in quantum computing research

in recent years. For example, the US Government signed a

law that allows a $1.2 billion investment in quantum infor-

mation [2], and the European Commission approved a $1-

billion program to support quantum research [3]. In addition,

large companies like IBM and Google are also competing

in building commercial quantum computers. There have been

lots of achievements in quantum computing in recent years.

Google AI Quantum has achieved quantum supremacy, where

performing calculations on their Sycamore quantum computer

is 3,000,000 times faster than on a classical supercomputer [4].

IBM has presented a 127-Qubit (the quantum analog of

the classical bit) Quantum Processor named IBM Eagle in

November 2021, which any classical computer can access [5].

Despite the benefits and achievements of quantum comput-

ing, building a single large processor in terms of the number

of qubits is challenging. One difficulty in building quantum

processors is quantum decoherence due to qubits interacting

with their environments, leading to system errors. The more

qubits there are, the more system errors. As the number

of qubits in a processor increases, the classical resource

required by the processor increases exponentially [6]. Practical

applications of quantum computers require thousands, or even

millions, of physical qubits, so it will be challenging for

individual quantum processors to reach such qubit numbers.

For example, when it comes to the unique shortest vector

problem in cryptography [12], the circuit grows large: lattice

dimension 3 already requires 842 qubits, which is far larger

than the current biggest quantum processor capacity.

Thanks to the advancement of quantum communication [7],

it is promising to build a distributed large-scale quantum pro-

cessor by connecting different processors of relatively small

scales [8]. We can perform gates on two qubits in different

processors by exploiting quantum entanglements between the

two processors (details can be found in Section III). A quan-

tum state can be in a superposition of many states, which is

exponential to the number of qubits. Therefore, as the number

of connected processors increases, the computational power of

the distributed quantum computer increases exponentially.

One critical problem when realizing distributed quantum

computing is qubit allocation. Specifically, quantum circuits

manipulate qubits, which are called logical qubits, since they

exist as abstractions within a quantum circuit. Qubit allocation

refers to the problem of mapping the logical qubits of a

quantum circuit into physical qubits, which are the actual

hardware units that store quantum bits. The qubit allocation

problem in a single quantum processor has been solved by

works [9], [10]. Besides, a mature qubit allocator called

ibmmapper has been proposed as part of IBM’s compiler and

runtime infrastructure. But these techniques are all limited to

the qubit allocation in a single quantum processor. The qubit

allocation in distributed quantum computing is different due to

quantum communication between different processors. So far,

few works have been devoted to the qubit allocation problem

in distributed quantum computing. At the same time, they are

all limited to some special quantum circuits, specific quantum

processors, or particular quantum network topologies.

In this paper, we focus on a general Qubit Allocation prob-

lem for Distributed Quantum Computing (QA-DQC), which
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can adapt all possible quantum circuits, quantum processors,

and quantum network topologies. Since local qubit allocation

has been successfully solved, in our model of QA-DQC, we

mainly focus on how to map the logical qubits of a quantum

circuit to different processors. The goal of QA-DQC is to

minimize the cost of remote operations between different

processors, which is the overhead of quantum communication

in the network. After determining the map of logical qubits

and quantum processors, the existing local qubit allocation

techniques can solve the rest local allocation problems, i.e.,

mapping logical qubits allocated to a quantum processor to

the physical qubits of the processor.

Before solving QA-DQC, we first prove its NP-hardness.

In addition, we show that there is no polynomial-time na-

approximation algorithm for any a < 1 unless P = NP .

Here n is the number of processors in the distributed quantum

computing system. Since quantum gates accumulate noise,

the compilation of quantum circuits in distributed quantum

computing demands high compiler optimization precision. It

implies that even the lowest approximation ratio, i.e., O(n),
is still far from reaching the precision requirement of real-

world compilers in QA-DQC. Thus, in the design of our

heuristic algorithm, we pay more attention to pursuing better

average performance rather than the worst-case bound. To

pursue great optimization performance, we take meta-heuristic

algorithms into consideration. We choose a meta-heuristic

algorithm called simulated annealing (SA). To further improve

optimization performance, we design a heuristic local search

algorithm for QA-DQC and combine it with SA to generate

a multistage hybrid simulated annealing algorithm (MHSA),

which has better performance than isolated SA or heuristic

local search algorithm.

Our main contributions are listed as follows.

• We formulate the QA-DQC problem, which can adapt

all possible quantum circuits, quantum processors, and

quantum network topologies.

• We prove the NP-hardness of QA-DQC and further prove

there is no polynomial-time na-approximation algorithm

for any a < 1 unless P = NP , where n is the number

of processors in the quantum network.

• We design an MHSA algorithm for QA-DQC, which

combines a meta-heuristic algorithm called simulated

annealing and a heuristic local search algorithm designed

for QA-DQC.

• We perform extensive simulations on various real quan-

tum circuits and different network topologies, demon-

strating that MHSA outperforms popular baselines.

The remainder of this paper is organized as follows. Section

II reviews the related works. In Section III, we give some

background knowledge on quantum computing. Section IV

states the architecture of distributed quantum computing.Based

on the architecture, we formulate the QA-DQC problem in

Section V. Afterward, Section VI a MHSA algorithm for

QA-DQC. Then Section VII is the performance evaluation of

MHSA. Finally, we conclude the paper in Section VIII.

II. RELATED WORK

Quantum computing [11] harnesses quantum mechanics

to gain the ability to solve problems that are too complex

for classical computers. The complexity of these targeted

problems, like the unique shortest vector problem in cryp-

tography [12], typically demands many physical qubits but

building a monolithic quantum system with lots of qubits

has technological limitations. These limitations are one of

the reasons for moving toward distributed quantum computing

[13].

In distributed quantum computing, different quantum pro-

cessors are connected to generate more computational power

than an isolated processor. But the communication between

different processors produces overhead in the compiler of

quantum circuits. Thus, the qubit allocation problem becomes

a hot spot in distributed quantum computing. Because the

concept of distributed quantum computing is so recent, so

is the interest in the qubit allocation problem for distributed

quantum computing. To the best of our knowledge, there have

been these previous attempts [14]–[16], [18]–[20] to solve this

problem.

Among them, three works [14]–[16] have a similar main

idea, which is to formulate the QA-DQC problem as a graph

partition problem. Zomorodi-Moghadam et al. [14] propose a

general approach, based on the Kernighan-Lin algorithm for

graph partitioning, to optimize the number of teleportations

for a distributed quantum computing architecture consisting of

two spatially separated and long-distance quantum subsystems.

Andres-Martinez et al. [15] develop an automated method to

distribute quantum circuits, which turns the quantum circuit

into a hypergraph, then finds a partitioning utilizing the KaHy-

Par solver [17] to minimize the number of cuts. Davarzani

et al. [16] put forward a dynamic programming algorithm

to reduce the number of communications in a distributed

quantum circuit. But such a basic idea and these proposed

solutions have some drawbacks. In particular, they ignore

the influence of quantum network topology on the overhead,

which is unpractical. We consider quantum network graph and

formulate QA-DQC as a generalization problem of Quadratic

Assignment Problem.

Besides, the other existing related works try to design

approximation algorithms for QA-DQC and achieve some

performance guarantee. Yimsiriwattana et al. [18] present a

distributed implementation of Shor’s quantum factoring algo-

rithm on integer N on a distributed quantum network model

and prove this distributed version of Shor’s algorithm requires

an additional overhead of O((logN)2) communication com-

plexity. Beals et al. [19] provide approximation algorithms

for efficiently moving and addressing quantum memory in

parallel, enabling the standard circuit model to be simulated

with a low overhead by a more realistic model of a distributed

quantum computer (DQC). And they prove as for the DQC

model with graph G, N processors, and O(logN) qubits per

processor, the overhead can be bounded by O(N). Ferrari et

al. [20] derive an upper bound O(n) of the overhead induced
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by quantum compilation for distributed quantum computing in

the network of linear topology, where n denotes the number

of logical qubits. However, they have two main shortcomings:

One is that the proven approximation ratios are too large to sat-

isfy the demand for extremely accurate compiler optimization

in distributed quantum computing; the other is that they are

all limited to some special quantum circuits, special quantum

network topologies, or special quantum processors. Different

from them, we design a meta-heuristic-based algorithm, which

can solve QA-DQC with any quantum circuits, quantum pro-

cessors, and network topologies. Besides, the meta-heuristic-

based algorithm has a performance advantage, adapting to high

compiler optimization precision demands in QA-DQC.

III. BACKGROUND

A. Qubit

In quantum computing, a qubit, short for a quantum bit, is a

basic unit of quantum information, like the binary digit in clas-

sical computers. A qubit is a two-state quantum-mechanical

system. In a classical system, the binary digit must be either

0 or 1. However, quantum mechanics allows the qubit to be in

a coherent superposition of both states simultaneously, which

is a fundamental property of quantum computing. We can use

two orthogonal basis vectors of a 2D complex vector space,

|0〉 =
(

1

0

)

and |1〉 =
(

0

1

)

, to represent the two basic states of

a qubit, then the state of a single qubit can be described by a

linear combination of |0〉 and |1〉:

α |0〉+ β |1〉 = α

(

1

0

)

+ β

(

0

1

)

=

(

α

β

)

,

where α and β are complex numbers and ‖α‖2 + ‖β‖2 = 1.

When we measure this qubit in the standard basis of |0〉 and

|1〉, according to the Born rule, the probability of outcome |0〉
is ‖α‖2, and the probability of outcome |1〉 is ‖β‖2.

B. Quantum Gate and Circuit

Quantum logic gates, simply called quantum gates, are

basic quantum operators on qubits to change their states. For

example, in the standard basis, the Hadamard-Wash gate H

can be represented by unitary matrix 1√
2

[

1 1
1 −1

]

and maps

the basis state |0〉 to
|0〉+|1〉√

2
, |1〉 to

|0〉−|1〉√
2

. Similarly, any

single-qubit gates, i.e., the gates applied on a single qubit, can

be represented as a 2× 2 matrix.

The CNOT, short for Controlled Not, gate applies on two

qubits. CNOT (q1, q2) indicates that qubit q1 control qubit q2
by negating q2 if and only if q1 is |1〉. Specifically,

CNOT (q1, q2) = (q1, q1
⊕

q2).

Quantum gates are also the building blocks of quantum

circuits like classical logic gates are for conventional digital

circuits. Fig. 1 shows a quantum circuit, which implements

2-qubit Glover’s search algorithm for searching |00〉. This

circuit has two logical qubits q0, q1, which are represented

as horizontal lines. It uses three different types of quantum

Fig. 1: Quantum circuit of 2-qubit Glover’s search algorithm

gates, i.e., H, X, and CNOT, and the final two measurements

to operate these two qubits.

Work [21] shows all single-qubit gates and the CNOT gate

form a universal set of gates that can implement arbitrary

circuits.

C. Quantum Processor

In practice, quantum processors based on superconducting

qubits (or NV center qubits) technology are modes of solid-

state circuits that only allow local interactions between the

physical qubits are connected together [22], [23]. Technical

reasons restrict the number of physical qubits, the number of

coupling connections, and their organization topology. [24] So

far, the biggest quantum processor is IBM’s Eagle processor,

which packs 127 qubits in its quantum-computing chip.

In a quantum processor, the physical qubits are divided

into two kinds: the computation qubits, devoted to running

the quantum circuit, and the communication qubits, used for

communication between processors.

D. Quantum Network / Cluster

A quantum network facilitates information transmission in

the form of qubits between physically separated quantum

processors. It works in a similar way to the classical network.

The main difference is the communication method based on

quantum entanglement.

Quantum entanglement is the physical phenomenon that

occurs when a group of particles shares spatial proximity in a

way that the quantum state of each particle of the group cannot

be described independently of the state of the others, even

when the particles are separated by a large distance. In quan-

tum network communication, we only employ a special case

of maximally entangled two-qubit states called EPR (short

for Einstein-Podolsky-Rosen) pairs. On the standard basis, the

states of EPR pairs can be written as |Φ+〉 = |00〉+|11〉√
2

.

In a quantum network /cluster, which is represented by

a graph H = (V,E), two processors v1, v2 ∈ V can

communicate directly only when there is a classical channel,

a quantum channel, and at least one pair of communication

qubits between them. If so, we consider these two quantum

processors are connected directly, i.e. (v1, v2) ∈ E. Note that

the quantum channel here is used for EPR pair generation.

IV. DISTRIBUTED QUANTUM COMPUTING

A. The Architecture of Distributed Quantum Computing

Distributed quantum computing can leverage the power of

interconnected quantum processors to create a virtual quantum

machine with processing capabilities that surpass its physi-

cal constituents alone. It is analogous to connecting several
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i.e., the number of hops of the shortest path between v1, v2
on graph H , denoted as dist(v1, v2). Then, according to

Section IV-C, we can get if v1 6= v2, i.e., dist(v1, v2) ≥ 1,

c(v1, v2) = Cepr ·dist(v1, v2)+Cbsm·(dist(v1, v2)−1)+Crcn.

(3)

And it is trivial to see c(v, v) = 0, ∀v ∈ V .

Thus, the total cost of all remote CNOT gates after qubit

allocation, i.e., the communication overhead, is

E =
∑

q1,q2∈Q

∑

v1,v2∈V

y(q1, q2) · c(v1, v2) · xq1,v1 · xq1,v2
. (4)

In all, the QA-DQC problem can be formulated as the below

ILP.

min
∑

q1,q2∈Q

∑

v1,v2∈V

y(q1, q2) · c(v1, v2) · xq1,v1
· xq1,v2

s.t.
∑

v∈V

xq,v = 1, ∀q ∈ Q,

∑

q∈Q

xq,v ≤ nv, ∀v ∈ V.

B. Proof of NP-hardness

This section shows that QA-DQC is NP-hard through a

reduction from the Quadratic Assignment Problem (QAP). It

means QA-DQC cannot be solved in deterministic polynomial

time unless P = NP .

Theorem 1. QA-DQC is NP-hard.

Proof. As for any QAP problem with facility set P , location

set L, a weight function w : P × P −→ R and a distance

function d : L × L −→ R, we can generate a QA-DQC

problem in polynomial time by setting Q = P, V = L, y(·) =
w(·), c(·) = d(·), nv = 1(∀v ∈ V ). Here, the generated QA-

DQC problem and the given QAP are exactly the same, and

thus obviously, they are equivalent.

In all, QAP ≤P QA-DQC. Since QAP is NP-hard, QA-DQC

is also NP-hard.

C. Problem Complexity and Analysis

Theorem 2. Unless P = NP , there is no polynomial-time na-

approximation algorithm for QA-DQC, for any a < 1. Here

n is the number of processors in the quantum network.

Proof. Hassin et al. [31] has proved there is no polynomial-

time na-approximation algorithm for the QAP when the graph

of locations is a tree, for any a < 1, unless P = NP . Here n

is the number of location nodes in the graph. Below we will

prove by contradiction based on this known conclusion.

Assume there is an polynomial-time na-approximation al-

gorithm, noted as A1, for any QA-DQC for some a < 1.

Here n is the number of processors in the quantum network.

In the proof of Thm. 1, we have proved for any problem

p ∈ QAP, there exist a p′ ∈ QA-DQC, such that p′ = p.

Denote the QAP when the graph of locations is a tree as

QAP|tree. Thus, for any problem p ∈ QAP|tree ⊆ QAP, there

exist a p′ ∈ QA-DQC, such that p′ = p. Since p′ ∈ QA-

DQC, A1 is an polynomial-time na-approximation algorithm

for p′. So, it is also an polynomial-time na-approximation

algorithm for p, for any any problem p ∈ QAP|tree. In all,

A1 is a polynomial-time na-approximation algorithm for the

QAP when the graph of locations is a tree, which contradicts

the conclusion proved by Hassin et al. By contradiction, we

have proved our theorem.

As we said before, the compilation of quantum circuits in

distributed quantum computing demands extremely accurate

compiler optimization. Thus, approximation algorithms with

approximation ratios larger than or equal to n are unaccept-

able. Pursuing more accurate optimization, we resort to a meta-

heuristic algorithm called Simulated Annealing.

VI. META-HEURISTIC ALGORITHM FOR QA-DQC

A. The framework for MHSA

Simulated Annealing algorithm (SA) [32] simulates the fast

heating and slow cooling of metal so that a uniform crystalline

state can be achieved to guide the search for an optimal

solution to an optimization problem. In general, it is divided

into two stages. In the beginning, the solution moves relatively

freely in the solution set, where a downhill move is always

accepted, while an uphill move can also be accepted by a

probability defined by Boltzmann’s law. Then the probability

of accepting an uphill move will attenuate as time goes on

in the slow cooling process. After a certain point, almost

no uphill move is accepted, which is considered the second

stage. But the problem is that the SA algorithm determines the

next move by random selection from the neighborhood of the

current solution. Thus, the process of searching for a downhill

move is inefficient in this stage.

Inspired by work [33], we plan to design a heuristic Local

Search algorithm (NS) developed for QA-QDC and use it to

replace the inefficient second stage of SA, generating a hybrid

simulated annealing algorithm. Specifically, at the beginning

of the cooling process, we first capitalize on the SA algorithm

until a stopping point: We stop SA when the random move

from the current solution has been continuously rejected by

fixed times, i.e., the algorithm has stuck in the current solution

for a certain number of consecutive trials. It reflects SA goes

into the insufficient second process. Thus, we exchange to the

heuristic NS algorithm that can quickly converge to a local

optimum of the current solution area.

What’s more, it should be noted that, in the state-of-the-

art SA algorithms, the temperature changes periodically rather

than decreases monotonically [34], which implies a sequence

of fast heating and slow cooling is considered instead of

straight-forward annealing. Thus, to further improve algorithm

performance, we exploit periodic cooling, also called the

multistage annealing process.

In general, we design a multistage hybrid simulated anneal-

ing algorithm. It starts from a randomly generated solution

and first resorts to NS for a local optimum. Then we initialize

the temperature (heating process) and call the SA algorithm

(cooling process) until a stopping point. Next, employ the NS

algorithm to let the current solution fast converge to a local
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optimum. Afterward, repeat the heating, cooling, and local

search processes a fixed number of times noted as nstage.

Below we will first introduce the designed NS algorithm for

the QA-DQC problem.

B. Local Neighborhood Search Algorithm

We plan to design the local search algorithm based on

the neighborhood. It is a kind of gradient descent approach.

Specifically, we always select a move that maximizes the

decrease of the overhead.

We first define a move and the neighborhood for a solution

of QA-DQC. In QAP, the popularly-used solution move is

realized by a location swap between two facilities. However,

QA-DQC is a bit more complicated than QAP. The main

difference is that multiple logical qubits may be assigned to

the same quantum processor. The maximal number of logical

qubits that can be assigned to a quantum processor is limited

by the processor’s capacity, i.e., the number of computation

qubits in this processor.

Like QAP, a qubit swap can help make a solution move in

QA-DQC, but the swap must be limited between two logical

qubits assigned to different quantum processors. But it is not

enough. Only swaps can not produce all solution moves in

QA-DQC. There is another kind of essential move, which

is realized by moving a certain logical qubit to a different

quantum processor with idle computation qubits.

For simplification, we unite these two kinds of solution

moves by adding some pseudo logical qubits to occupy all idle

computation qubits in all processors of the quantum cluster. By

doing so, all solution moves can be realized by a qubit swap

between a real logical qubit and another real logical qubit or

a pseudo logical qubit. Specifically, moving a certain logical

qubit of processor Vp to a different quantum processor Vq with

idle computation qubits can be considered as a swap between

the logical qubit of processor Vp and a pseudo logical qubit

of processor Vq .

In all, we redefine the solution fv(q) : Q −→ V , by

extending its domain Q to Q′(Q ⊆ Q′) so that each processor

node v ∈ V has exactly nv different q ∈ Q′ mapped to it.

The physical meaning is adding some pseudo logical qubits

to occupy all idle computation qubits in all processors of the

quantum cluster. Then a move is exactly a swap between two

(real or pseudo) logical qubits that are assigned to a different

quantum processor. And the neighborhood of a solution fv(q)
is defined by N (fv) = {f ′

v|f
′
v(q1) = fv(q2), f

′
v(q2) =

fv(q1), ∀q1, q2 ∈ Q′, fv(q1) 6= fv(q2); f
′
v(q) = fv(q), ∀q ∈

Q′, q 6= q1, q2.}. Our local neighborhood search algorithm

works as follows: Find the solution f ′
v with minimal overhead

among the neighborhood of the current solution N (fv). If the

overhead of the newfound solution f ′
v is lower than that of

the current solution fv , move to the found solution f ′
v , mark

it as the current solution, i.e., fv = f ′
v , and repeat the above

steps. Otherwise, a local optimum has been found, and the

local neighborhood search ends.

C. Multistage Hybrid Simulated Annealing Algorithm

a) Principle of the Simulated Annealing: The principle

of the Simulated Annealing is as follows: Given a solution

fv , randomly select a neighbouring solution f ′
v ∈ {v and

compute the difference between their corresponding overhead,

∆E = E(f ′
v)−E(fv). (Recall that E(·) here is the optimization

objective function defined in Eq. 4.) If the solution overhead

is reduced, i.e., ∆E < 0, then replace the current solution fv
by the new one f ′

v , i.e., perform a move, which is a downhill

move, and use resulting configuration as the starting point for

the next trial. If ∆E ≥ 0, which means the move will increase

the solution overhead, then accept such an uphill move with

probability.

P (∆E) = e−
∆E

t , (5)

where t is the current temperature value. Note that such

accepting probability computation follows Boltzmann’s law.

Regarding the probabilistic acceptance of uphill move, it

is achieved by generating a random number in [0, 1] and

comparing it against the threshold P (∆E).
This procedure is repeated until the termination criterion is

satisfied. And finally, the ”best-so-far” (BSF) solution, rather

than the current solution, is regarded as the result of the

algorithm.

b) Cooling Schedule: The cooling schedule consists of

(1) an initial value of the temperature, (2) an updating function

for changing the temperature, and (3) an equilibrium test.

The “behavior” of the simulated annealing algorithm de-

pends on the temperature. Perhaps the most important thing

is to select a suitable initial temperature t0. Since in the

framework of our MHSA, the employed simulated annealing

algorithm always starts from a local optimum. And at the

beginning of the slow cooling process, we want it to move

relatively freely so that it can escape from the current local

optima and move to another possible good solution area. Thus,

it asks for a relatively high initial temperature t0. But a

too high initial temperature may lead to some meaningless

move and unprofitable time cost. So choosing a relatively

high, but not too high, initial temperature is essential for the

performance of our MHSA.

The temperature updating function we choose is

tk+1 = α · tk, ∀k ≥ 0, (t0 = const, α < 1) (6)

which is a popularly used schedule [32] in SA.

Besides, Kirkpatrick et al. proposed that, at each tem-

perature, the cooling schedule must allow the simulation to

proceed long enough for the process to reach a steady state

– equilibrium. A simple but typically used equilibrium test is

that the temperature is decreased after a fixed number of trials,

noted as neqlb.

c) Termination Criterion: According to the framework

of MHSA, the termination criterion is that the move from

the current solution has been continuously rejected by a fixed

number of times, i.e., the algorithm has stuck in the current

solution for a certain number of consecutive trials, noted as

nstuck.
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Fig. 4: Performance evaluation of MHSA. (The tested quantum circuit is ham15, while the quantum cluster is star topology.)

VII. PERFORMANCE EVALUATION

In this section, we perform extensive simulations to evaluate

the performance of the MHSA and compare it with the

benchmarks.

A. Simulation Setting

a) Tested Quantum Circuits: In our simulations, we

test 8 different quantum circuits listed in Table. I. They

are functions taken from RevLib [35] and the corresponding

compiled .qasm2 file can be founded in [36].

Name num. of qubits num. of CNOTs initial temp. t0
410184 14 104 300

clip 14 14772 20000
cm42a 14 771 1100
sao2 14 16864 20000

ham15 15 3858 4000
dc2 15 4131 5000

co14 15 7840 10000
misex1 15 2100 4000

TABLE I: Different tested quantum circuits

b) Quantum Cluster and Network Topology: We con-

sider all the processors in the quantum cluster have 5 physical

qubits, like IBM Yorktown, Vigo, Burlington, etc. Since each

quantum link needs to occupy 2 physical qubits work as

communication qubits and our tested quantum circuits need

14-15 computation qubits, we implement our simulations on

the following 8 different network topologies with 5 nodes

and at most 5 links, shown in Fig. 5: 1) star (4 links, 17

computation qubits), 2) line (4 links, 17 computation qubits),

3) cross (4 links, 17 computation qubits), 4) ring (5 links, 15

computation qubits), 5) quad (5 links, 15 computation qubits),

6) star-traingl (5 links, 15 computation qubits), 7) line-triangl

(5 links, 15 computation qubits), 8), cross-triangl (5 links, 15

computation qubits).

c) Parameters Setting: We set the EPR pair generation

cost Cepr = 7, the cost of a Bell-state measurement circuit

Cbsm = 3 and the cost of a remote CNOT circuit Crcn = 5.

Besides, in MHSA, we set the cooling parameter α = 0.9, the

fixed number of trials for equilibrium test neqlb = 5, the stop

point nstuck = 5, the number of repeated heating and cooling

stages nstage = 50.

2QASM is a quantum programming language

(a) star (b) line (c) cross (d) ring

(e) quad (f) star-triangl (g) line-triangl (h) cross-triangl

Fig. 5: Different quantum cluster / network topologies

d) Benchmarks: We will compare MHSA with the

following 3 solutions for QA-DQC: 1) RanDom feasible

solution (Rd): the algorithm returns a random feasible solution

for QA-DQC; 2) isolated Neighborhood Search algorithm

(NS): the algorithm is exactly the local neighborhood search

part in our MHSA introduced in Section VI-B; 3) isolated

Simulated Annealing algorithm (SA): the algorithm is a

popularly-used meta-heuristic algorithm.

Note that since the randomly produced initial solution will

affect the performance of NS, SA, and MHSA to some extent,

we always use the average value of 100 groups of simulations

to show moderate cases in all the plots below except Fig. 4a.

B. Performance Evaluation of MHSA

We first use a tested quantum circuit called ham15 and the

topology of the quantum cluster called star to evaluate the

performance of MHSA in Fig. 4.

Fig. 4a shows the 10 stages of the heating, cooling, and local

search process of our MHSA, where the x-axis value is the

index of each iteration, or to say, each solution move, and the

y-axis value is the overhead, i.e., the total cost of all remote

CNOT operations. In the plot, the red line is the local search

part of MHSA, while the blue line is the cooling process of SA

in MHSA. At the point where the red line becomes blue, which

is the beginning of a stage of the heating, cooling, and local

search process, there is an instant heating process. The green

line exhibits the so-far-best results. In this plot, we can see that

after each red-to-blue point, which is also the local optimal

point, there are some uphill moves that help escape the local

optimal point. Afterward, as the cooling process (the blue line),

more and more downhill moves appear. To some stuck point

(the blue-to-red point), the MHSA turns to employ the local

neighborhood search algorithm (the red line) to realize a fast

drop to the local optimal solution (the next red-to-blue point).
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Fig. 6: Performance Comparisons of MHSA and three benchmarks when allocating qubits of 8 different quantum circuits to

the processors of quantum clusters with 8 different topologies

The whole process realizes our expectations when designing

MHSA in Section VI-A.

Fig. 4b exhibits different initial temperature selections and

the corresponding overhead and run-time, which reveals that

as the selected initial temperature increases, the overhead

first decreases and then becomes steady while the run-time

monotonically increases. It is consistent with our analysis

in Section VI-C(b): relatively high initial temperature helps

escape from the current local optima to exploit better solutions,

but the too high initial temperature may cause unprofitable

time cost without performance improvement. In Fig. 4b, we

can see the cost-efficient initial temperature for quantum

circuit ham15 and a star-topology quantum cluster is 3500.

Considering other cluster topologies, the final selected initial

temperatures for each quantum circuit are shown in Table I.

C. Performance Comparison on Different Topologies

Fig. 6 lists the performance comparison of MHSA and three

benchmarks when allocating qubits of 8 different quantum

circuits to the processors of quantum clusters with 8 different

topologies, where each subplot is the case of qubit allocation

of each quantum circuit on 8 different cluster topologies.

As we can see from Fig. 6, MHSA always maintains better

performance than the benchmarks regardless of the quantum

circuits and cluster topologies. Besides, the standard variances

of all overhead results of MHSA in all subplots of Fig. 6

are near zero, which implies the results of MHSA are close

to the optimal outcomes. It is because local optima always

depend on the randomly produced initial solution to some

extent, which will cause large variance. In 100 groups of

repeated simulations, only global optima will always maintain

the same, producing zero variance. It can also be reflected by

the phenomenon that the results of benchmarks with worse

performance have larger standard variance in the plots.

Additionally, the best suitable cluster topology, i.e., the

topology with the lowest overhead by MHSA, for different

quantum circuits are different. As for the quantum circuits

410184, misex1, dc2, clip, ham15, the best cluster topology

is ring, while the best cluster topology for the other quantum

circuits, i.e., sao2, cm42a, co14 is line. Such results shed some

light on the design of distributed quantum networks, i.e., how

to connect quantum processors to produce clusters.

VIII. CONCLUSION AND FUTURE WORK

With the development of quantum communication, dis-

tributed quantum computing can produce more computational

power, where different quantum processors can communicate

and cooperate in executing more complicated computational

tasks that a single quantum processor cannot handle. But it

also brings challenges to the special compiler design, i.e.,

how to allocate logical qubits to different quantum processors.

This paper builds a model for a general qubit allocation

problem for distributed quantum computing. We first prove

its NP-hardness. Moreover, we further prove there is no

polynomial-time na-approximation algorithm to solve it for

any a < 1 unless P = NP , where n is the number of

processors in the quantum network. To deal with this issue,

we design a multistage hybrid simulated annealing algorithm,

which combines a meta-heuristic algorithm called simulated

annealing and a designed heuristic local search algorithm for

QA-DQC. Lastly, we perform extensive simulations on various

real quantum circuits and different network topologies, which

demonstrates that the proposed MHSA always outperforms the

baselines and is close to the optimal results.
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[34] A. Misevičius, “A modified simulated annealing algorithm for the
quadratic assignment problem,”Informatica, vol. 14, no. 4, pp. 497–514,
2003.

[35] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
An online resource for reversible functions and reversible circuits,”38th

International Symposium on Multiple Valued Logic (ismvl), pp. 220–225,
2008. RevLib is available at http://www.revlib.org.

[36] https://github.com/cda-tum/qmap/tree/main/examples.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 06,2024 at 19:21:43 UTC from IEEE Xplore.  Restrictions apply. 


