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Deep-sea methane seeps host highly diverse microbial communities whose

biological diversity is distinct from other marine habitats. Coupled with microbial

community analysis, untargeted metabolomics of environmental samples using

high resolution tandem mass spectrometry provides unprecedented access to

the unique specialized metabolisms of these chemosynthetic microorganisms.

In addition, the diverse microbial natural products are of broad interest due to

their potential applications for human and environmental health and well-being.

In this exploratory study, sediment cores were collected from two methane

seeps (-1000 m water depth) with very different gross geomorphologies, as well

as a non-seep control site. Cores were subjected to parallel metabolomic and

microbial community analyses to assess the feasibility of representative

metabolite detection and identify congruent patterns between metabolites and

microbes. Metabolomes generated using high resolution liquid chromatography

tandem mass spectrometry were annotated with predicted structure

classifications of the majority of mass features using SIRIUS and CANOPUS.

The microbiome was characterized by analysis of 16S rRNA genes and analyzed

both at the whole community level, as well as the small subgroup of

Actinobacteria, which are known to produce societally useful compounds.

Overall, the younger Dagorlad seep possessed a greater abundance of

metabolites while there was more variation in abundance, number, and

distribution of metabolites between samples at the older Emyn Muil seep. Lipid

and lipid-like molecules displayed the greatest variation between sites and

accounted for a larger proportion of metabolites found at the older seep.

Overall, significant differences in composition of the microbial community

mirrored the patterns of metabolite diversity within the samples; both varied

greatly as a function of distance from methane seep, indicating a deterministic

role of seepage. Interdisciplinary research to understandmicrobial andmetabolic
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diversity is essential for understanding the processes and role of ubiquitous

methane seeps in global systems and here we increase understanding of these

systems by visualizing some of the chemical diversity that seeps add to

marine systems.

KEYWORDS

methane seep, deep-sea, untargeted metabolomics, microbial community, tandem

mass spectrometry, environmental analysis

1 Introduction

Methane seeps are areas where methane leaks from vast

subseafloor reservoirs, fueling dense communities of organisms.
Methane seep communities, including endemic microorganisms

and animals, either harness the chemical energy being released from
the seafloor directly or through symbiosis, or make use of the

habitat (both physical and chemical) created by seep biological
processes. Alongside endemic species, methane seeps host

organisms that are found throughout the margin, including
species that are harvested commercially (Grupe et al., 2015;

Seabrook et al., 2019). The seeps themselves are a mosaic of
different habitats with varying biogeochemistry and fauna

(Boetius and Suess, 2004; Bernardino et al., 2012) in which
communities change over time. Over the geologic time scales that

methane seepage can occur, the metabolic activity of microbial
communities results in carbonate precipitation that can pave vast

areas of the seafloor (Cordes et al., 2009; Bowden et al., 2013). The
resulting hard substrate, termed authigenic carbonate, provides for

attachment and growth of anemones, sponges, and corals at mature
methane seep sites in the otherwise expansive soft sediment of the

deep ocean. Methane seeps enhance biological diversity of the ocean
margin by producing substrate, hosting divergent biological
processes and biogeochemistry, and contributing significantly to

primary production in the deep ocean. Here we add to this
foundational knowledge by revealing chemical diversity, which

has implications for future societal use.
Methane seeps comprise a diversity of habitats in close

proximity, creating a unique opportunity for natural products
(NPs) discovery. The high biological diversity of seeps is

illustrated in a recent study focused on the habitat along the
Oregon and Washington margins in which more than 72,000

different amplicon sequence variants (ASVs) were documented
from six seep and non-seep collection sites, plus a control site

(Cummings et al., 2023). At the three methane seep sites sampled,
11,631 different amplicon sequence variants (ASVs) were present

only in the on-seep core samples. While on-seep cores had relatively
low Chao1 diversity values, with a mean of 452 ± 204 for Emyn

Muil and Dagorlad seeps, the 5m off-seep cores had local peaks in
diversity with values of 861 ± 162. Even in earlier studies where

ASVs with 97% similarity are combined into Operational
Taxonomic Units (OTUs), more than 30,000 distinct OTUs have

been measured at methane seep habitats (Seabrook et al., 2018).

Oxygen, sulfide (toxic to most animals), and redox gradients

typify seep habitats, and the microbial communities reflect this
diverse environment through an abundance of metabolic pathways,

including aerobic methane oxidation, anaerobic oxidation of
methane, sulfate reduction, sulfide oxidation, manganese and iron

reduction, and nitrogen fixation (Levin, 2005; Reeburgh, 2007;
Knittel and Boetius, 2009; Dekas et al., 2014). Sediment

communities, including those at seeps, use or must exist in the
presence of metabolites produced by co-occurring taxa as defense

chemicals, transient chemical signals, and/or in a multitude of
possible undefined ecological roles (Dekas et al., 2016; Patin

et al., 2017).
Knowledge of the diverse metabolic strategies at methane seeps

resulting in a diversity of pathways involved in cellular energy
production and compound biosynthesis is far from comprehensive.

Most studies investigating environmental microbiomes have
focused on phylogenetic identity and abundance of microbial

community members, without metabolomic analyses or testing
for biological activity or potential ecological roles. Technological

advances in high resolution mass spectrometry and associated data
analysis tools have facilitated and been driven further by targeted

and untargeted metabolomics coupled to microbial community
analysis in microbiome studies (Bauermeister et al., 2022), with
applications in human health (Aleti et al., 2022; Zhang et al., 2023)

and agriculture (Rothman et al., 2019; Sun et al., 2022; Nie et al.,
2023). With continued development of computational methods to

annotate structurally complex specialized metabolites in complex
mixtures (Morehouse et al., 2023), these integrated approaches are

increasingly applicable to detection and structural annotation of
microbial specialized metabolites in environmental microbiome

samples (Shaffer et al., 2022), although structural annotations in
untargeted mass spectrometry experiments are putative

assignments of structural class or planar molecular structure that
require follow-up for valid molecular structure characterization.

Limited material from environmental sampling poses a
challenge for traditional NP isolations of new compounds for

structure elucidation and biological activity testing. However,
untargeted metabolomics analyses of environmental samples

using high resolution liquid chromatography tandem mass
spectrometry (LCMS2) may require only nanograms of chemical

extract frommilligrams of collected sample. This approach provides
data for comparative analyses when working with limited materials.

Importantly, the identities of metabolites detected via untargeted
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analyses remain largely unknown, with an estimated 10% average
annotation rate possible using LCMS spectral databases and

computational prediction tools (de Jonge et al., 2022).
Untargeted LCMS2 surveys coupled with computational tools

permit generation of hypotheses from exploratory data to direct
further investigation and prioritization of organisms or metabolites

for targeted analyses. Open access tools such as GNPS, SIRIUS, and
CANOPUS enable predictions of metabolite structure or structure

class based on tandem mass spectrometry (MS2) fragmentation
patterns. GNPS is a web-based mass spectrometry platform for

sharing and comparative networking of MS2 data (Wang et al.,
2016). The downloadable software framework SIRIUS (Dührkop

et al., 2021) incorporates CSI : FingerID and CANOPUS for
prediction of molecular formulas and structure classifications using

MS1 isotope and MS2 fragmentation patterns (Djoumbou Feunang
et al., 2016; Kim et al., 2021). Here we present the results of a coupled

metabolome-microbiome approach using untargeted high-resolution
LCMS2 analysis and bacterial 16S rRNA amplicon sequencing of

environmental samples to assess metabolite detection and explore the
chemical and biological relationships between two methane seep

habitats that differ significantly in their gross morphology (Figure 1).
The 16S rRNA sequence data used for our comparative analyses of

the EmynMuil and Dagorlad methane seeps comprise a subset of the
larger ASV dataset reported by Cummings et al. (2023).

The Dagorlad seep site is an expansive microbial mat, likely
indicative of a recent onset of seepage, and the EmynMuil seep site is

a large carbonate outcrop consistent with seepage that has been
ongoing for hundreds to thousands of years. These two sites

potentially represent the opposite ends of seep succession. By
comparison with nearby off-seep habitats, as well as a deep-sea

non-seep control site, we address the overarching question of
whether different seep microbiomes can be distinguished by

untargeted metabolomics of environmental samples. We also
present a correlation analysis of the subset of putative peptides

with actinobacterial 16S rRNA sequence since Actinobacteria are
well-known to produce biologically active peptides (Zhao et al.,

2018). Our results thus may provide preliminary insight on the
potential for discovery of new biotechnological or biopharmaceutical

compounds from deep-sea methane seeps. Our long term goal is to
better understand the role of seeps in marine biological diversity and

future pharmaceutical and biotechnological research.

2 Methods

2.1 Sample collection

Sediment cores were collected from two methane seeps along the

Cascadia Margin using the ROV Hercules on E/V Nautilus cruise
NA121, in partnership with the Ocean Exploration Trust. Here we

focused on one core collected directly at the seep and one core
collected 5 m away from areas of active seepage at each of two

contrasting seep sites (Figure 1). These areas of active seepage had the
highest microbial diversity present in the region (Cummings et al.,

2023). An additional core from the Slope Base site of the Ocean
Observatories Initiative (OOI) Regional Cabled Array was collected at

a water depth of 2,900 m by ROV JASON during routine maintenance
of the site (44.5152°N, -125.3898°W). The OOI site located 300 km

south of the other sampling sites was included to compare a deeper
non-seep site in the same geographical region. Sediment push cores

were extruded shipboard and sectioned into 1 cm-thick sections
ranging from 0 (surface) to 10 cm deep in the core, with the

exterior discarded to prevent sediment smearing from impacting the
measured microbial community and metabolome. Core sections were

BA

FIGURE 1

(A) Map indicating the locations of the three sampling sites (older seep Emyn Muil, younger seep Dagorlad, OOI Slope Base control). The two seeps

are approximately 50 miles off the Washington coast on the Juan de Fuca Plate. (B) Images of the two methane seep sites sampled: upper is the older

seep, Emyn Muil (1,060 m), characterized by carbonate deposits; lower is the younger seep, Dagorlad (1,000 m), characterized by soft sediments and

extensive microbial mats. This figure is reproduced in part with permission from Cummings et al. (2023, https://doi.org/10.7717/peerj.15119/fig-1).
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subdivided for metabolite and 16S rRNA analysis and frozen at -80°C
until analysis. Samples for metabolite profiling were only handled with

metal core slicing devices and were stored frozen in glass vials.

2.2 Microbial community analysis

Microbial analysis of sediment samples was performed as

described in Seabrook et al. (2018). In brief, DNA was extracted
from ~ 0.5 g frozen sediment using the QIAgen PowerSoil kit

according to the kit protocol. The V4 region of the 16S rRNA gene
was amplified and sequenced following the Earth Microbiome

protocol, including the updated primers (Parada et al., 2016).
Sequencing was carried out at the Oregon State University Center

for Quantitative Life Sciences on the Illumina MiSeq platform, with
250-bp paired-end reads. Bioinformatics of the 16S rRNA analysis

was carried out as part of a larger study using a Qiime2 pipeline as
described in Cummings et al. (2023). The actinobacterial taxa from

the resulting ASV table were selected for separate analyses.

2.3 Chemical extraction and LCMS2

Each sediment core subsection (48 in total) was lyophilized,

resuspended in HPLC grade methanol (15 mL), sonicated (30 min)
and left to extract overnight at room temperature. The solvent

supernatants were then filtered using 0.2 µM PTFE syringe filters,
dried in vacuo, and the resulting 48 extracts were weighed. High-

resolution LCMS2 profiling of all samples was performed using an
Agilent 1260 Infinity II LC system with detection by an Agilent 6545

TOF mass spectrometer. For this analysis, the sample extracts were
reconstituted at 10 mg/mL in LCMS grade methanol of which 5 µL

were injected. A reversed phase C18 porous core column (Kinetex
C18, 50 x 2.1 mm, 2.6 mm particle size, 100 Å pore size, Phenomenex,
Torrance, USA) was used for chromatographic separation. A binary

gradient system with mobile phase consisting of H2O (solvent A) and
acetonitrile (ACN, solvent B), and flow rate of 0.4 mL/min was used.

After injection, the samples were eluted with a linear gradient from 0-
5.5 min at 15% B, 5.5-15 min 15-80% B, 15-20 min 100% B. Initially

the first 5.5 minutes were sent to waste but as no peaks were seen until
after 8 minutes, 7.5 min of eluent was sent to waste to divert salt from

the mass spectrometer for subsequent runs. Data dependent
acquisition (DDA) of MS2 spectra was performed in positive mode.

2.4 Chemoinformatic analysis of
metabolomic data

For LCMS2 data analysis, raw data (Agilent .d format) were

converted to .mzML files using MSconvert (ProteoWizard); data
pre-processing to extract MS1 and MS2 features was performed

using MZmine3 (Pluskal et al., 2010). The parameters used in
MZmine3 are listed in Supplementary Table S1. Mass spectrometric

data are available via MassIVE (MassIVE ID MSV000090543)
(MassIVE, n.d.). The MZmine3 peak list was exported as an .mgf

file and uploaded to SIRIUS 5 GUI (Dührkop et al., 2019). SIRIUS

(Dührkop et al., 2019), CSI : FingerID (Dührkop et al., 2015), and
CANOPUS (Djoumbou Feunang et al., 2016; Dührkop et al., 2021;

Kim et al., 2021) analyses were performed using the parameters in
Supplementary Table S2. The MZmine3 generated feature list and

quantification table were also analyzed using the GNPS platform
(Wang et al., 2016). Peak areas of LCMS (MS1) features were

summed by CANOPUS-assigned NPClassifier pathways to generate
a pie chart for each core, representing the distribution of features

across major structure classes (Figure 2). The fatty acid and
terpenoid pathways were combined to form “Lipids and Lipid-

like molecules”. Peak areas of LCMS (MS1) features were summed
by CANOPUS-assigned NPClassifier pathways and stacked bar

plots (Figure 3) showing the proportions of each pathway by
core/depth were generated using the R package ggplot2 (Torondel

et al., 2016; Wickham et al., 2019; R Core Team, 2022).

2.5 Statistical analyses of microbial and
metabolomic data

Comparative analyses were performed on the microbial ASV,
actinobacterial ASV, and LCMS ion feature peak area datasets using

multivariate analysis in PRIMER v7 (Clarke and Gorley, 2015). Data
were Log(X+1) transformed and Bray-Curtis similarity was used to

construct a resemblance matrix. Significant patterns in the resulting
data were identified via similarity profile (SIMPROF) analysis, which is

also available in R package. SIMPROF identifies significant differences
within datasets without a priori groupings and without an arbitrary

cutoff of overall similarity. We used a significance level for SIMPROF
groupings of 5%. We generated SIMPROF groupings for each MS2,

total bacterial community, and actinobacteria only. We also visualized
these data using non-metric multidimensional scaling (NMDS). Data

were processed to visualize significant Spearman’s correlations
between LCMS features and microbial ASVs in heatmaps using the
R (R Core Team, 2022) script provided in the supplemental data

repository and performed previously (Neuhaus et al., 2022). In brief,
the MS ion feature list was filtered to generate a list containing only the

subset of features annotated as potentially peptide by CANOPUS in
either ontology. Correlation analysis with the family level microbial

data was then performed separately for this peptidic metabolite subset
in which features (microbial family or MS feature) observed in less

than 10% of samples were removed prior to correlation. Microbial
amplicon sequencing data were transformed to proportions by

dividing the counts in each sample by the sample’s total sequencing
depth. The dataset was mean centered and scaled before Spearman’s

correlations were calculated (R package “Hmisc”) between each pair
(microbe~metabolite) of features. P values were adjusted according to

the Benjamini-Hochberg procedure to control the false discovery rate.
Adjusted p values < 0.05 were considered significant.

3 Results

High resolution LCMS2 and 16S rRNA amplicon sequence data
were curated for each of ten core sections from four sediment cores

(40 samples in total). One core was collected on-seep and one core
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was collected 5 m off-seep from each of two seep sites with distinct

geomorphologies (Figure 1) and variable geochemistry (Cummings
et al., 2023). Paired data were similarly obtained for depth sections

of a non-seep OOI core as a background control (8 samples in
total). Throughout this manuscript we use the term “older” for the

carbonate-dominated Emyn Muil seep and “younger” for the soft-
sediment Dagorlad seep as it provides context for the results,
however, we do not know the time of onset of seepage at the sites

sampled. At both sites, soft sediment habitats were sampled,

although the sediment cores collected from the Emyn Muil seep

were next to an expansive carbonate outcrop indicative of persistent
seepage in the region for hundreds to thousands of years.

3.1 Microbial community

A total of 1,423,130 sequences belonging to 17,217 microbial

ASVs were detected from the four methane seep sediment cores

B

C D

E

A

FIGURE 2

Pie charts of all MS features assigned to structural classes based on NPClassifier Pathways designated by CANOPUS. Terpenoids and fatty acids have

been combined to form the class of “lipids and lipid-like” compounds. The plots display proportions based on MS1 peak areas summed by sample

collection site. (A) Emyn Muil (EM) on-seep microbial mat. (B) Emyn Muil (EM) 5 m off-seep. (C) Dagorlad Seep (DS) microbial mat. (D) Dagorlad Seep

(DS) 5 m off-seep (E) Non-seep control site, OOI slope base 2900 m.
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selected. The ASVs comprised 686 families in total. Actinobacterial
sequences were a minor component of the total ASVs present.

Overall, 2,046 sequences were identified within the Actinobacteria,
representing 142 distinct ASVs. The Actinobacteria ASVs
represented 27 families in total, although two families accounted

for 85% of all ASVs, with half (54%) of those belonging to WCHB1-
81 and the others falling outside of currently identifiable families.

3.2 Untargeted metabolomics

Processing of LCMS2 raw data with MZMine3 resulted in a total
of 1,304 mass features, which were assigned to 119 out of the 672

NPClassifier (Kim et al., 2021) structural classes across all seven NP
biosynthetic pathways using CANOPUS (Dührkop et al., 2021). The

metabolite profiles for cores from both methane seep sites
(Figures 2A–D) exhibited a higher proportion of lipids and lipid-

like molecules than the non-methane seep OOI site (Figure 2E). The
chemistry of the microbial mat at the older seep with hard carbonate

substrate clearly comprised the highest proportion of lipids and lipid-
like molecules of all the sites (Figure 2A). The distribution of

metabolites among NPClassifier pathways was most similar
between the 5 m off-seep cores from each site (Figures 2B, D).

While the relative proportion of features assigned to each structure
class did not change markedly for non-lipid metabolites, the specific

metabolites within each class varied significantly between sites.
Stacked bar plots of MS1 feature peak areas summed by their

NPClassifier assignments display the proportions of each
biosynthetic class by depth in each core (Figure 3). The plots for

both cores from Emyn Muil displayed the highest overall
proportion and greatest variation in fatty acids and terpenoids,

with the proportion of fatty acids generally increasing with depth
in core. The on-seep microbial mat had a remarkably high

proportion of fatty acids, and a concomitantly lower proportion
of alkaloids and amino acids/peptides, especially with increasing

depth in the core. In contrast, the Dagorlad cores displayed the
lowest abundance of fatty acids with proportionally more
terpenoids, and a relatively uniform distribution of metabolite

biosynthetic classes between the on-seep microbial mat and 5 m
off-seep cores. These data are summarized in Figure 4, in which

MS feature counts, summed peak areas and NPClassifier classes
are summarized in parallel for each core by depth. The older Emyn

Muil seep displayed greater variability in the abundance (peak
areas, Figure 4A) and number (counts, Figure 4B) of LCMS
features, with deeper core sections containing fewer and less

abundance of features than shallower sections. In contrast, the
number and abundance of LCMS features in both the control OOI

slope base and the younger Dagorlad seep samples were less
variable across depths. The number of distinct metabolite

structural classes annotated for each sample using the
NPClassifier ontology in CANOPUS was also determined and

revealed consistent trends with depth (Figure 4C). Comparison of
the shallower samples at the two seep sites revealed similar

numbers and abundance of LCMS features (Figures 4A, B), with
fewer structural classes assigned within the deeper samples from

the older Emyn Muil seep (Figure 4C).

3.3 Integrated analysis of microbial and
metabolite data

Separate NMDS plots of total microbial ASV and MS1 data for
all core samples exhibited corresponding patterns of variation. The

subset of actinobacterial ASV abundances was also analyzed
separately from the rest of the microbial ASV data because of the

known capacity of Actinobacteria for specialized metabolism,
resulting in structurally diverse compounds with antibiotic and

other biological activities (Zhao et al., 2018).
Greatest variability in both metabolites (Figure 5A) and

microbes (Figure 5B) was evident around the older carbonate
Emyn Muil seep compared to the relatively clustered samples of

the younger soft sediment Dagorlad seep, and the distinct microbial
community and chemistry of the non-seep OOI slope base. We note

that each point represents both a core location and depth within
that core, making statistical analysis using a priori groupings (i.e.

PERMANOVA) inappropriate to apply. Hence our application of
exploratory significance testing using similarity profile (SIMPROF)
analysis. The SIMPROF method examines whether the similarities

observed in the data are smaller and/or larger than those expected
by chance (null hypothesis testing). The MS1 data showed more

FIGURE 3

Stacked bar graphs displaying proportions of MS features assigned to structural classes based on NPClassifier Pathways designated by CANOPUS for

core sections from each of the 5 different cores. EM: Mat is Emyn Muil on-seep mat core; EM: 5 m off is Emyn Muil 5 m off-seep core; DS: Mat is

Dagorlad Seep on-seep mat core; DS: 5 m off is Dagorlad Seep 5 m off-seep core; OOI: non-seep is the OOI slope base core.
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variability in both feature counts (on-seep mat: 602.9 ± 233.6; 5 m

off-seep: 613.5 ± 160.2) and abundances (on-seep mat: 3.48E5 ±
1.78E5; 5 m off-seep: 3.05 ± 1.61E5) at the older Emyn Muil seep,

with deeper sections yielding lower feature counts and abundances
than shallower ones (Figure 4). The LCMS data for the two

Dagorlad seep cores varied less, in both feature counts (on-seep
mat: 777.3 ± 51.8; 5 m off-seep: 762.5 ± 65.6) and abundances (on-

seep mat: 6.24E5 ± 9.02E4; 5 m off-seep 5.85E5 ± 1.15E5). This is
further reflected in the greater spread in core section LCMS data for

the two Emyn Muil cores compared to the Dagorlad cores
(Figure 5A). Additionally, the LCMS data formed less distinct

clusters (Figure 5A) compared to the corresponding microbial
ASV data (Figure 5B) of the sediment cores, reflecting the shared

chemistry of metabolisms between different microbial taxa. In both
the ASV and LCMS data plots, the OOI slope base core samples

clustered separately from the on-seep and 5 m off-seep samples
(Figures 5A, B).

The 5 m off-seep cores possessed greater ASV richness than their
corresponding on-seep microbial mat cores. The Emyn Muil

sediment core from 5 m off-seep had greater microbial ASV
richness (6,948 ASVs) than the on-seep microbial mat core from

the same site (4,427 ASVs). The Dagorlad seep cores had less ASV
richness than the corresponding cores at the Emyn Muil seep but

again, greater richness was seen in the 5 m off-seep core (5,802 ASVs)
than the on-seep mat (1,338 ASVs). Sediment samples were generally
clustered by core using microbial ASV data (Figure 5B). However, the

samples from the younger Dagorlad seep cores clustered more tightly
than those from the older EmynMuil seep, where deeper depths were

less clustered than shallower depths (Figure 5B). The NMDS plot of

core samples based on the actinobacterial ASVs (Figure 5C) displayed
the least separation between the cores, likely due to the low overall

counts of Actinobacteria. Nevertheless, it is noteworthy that
actinobacterial ASV richness appeared to be less diverse for the on-

seep microbial mat cores (EM:28, DS:12) than for the 5 m off-seep
cores (EM:78, DS:35).

Clustering by similarity using the SIMPROF routine is a
method of exploratory data analysis that detects patterns using

null hypothesis testing. In summary, a Bray-Curtis similarity matrix
for the data is compared, using the pi statistic, to a mean permuted

similarity profile generated from iterative random shuffling of the
raw data. This SIMPROF method was performed on microbial ASV

abundance data, the actinobacterial ASV subset, and LCMS peak
area (abundance) data for the sediment samples. Sediment core

schematics, representing the spatial distribution of SIMPROF
groupings for the three datasets by depth of core section sample,

are presented in Figure 6, together with a template core on which
section depths are labeled (Figure 6A). In general, for Emyn Muil

and Dagorlad seep sites, changes in metabolites with depth,
indicated by bold line boundaries between different colored

sections, are consistent with changes in microorganisms with
depth (Figures 6C–F). In contrast, the metabolite and microbial

datasets for the non-seep OOI control site do not correlate well in
terms of variation with depth, and there are overall fewer changes/
boundaries (Figure 6B). In numerous instances for the two seep

sites, as indicated by circled letters, SIMPROF groupings match
between the LCMS and total microbial ASV datasets. These

B CA

FIGURE 4

Bar graphs displaying per sample, stacked by core and sample depth in core, (A) the number of mass features, (B) the sum of all LCMS peak areas

from the feature list generated in MzMine3, and (C) the number of distinct NPClassifier classes in each sample. EM: Mat is Emyn Muil on-seep mat

core; EM: 5 m off is Emyn Muil 5 m off-seep core; DS: Mat is Dagorlad Seep on-seep mat core; DS: 5 m off is Dagorlad Seep 5 m off-seep core;

OOI: non-seep is the OOI slope base core.

Redick et al. 10.3389/fmars.2023.1197338

Frontiers in Marine Science frontiersin.org07



correlations imply the presence of distinct microbial populations
with correspondingly distinct chemistry in these core sections.
There is less correlation in the change with depth of LCMS versus

actinobacterial ASV data alone, which may again reflect the
relatively low overall counts of actinobacterial ASVs. Somewhat

correlated changes in depth between actinobacteria and LCMS
datasets are apparent for the 5 m off-seep sites, for example,

between 4-7 cm core section depth in the Emyn Muil samples
and variously throughout the Dagorlad samples.

Significant positive and negative microbe~metabolite
Spearman’s correlations occurred between microbial ASVs

assigned at the family level and LCMS features annotated as
putative peptides in either ontology (Supplementary Figure S1).

The Log(X+1) normalized abundances of each of these features,
separated by sample core depth for each site, is presented in

Figure 7. Many individual LCMS features in this peptide dataset
were simultaneously categorized in other NPClassifier pathways by

CANOPUS, as anticipated for metabolites substituted with various
functional groups, or with low probability peptide annotations. The

407 mass ion features annotated as “peptide” ranged from m/z

361.2448 to 1239.9522. While the overall proportion of peptides did

not change much between cores (Figure 4), at the feature level there
are differences in the pattern of these metabolites present in the

different cores. Peptidic metabolites significantly correlated to
microbes were predominant in the upper two-thirds of the older

Emyn Muil on-seep microbial mat core with relatively few
correlated metabolites distributed throughout all core sections

(Figure 7). By comparison, the Emyn Muil 5 m off-seep core
possessed a greater proportion of significantly correlated peptidic
metabolites distributed from the surface to deeper in the core. The

Dagorlad on-seep microbial mat and 5 m off-seep core profiles were
comparable to each other and contained a majority of significantly

correlated peptidic metabolites throughout the core, as was also
found in the non-seep OOI core (Figure 7). The corresponding

abundance of significantly correlated peptide metabolites plotted on
the right-hand y axis indicates a decrease in peptide abundance with

core section depth for the two Emyn Muil carbonate seep cores, but
not for the soft sediment Dagorlad seep cores. This is in agreement

with the trend across all metabolites (Figure 2). Notably, positive
correlations were observed between actinobacterial families and

putative cyclic peptides (Table 1). The complete dataset of
correlations between features annotated as peptidic and microbial

families can be found in the Supplemental Material (Supplementary
Table S3, Supplementary Figure S1).

4 Discussion

Our coupled metabolomics and bacterial community survey
revealed distinct chemistry at methane seep sites compared to non-

seep sites at the level of microbial family and metabolite structure
class. The microbial family level was chosen for our analyses to

facilitate data handling and visualization, and for consistency with
our previous report (Cummings et al., 2023). Furthermore,

B

C

A

FIGURE 5

Non-metric multidimensional scaling (nMDS) plots of the data for 10 core sections from five different cores, including on-seep mat (Emyn Muil, EM,

purple; Dagorlad Seep, DS, cyan), 5 m off-seep (EM, red; DS, green), and non-seep OOI control (dark blue) using (A) LCMS data, (B) all microbial (16S

rRNA) ASV data, and (C) actinobacterial ASV data only.
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variations in specific molecular analogues within a series of
biosynthetically related molecules (molecular family) may occur

at the microbial genus, species or strain level, however, presence or
absence of biosynthetic genes encoding a biologically important

molecular family is most often noted at the microbial genus or
higher taxonomic level (Donia et al., 2014). Chemical diversity

changed across sites and core depth in relation to the changes in
microbial diversity (Figures 5, 6). While the proportions of structure

superclasses did not vary markedly across sites (Figures 2, 3),
individual features and subclasses of compounds varied

considerably between samples (e.g., for peptides, Figure 7).
We previously reported relative abundance of the 13 most

abundant microbial families in the on-seep microbial mat and 5
m off-seep cores from Dagorlad and Emyn Muil seeps (Cummings

et al., 2023). Notably, the microbial mat core from older Emyn Muil
comprises a relatively large portion of anaerobic methanotrophic

archaea (ANME), specifically ANME-1, not represented in the
younger Dagorlad microbial mat. The Dagorlad microbial mat

instead comprises a relatively high abundance of sulfur-reducing
bacteria (SRB) in the famil ies Desulfobulbaceae and

Desulfobacteraceae, with ANME-2 present. The partitioning of
ANME-1 and ANME-2 in this way has been reported to be

driven by methane supply (Niu et al., 2023) and suggests that the
older Emyn Muil seep may experience higher methane seepage than

Dagorlad seep. However, in the absence of flux data, there are a
variety of possible interpretations, such as is proposed in Cummings

et al., 2023. Further, nitrogen-fixing ANME-2 and SRB have been
deemed responsible for the majority of new nitrogen production

previously (Dekas et al., 2014). Thus other limiting nutrients or
processes, besides methane seepage, may impact the community

compositions observed here.
The relatively high abundance of lipids and lipid-like molecules

at both methane seep sites versus the non-seep OOI control site
(Figures 2, 3) may be attributed to methane seep-specialized

bacteria, which are known to produce large quantities of
methanotroph-specific monounsaturated fatty acids (Guan et al,

B

C

D

E

F

A

FIGURE 6

Core schematics representing the spatial distribution of similarity groupings according to SIMPROF analysis of LCMS features (LCMS), microbial 16S

ASVs (Microbe), and actinobacterial 16S ASVs (Actino). Conserved color and label of core section within LCMS, Microbe or Actino datasets indicates

that those sections belong to the same SIMPROF grouping. Circled letters indicate groupings that match across at least two datasets. (A)

Diagrammatic representation of a sediment core in situ, in benthic substrate, alongside a representative core with depth graduations corresponding

to sectioning of the core during sample processing. (B–F) Data for the non-seep OOI Slope Base, and off-seep and on-seep microbial mat for the

younger Dagorlad (DS) and older Emyn Muil (EM) seeps, as labeled.
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2022; Cordova-Gonzalez et al., 2020) and terpenoid compounds
including carotenoids, steroids, polyprenols, and hopanoids

(Salvador-Castell et al., 2019; Grivard et al., 2022). The unknown
reason for the highest proportion of lipids and lipid-like molecules

at the older carbonate substrate seep (Figure 2A) is presumably
associated with the specific microbial community (and

geochemistry) at the older carbonate substrate seep. These
observations present opportunities for future hypothesis-driven

research, potentially using targeted lipid analysis. These
chemosynthetic habitats add to the chemical diversity of the

ocean, and our exploratory work here demonstrates that even
comparable habitats (soft sediment microbial mats, fueled by

methane) have divergent metabolites (Figure 4), demonstrating
that different chemosynthetic habitats add to the overall chemical

diversity present in marine systems.
As very fewMS ion features had spectral library or in silico predicted

annotations in GNPS, we relied on CANOPUS to provide structural
information for LCMS features that could be used to compare sediment

cores from different sites. CANOPUS annotations are predictions that
require further analysis and additional data for confirmation and

comprehensive structure elucidation. CANOPUS predictions are also
less accurate for molecules withmasses greater than 850 Da, and SIRIUS

does not currently support formula prediction or structural class
prediction from doubly charged ion features. The semantic ontologies

(NPClassifier and ClassyFire) used for computational assignment of
structural class or ‘pathway’ may offer several alternatives since many

chemical compounds comprise multiple substructures which fall into
separate structural categories. Hence, assignment of a reasonably

complex compound to only one structural class or another is
subjective and requires manual assignment. Thus, metabolites are

considered only at the level of biosynthetic class in this study.

Marine sediment samples posed challenges for LCMS analysis
that may have resulted in an underestimation of the NPs present.

Salt comprised a large portion of the mass-limited extracts obtained
and potentially contributed to ion suppression, reducing the

sensitivity of the mass detector (Metwally et al., 2015). To prevent
large quantities of salt from entering the mass spectrometer, the LC

column eluent was directed to waste for the first several minutes,
meaning that more polar metabolites were likely lost to waste. The

proportions of metabolites belonging to the various pathways are
also likely skewed by electrospray ionization (ESI) technique and

(positive or negative) mode used, as well as parameters set in the
mass detection method, which affect metabolite ionizability. For

example, carbohydrates may be underrepresented because many
glycans do not give strong signals in positive mode due to lack of

basic sites for protonation (Grabarics et al., 2022). Additionally,
there is a large amount of elemental sulfur in deep-sea sediments

around methane seeps, and organic polysulfide compounds may
require chemical ionization (CI) or Fast Atom Bombardment (FAB)

for mass detection, as is the case for lissoclinotoxins (Davis et al.,
2003) and lissoclibadins (Nakazawa et al., 2007). As a result, while

we have used a powerful technique coupled with multiple
computational pathways, we are likely underestimating the

chemical diversity present in methane seep habitats.
The correlations between LCMS features and particular bacterial

families determined here will direct future investigation. The heatmap
of peptidic feature correlations to microbial families (Supplementary

Figure S1) emphasizes the chemical and biological complexity of
methane seep sediment communities, illustrating that any one LCMS

feature may have multiple positive and negative correlations with
diverse microbial families and vice versa. The heatmap is organized

by similarity of patterns in correlations, so that MS ion features with

FIGURE 7

Heatmap of MS ion feature abundance representing distribution by core of putative peptidic metabolites with significant positive or negative

correlations to families of microbial ASVs. Bar graph representing total numbers of features annotated as putative peptides by depth and core. For

both heatmap and bar graphs, rows are stacked by depth within cores.
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similar patterns of correlation across microbial families are clustered
together. Thus, in the upper portion of the heatmap, there are obvious

groupings of microbial families (in rows) that display consistent
positive and negative correlations with groupings of metabolites,

which may form the basis of hypotheses for future investigation.
While it is not possible to confidently assign producing organisms

or functional roles to (structurally unassigned) metabolites based on
Spearman’s correlations (Carr et al., 2019), the co-occurrence of

known biologically active classes of metabolites with bacterial
families known to produce those metabolites demonstrates

relevance and rationale for natural products biomedical and
biotechnological research. Our data reveal that several bacterial

families belonging to orders that have previously yielded
structurally diverse bioactive NPs are positively correlated with

LCMS features of the same structural classes as the known
bioactive NPs. For example, positive correlations were seen between

actinobacterial ASVs and several LCMS features annotated as cyclic
peptides (Table 1). Actinobacteria are well-known to produce

biologically active cyclic peptides (Zhao et al., 2018). Additionally,
other bacterial families within Cellvibrionales (Han et al., 2013),

Campylobacterales (Rischer et al., 2018) and Rhodobacterales (Ióca
et al., 2021) also have significant positive correlations with putative

peptidic features (correlation data in Supplementary Table S3), and
members of these orders are known producers of bioactive

nonribosomal peptides. Rhodobacteraceae are reported to produce
peptide-derived alkaloids (Dickschat et al., 2005a; Dickschat et al.,

2005b; Nicacio et al., 2017) and several LCMS features in ourmethane
seep cores that were annotated as both alkaloid and peptide positively

correlated with Rhodobacteraceae. The exploratory analysis
undertaken here leverages significant bioinformatic and analytical

advancement and provides a foundation for future work to realize the

NP potential as well as the functional role of specialized metabolites in
marine systems. In order to bridge the gap between specialized

metabolite discovery by LCMS feature annotation and identification
of biologically active metabolites relevant to human health, the

adoption of computational methods is essential. Emerging tools
such as NPAnalyst (Lee et al., 2022) or Pearson correlation

pipelines (Nothias et al., 2018) permit mapping of biological activity
observed for complexmixtures to individual components therein. The

ability to discern structural and substructural motifs known to be
associated with specific bioactivities further enables more targeted

testing of limited sample quantities. In addition, tools such as GNPS
may allow identification of other sources of the same or related

metabolites of interest, facilitating access to larger quantities for more
extensive biological testing and structure elucidation. The deep sea,

beyond depths accessible by SCUBA, is only beginning to be included
in the search for new NPs, with 75% of the new metabolites

discovered found to be biologically active, and almost half having
some anti-cancer potential (Skropeta and Wei, 2014). The challenges

of accessing, isolating, and characterizing new organic molecules
requires ongoing technological innovations and interdisciplinary

collaborative research, which is well justified given the tremendous
contributions to date of small organic compounds in chemical and

biological research, and to global health (Cheng et al., 2014; Newman
and Cragg, 2020; Carroll et al, 2022). Here we present a snapshot of

the potential for NP discovery in methane fueled habitats, where we
found differentmetabolite profiles at two sites at the same water depth

in relatively close proximity. Seep biodiversity is known to vary
latitudinally across the Cascadia Margin (Seabrook et al., 2018) and

there is high microbial heterogeneity at <1 m spatial scale (Boetius
and Suess, 2004; Cummings et al., 2023). In addition, seeps change

over time, as do the biological communities that inhabit them (Cordes

TABLE 1 Correlations between families within Actinobacteriota and mass features annotated as cyclic peptides by CANOPUS.

Microbial Families within Phylum
Actinobacteriota Corr.

Coeff.
Adj. p
value

Feature
ID

m/z
NPC
Class

NPC Class
Prob.

Class Order Family

Unassigned Unassigned Unassigned 0.4781 0.018 260 420.250666
Cyclic
peptides

0.888

Acidimicrobiia Microtrichales Ilumatobacteraceae 0.5155 0.009 259 655.395939
Cyclic
peptides

0.226

Coriobacteriia CG2-30-50-142 CG2-30-50-142 0.5934 0.001 260 420.250666
Cyclic
peptides

0.888

RBG-16-55-12 RBG-16-55-12 RBG-16-55-12 0.7564 4.40E-6 260 420.250666
Cyclic
peptides

0.888

Thermoleophilia Solirubrobacterales 67-14 0.5335 0.006 260 420.250666
Cyclic
peptides

0.888

Thermoleophilia Solirubrobacterales 67-14 0.4311 0.041 1109 693.551802
Cyclic
peptides

0.990

WCHB1-81 WCHB1-81 WCHB1-81 0.5703 0.003 260 420.250666
Cyclic
peptides

0.888

WCHB1-81 WCHB1-81 WCHB1-81 0.4553 0.027 1112 725.577524
Cyclic
peptides

0.987
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et al., 2005; Bowden et al., 2013; Thurber et al., 2020). If we presume
our two seep sites are at the opposite ends of seep succession,

temporal patterns also contribute to the diversity of metabolites
present in these habitats. Continued and increased characterization

of habitats at the interface of metabolome and microbiome science
has astounding potential, especially considering the more than 3,500

seeps that are present but 99% unexplored on the Cascadia Margin
(Merle et al., 2021), where this research was carried out.

Characterizing the role of habitat heterogeneity on deep-sea
ecosystem services, such as NP discovery, will allow informed

management of deep-sea habitats with an eye towards future
potential balancing immediate gains.
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