

1 Indigo3: A Parallel Graph Analytics Benchmark Suite for 2 Exploring Implementation Styles and Common Bugs 3

4 YIQIAN LIU, Texas State University, USA
5

6 NOUSHIN AZAMI, Texas State University, USA
7

8 Avery R VANAUSDAL, Texas State University, USA
9

10 MARTIN BURTSCHER, Texas State University, USA
11

12 Graph analytics codes are widely used and tend to exhibit input-dependent behavior, making them particularly
13 interesting for software verification and validation. This paper presents Indigo3, a labeled benchmark suite
14 based on 7 graph algorithms that are implemented in different styles, including versions with deliberately
15 planted bugs. We systematically combine 13 sets of implementation styles and 15 common bug types to create
16 the 41,790 CUDA, OpenMP, and parallel C programs in the suite. Each code is labeled with the styles and bugs
17 it incorporates. We used 4 subsets of Indigo3 to test 5 program-verification tools. Our results show that the
18 tools perform quite differently across the bug types and implementation styles, have distinct strengths and
19 weaknesses, and generally struggle with graph codes. We discuss the styles and bugs that tend to be the most
20 challenging as well as the programming patterns that yield false positives.
21

22 **CCS Concepts:** • Software and its engineering → Software verification and validation; • Computing
23 methodologies → Parallel computing methodologies; Parallel algorithms.
24

25 Additional Key Words and Phrases: Benchmark-suite design, bug insertion, software verification, graph
26 analytics, parallel computing
27

28 ACM Reference Format: 29

30 Yiqian Liu, Noushin Azami, Avery R VanAusdal, and Martin Burtscher. 2024. Indigo3: A Parallel Graph
31 Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs. *ACM Trans. Parallel
32 Comput.* 1, 1 (May 2024), 30 pages. <https://doi.org/10.1145/3665251>
33

34 1 INTRODUCTION 35

36 With the rise of social networks, recommender systems, GPS navigators, and data science, graph
37 algorithms for computing communities, centrality, shortest paths, frequent motifs, and so on have
38 become an important workload. Many of these algorithms exhibit irregular behavior, meaning
39 their control flow and memory-access patterns are data dependent and tend to change during
40 program execution [22]. Control-flow irregularity typically stems from *variable-iteration* loops, and
41 memory-access irregularity usually comes from *pointer-chasing* operations.
42

43 Such behavior makes it challenging for verification tools to check program correctness, especially
44 since the observed behavior for one input or time slice may not be representative of the behavior
45 of the same code for a different input or time slice [21]. Parallelism often exacerbates the problem
46 as the relative timing of the threads can change from run to run.
47

48 Authors' addresses: Yiqian Liu, y_l120@txstate.edu, Texas State University, 601 University Drive, San Marcos, TX, USA,
49 78666; Noushin Azami, Texas State University, 601 University Drive, San Marcos, USA, noushin.azami@txstate.edu; Avery
R VanAusdal, Texas State University, 601 University Drive, San Marcos, USA, arv107@txstate.edu; Martin Burtscher, Texas
State University, 601 University Drive, San Marcos, USA, burtscher@txstate.edu.
50

51 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
52 provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
53 full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
54 Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
55 prior specific permission and/or a fee. Request permissions from permissions@acm.org.
56

57 © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
58

59 2329-4949/2024/5-ART \$15.00
60

61 <https://doi.org/10.1145/3665251>
62

50 To make things worse, irregularity creates opportunities for implementing the same algorithm in
 51 many different ways. For example, we have written a connected-components (CC) algorithm using
 52 hundreds of different combinations of parallelization and implementation styles (168 CUDA versions,
 53 36 OpenMP versions, and 36 C-threading versions) [45]. The large number of implementation
 54 styles adds yet another dimension of complexity to the program verification problem. In fact, the
 55 community possesses little understanding of how the many possible ways of implementing an
 56 irregular algorithm affect program verification.

57 Several widely-used benchmark suites with parallel implementations of irregular graph algo-
 58 rithms exist, including Lonestar [38] with 14 parallel implementations of 11 graph algorithms and
 59 Gardenia [69], an extended version of GAP [13], with 126 parallel implementations of 14 graph
 60 algorithms. These and similar suites include a range of interesting algorithms and inputs to study.
 61 However, none of them are designed to provide a large variety of each algorithm, nor do they
 62 include enough inputs to elicit the many different irregular behaviors needed to thoroughly evaluate
 63 the effectiveness of verification tools.

64 Moreover, since these suites were designed for performance measurements, they do not include
 65 bugs to help with designing and testing program verification tools. Only a few suites contain
 66 defective codes, such as DataRaceBench [43]. Hence, verification developers typically run their
 67 tools on existing open-source code bases [36]. This approach presents several challenges. First, it
 68 requires manual code inspection to verify any reported bugs. Second, it does not help with true or
 69 false negatives. Third, selecting a suitable set of open-source codes and installing them tends to
 70 be time consuming. Fourth, such codes naturally lack documentation of the bugs they contain. In
 71 some cases, tool designers have scanned commit histories to identify older versions of a code base
 72 with known bugs to test their tools [68]. However, this approach is even more time consuming, the
 73 “unfinished” code is even harder to install and run, and true and false negatives remain a problem.
 74 Clearly, the community could benefit from a “calibrated” suite that includes many code samples
 75 with *labeled* bugs to evaluate and improve their verification tools.

76 In response to this need, we introduced Indigo [47], a microbenchmark suite capable of automati-
 77 cally generating thousands of bug-free and buggy irregular parallel code patterns. While valuable,
 78 these microbenchmarks are simple in nature and do not compute meaningful results. To address
 79 this limitation, we expanded our efforts with the introduction of Indigo2 [45], which is based on 6
 80 important graph algorithms and includes hundreds of bug-free CUDA, OpenMP, and parallel C++
 81 implementations of each algorithm.

82 Building upon this foundation, we now present Indigo3, a fusion of the strengths of Indigo and
 83 Indigo2. Indigo3 extends Indigo2 by incorporating additional programs and versions, including a
 84 minimum spanning tree algorithm and hybrid parallelization of all codes, while also introducing a
 85 broad range of bugs akin to those found in Indigo. The incorporated software defects include data
 86 races, other synchronization issues, livelocks, deadlocks, and memory errors. Indigo3 methodically
 87 and automatically inserts these bugs as well as all possible combinations thereof to generate the
 88 codes in the suite. Since we manually select the applicable styles and bugs for each algorithm, all of
 89 the generated codes can be compiled. The bug-free codes generate identical results to the serial
 90 implementation of a validated algorithm. The file name of each code indicates which bugs, if any,
 91 are present. In total, Indigo3 includes 2516 bug-free codes and 39,274 buggy codes. In this paper,
 92 we use a subset of these codes to evaluate the effectiveness of current program verification tools
 93 and highlight important avenues for future work in the program verification domain.

94 The paper makes the following main contributions.

95 • It introduces Indigo3, the first *labeled* verification benchmark suite that includes a wide
 96 range of full-fledged buggy and bug-free irregular CUDA, OpenMP, and parallel C codes.
 97

- It presents 13 largely orthogonal parallelization and implementation styles for CPUs and GPUs, yielding the 2516 bug-free versions of 7 key graph algorithms in Indigo3.
- It describes 15 types of common bugs and how they are systematically inserted into the bug-free base codes to create the 39,274 buggy programs in Indigo3.
- It evaluates 2 GPU and 3 CPU program verification tools on Indigo3 codes to explore how different implementation styles and bug types affect the tools' effectiveness.

The Indigo3 benchmark suite is publicly available in open source on Github [46].

The rest of the paper is organized as follows. Section 2 reviews relevant background information. Section 3 summarizes related work. Section 4 describes the design of the Indigo3 suite in detail. Section 5 discusses the experimental methodology. Section 6 evaluates several CPU and GPU program verification tools on buggy and bug-free codes from Indigo3. Section 7 summarizes the paper and draws conclusions.

2 BACKGROUND

This section provides background information on the main types of verification tools and the graph format used by the Indigo3 codes. It also presents an example of an irregular program.

2.1 Program verification

As outlined in the introduction, irregularity in programs is caused by input-dependent memory accesses and control flow. Such behavior makes codes harder to debug because even buggy codes will execute correctly for inputs that happen to yield (1) control flow that avoids the problematic code sections or (2) memory-access patterns that exclude the problematic data dependencies. In other words, only certain inputs may trigger the software defects present in the code. Moreover, the thread timing in parallel programs similarly only triggers software defects in some but not all executions of a program, even when using the same input. Together, this makes detecting bugs in irregular parallel programs particularly challenging.

Verification tools mainly consider the correctness of a program and are not concerned with performance. There are two main types of tools: static and dynamic. A dynamic tool observes runtime events while the program is executing [28]. Such tools tend to be relatively fast but only catch problems that actually occur during the observed run. For example, if the used input does not result in the code block containing a data race being executed, a dynamic tool will not detect the race. Hence, dynamic tools cannot prove the absence of data races even if they have not found any [43]. In other words, they typically produce no false positives but do produce false negatives.

Static verification tools, in contrast, examine the code before the program is run, for instance by analyzing the dependency graph, control flow, and data flow. Importantly, they consider all possible program behaviors and, in cases where they cannot prove that certain combinations of memory accesses or program paths never occur together, also include impossible behaviors. Hence, they typically produce no false negatives (if the bug lies in their search space) but do produce false positives. The generally large number and high complexity of code paths and memory-access patterns in irregular programs can quickly lead to a combinatorial explosion of possibilities to consider, making static tools potentially very slow on such codes.

In summary, irregular programs tend to be more challenging to verify than regular codes. This is true for both static and dynamic verification approaches.

2.2 Parallelization and implementation styles

There are numerous ways to parallelize irregular programs. We differentiate code optimizations from parallelization/implementation styles as follows. Parallelization and implementation styles

148 are broadly applicable to many graph algorithms. In contrast, code optimizations tend to be specific
 149 to individual programs or a particular implementation of an algorithm. Due to this difference,
 150 programmers are more likely to be able to apply a given parallelization or implementation style
 151 when writing an irregular program than they are to apply a given code optimization. An example
 152 of a parallelization style is using thread, warp, or block granularity in GPU codes [73], as described
 153 in Section 4.1.8. An example of an implementation style is push versus pull (i.e., pushing data to
 154 neighboring vertices or pulling data from neighbors), which is common in both CPU and GPU
 155 graph codes [12], as described in Section 4.1.4.

156 Indigo3 employs numerous parallelization and implementation styles to create thousands of
 157 irregular programs. This multitude of combinations yields a wide range of irregular codes and
 158 behaviors for use in program verification and other domains. The styles present in Indigo3 are
 159 described in Section 4.1.

160 2.3 Irregular code example

161 Breadth-First Search (BFS) is an important graph traversal algorithm that is used in many applica-
 162 tions, such as finding the shortest path in networks, identifying connected communities, and
 163 web crawling [51]. It labels all vertices with the shortest distance (in number of edges) from a
 164 given source vertex. Section 4 uses BFS as an example to describe different parallelization and
 165 implementation styles.

166 As shown in Algorithm 1, BFS starts by setting the distance of the source vertex to 0 and all other
 167 distances to ∞ . For each $edge(v, n)$, a new distance is calculated (i.e., $dist[v] + 1$) in each iteration.
 168 Vertex n 's distance is updated if the new distance is shorter. These edge relaxation operations repeat
 169 until the algorithm reaches a fixed point. The three *for all* loops are parallel assuming *dist* and
 170 *updated* are accessed with atomic loads and stores. Whereas more work-efficient BFS algorithms
 171 exist, this version generally yields more parallelism and is often used, especially in GPU codes.

172 Using the graph from Figure 1 as input and vertex 0 as the source, Table 1 shows the BFS
 173 computation step by step. It initializes the distance of the source to 0 and all other distances to ∞ .
 174 In the first iteration, every active vertex v (i.e., whose distance is not ∞) calculates a new distance
 175 (i.e., $dist[v] + 1$) to its neighbors. The new distance for vertices 1 and 2 is 1, which is smaller than
 176 their current distances, so they are updated to 1, as shown in the *Iter1* column of the table. Similarly,
 177 in the second iteration, vertices 0, 1, and 2 calculate new distances to their neighbors and find
 178 shorter distances for vertices 3 and 4. The next iteration is the final iteration because no new shorter
 179 distances are found.

181 182 Table 1. Distance values computed in each step of the BFS algorithm on the example graph

183 Vertex	184 Init	185 Iter1	186 Iter2	187 Iter3
188 0	189 0	190 0	191 0	192 0
193 1	194 ∞	195 1	196 1	197 1
198 2	199 ∞	200 1	201 1	202 1
203 3	204 ∞	205 ∞	206 2	207 2
208 4	209 ∞	210 ∞	211 2	212 2

193 Note that this algorithm is input dependent and has both control-flow (e.g., line 12) and memory-
 194 access (e.g., line 14) irregularity. It is impossible to statically predict the iteration count of the inner
 195 *for-all* loop without knowing the input graph. Similarly, it is impossible to statically predict the
 196 order in which the elements of the *dist* array will be written unless we know the input graph and
 197 the order of the elements in the adjacency lists.

197 **Algorithm 1** Parallel breadth-first search

```

198 Require: Graph  $G = (V, E)$  and source vertex  $s$ 
199 1: for all vertices  $v \in V$  do
200 2:   if  $v = s$  then
201 3:      $dist[v] \leftarrow 0$ 
202 4:   else
203 5:      $dist[v] \leftarrow \infty$ 
204 6:   end if
205 7: end for
206 8:  $updated \leftarrow true$ 
207 9: while  $updated$  do
208 10:    $updated \leftarrow false$ 
209 11:   for all vertices  $v \in V$  do
210 12:     for all neighbors  $n \in adj[v]$  do
211 13:       if  $dist[n] > dist[v] + 1$  then
212 14:          $dist[n] \leftarrow dist[v] + 1$ 
213 15:          $updated \leftarrow true$ 
214 16:       end if
215 17:     end for
216 18:   end for
217 19: end while

```

218 **Ensure:** Each vertex is labeled with the shortest distance from s

223 Implementing the loop over a vertex's neighbors (line 12) using the CSR format (see below)
 224 provides the opportunity for out-of-bounds accesses, especially in the presence of vertices with no
 225 neighbors. Moreover, the writes to the $dist$ array as well as to $updated$ are likely to yield data races
 226 in a parallel implementation unless proper synchronization primitives are utilized. For example,
 227 assume two threads are processing the graph from Figure 1. Since vertex 4 is a neighbor of vertices
 228 2 and 3, a data race is possible if the two threads processing vertices 2 and 3, respectively, are
 229 allowed to push their updated distance to vertex 4 in an unsynchronized manner. Depending on
 230 internal timing, the distance of vertex 4 may end up as the distance from vertex 2, vertex 3, or some
 231 other value, even a seemingly impossible arbitrary value [18].

232

233 2.4 CSR graph format

234 The Compressed Sparse Row (CSR) format is one of the most widely used graph representations [27].
 235 It is based on two dense arrays: an array of indices and an array of edges. The edge array holds the
 236 concatenated adjacency lists of all vertices. The index array holds the starting position (index) of
 237 each adjacency list. It has an extra element at the end specifying the size of the edge array. Figure 1
 238 shows an example graph and its CSR representation.

239 For example, Pannotia [23] and Lonestar [38] use CSR inputs. All Indigo2 and, by extension,
 240 Indigo3 input graph generators produce graphs in this format, meaning that every generated graph
 241 can be used as an input for any code in our suites. Moreover, basing Indigo3 on the CSR format
 242 makes it easy for users to use their own graphs. For this purpose, we provide converters from
 243 several common formats (e.g., MatrixMarket, SNAP, and DIMACS) to our CSR format [20].

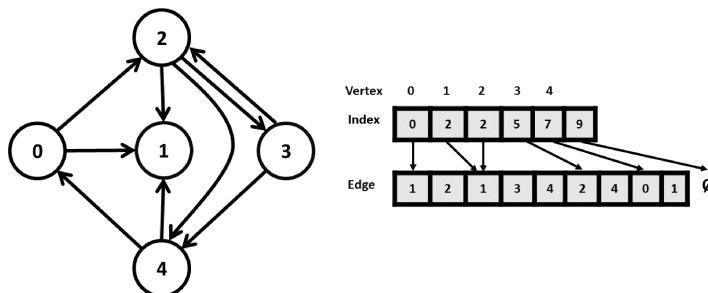


Fig. 1. Example graph (left) and corresponding CSR representation (right)

3 RELATED WORK

This section reviews prior benchmark suites of parallel programs (designed for either performance evaluation or verification), automatic code generation, and verification tools for parallel codes.

3.1 Parallel benchmark suites

Many benchmark suites with parallel codes exist. They target a plethora of program behaviors, application domains, programming languages, and so on. The early suites that focus on parallel programs mainly comprise *regular* high-performance computing (HPC) applications. One of the first suites not focusing on HPC is PARSEC [16], released in 2008, which contains 12 regular parallel codes. With accelerators becoming popular, quite a few suites now include GPU code. The Rodinia [24] suite targets heterogeneous systems. It exhibits different types of parallelization, memory-access and data-communication patterns, synchronization, and power consumption through 23 regular parallel codes written in CUDA, OpenMP, and OpenCL. The SHOC [25] suite is designed to test the performance and stability of heterogeneous systems. It contains 25 regular parallel codes. Parboil [61] is a suite for evaluating the throughput of a range of applications, which can be used by programmers as a baseline to improve upon and/or for task-parallel programs. It includes 11 parallel codes. The Chai [32] suite includes 14 parallel codes to evaluate the shared virtual memory, memory coherence, and system-wide atomics of heterogeneous systems as well as data- and task-based workload partitioning between the CPU and GPU. Lonestar [38] contains 22 C++ and CUDA implementations of iterative graph algorithms. Pannotta [23] is an OpenCL suite of 8 applications for studying graph algorithms on GPUs. GraphBIG [50] contains implementations of representative data structures, workloads, and data sets from 21 real-world use cases of multiple application domains. GAPBS [13] not only specifies graph kernels, input graphs, and evaluation methodologies but also provides optimized reference implementations for 6 mostly irregular parallel codes written in OpenMP. GARDENIA [69] is a suite for studying irregular graph algorithms on accelerators. It includes 9 workloads from graph analytics, sparse linear algebra, and machine learning. GBBS [26] is a C++ suite of scalable, provably-efficient implementations of 20 graph problems for shared-memory multicore machines. It extends the Ligra interface with additional primitives and clearly defined cost bounds. Our Indigo3 suite, which is based on irregular graph algorithms, is much larger than these prior suites. It contains 2516 bug-free and 39,274 buggy codes.

295 There are also parallel benchmark suites in other domains. For instance, the NAS Parallel
296 Benchmarks for GPUs (NPB-GPU) [10] contain larger CFD applications with more complex routines
297 offloaded to the GPU. SPar [33] is a Domain-Specific Language (DSL) for developing parallel stream
298 applications. It uses standard C++ attributes to introduce annotations for tagging components
299 such as the stream sources and processing stages. Stream processing introduces a unique set of
300 challenges, including ensuring the correct order (e.g., video applications need to keep the order of
301 the frames). SPBench [30] is a framework for benchmarking such stream processing applications.

302 Many prior publications present ways to parallelize and optimize irregular graph codes. Several
303 of them discuss and evaluate at least some implementation styles, but no systematic study of
304 a large number of styles exists. Becchi et al. propose workload consolidation schemes [67] and
305 different parallelization templates [41] to increase the GPU utilization of programs with nested
306 parallelism. Wang et al. characterize dynamically formed parallelism and evaluate codes designed
307 to exploit them [66]. Nasre et al. present morph algorithms and provide insights into how other
308 morph algorithms can be efficiently implemented for GPUs [56]. In contrast, Indigo3 systematically
309 applies 13 general parallelization and implementation styles to a set of 7 key graph algorithms.

310 Indigo3 not only includes orders of magnitude more codes than other benchmark suites but also
311 a much larger number of inputs (which is important for data-dependent codes) and supports the
312 creation of user-defined subsets through configurable code and graph generators. Between the
313 thousands of codes and the unbounded number of inputs, Indigo3 allows users to run millions of
314 distinct tests and to create subsets for many different usage scenarios. Furthermore, as described
315 below, Indigo3 includes versions of its codes with deliberately planted bugs, giving users the ability
316 to methodically test and analyze program verification tools.

317 3.2 Benchmark suites for data-race detection

318 DataRaceBench [43] is a relatively recent suite of regular programs designed to evaluate CPU
319 data-race detection tools. It includes a set of kernels, some of which contain bugs. It comes with a
320 script to evaluate verifiers such as Helgrind, Archer, ThreadSanitizer, Intel Inspector, and Coderrect
321 Scanner. Verma et al. enhanced the suite by adding kernels that represent additional patterns
322 and include FORTRAN code [64]. RMRaceBench [59] is a microbenchmark suite to evaluate the
323 capabilities of RMA (Remote Memory Access) race detection tools for MPI RMA, OpenSHMEM,
324 and GASPI. It consists of about 100 synthetic race test cases for each programming model, aiming
325 to cover all possible race scenarios. In our prior work [48], we introduced the Indigo benchmark
326 suite, which contains common irregular code patterns. We systematically built variations of these
327 patterns to alter the control-flow and memory-access behavior and/or to introduce bugs, yielding
328 the thousands of OpenMP and CUDA microbenchmarks in the suite. In contrast, Indigo3 includes
329 full-fledged graph algorithms instead of only short parallel code patterns. This enabled us to
330 introduce additional parallelization bugs, yielding over 41,000 codes for verification-tool evaluation.

331 There are also benchmark suites for other parallel programming languages such as Go. Tu et
332 al. analyzed the causes, detection, and fixes of 171 concurrency bugs from 6 popular Go software
333 applications [62]. GoBench [71], the first suite for Go concurrency bugs, was introduced in 2021. It
334 contains 82 real bugs from 9 open source applications and 103 bug kernels. It covers traditional
335 and Go-specific concurrency issues. It uses configuration files in json format that record the type
336 of bugs and describe how to generate the corresponding Docker files. Indigo3's configuration file
337 similarly defines the types of codes and inputs to be included in the generated suite.

338 3.3 Automatic code generation

339 The source code annotation and variation in CREST [63] and DLBENCH [58] inspired the code
340 generation process in the Indigo suites. DLBENCH consists of a kernel generator, a profiler, and a
341 342 343

344 performance analyzer to generate parameterized variants of a synthetic microbenchmark. CREST is
 345 a software framework that analyzes dependencies among GPU threads and performs source-level
 346 restructuring. It uses source-code annotations in the code restructurer to control optimizations. In
 347 our prior work on parallelization and implementation styles for graph algorithms, we took 6 key
 348 graph algorithms, generated hundreds of CUDA, OpenMP, and parallel C++ versions of each of
 349 them, and published them in the Indigo2 suite [45]. To determine which styles work well and under
 350 what circumstances, we evaluated 1106 of the Indigo2 programs on various systems and inputs.
 351 Most if not all of these styles have separately been described before. For example, Hong et al. [35]
 352 propose a warp-centric programming method to improve the performance of applications with
 353 heavily imbalanced workloads. Nasre et al. study data-driven and topology-driven implementations
 354 to understand the tradeoffs [54] and investigate high-level methods to eliminate atomics in irregular
 355 programs [52]. Pingali et al. discuss different styles to process nodes (e.g., topology-driven and
 356 data-driven) and operators that modify the graph (e.g., morphs and local computations) [57]. Indigo2
 357 combines these styles in hundreds of different ways, most of which have never been studied before.
 358 Indigo3 goes a step further by introducing bugs into the codes of Indigo2 to enable the evaluation
 359 of verification tools. Moreover, we ported the C++ codes from Indigo2 to C code in Indigo3 because
 360 many program verification tools do not yet support C++.

362 3.4 Program verifiers

363 GKLEE [42] searches for correctness and performance bugs in GPU codes. It includes 40 benchmarks
 364 that cover many CUDA program behaviors and problems such as thread divergence, bank conflicts,
 365 deadlock, and data races. GPUVerify [15] comes with a suite of 163 CUDA and OpenCL kernels
 366 drawn from public and commercial resources. Barracuda [29] is a concurrency bug detector for
 367 CUDA programs. It handles a wide range of parallelism constructs including branch operations,
 368 low-level atomics, and memory fences. It includes a concurrency bug suite with 53 programs, 12 of
 369 which have data races. Since essentially no third-party verification suites with buggy GPU codes
 370 exist, all of these tools include their own. ThreadSanitizer [8] is a dynamic data-race detector for
 371 C/C++ programs and is part of Clang 3.2 and gcc 4.8. Archer [1] is a data-race detector for OpenMP
 372 codes that combines static and dynamic techniques. CIVL [60] is a verification platform for parallel
 373 C programs. Its intermediate language, CIVL-C, employs a general model of concurrency that can
 374 represent OpenMP, CUDA, MPI, and Pthreads programs. CIVL includes front-ends to translate code
 375 to CIVL-C and a back-end that uses symbolic execution and model-checking techniques to verify
 376 CIVL-C programs. Compute-sanitizer (formerly cuda-memcheck) is a correctness-checking suite
 377 for CUDA. It includes the memory access error and leak detection tool Memcheck [5], the shared
 378 memory data access hazard detection tool Racecheck [6], the uninitialized global memory access
 379 detection tool Initcheck [4], and the thread synchronization hazard detection tool Synccheck [7].
 380 We evaluate several of these CPU and GPU program verification tools in the result section.

381 4 INDIGO3 DESIGN

383 The following subsections describe the various parallelization and implementation styles included in
 384 the Indigo3 programs. We illustrate each style on the example of the breadth-first-search algorithm
 385 described in Section 2.3. Note that, throughout this paper, we assume the shared data values (e.g.,
 386 the distances) to be scalars and assume load and store instructions to atomically read and write
 387 these values [19].

388 We wrote our graph codes using three parallel programming models: CUDA, OpenMP, and C
 389 threads. CUDA programs operate at multiple levels of parallelism. 32 contiguous threads form
 390 a warp and execute the same instruction in the same cycle (or are disabled). Sets of up to 32
 391 warps (up to 1024 threads) form a block, and the blocks are grouped into a grid. CUDA provides
 392

393 built-in variables for the thread and block indices as well as the block and grid dimensions. These
 394 values are often combined by computing $threadIdx.x + blockIdx.x * blockDim.x$ to form a global
 395 index for assigning work to each thread, which we call $gidx$ in our codes. OpenMP is based on
 396 *pragma* compiler directives. Each such directive consists of a name followed by optional clauses.
 397 For example, a clause can specify the scheduling to be used or a reduction operation. In Listing 11b
 398 below, it selects dynamic scheduling. Since C11, C supports multithreading in the standard library.
 399 It includes built-in types and functions for threads, atomics, mutual exclusion, and more.

400 4.1 Parallelization and implementation styles

401 This section describes the parallelization and implementation styles available in Indigo3.

402 4.1.1 Vertex-based vs. edge-based.

403 Graphs can be processed by iterating across either their vertices or their edges [72]. Listing 1a
 404 shows vertex-based code, where every thread processes a different vertex v based on the unique
 405 global thread index ($gidx$) and iterates over all neighbors n of v . Listing 1b shows edge-based code
 406 that assigns a different edge $e = (v, n)$ to each thread.

407 The algorithm to be implemented and the graph representation (e.g., CSR format [31]) typically
 408 determine which style is preferable. For instance, if the graph is represented by a set of adjacency
 409 lists, it is often more natural to employ the vertex-based style. To streamline the discussion, we use
 410 this style in the following subsections.

411 (a) Vertex-based

```
412
413
414
415     v = gidx;
416     if (v < nodes) {
417         beg = nbr_idx[v];
418         end = nbr_idx[v + 1];
419         for (i = beg; i < end; i++) {
420             n = nbr_list[i];
421             ...
422         }
423     }
424
425
426
427
428
429
430
431
432
433
434
```

415 (b) Edge-based

```
416     e = gidx;
417     if (e < edges) {
418         v = src_list[e];
419         n = dst_list[e];
420         ...
421     }
422
423
424
425
426
427
428
429
430
431
432
433
434
```

435 Listing 1. Vertex- and edge-based computations

436 4.1.2 Topology-driven vs. data-driven.

437 This style describes two ways to determine which data-structure elements to process [57]. The
 438 topology-driven approach in Listing 2a simply processes all elements. In contrast, the data-driven
 439 approach in Listing 2b only processes the elements that likely need to be updated, which are stored
 440 in a worklist (wl). For example, topology-driven BFS applies the relaxation function to all vertices of
 441 the graph in each iteration. Data-driven BFS only applies the relaxation function to the vertices in
 442 the worklist. Those vertices are in the worklist because their distance changed in the prior iteration.

443 The topology-driven style tends to yield more parallelism and is easier to implement. The data-
 444 driven style is more work efficient and, therefore, often results in better performance, especially
 445 for iterative algorithms that operate on high-diameter graphs.

446 4.1.3 Duplicates in worklist vs. no duplicates in worklist.

447 This style, which only applies to data-driven implementations, specifies whether or not duplicate
 448 items are allowed on the worklist [55]. In codes that allow duplicates, as shown in Listing 3a, each
 449 thread can push a vertex onto the worklist regardless of whether the worklist already contains that
 450 vertex. In programs that do not allow duplicates, as shown in Listing 3b (where itr denotes the
 451 current iteration), the threads may only add a vertex to the worklist if it is not already there.

```

442          (a) Topology-driven
443
444      v = gidx;
445      if (v < nodes) {
446          ...
447      }
448
449          (b) Data-driven
450
451      idx = gidx;
452      if (idx < worklist_size) {
453          v = worklist[idx]
454          ...
455      }

```

Listing 2. Topology- and data-driven computations

Disallowing duplicates eliminates redundant work in the next iteration. Moreover, it caps the size of the worklist. However, it incurs additional synchronization overhead and requires extra state tracking (*stat*) to determine whether a vertex is already on the worklist.

```

456          (a) Duplicates in worklist
457
458      idx = atomicAdd(&worklist_size, 1);
459      worklist[idx] = v;
460
461          (b) No duplicates in worklist
462
463      if (atomicMax(&stat[v], itr) != itr) {
464          idx = atomicAdd(&worklist_size, 1);
465          worklist[idx] = v;
466      }

```

Listing 3. Duplicates and no duplicates in worklist

4.1.4 Push vs. pull.
 The data flow in programs that update vertex data can be either push-based, where data is pushed from a vertex to its neighbors, or pull-based, where data is pulled from the neighbors to the vertex [14]. For example, in push-style BFS, shown in Listing 4a, a thread reads the vertex distance, adds 1, and updates the neighbor if the new distance is shorter. In pull-style BFS, shown in Listing 4b, the thread reads the neighbor's distance, adds 1, and updates the vertex distance if it is shorter.

Using the push style, different threads may update the same neighboring vertex. In contrast, the pull style guarantees that there is only a single writer per vertex. Moreover, it allows the update to be factored out of the loop (not done in Listing 4b), thus reducing memory accesses. Having said that, push is sometimes a more natural fit for the underlying algorithm and preferred in combination with a data-driven approach because only the neighbors that were actually updated need to be placed on the worklist.

```

476          (a) Push
477
478      for (i = beg; i < end; i++) {
479          n = nbr_list[i];
480          new_dist = dist[v] + 1;
481          atomicMin(&dist[n], new_dist);
482      }
483
484          (b) Pull
485
486      for (i = beg; i < end; i++) {
487          n = nbr_list[i];
488          new_dist = dist[n] + 1;
489          atomicMin(&dist[v], new_dist);
490      }

```

Listing 4. Push and pull data flow

4.1.5 Read-write vs. read-modify-write.
 Many graph algorithms conditionally update vertex data, where a thread reads the current value, performs a computation with it, and writes the new value if it meets a certain condition. For example, in BFS, the vertex distance is only updated if the new distance is shorter. This read-write approach works in certain situations, such as in Listing 5a, because the updates are monotonic

and the algorithm is resilient to temporary priority inversions [53]. The read-modify-write style shown in Listing 5b is more general as it does not suffer from this problem, but it requires an atomic read-modify-write operation, which tends to be slower and hampers parallelism.

```

491
492
493
494
495           (a) Read-write
496
497           old_dist = dist[v];
498           if (new_dist < old_dist)
499               dist[v] = new_dist;
500
501
502           (b) Read-modify-write
503
504           atomicMin(&dist[v], new_dist);
505
506
507
508
509
510

```

Listing 5. Read and write operations

4.1.6 Non-deterministic vs. deterministic.

The unpredictable timing of threads can introduce internal non-determinism in some parallel codes [17]. In Listing 6a, multiple threads may write an element of the *dist* array that is read by another thread. Depending on which thread performed the last write before the read, a different value may be read, leading to the computation of a different new distance. Any non-final distance value will be overwritten in subsequent iterations, meaning the ultimate result is deterministic, but the number of iterations may differ from run to run. Note that we only study programs in this paper where the final result is deterministic.

To make the code internally deterministic, Listing 6b uses two arrays, one that is only read (*dist1*) and another that is updated (*dist2*). However, in this approach, the computation can no longer take advantage of results generated in the same iteration, which may slow down the execution. On the upside, the deterministic code will always require the same number of iterations for a given input, which can simplify debugging [11].

```

516
517           (a) Non-deterministic
518
519           new_dist = dist[v] + edge_weight;
520           atomicMin(&dist[n], new_dist);
521
522
523           (b) Deterministic
524
525           new_dist = dist1[v] + edge_weight;
526           atomicMin(&dist2[n], new_dist);
527
528
529
530
531
532

```

Listing 6. Non-deterministic and deterministic updates

4.1.7 Persistent vs. non-persistent.

This style only applies to GPU codes. The persistent style, shown in Listing 7a, uses as many threads as the GPU can concurrently schedule on its SMs [34], meaning a thread may need to process multiple vertices (as is done in CPU codes). In contrast, the non-persistent style in Listing 7b launches at least as many threads as the input has vertices and assigns no more than one vertex to each thread. For graphs where the number of vertices exceeds the number of threads that can concurrently run on the SMs, the GPU will automatically schedule batches of threads until all threads have executed. The persistent style is a little more complex to implement but may improve performance in cases where common subexpressions can be precomputed or common data preloaded and then reused.

4.1.8 Thread vs. warp vs. block.

This variation only applies to GPU codes. It refers to the granularity at which the program processes the vertices. Threads, warps, and blocks are the three hardware-supported granularities. In thread-based BFS, each thread processes all neighbors of a vertex as shown in Listing 8a. In warp- or block-based BFS, the entire warp or block processes the neighbors of a single vertex, respectively, as

```

540
541         (a) Persistent
542         threads = blockDim.x * gridDim.x;
543         for (v = gidx; v < nodes; v += threads)
544             ...
545
546         (b) Non-persistent
547         v = gidx;
548         if (v < nodes)
549             ...
550
551
552

```

Listing 7. Persistent and non-persistent threads

546

547 shown in Listings 8b and 8c. Both warp- and block-based processing yields a two-level parallelization
 548 scheme: the vertices are distributed across the warps or blocks while the neighbors are distributed
 549 across the threads within the warp or block. This approach is useful for reducing load imbalance
 550 when processing high-degree vertices in power-law graphs [9]. However, it is typically not useful
 551 for low-degree graphs such as road networks.
 552

553

```

554         (a) Thread
555
556         beg = nbr_idx[v];
557         end = nbr_idx[v + 1];
558         for (i = beg; i < end; i++)
559             ...
560
561         (b) Warp
562
563         lane = threadIdx.x % warpSize;
564         beg = nbr_idx[v];
565         end = nbr_idx[v + 1];
566         for (i = beg + lane; i < end; i += warpSize)
567             ...
568
569
570         (c) Block
571
572         beg = nbr_idx[v];
573         end = nbr_idx[v + 1];
574         for (i = beg + threadIdx.x; i < end; i += blockDim.x)
575             ...
576
577
578
579

```

Listing 8. Thread, warp, and block parallelization

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

4.1.9 Global-add vs. block-add vs. reduction-add.

601 Reductions are widely used in parallel computing to combine multiple independently computed
 602 partial results into a single global result using a binary associative operator [44]. For example,
 603 multiple threads may need to add the partial sums they computed to a global sum.

604 We employ three reduction styles in our GPU codes. The first approach directly updates a shared
 605 global variable using atomic operations, as shown in Listing 9a. The second approach makes use
 606 of faster block-level atomics. All threads of a block first compute a block-local solution in the
 607 GPU’s “shared memory”, and only one thread updates the global solution as shown in Listing 9b.
 608 This minimizes the number of slower global atomics. The third approach utilizes not only shared-
 609 memory buffers for local results but also warp-level primitives to quickly perform warp and block
 610 reductions as outlined in Listing 9c. This implementation is more complex but tends to be faster as
 611 it avoids most memory accesses.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

Listing 9. Different reductions in CUDA

```

601                                (a) Atomic reduction
602
603      #pragma omp parallel for
604      for (i = beg; i < end; i++) {
605          ...
606          #pragma omp atomic
607          sum += val;
608      }
609
610                                (b) Critical reduction
611
612      #pragma omp parallel for
613      for (i = beg; i < end; i++) {
614          ...
615          #pragma omp critical
616          sum += val;
617      }
618
619                                (c) Clause reduction
620
621      #pragma omp parallel for reduction(+: sum)
622      for (i = beg; i < end; i++) {
623          ...
624          sum += val;
625      }

```

Listing 10. Different reductions in OpenMP

4.1.11 Default scheduling vs. dynamic scheduling.

OpenMP provides a convenient way to parallelize certain *for* loops using a *parallel for* directive. By default, as shown in Listing 11a, this directive statically assigns each thread a contiguous chunk of loop iterations. In contrast, the dynamic schedule in Listing 11b assigns iterations at runtime whenever a thread is ready to execute another iteration. This improves the load balance but incurs overhead.

```
622  
623             (a) Default scheduling  
624  
625             #pragma omp parallel for  
626             for (v = 0; v < nodes; v++) {  
627                 ...  
628             }  
629  
630             (b) Dynamic scheduling  
631  
632             #pragma omp parallel for schedule(dynamic)  
633             for (v = 0; v < nodes; v++) {  
634                 ...  
635             }
```

Listing 11. Default and dynamic loop scheduling

4.1.12 Blocked vs. cyclic.

When parallelizing the iterations of a *for* loop, a blocked schedule assigns a contiguous chunk of iterations to each thread, as shown in Listing 12a. If the iterations' running times correlate with their loop index, a block distribution can lead to load imbalance. The cyclic schedule in Listing 12b assigns the iterations in a round-robin fashion to the threads, which improves the load balance in this scenario. A blocked schedule usually has better data locality in CPUs because each thread

638 accesses contiguous memory locations. However, a cyclic schedule yields better data locality in
 639 GPUs because of coalesced memory accesses, i.e., combining multiple memory accesses into a
 640 single memory transaction.

(a) Blocked scheduling

```
642
643
644 beg = tid * nodes / threads;
645 end = (tid + 1) * nodes / threads;
646 for (v = beg; v < end; v++) {
647   ...
648 }
```

(b) Cyclic scheduling

```
649 for (v = tid; v < nodes; v += threads) {
650   ...
651 }
```

Listing 12. Blocked and cyclic scheduling

4.2 Common bugs

652 As discussed in the background section, the input-dependent behavior makes bug detection partic-
 653 ularly challenging in irregular codes. Additionally, certain parallelization bugs, such as data
 654 races, can be difficult to find because they are thread-timing dependent and may not manifest every
 655 time the code is executed. To help the community develop better tools and techniques to identify
 656 such bugs, Indigo3 contains versions of all its codes with intentionally planted software defects,
 657 including parallelism bugs (e.g., data races, missing barriers, livelock, and deadlock), memory bugs,
 658 and other serial bugs. Table 2 lists the parallelism-related bug types, Table 3 the memory bug types,
 659 and Table 4 the remaining bug types available in Indigo3.

Table 2. Parallelism bug types

Name	Description	Bug-free example	Buggy example
RaceBug	Missing atomic operation	atomicAdd(val, 1);	val++;
SyncBug	Missing barrier	syncthreads();	//no barrier
MixSyncBug	Mixing synchronization	critical(dist[src], s); critical(dist[dst], d);	critical(dist[src], s); atomic(dist[dst], d);
LivelockBug	Actively running w/o progress	if (newd < d) then d = newd;	if (newd <= d) then d = newd;
DeadlockBug	Some threads wait forever	if (v < nodes) then ...; syncthreads();	if (v < nodes) then syncthreads();
GuardBug	Non-atomic check	atomicMax(d, m);	if (d < m) then atomicMax(d, m);

677 Most of these bug types are well known. The GuardBug is a data race where a variable is accessed
 678 both atomically and non-atomically (e.g., in an attempt to avoid the slower atomic operation when
 679 it is not needed). Unlike the BoundsBug, the NbrBoundsBug often does not result in accesses past
 680 the end of an array but only past the end of one of the concatenated adjacency lists in the CSR's
 681 edge array (see Figure 1), making it harder to detect. The WorkloadBug occurs when the problem
 682 size is not evenly divisible by the number of threads. It ends up not processing all of the workload.

683 Each bug is independent in the sense that it causes a software defect no matter if there are
 684 any other bugs in the code. However, one bug may interact with another and yield more complex
 685 program behavior. For example, the memory bug "BoundsBug" can lead to out-of-bounds accesses,

Table 3. Memory bug types

Name	Description	Bug-free example	Buggy example
NameBug	Wrong variable	for (...; v < nodes; ...)	for (...; v < edges; ...)
ExcessThreadsBug	Too many threads	if (gidx < nodes)	//no check
BoundsBug	Out-of-bounds access	type buffer[size]; a = buffer[size - 1];	type buffer[size]; a = buffer[size];
NbrBoundsBug	Exceeding adjacency list	for (...; nbr < end; ...)	for (...; nbr <= end; ...)
UninitializedBug	Data not fully initialized	data[v] = init;	//no initialization
ShadowBug	Re-declaring a variable in an inner scope	int i; for (i = v; ...);	int i; for (int i = v; ...);

Table 4. Other bug types

Name	Description	Bug-free example	Buggy example
OverflowBug	Range overflow	val = INT_MAX; if (val != INT_MAX) then val += d;	val = INT_MAX; val += d;
WorkloadBug	Incorrect work assignment	gidx * size / threads;	chunksize = size / threads; gidx * chunksize;

which may trigger race conditions if multiple threads access the same out-of-bounds memory address. Hence, combining “BoundsBug” with “RaceBug” may increase the chance of data races.

Note that combining bugs increases the number of codes exponentially. For example, 3 bugs yield 7 buggy combinations (3 versions with 1 bug, 3 versions with 2 bugs, and 1 version with 3 bugs). Hence, adding just 3 bugs results in 7 times more codes than there are bug-free codes. Since at least 3 of the 14 bugs listed in Tables 2, 3, and 4 are applicable to each of our bug-free codes, we end up with nearly 40,000 buggy codes in Indigo3.

4.3 Annotation tags

Combining the implementation styles and bugs yields thousands of codes for each algorithm, making it nearly impossible and not maintainable to produce them by hand. Hence, we wrote just a few source files per algorithm and expressed all variations using annotation tags. These tags are similar to the annotation comments in the Java Modeling Language (JML) [40]. Indigo3 automatically generates the codes from the annotated source files. This code generation framework enables us and others to easily introduce additional implementation styles and bugs in the future by adding more tags.

Listing 13 provides an excerpt of annotated CUDA code. We use the syntax “`/*@tag@*/`” (without the quotes) to label alternative statements on a line of code. Each tag is associated with the code that follows it. The associated code will be generated when the tag is activated. Only one tag per line can be active at a time. Tags with different names on different lines are *independent* and all combinations can be generated. However, tags on different lines with the same name are *dependent*, meaning the same alternative will be used on all lines with the same tag names. Furthermore, matching tags affixed with “+” and “-”, such as Lines 3 and 5 in Listing 13, extend the activation idea to a block of code and enable the nesting of tags. This provides more flexibility and allows

736 us to express complex interactions between tags. Listing 14 shows the generated codes for the
 737 persistent and non-persistent style that have no name bug and no bounds bug.
 738

```

739 1 /*@NoNameBug@*/ const int gsize = nodes; /*@NameBug@*/ const int gsize = edges;
740 2
741 3 /*@+NonPersist@*/
742 4 /*@NoBoundsBug@*/ if (v < gsize) { /*@BoundsBug@*/ if (v <= gsize) {
743 5 /*@-NonPersist@*/
744 6
745 7 /*@+Persist@*/
746 8 /*@NoBoundsBug@*/ for (idx = v; idx < gsize; idx += threads) { /*@BoundsBug@*/ for
747 9 (idx = v; idx <= gsize; idx += threads) {
748 10 /*@-Persist@*/
749 11 }
750
751
752
753
754 1 const int gsize = nodes;
755 2 if (v < gsize) {
756 3 ...
757 4 }
```

Listing 13. Tag-based annotations to generate code variations

(a) Non-persistent code example

(b) Persistent code example

```

758 1 const int gsize = nodes;
759 2 for (idx = v; idx < gsize; idx += threads) {
760 3 ...
761 4 }
```

758 Listing 14. Examples of generated code

759
 760 We believe it is important for the generated codes to be human readable so they can be manually
 761 inspected and understood. Thus, Indigo3 does not use synthetic variable names. It automatically
 762 indents the code, which is necessary when variations introduce or remove *if* statements, and it
 763 eliminates blank lines due to empty tags. The file name of each generated program specifies the
 764 algorithm followed by all activated tags to make it easy to identify which file contains which code
 765 and what bugs are present, if any.

766 4.4 Subset selection

767 Combining the various implementation styles with all meaningful bug combinations yields 41,790
 768 codes. Running them through a reasonable set of inputs results in millions of tests, which may take
 769 too long to run. To control the execution time, the suite supports the generation of user-defined
 770 subsets of the codes.

771 The code filtering is accomplished through a configuration file. We adopted this approach from
 772 Indigo [49] and chose it to simplify the subset creation. The configuration file lists the desired code
 773 versions and filters out the rest. For example, the user can elect to only generate bug-free codes.
 774 TACO [37] similarly creates tensor algebra kernels based on user-defined constraints. With this
 775 approach, an Indigo3 user can, for instance, generate a small subset for testing and later a more
 776 extensive subset to perform a detailed study.

777 The configuration file comprises 4 rules to manage the code generation as shown in Listing 15.
 778 The user can select the target graph algorithms, bug types, implementation styles, and data types.
 779 The example in Listing 15 generates every possible implementation style for all 7 graph algorithms,
 780 does not insert any bugs, and only uses the integer data type. The supported algorithms are
 781 breadth-first search (bfs), single-source shortest paths (sssp), connected components (cc), maximal
 782 independent set (mis), minimum spanning tree (mst), triangle counting (tc), and page rank (pr).

785 Table 5 lists the available choices for the code filters. As a shorthand, Indigo3 also supports the
 786 keywords “all” and “only”. The former turns off any filtering, and the latter means only code that
 787 includes the required tag will be generated. For example, putting “only RaceBug” in the bug option
 788 rule generates only the codes that have a race bug but do not include any other bugs.

```
789 1 CODE:
790 2   algorithm: {all}
791 3   bug_option: {nobug}
792 4   style_option: {all}
793 5   dataType: {IntType}
```

Listing 15. Sample configuration file

Table 5. Choices for managing the code generation

Rule	Choices
Algorithm	all, bfs, sssp, cc, mis, mst, tc, pr
Bug option	all, nobug, bug names from Tables 2, 3, and 4
Style option	all, style names from Section 4.1
Data type	all, IntType, FloatType, LongType, DoubleType

5 EXPERIMENTAL METHODOLOGY

5.1 Hardware and software

806 The system we used for running the parallel C and OpenMP codes has two Intel Xeon Gold 6226R
 807 CPUs with 16 cores each. Hyperthreading is enabled, meaning the 32 cores can run 64 simultaneous
 808 threads. The main memory has a capacity of 128 GB. The operating system is Fedora 37. We
 809 ran the CUDA codes on an RTX 4090 GPU with 16,384 processing elements distributed over 128
 810 multiprocessors. We compiled the CPU codes with *clang* 14.0.5 using the “-O3 -march=native”
 811 optimization flags, including “-fopenmp” for the OpenMP and “-pthread -std=c11” for the parallel C
 812 codes. We used *nvcc* 12.0.140 with the “-O3 -arch=sm_89” flags to compile the CUDA codes. We ran
 813 the CPU codes with 64 threads. For the CUDA experiments, we launched 512 threads per block.

5.2 Codes and inputs

814 Our test codes are based on 7 graph algorithms, namely Breadth-First Search, Connected Components,
 815 Single Source Shortest Path, Maximal Independent Set, Triangle Counting, PageRank, and
 816 Minimum Spanning Tree. We selected these algorithms because they are also frequently included
 817 in other benchmark suites. Since many existing program-analysis tools do not support the complex
 818 feature set of C++, we ported the Indigo2 C++ codes to C before including them in Indigo3. We
 819 generated the 2516 bug-free codes in the Indigo3 suite from these algorithms by applying the
 820 implementation and parallelization styles listed in Section 4. Since several of the code-verification
 821 tools we evaluated do not support the libcu++ library and parallel C, we removed the parallel C
 822 and CUDA codes that use this library from our tests, leaving 1924 bug-free codes. Half of them
 823 operate on 32-bit data types and the other half on 64-bit data types. To keep the running times
 824 manageable, we only evaluate the 32-bit data types in this paper.

825 To ensure compatibility with the iGuard [36] tool, we introduced the optional use of *atomicAdd(0)*
 826 and *atomicExch* for implementing atomic load and store operations in CUDA. Whereas these
 827 alternatives incur some performance overhead, they do broaden the range of tools to which our
 828

Table 6. Graph information

Name	Type	Origin	Vertices	Edges	Size (MB)	d_{avg}	d_{max}	$d \geq 32$	$d \geq 512$	Diameter
soc-LiveJournal1	community	SNAP	4,847,571	85,702,474	362.2	17.7	20,333	14.0%	0.125%	21
rmat22.sym	RMAT	Galois	4,194,304	65,660,814	542.1	15.7	3,687	12.4%	0.045%	19
USA-road-d.NY	road map	Dimacs	264,346	730,100	6.9	2.8	8	0.0%	0.000%	721

codes can be applied. In summary, Indigo3 includes parallel C, OpenMP, and CUDA codes as well as alternative atomic load and store implementations for the CUDA tools that need it.

To thoroughly test the programs, we ran each of them on 67 input graphs, including one social network, one random graph, and one road map. Table 6 provides information on the type, size, and degree distribution of the three graphs. The remaining 64 inputs are all possible undirected graphs with four vertices. They are generated by enumerating all possible symmetric adjacency matrices.

5.3 Verification tools

We evaluate the effectiveness of 5 program-verification tools. Table 7 presents the type (static or dynamic), version, and the targeted programming model of each tool. Archer [1] is a data-race detector for OpenMP codes that combines static and dynamic techniques. ThreadSanitizer [8] is a dynamic data-race detector for C/C++ programs and is part of Clang 3.2 and gcc 4.8. We also tested CIVL [60], but being a static analyzer, it ended up being too slow to be included in our study.

iGUARD [36] instruments GPU programs to detect races in them. It is based on NVIDIA’s NVBit binary instrumentation framework [65]. Compute Sanitizer [3] is a correctness-checking suite included in the CUDA toolkit. It contains multiple tools to perform different types of checks. The *memcheck* [5] tool detects out-of-bounds and misaligned memory accesses. It also reports hardware exceptions. The *racecheck* [6] tool flags shared memory data access hazards that can cause data races. The *initcheck* [4] tool checks for accesses to uninitialized data in global memory. The *synccheck* [7] tool reports cases where the application attempts invalid uses of synchronization primitives.

To accommodate the unique requirements of Archer and iGuard, which demand specific earlier versions of libraries and CUDA drivers, we implemented distinct setups to make them work. For Archer, we leveraged a Docker container environment, whereas iGuard is tested on a separate system with a Titan V GPU, CUDA driver version 418.39, and nvcc 10.1.

Table 7. Tested Verification Tools

Tool	Type	Version	C/OpenMP	CUDA
Clang Static Analyzer [2]	Static	18.0.0	Yes	No
Archer [1]	Dynamic/Static	2.0.0	Yes	No
ThreadSanitizer [8]	Dynamic	9.3.1	Yes	No
iGuard [36]	Dynamic	1.0	No	Yes
Compute Sanitizer [3]	Dynamic	2023.2.2	No	Yes

5.4 Metrics

To evaluate each tool, we measured the four counts shown in Table 8 to produce a confusion matrix. A tool generates a false positive (FP) if it reports a non-existing bug. If it correctly detects an existing bug, it is a true positive (TP). It is a true negative (TN) if the tool does not detect any bug in a bug-free program. If it fails to detect an existing bug, it is a false negative (FN). Note that,

883 for a bug-free program, a tool can only generate either an FP or TN result. Similarly, it can only
 884 generate either a TP or FN result for a buggy program.

886 Table 8. Confusion Matrix

	Bug-free code	Buggy code
Positive report	False positive (FP)	True positive (TP)
Negative report	True negative (TN)	False negative (FN)

892 To make the results easier to understand, it is common to convert them into the three higher-is-
 893 better metrics *accuracy* (A), *precision* (P), and *recall* (R), which are defined as follows:

$$894 A = (TP + TN) / (TP + FP + TN + FN),$$

$$895 P = TP / (TP + FP), \text{ and}$$

$$896 R = TP / (TP + FN).$$

897 The accuracy reflects the probability that the tool produces a correct report, the precision denotes
 898 the probability of correctly detecting a bug out of all positive reports, and the recall measures the
 899 probability of detecting a bug within all buggy codes.

900 6 RESULTS

901 Applying all possible combinations of the 15 supported bug types to the 962 bug-free codes would
 902 result in hundreds of thousands of codes, and evaluating them on our 67 inputs would take many
 903 months. To make the running time manageable, we select four sets of codes for our experiments:
 904 (1) bug-free codes, (2) codes that have one parallelism bug, (3) codes that have one memory bug,
 905 and (4) codes that combine one parallelism bug. Additionally, we compare the generated bug-free
 906 codes with optimized third-party codes (i.e., Lonestar and Gardenia).

907 6.1 Bug-free codes

908 For the bug-free codes, if a tool reports a data race or memory bug, we count it as a false positive.
 909 Tables 9 and 10 list the tool, programming language, the number of evaluated codes, the number of
 910 these codes yielding a false positive for at least one input, the number of runs (i.e., codes \times inputs),
 911 and the number of runs yielding a false positive. For example, ThreadSanitizer reports data races
 912 for 145 out of 12,596 runs, and these 145 runs stem from 4 bug-free codes.

913 Table 9 shows that Clang does not find any bugs in the bug-free CPU codes. Since it is a static
 914 analyzer that runs at compile time, it does not use any inputs. ThreadSanitizer reports non-existent
 915 data races in 4 codes, 2 of which use an OpenMP clause reduction and the other 2 swap two
 916 pointers to arrays after each iteration. Archer reports non-existent data races in 10 codes, all of
 917 which use an OpenMP clause reduction. Evidently, the internal implementation of the OpenMP
 918 reduction confuses both ThreadSanitizer and Archer. Additionally, ThreadSanitizer appears to
 919 not understand the implicit barrier at the end of a parallel code section, which is why swapping
 920 pointers between 2 such code sections yields false positives.

921 We made sure that the reported bugs are not actual bugs as follows. For the reduction problem,
 922 we changed the clause reduction to a critical section. With this change, ThreadSanitizer and Archer
 923 no longer output any data race warnings. For the swap problem, we duplicated the parallel code
 924 section and switched the array names in the second copy to eliminate the need for swapping the
 925 pointers. The modified code uses one copy in every odd iteration and the other copy in every even
 926 iteration. With this change, ThreadSanitizer no longer gives any data race warnings.

927 Table 10 shows that iGuard reports non-existent data races in 36 of the bug-free GPU codes, and
 928 Compute Sanitizer does not report any bugs. The false positives for iGuard stem from three scenarios:

932 codes that launch kernels at different granularities (e.g., thread-based and warp-based), codes that
 933 swap array pointers between kernels, and codes that access memory at different granularity (e.g.,
 934 integer and Boolean arrays).

935 We modified the codes as follows to explore the reasons for the false positives and make sure
 936 they are not true positives. For the first scenario, we changed the kernels so that we could launch
 937 all of them at the same granularity. For the second condition, we first tried the idea outlined above
 938 to remove the swap. Since this did not help, we resorted to only launching 1 kernel at at time on the
 939 GPU and running the rest of the code on the CPU. For the third scenario, we converted the Boolean
 940 array into an integer array. These changes removed all iGuard data race reports. We believe the
 941 first two types of false positives arise because iGuard ignores the implicit barrier between kernel
 942 launches. The third type arises because we used iGuard’s default memory-access granularity of 4
 943 bytes, which is too coarse for Boolean arrays.

944
 945 Table 9. Results for bug-free CPU codes
 946

Tool	Language	Codes	FP Codes	Runs	FP Runs
Clang Static Analyzer	OpenMP	188	0 (0.0%)	n/a	n/a
ThreadSanitizer	OpenMP	188	4 (2.1%)	12,596	145 (1.2%)
Archer	OpenMP	188	10 (5.3%)	12,596	592 (4.7%)

951
 952 Table 10. Results for bug-free GPU codes
 953

Tool	Language	Codes	FP Codes	Runs	FP Runs
iGuard	CUDA	774	36 (4.6%)	51,858	1,974 (3.8%)
Compute Sanitizer	CUDA	774	0 (0.0%)	51,858	0 (0.0%)

954 6.2 Parallelism bug detection

955 Tables 11 and 12 show the results for the Indigo3 codes with exactly one parallelism bug. If a tool
 956 reports a data race or a missing barrier, we count it as a true positive result.

957 As Table 11 shows, the Clang Static Analyzer does not detect any of the bugs, presumably
 958 because it statically analyzes the program without considering inputs or runtime behavior. Both
 959 ThreadSanitizer and Archer detect some of the bugs, with ThreadSanitizer performing a little better.
 960 The GPU results in Table 12 show that both iGuard and Compute Sanitizer find a few of the bugs.
 961 iGuard performs better because Compute Sanitizer does not check for races in global memory.

962 The LivelockBug (see Table 2) is particularly challenging for ThreadSanitizer, Archer, and iGuard
 963 as evidenced by the increase in the percentages when removing the livelock codes. ThreadSaniti-
 964 zzer correctly flags 118 (74.7%) and Archer 113 (71.5%) of 158 non-livelock buggy codes. iGuard
 965 correctly flags 201 (47.4%) of 424 non-livelock buggy codes. While iGuard has a timeout option,
 966 ThreadSanitizer and Archer potentially run forever if the program contains a livelock bug.

967 6.3 Memory bug detection

968 Since some memory bugs (e.g., out of bounds accesses) may cause data races, we count such reports
 969 as true positives. Tables 13 and 14 show the results for the codes with exactly one memory bug.

970 Even though the Clang Static Analyzer is not able to detect parallelism bugs, it does correctly
 971 report memory warnings for 19.1% of our codes. Archer detects more memory bugs and ThreadSaniti-
 972 zzer even more, but both of them perform better on parallelism bugs than on memory bugs. This is

981 Table 11. Results for CPU codes with one parallelism bug
982

983 Tool	984 Language	985 Codes	986 TP Codes	987 Runs	988 TP Runs
Clang Static Analyzer	OpenMP	212	0 (0.0%)	n/a	n/a
ThreadSanitizer	OpenMP	212	136 (64.2%)	14,204	7,840 (55.2%)
Archer	OpenMP	212	115 (59.9%)	14,204	4,140 (31.9%)

989 Table 12. Results for GPU codes with one parallelism bug
990

990 Tool	991 Language	992 Codes	993 TP Codes	994 Runs	995 TP Runs
iGuard	CUDA	544	219 (40.3%)	36,448	10,326 (28.3%)
Compute Sanitizer	CUDA	544	53 (9.7%)	36,448	3,195 (8.8%)

996 not surprising because they are designed for data-race detection. On the GPU side, the same is true
997 for iGuard. However, Compute Sanitizer performs much better on memory bugs. As mentioned,
998 this is likely because it does not check for data races in global memory.

999 Table 13. Results for CPU codes with one memory bug
1000

1000 Tool	1001 Language	1002 Codes	1003 TP Codes	1004 Runs	1005 TP Runs
Clang Static Analyzer	OpenMP	492	94 (19.1%)	n/a	n/a
ThreadSanitizer	OpenMP	492	276 (56.1%)	32,964	6,996 (22.2%)
Archer	OpenMP	492	160 (32.5%)	32,964	3,843 (11.7%)

1006 Table 14. Results for GPU codes with one memory bug
1007

1008 Tool	1009 Language	1010 Codes	1011 TP Codes	1012 Runs	1013 TP Runs
iGuard	CUDA	1,250	245 (19.6%)	83,750	12,363 (14.8%)
Compute Sanitizer	CUDA	1,250	765 (61.2%)	83,750	34,170 (40.8%)

1014 6.4 Multiple bug detection

1015 We also tested on Indigo3 codes with 2 bugs: 1 parallelism bug and 1 memory bug. Whenever a
1016 tool reports either a data race or a memory issue, we count it as a true positive. Tables 15 and 16
1017 show the results for the codes with 2 bugs.

1018 All evaluated tools perform better for the multiple-bug codes than for the single-bug codes.
1019 Similar to the single-bug results, ThreadSanitizer again finds more bugs than Archer. Compute
1020 Sanitizer reaches the highest true positives per code in all experiments as it detects many of the
1021 memory bugs and some data races trigger memory bugs that it can detect (e.g., races that write
1022 nonsensical values to a worklist).

1023 Every tool generates incorrect predictions (false positives or false negatives). Section 6.1 discusses
1024 the reasons for false positives (i.e., when a tool reports bugs in bug-free codes). The reasons for
1025 false negatives (i.e., when a tool does not report an existing bug) are related to the design and
1026 implementation of the verification tools. For example, iGuard is a data race detection tool and not
1027 able to detect memory bugs. Additionally, some bugs (e.g., data races) may not manifest themselves
1028 in each run, making it difficult to detect for dynamic verifiers.

Table 15. Results for CPU codes with one memory and one parallelism bug

Tool	Language	Codes	TP Codes	Runs	TP Runs
Clang Static Analyzer	OpenMP	566	134 (24.0%)	n/a	n/a
ThreadSanitizer	OpenMP	566	443 (78.3%)	37,386	14,831 (39.7%)
Archer	OpenMP	566	430 (75.9%)	37,386	16,247 (43.5%)

Table 16. Results for GPU codes with one memory and one parallelism bug

Tool	Language	Codes	TP Codes	Runs	TP Runs
iGuard	CUDA	1,294	889 (68.7%)	86,698	40,835 (47.1%)
Compute Sanitizer	CUDA	1,294	1,097 (84.8%)	86,698	48,557 (56.0%)

6.5 Confusion matrix

Tables 17 and 18 evaluate the tools' effectiveness per code and per run, respectively. Higher numbers are better. For this study, we combined the inputs from the previous four subsections, that is, the bug-free codes, the codes with one parallelism bug, the codes with one memory bug, and the codes with both a parallelism and a memory bug. The results in Table 17 are higher than in Table 18 since bugs may not manifest themselves on every input. This illustrates the importance of thoroughly testing data-dependent codes on a range of inputs that elicit different runtime behaviors.

The precision is close to 100% in all cases, meaning the tools do not produce many false positives. Hence, if a tool reports a bug, it is likely that there is a true bug in the code. However, the highest accuracy and recall are below 72%, showing that the tools miss a substantial number of bugs.

ThreadSanitizer has a higher accuracy, precision, and recall than Archer. As discussed, Compute Sanitizer performs quite well even though it is unable to detect data races in global memory because, relatively speaking, it does very well at memory bug detection (and two of the three sets of buggy codes include memory errors).

Table 17. Tool metrics per code

Tool	Language	Accuracy	Precision	Recall
Clang Static Analyzer	OpenMP	28.5%	100.0%	18.0%
ThreadSanitizer	OpenMP	71.3%	99.5%	67.3%
Archer	OpenMP	61.1%	98.6%	56.1%
iGuard	CUDA	54.1%	97.4%	43.8%
Compute Sanitizer	CUDA	69.6%	100.0%	62.0%

6.6 Evaluation by style

The used parallelization and implementation style may impact the tools' effectiveness. To determine whether this is the case, we evaluate the tools on different styles. The results are shown in Tables 19, 20, 21, 22, and 23, where every row shows the metrics for a set of alternative styles.

In the following discussion, we focus on the most striking observations. For example, the Clang Static Analyzer finds more bugs in edge-based than in vertex-based codes. The opposite is true for ThreadSanitizer and Compute Sanitizer. A possible reason is that edge-based codes access the two endpoints of each edge, which may be simpler to analyze for a static tool than loops that iterate

Table 18. Tool metrics per run

Tool	Language	Accuracy	Precision	Recall
Clang Static Analyzer	OpenMP	n/a	n/a	n/a
ThreadSanitizer	OpenMP	43.1%	99.5%	34.9%
Archer	OpenMP	37.1%	97.6%	28.5%
iGuard	CUDA	43.8%	97.0%	30.7%
Compute Sanitizer	CUDA	53.2%	100.0%	41.5%

over variable-length adjacency lists as is done in vertex-based codes. Clang performs better on data-driven codes, but ThreadSanitizer and Archer detect more bugs in topology-driven codes, possibly because topology-driven codes exhibit more parallelism and, therefore, increase the chance of a parallelism bug manifesting itself. Archer and iGuard perform better for the pull than the push style. Since they are both data-race detectors, this may indicate that races in push-style codes are harder to detect. Perhaps the multiple-reader/multiple-writer races in the push style are more difficult to handle than the multiple-reader/single-writer races in the pull style. Furthermore, iGuard detects more bugs for the non-duplicate worklist and read-write styles than their alternatives. One reason may be that read-write versions have independent read and write operations, which increases the chance for a data race. Averaged over all tested tools, programs implemented in the data-driven and pull styles tend to be the easiest to verify, and programs that allow duplicates on the worklist are the most challenging. Overall, we find that the verification tools perform differently on alternative styles. This highlights the importance of thoroughly testing and evaluating verification tools using programs that are implemented in different styles.

Table 19. Clang's evaluation for each style

Tool	Accuracy	Precision	Recall
Vertex, Edge	26%, 42%	100%, 100%	14%, 32%
Topo, Data	20%, 43%	100%, 100%	2%, 35%
NonDup, Dup	24%, 33%	100%, 100%	12%, 22%
Push, Pull	25%, 23%	100%, 100%	14%, 14%
ReadWrite, ReadModifyWrite	24%, 26%	100%, 100%	17%, 19%
NonDeterm, Determ	25%, 33%	100%, 100%	15%, 22%
Default, Dynamic	30%, 30%	100%, 100%	19%, 19%
AtomicAdd, CriticalAdd, ClauseAdd	25%, 25%, 25%	100%, 100%, 100%	13%, 13%, 13%

6.7 Comparison with third-party codes

To demonstrate that our unoptimized bug-free codes yield reasonable performance, we compare them to the optimized Lonestar [39] CPU and Gardenia [70] GPU codes. We refer to these Lonestar and Gardenia codes as “baseline”. We omitted some of the modifications to our codes described in Section 5.2 since they merely serve to make the codes compatible with the verification tools. For each of our codes in this analysis, we selected the style that yields the highest average throughput across all inputs. Then we run the best-performing style on the set of inputs listed in Table 24. We selected them because they cover a wide range of sizes and degree distributions.

We compute the speedups over the baseline codes and visualize them in Figure 2. Each column summarizes the speedups over all inputs for one algorithm. Since we run each program through a

Table 20. ThreadSanitizer’s evaluation for each style

Tool	Accuracy	Precision	Recall
Vertex, Edge	76%, 42%	99%, 98%	71%, 31%
Topo, Data	83%, 69%	99%, 100%	79%, 64%
NonDup, Dup	71%, 67%	100%, 100%	65%, 60%
Push, Pull	78%, 75%	99%, 100%	75%, 74%
ReadWrite, ReadModifyWrite	71%, 71%	100%, 99%	67%, 69%
NonDeterm, Determ	75%, 77%	100%, 99%	71%, 73%
Default, Dynamic	80%, 73%	99%, 99%	77%, 69%
AtomicAdd, CriticalAdd, ClauseAdd	86%, 86%, 80%	100%, 100%, 96%	84%, 84%, 81%

Table 21. Archer’s evaluation for each style

Tool	Accuracy	Precision	Recall
Vertex, Edge	59%, 62%	98%, 99%	52%, 55%
Topo, Data	66%, 54%	96%, 100%	60%, 47%
NonDup, Dup	47%, 46%	100%, 100%	37%, 35%
Push, Pull	55%, 64%	99%, 98%	48%, 60%
ReadWrite, ReadModifyWrite	47%, 55%	100%, 100%	40%, 51%
NonDeterm, Determ	58%, 60%	99%, 98%	52%, 53%
Default, Dynamic	69%, 54%	99%, 98%	64%, 47%
AtomicAdd, CriticalAdd, ClauseAdd	64%, 68%, 78%	100%, 100%, 85%	58%, 63%, 90%

Table 22. iGuard’s evaluation for each style

Tool	Accuracy	Precision	Recall
Vertex, Edge	51%, 44%	98%, 100%	41%, 39%
Topo, Data	53%, 55%	100%, 95%	41%, 41%
NonDup, Dup	40%, 29%	100%, 100%	27%, 5%
Push, Pull	44%, 56%	93%, 93%	28%, 53%
ReadWrite, ReadModifyWrite	43%, 34%	100%, 100%	34%, 8%
NonDeterm, Determ	50%, 54%	94%, 93%	41%, 46%
Persist, NonPersist	46%, 49%	94%, 94%	39%, 43%
Thread, Warp, Block	34%, 42%, 55%	97%, 95%, 93%	20%, 35%, 53%
GlobalAdd, BlockAdd, ReductionAdd	49%, 39%, 39%	92%, 92%, 92%	48%, 38%, 38%

set of inputs, each column represents multiple speedups. The box shows the range of the middle 50% of the data. The line in the middle of the box indicates the median. Other data points are plotted as circles. Speedups above 1 (i.e., the dashed blue line) mean our codes are faster. If the median line in the box is above 1, it shows that our codes are faster than the baseline for at least half of the inputs. Figure 2a does not show MIS or MST results since they are not included in Gardenia [70].

Our PR and TC codes outperform the CPU baselines but are slower on the GPUs because the Gardenia codes include an optimization that removes redundant edges. The performance of CC is on par with the baselines across the different devices and programming models. Our BFS codes are

Table 23. ComputeSanitizer's evaluation for each style

Tool	Accuracy	Precision	Recall
Vertex, Edge	71%, 57%	100%, 100%	64%, 53%
Topo, Data	70%, 74%	100%, 100%	62%, 65%
NonDup, Dup	71%, 67%	100%, 100%	64%, 55%
Push, Pull	68%, 65%	100%, 100%	57%, 59%
ReadWrite, ReadModifyWrite	63%, 69%	100%, 100%	57%, 57%
NonDeterm, Determ	67%, 69%	100%, 100%	60%, 61%
Persist, NonPersist	68%, 69%	100%, 100%	62%, 64%
Thread, Warp, Block	68%, 68%, 67%	100%, 100% 100%	60%, 63%, 63%
GlobalAdd, BlockAdd, ReductionAdd	66%, 63%, 64%	100%, 100% 100%	63%, 60%, 61%

Table 24. Inputs for performance comparison

Name	Type	Origin	Vertices	Edges	Size (MB)
2d-2e20.sym	grid	Galois	1,048,576	4,190,208	37.7
coPapersDBLP	publication	SMC	540,486	30,491,458	124.1
rmat22.sym	RMAT	Galois	4,194,304	65,660,814	542.1
soc-LiveJournal1	community	SNAP	4,847,571	85,702,474	362.2
USA-road-d.NY	road map	Dimacs	264,346	730,100	6.9

Table 25. Average speedup over baseline codes

Language	BFS	SSSP	CC	MIS	PR	TC	Geomean
CUDA	1.97	0.40	1.11	N/A	0.45	0.43	0.70
OpenMP	0.90	0.10	0.89	6.55	2.86	5.11	1.54
C++ threads	1.14	0.07	0.51	21.14	12.47	3.04	1.80

faster on the GPUs and similar to the baseline on the CPUs. Lastly, our SSSP codes are generally slower. This is because both Lonestar and Gardenia include worklist optimizations. Gardenia employs two extra arrays that make the code as efficient as the data-driven approach but without the overhead of maintaining a worklist. Lonestar combines the data-driven approach with a priority scheduler that processes the vertices in ascending distance to reduce the total amount of work.

Table 25 lists the average speedup of the best-performing style over the baseline for each algorithm. For example, the “1.97” in the CUDA row and BFS column means our BFS CUDA code is $1.97 \times$ faster on average (i.e., geometric mean). The right-most column presents the geometric mean for each programming model.

Overall, we find that, even though our codes do not include optimizations, they still yield reasonable performance. The optimized baselines do not outperform our codes in many cases, indicating that choosing the right implementation style is as important as incorporating program-specific code optimizations.

6.8 Result correlation with inputs and architectures

As the behavior of our codes is input and hardware dependent, we studied the results for each input graph on different devices. We found that the degree distribution (e.g., road maps versus social networks) does not significantly influence the results. However, the graph size can impact the data race detection on the CPU. For example, ThreadSanitizer detects more data races in larger graphs (73% of the parallelism bugs) than in smaller graphs (62%). The larger graphs include the

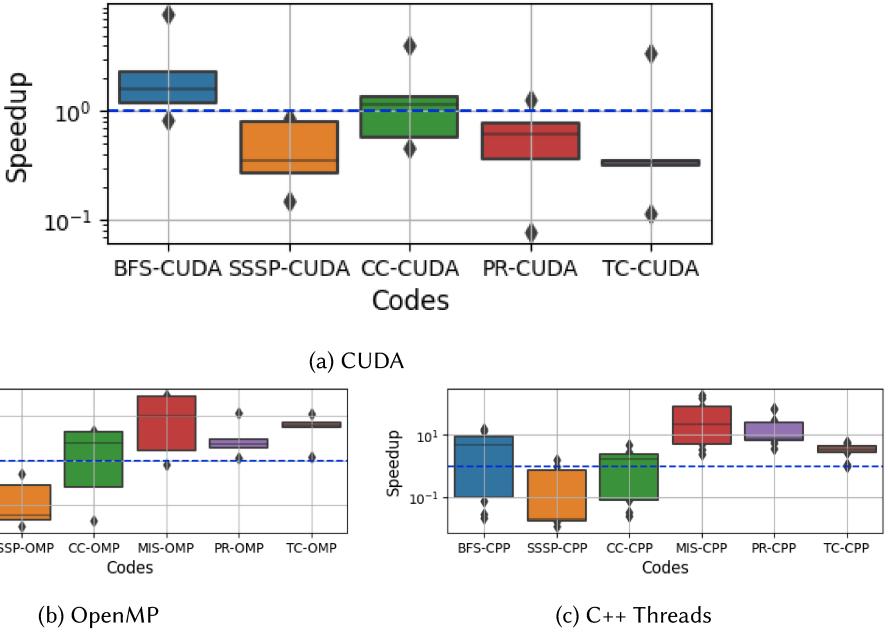


Fig. 2. Throughput ratio to baseline codes

all-possible 4-vertex graphs with more than 3 edges as well as the real-world graphs. The smaller graphs are the 4-vertex graphs with 3 or fewer edges. In contrast, the CUDA tools perform the same across different graph sizes. Hence, the behavior for different programming models (i.e., OpenMP and CUDA) can be different. Moreover, we found that a tool may produce a different prediction for the same program on different hardware. This is expected because dynamic tools often yield different reports for each run anyways. However, since we run a large number of tests, the overall results for a specific tool tend to be consistent across different hardware.

7 SUMMARY AND CONCLUSIONS

This paper presents a labeled benchmark suite called Indigo3 [46] that includes 41,790 graph analytics codes written in CUDA, OpenMP, and parallel C. Each program can be run with an unbounded number of inputs. They are based on 13 sets of alternative parallelization/implementation styles and 15 types of common bugs. We wrote a framework to automatically create the Indigo3 suite by generating codes with all meaningful combinations of these styles and bugs as well as bug-free codes. We applied our framework to 7 graph algorithms expressed in 3 programming models. Each generated code is labeled with the parallelization/implementation styles and bugs present. This allows users to select desired subsets and makes Indigo3 useful for testing various tools.

We evaluated 5 program verification tools on 4 subsets of Indigo3 codes, namely codes that are bug-free, have one parallelism bug, have one memory bug, and combine one parallelism with one memory bug. The results show that ThreadSanitizer, Archer, and iGuard are better at detecting parallelism bugs whereas the Clang Static Checker and Computer Sanitizer are better at detecting memory bugs. Since memory bugs may manifest themselves as data races, data-race warnings are sometimes triggered by memory bugs. We carefully examined all reported false positives to make sure our bug-free codes are correct and to determine the program patterns that confuse the verifiers. The results per code are always significantly better than per input, meaning data-dependent codes

1275 such as irregular graph algorithms should be tested on a number of inputs that elicit different
 1276 program behaviors. Additionally, we found the tools' effectiveness to vary between implementation
 1277 styles, highlighting the importance of considering different styles when testing verification tools.
 1278 We hope our work will prove useful to the verification community and will inspire others to build
 1279 benchmark suites for additional domains.

1280

1281 ACKNOWLEDGMENTS

1282 This work has been supported in part by the National Science Foundation under Award Number
 1283 1955367 and by an equipment donation from NVIDIA Corporation. We thank Ganesh Gopalakrishnan,
 1284 John Jacobson, Stephen Siegel, Alex Wilton, and Wenhao Wu for their help and feedback to
 1285 improve this paper.

1286

1287 REFERENCES

1288

- [1] Accessed: 2021-6-26. Archer. <https://github.com/PRUNERS/archer>.
- [2] Accessed: 2023-9-28. Clang Static Analyzer. <https://clang-analyzer.llvm.org/>.
- [3] Accessed: 2023-9-28. ComputeSanitizer. <https://docs.nvidia.com/compute-sanitizer/index.html>.
- [4] Accessed: 2023-9-28. Initcheck Tool. <https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html>.
- [5] Accessed: 2023-9-28. Memcheck Tool. <https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html>.
- [6] Accessed: 2023-9-28. Racecheck Tool. <https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html>.
- [7] Accessed: 2023-9-28. Synccheck Tool. <https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html>.
- [8] Accessed: 2023-9-28. ThreadSanitizer. <https://github.com/google/sanitizers>.
- [9] Lada A Adamic, Rajan M Lukose, Amit R Puniyani, and Bernardo A Huberman. 2001. Search in power-law networks. *Physical review E* 64, 4 (2001), 046135.
- [10] Gabriell Araujo, Dalvan Griebler, Dinei A. Rockenbach, Marco Danelutto, and Luiz G. Fernandes. 2021. NAS Parallel Benchmarks with CUDA and beyond. *Software: Practice and Experience* 53, 1 (2021), 53–80. <https://doi.org/10.1002/spe.3056> arXiv:<https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3056>
- [11] Amitai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. 2012. Efficient system-enforced deterministic parallelism. *Commun. ACM* 55, 5 (2012), 111–119.
- [12] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing breadth-first search. In *SC'12: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis*. IEEE, IEEE, New York, NY, USA, 1–10.
- [13] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP benchmark suite. *arXiv preprint arXiv:1508.03619* (2015).
- [14] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten Hoefer. 2017. To push or to pull: On reducing communication and synchronization in graph computations. In *Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing*. 93–104.
- [15] Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul Thomson. 2012. GPUVerify: a verifier for GPU kernels. In *Proceedings of the ACM international conference on Object oriented programming systems languages and applications*. 113–132.
- [16] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC benchmark suite: Characterization and architectural implications. In *Proceedings of the 17th international conference on Parallel architectures and compilation techniques*. 72–81.
- [17] Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, and Julian Shun. 2012. Internally deterministic parallel algorithms can be fast. In *Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming*. 181–192.
- [18] Hans-J Boehm. 2011. How to Miscompile Programs with "Benign" Data Races. In *3rd USENIX Workshop on Hot Topics in Parallelism (HotPar 11)*. USENIX Association, Berkeley, CA. <https://www.usenix.org/conference/hotpar-11/how-miscompile-programs-benign-data-races>
- [19] Hans-J Boehm. 2011. How to miscompile programs with "benign" data races. In *3rd USENIX Workshop on Hot Topics in Parallelism (HotPar 11)*.
- [20] Martin Burtscher. 2019. ECL graphs. <https://cs.txstate.edu/~burtscher/research/ECLgraph/index.html>. Accessed: 2023-08-18.
- [21] Martin Burtscher and Jared Coplin. 2014. Power characteristics of irregular GPGPU programs. In *Workshop on General Purpose Processing Using GPUs*.

1323

[22] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. 2012. A quantitative study of irregular programs on GPUs. In *2012 IEEE International Symposium on Workload Characterization (IISWC)*. IEEE, 141–151.

[23] Shuai Che, Bradford M Beckmann, Steven K Reinhardt, and Kevin Skadron. 2013. Pannota: Understanding irregular GPGPU graph applications. In *2013 IEEE International Symposium on Workload Characterization (IISWC)*. IEEE, 185–195.

[24] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous computing. In *2009 IEEE international symposium on workload characterization (IISWC)*. Ieee, 44–54.

[25] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S Meredith, Philip C Roth, Kyle Spafford, Vinod Tippuraju, and Jeffrey S Vetter. 2010. The scalable heterogeneous computing (SHOC) benchmark suite. In *Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units*. 63–74.

[26] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E Blelloch, and Julian Shun. 2020. The graph based benchmark suite (gbbs). In *Proceedings of the 3rd Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)*. 1–8.

[27] Jack Dongarra. [n. d.]. Compressed row storage. <http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html>. Accessed: 2021-7-3.

[28] Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and Hans-J Boehm. 2012. IFRit: interference-free regions for dynamic data-race detection. In *Proceedings of the ACM international conference on Object oriented programming systems languages and applications*. 467–484.

[29] Ariel Eizenberg, Yuanfeng Peng, Toma Pigli, William Mansky, and Joseph Devietti. 2017. Barracuda: Binary-level analysis of runtime races in cuda programs. In *Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation*. 126–140.

[30] Adriano Marques Garcia, Dalvan Griebler, Claudio Schepke, and Luiz Gustavo Fernandes. 2022. SPBench: a framework for creating benchmarks of stream processing applications. *Computing* 105, 5 (jan 2022), 1077–1099. <https://doi.org/10.1007/s00607-021-01025-6>

[31] Alan George, Joseph WH Liu, et al. 1981. *Computer solution of large sparse positive definite systems*. Vol. 134. Prentice-Hall Englewood Cliffs, NJ.

[32] Juan Gómez-Luna, Izzat El Hajj, Li-Wen Chang, Víctor García-Floresz, Simon Garcia De Gonzalo, Thomas B Jablin, Antonio J Pena, and Wen-mei Hwu. 2017. Chai: Collaborative heterogeneous applications for integrated-architectures. In *2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)*. IEEE, 43–54.

[33] Dalvan Griebler, Marco Danelutto, Massimo Torquati, and Luiz Gustavo Fernandes. 2017. SPar: A DSL for High-Level and Productive Stream Parallelism. *Parallel Processing Letters* 27, 01 (2017), 1740005. <https://doi.org/10.1142/S0129626417400059>

[34] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. 2012. A study of Persistent Threads style GPU programming for GPGPU workloads. In *2012 Innovative Parallel Computing (InPar)*. IEEE, San Jose, CA, USA, 1–14. <https://doi.org/10.1109/InPar.2012.6339596>

[35] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. 2011. Accelerating CUDA Graph Algorithms at Maximum Warp. In *Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Programming* (San Antonio, TX, USA) (PPoPP '11). Association for Computing Machinery, New York, NY, USA, 267–276. <https://doi.org/10.1145/1941553.1941590>

[36] Aditya K. Kamath and Arkaprava Basu. 2021. IGUARD: In-GPU Advanced Race Detection. In *Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles* (Virtual Event, Germany) (SOSP '21). Association for Computing Machinery, New York, NY, USA, 49–65. <https://doi.org/10.1145/3477132.3483545>

[37] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. 2017. The Tensor Algebra Compiler. *Proc. ACM Program. Lang.* 1, OOPSLA, Article 77 (Oct. 2017), 29 pages. <https://doi.org/10.1145/3133901>

[38] Milind Kulkarni, Martin Burtscher, Calin Cascaval, and Keshav Pingali. 2009. Lonestar: A suite of parallel irregular programs. In *2009 IEEE International Symposium on Performance Analysis of Systems and Software*. IEEE, 65–76.

[39] Milind Kulkarni, Martin Burtscher, Calin Cascaval, and Keshav Pingali. 2009. Lonestar: A suite of parallel irregular programs. In *2009 IEEE International Symposium on Performance Analysis of Systems and Software*. IEEE, New York, NY, USA, 65–76. <https://doi.org/10.1109/ISPASS.2009.4919639>

[40] Gary T Leavens. 2007. The java modeling language (jml). URL <http://sourceforge.net/apps/wordpress/fixedptc> (2007).

[41] Da Li, Hancheng Wu, and Michela Becchi. 2015. Nested Parallelism on GPU: Exploring Parallelization Templates for Irregular Loops and Recursive Computations. In *2015 44th International Conference on Parallel Processing*. IEEE, New York, NY, USA, 979–988. <https://doi.org/10.1109/ICPP.2015.107>

[42] Guodong Li, Peng Li, Geof Sawaya, Ganesh Gopalakrishnan, Indradeep Ghosh, and Sreeranga P. Rajan. 2012. GKLEE: Concolic Verification and Test Generation for GPUs. In *Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming* (New Orleans, Louisiana, USA) (PPoPP '12). Association for Computing Machinery, New York, NY, USA, 215–224. <https://doi.org/10.1145/2145816.2145844>

1373 [43] Chunhua Liao, Pei-Hung Lin, Joshua Asplund, Markus Schordan, and Ian Karlin. 2017. DataRaceBench: a benchmark
1374 suite for systematic evaluation of data race detection tools. In *Proceedings of the International Conference for High*
1375 *Performance Computing, Networking, Storage and Analysis*. 1–14.

1376 [44] Richard J Lipton. 1975. Reduction: A method of proving properties of parallel programs. *Commun. ACM* 18, 12 (1975),
717–721.

1377 [45] Yiqian Liu, Noushin Azami, Avery Vanausdal, and Martin Burtscher. 2023. Choosing the Best Parallelization and
1378 Implementation Styles for Graph Analytics Codes: Lessons Learned from 1106 Programs. In *SC '23: Proceedings of the*
1379 *International Conference on High Performance Computing, Networking, Storage and Analysis*. 11111. <https://doi.org/11111>

1380 [46] Yiqian Liu, Noushin Azami, Avery VanAusdal, and Martin Burtscher. 2023. Indigo3 Git Repository. <https://github.com/burtscher/Indigo3Suite>. Accessed: 2023-12-09.

1381 [47] Yiqian Liu, Noushin Azami, Corbin Walters, and Martin Burtscher. 2022. The Indigo Program-Verification Microbench-
1382 *mark Suite of Irregular Parallel Code Patterns*. In *2022 IEEE International Symposium on Performance Analysis of*
1383 *Systems and Software (ISPASS)*. 24–34. <https://doi.org/10.1109/ISPASS55109.2022.00003>

1384 [48] Yiqian Liu, Noushin Azami, Corbin Walters, and Martin Burtscher. 2022. The Indigo Program-Verification Microbench-
1385 *mark Suite of Irregular Parallel Code Patterns*. In *2022 IEEE International Symposium on Performance Analysis of*
1386 *Systems and Software (ISPASS)*. IEEE, 24–34.

1387 [49] Yiqian Liu, Noushin Azami, Corbin Walters, and Martin Burtscher. 2022. The Indigo Program-Verification Microbench-
1388 *mark Suite of Irregular Parallel Code Patterns*. In *2022 IEEE International Symposium on Performance Analysis of*
1389 *Systems and Software (ISPASS)*. IEEE, New York, NY, USA, 24–34. <https://doi.org/10.1109/ISPASS55109.2022.00003>

1390 [50] Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-Yung Lin. 2015. GraphBIG: understanding graph
1391 computing in the context of industrial solutions. In *SC '15: Proceedings of the International Conference for High*
1392 *Performance Computing, Networking, Storage and Analysis*. 1–12. <https://doi.org/10.1145/2807591.2807626>

1393 [51] Masahiro Nakao, Koji Ueno, Katsuki Fujisawa, Yuetsu Kodama, and Mitsuhsisa Sato. 2020. Performance Evaluation of
1394 Supercomputer Fugaku using Breadth-First Search Benchmark in Graph500. In *2020 IEEE International Conference on*
1395 *Cluster Computing (CLUSTER)*. 408–409. <https://doi.org/10.1109/CLUSTER49012.2020.00053>

1396 [52] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Atomic-Free Irregular Computations on GPUs. In *Proceedings*
1397 *of the 6th Workshop on General Purpose Processor Using Graphics Processing Units* (Houston, Texas, USA) (GPGPU-6).
1398 Association for Computing Machinery, New York, NY, USA, 96–107. <https://doi.org/10.1145/2458523.2458533>

1399 [53] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Atomic-free irregular computations on GPUs. In *Proceedings*
1400 *of the 6th Workshop on General Purpose Processor Using Graphics Processing Units*. 96–107.

1401 [54] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Data-Driven Versus Topology-driven Irregular Computa-
1402 *tions on GPUs*. In *2013 IEEE 27th International Symposium on Parallel and Distributed Processing*. IEEE, New York, NY,
1403 USA, 463–474. <https://doi.org/10.1109/IPDPS.2013.28>

1404 [55] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Data-driven versus topology-driven irregular computations
1405 on GPUs. In *2013 IEEE 27th International Symposium on Parallel and Distributed Processing*. IEEE, 463–474.

1406 [56] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Morph Algorithms on GPUs. In *Proceedings of the 18th ACM*
1407 *SIGPLAN Symposium on Principles and Practice of Parallel Programming* (Shenzhen, China) (PPoPP '13). Association for
1408 Computing Machinery, New York, NY, USA, 147–156. <https://doi.org/10.1145/2442516.2442531>

1409 [57] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M Amber Hassaan, Rashid Kaleem, Tsung-Hsien
1410 Lee, Andrew Lenhardt, Roman Manevich, Mario Méndez-Lojo, et al. 2011. The tao of parallelism in algorithms. In
1411 *Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and implementation*. 12–25.

1412 [58] Apan Qasem, Ashwin M. Aji, and Gregory Rodgers. 2017. Characterizing data organization effects on heterogeneous
1413 memory architectures. In *2017 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)*.
1414 160–170. <https://doi.org/10.1109/CGO.2017.7863737>

1415 [59] Simon Schwitanski, Joachim Jenke, Sven Klotz, and Matthias S. Müller. 2023. RMRaceBench: A Microbenchmark
1416 Suite to Evaluate Race Detection Tools for RMA Programs (*SC-W '23*). Association for Computing Machinery, New
1417 York, NY, USA, 205–214. <https://doi.org/10.1145/3624062.3624087>

1418 [60] Stephen F. Siegel, Manchun Zheng, Ziqing Luo, Timothy K. Zirkel, Andre V. Marianello, John G. Edenhofner, Matthew B.
1419 Dwyer, and Michael S. Rogers. 2015. CIVL: the concurrency intermediate verification language. In *SC '15: Proceedings*
1420 *of the International Conference for High Performance Computing, Networking, Storage and Analysis*. 1–12. <https://doi.org/10.1145/2807591.2807635>

1421 [61] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang, Nasser Anssari, Geng Daniel Liu, and
1422 Wen-mei W Hwu. 2012. Parboil: A revised benchmark suite for scientific and commercial throughput computing.
1423 *Center for Reliable and High-Performance Computing* 127 (2012).

1424 [62] Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiyi Zhang. 2019. Understanding real-world concurrency bugs in Go. In
1425 *Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and*
1426 *Operating Systems*. 865–878.

1422 [63] Swapneela Unkule, Christopher Shultz, and Apan Qasem. 2012. Automatic restructuring of GPU kernels for exploiting
 1423 inter-thread data locality. In *International Conference on Compiler Construction*. Springer, 21–40.

1424 [64] Gaurav Verma, Yaying Shi, Chunhua Liao, Barbara Chapman, and Yonghong Yan. 2020. Enhancing DataRaceBench for
 1425 Evaluating Data Race Detection Tools. In *2020 IEEE/ACM 4th International Workshop on Software Correctness for HPC
 1426 Applications (Correctness)*. IEEE, 20–30.

1427 [65] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W. Keckler. 2019. NVBit: A Dynamic Binary Instru-
 1428 mentation Framework for NVIDIA GPUs. In *Proceedings of the 52nd Annual IEEE/ACM International Symposium on
 1429 Microarchitecture* (Columbus, OH, USA) (MICRO '52). Association for Computing Machinery, New York, NY, USA,
 1430 372–383. <https://doi.org/10.1145/3352460.3358307>

1431 [66] Jin Wang and Sudhakar Yalamanchili. 2014. Characterization and analysis of dynamic parallelism in unstructured
 1432 GPU applications. In *2014 IEEE International Symposium on Workload Characterization (IISWC)*. IEEE, New York, NY,
 1433 USA, 51–60. <https://doi.org/10.1109/IISWC.2014.6983039>

1434 [67] Hancheng Wu, Da Li, and Michela Becchi. 2016. Compiler-Assisted Workload Consolidation for Efficient Dynamic
 1435 Parallelism on GPU. In *2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS)*. IEEE, New York,
 1436 NY, USA, 534–543. <https://doi.org/10.1109/IPDPS.2016.98>

1437 [68] Mingyuan Wu, Yicheng Ouyang, Husheng Zhou, Lingming Zhang, Cong Liu, and Yuqun Zhang. 2020. Simulee:
 1438 Detecting CUDA Synchronization Bugs via Memory-Access Modeling. In *Proceedings of the ACM/IEEE 42nd International
 1439 Conference on Software Engineering* (Seoul, South Korea) (ICSE '20). Association for Computing Machinery, New York,
 1440 NY, USA, 937–948. <https://doi.org/10.1145/3377811.3380358>

1441 [69] Zhen Xu, Xuhao Chen, Jie Shen, Yang Zhang, Cheng Chen, and Canqun Yang. 2019. Gardenia: A graph processing
 1442 benchmark suite for next-generation accelerators. *ACM Journal on Emerging Technologies in Computing Systems
 1443 (JETC)* 15, 1 (2019), 1–13.

1444 [70] Zhen Xu, Xuhao Chen, Jie Shen, Yang Zhang, Cheng Chen, and Canqun Yang. 2019. GARDENIA: A Graph Processing
 1445 Benchmark Suite for Next-Generation Accelerators. *J. Emerg. Technol. Comput. Syst.* 15, 1, Article 9 (jan 2019), 13 pages.
 1446 <https://doi.org/10.1145/3283450>

1447 [71] Ting Yuan, Guangwei Li, Jie Lu, Chen Liu, Lian Li, and Jingling Xue. 2021. GoBench: A Benchmark Suite of Real-World
 1448 Go Concurrency Bugs. In *2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)*. IEEE,
 1449 187–199.

1450 [72] P Zhang and G Chartrand. 2006. *Introduction to graph theory*. Tata McGraw-Hill.

1451 [73] Yang Zhang, Jie Shen, Zhen Xu, Shikai Qiu, and Xuhao Chen. 2019. Architectural Implications in Graph Processing
 1452 of Accelerator with Gardenia Benchmark Suite. In *2019 IEEE Intl Conf on Parallel & Distributed Processing with
 1453 Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking
 1454 (ISPA/BDCloud/SocialCom/SustainCom)*. IEEE, 1329–1339.

1455 Received 10 December 2023; revised 8 May 2024; accepted 7 May 2024

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470