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% Check for updates Irrigation effectively increases yields and buffers against intensifying

climatic stressors to crop productivity but also produces greenhouse

gas (GHG) emissions through several pathways including energy use for
pumping (on farm and for interbasin water transfers), N,O emissions from
increased denitrification under elevated soil moisture, and degassing of
groundwater supersaturated in CO,. Despite irrigation’s climate adaptation
potential, associated GHG emissions remain unquantified. Here we conduct
acomprehensive, county-level assessment of US GHG emissions from these
irrigation-related pathways, estimating that irrigation produces 18.9 MtCO,e
annually (95% confidence interval 15.2-23.5 Mt), with 12.6 Mt from on-farm
pumping, 1.1 Mt from pumping for interbasin transfers, 2.9 Mt from elevated
N,O and 2.4 Mt from groundwater degassing. These emissions are highly
spatially concentrated, revealing opportunities for geographically targeted
and source-specific GHG mitigation actions. These findings enable strategic
consideration of GHG emissions in decision-making associated with
irrigation expansion for climate adaptation.

The area of irrigated agricultural land in the USA has expanded from
approximately 16 million hectares to over 23 million hectares since 1970,
andirrigated farms are now responsible for nearly 60% of crop market
value production despite occupying only 17% of harvested cropland

vulnerability to heat and drought stress’°, which are major drivers of
crop losses historically“’”.:

Sinceirrigationis akey climate adaptationtool, acomprehensive
understanding of irrigation-driven greenhouse gas (GHG) emissions is

area'.Irrigation effectively buffers against drought and heat stress by
both meeting crop water demand and reducing local temperatures
through increased latent heat flux®*. Thus, irrigated croplands on
average have both higher yields and yield stability than comparable
non-irrigated lands*°. Although localized contractions in irrigated
area have occurred in the western USA owing to water scarcity, there
havebeen larger expansionsinirrigated areain the centraland eastern
USA where water availability is less constrained. As climate change
exacerbates precipitation variability and increases atmospheric water
demand, irrigation is becomingincreasingly valuable for reducing crop

needed to identify the implications of irrigation expansion for meet-
ing urgentagricultural-sector emissions reduction goals™*, Potential
feedbacks arise if climate change adaptation strategies increase GHG
emissions and therefore compromise climate change mitigation goals.
Existingresearchrelated toirrigation emissions at large spatial scales
has predominantly focused on energy use for pumping?, revealing
that irrigation pumping represents a substantial proportion of agri-
cultural energy use emissions®. However, this body of work captures
emissions from only one of several pathways by which irrigation con-
tributes to food system emissions™%***,
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Groundwater supplies 48.5% of irrigation water in the USA%, but
itis supersaturated in CO, due to (1) passage through soil pore spaces
with high CO, concentrations from microbial metabolism and (2)
reactions with bedrock within the aquifer®®?. Upon extraction and
application, groundwater CO, concentrations equilibrate with the
atmosphere, releasing excess CO,. Additionally, N,O emissions are
influenced by soil moisture levels, with peak emissions occurring at
water-filled pore space levels exceeding roughly 70% due to denitrifica-
tion of soil nitrate*®*, Temporarily saturated cropland soil depressions
can produce N,O at rates 80 times higher than adjacent, non-flooded
land*°, and irrigation increases the likelihood of saturated conditions
in croplands. However, field-scale studies of the impacts of irrigation
onN,0 emissions have identified a very wide range of effects depend-
ent on management practices, soil properties and crop type, rang-
ing from non-significant changes to increases of up to 140% (ref. 31).
Finally, interbasin transfers, or the non-natural transport water from
one hydrologic basin to another, supply an estimated 19% of surface
water for publicsupply andirrigation usesin the USA*’. Some of these
projects transport water long distances and have large elevation gains,
leading to substantial pump energy demands®**.

Here, we comprehensively examine GHG emissions from agri-
culturalirrigation across US counties due to groundwater degassing,
elevated N,O emissions and energy use for interbasin transfers circa
2020, opportunistically using available data primarily from 2015 to
2022 for each emissions source (dates for each datasource are detailed
inSupplementary Table1). Emissions from groundwater degassing are
calculated using measurements of pH, alkalinity and salinity of US well
waters® and land surface temperature®. Nitrous oxide emissions are
estimated using a statistical metamodel of site-level N,O flux estimates
that were developed with the DayCent biogeochemical model for the
US GHG Inventory and are representative of all US agricultural pro-
duction®. Finally, emissions from interbasin transfers are calculated
using energy use data collected directly from the utility companies,
irrigation districts and government agencies that operate transfers
thatsupply irrigation water®’. We couple these novel emissions datasets
with existing data about on-farm energy use emissions to construct
a comprehensive, county-level database® of irrigation-related GHG
emissionsinthe USA (Supplementary Table 2). This publicly available
database will facilitateimproved life cycle assessment of irrigated crop
products and enable theidentification of locally relevant agricultural
GHG mitigation opportunities.

Results and discussion

Total GHG emissions from irrigation

Irrigation produces an estimated 18.9 million metric tonnes (Mt) CO,
equivalents (CO,e) annually circa 2015-2022 in the USA (95% confi-
dence interval (Cl)15.2-23.5 MtCO,e yr™) (Fig.1). On-farm energy use
for pumpingirrigation water accounts for 67% of the total emissions,
or12.6 MtCO,e yr™(95% C110.4-15.0 MtCO,e yr). Increased N,O emis-
sions from soils account for the second-largest proportion of total
irrigation-related emissions (15%), producing 2.9 MtCO,e yr™ (95% CI
2.7-3.0 MtCO,e yr'). Degassing of CO, from groundwater produces
2.4 MtCO, yr™*(95%Cl1.5-3.7 MtCO, yr™), or13% of the total emissions.
Finally, off-farm energy use for interbasin transfers produces an addi-
tional 1.1 MtCO,e yr™ (95% C10.6-1.8 MtCO,e yr™), accounting for 6% of
totalirrigation-related emissions. State-level, source-specific Cls and
relative uncertainty estimates are available in Supplementary Fig. 1,
and county-level, source-specific Cls are available in Supplementary
Table 2. Even though groundwater and surface water withdrawals for
irrigation are of similar magnitude nationally (accounting for 49% and
51% of total withdrawals, respectively)®, groundwater accounts for 79%
ofirrigation-related emissions (14.9 MtCO,e) due toits higher energy
requirements for on-farm pumping and the degassing flux, which,
assuming eventual water-gas equilibration, does not apply to surface
water. Only 21% of the total emissions (4.0 MtCO,e) are attributable to
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Fig.1| Total GHG emissions associated with irrigation in the USA by source.
GHG emissions associated with irrigation in the USA by emissions source. The
blue bars indicate emissions associated with groundwater use, and the red bars
indicate emissions associated with surface water use. The error bars represent
the 95% Cls for the emissions estimates, capturing quantifiable sources of
uncertainty for each emissions source viaa Monte Carlo bootstrapping approach
(detailed in Methods; n=10,000 bootstrap replications for on-farm energy use
and interbasin transfers and n =1,000 replications for N,O and groundwater
degassing).

surface water use, including all interbasin transfer emissions. How-
ever, this estimate does notinclude emissions from off-farmintrabasin
pumping for conveyance of surface water owing to a lack of available
data.

Geographic hotspots of irrigation-related emissions have an out-
sized contribution to national totals, with the highest-emitting decile
of counties (270 counties) producing over 76% of emissions (Fig. 2).
Broadly, the identification of hotspots of environmental impacts can
reveal the maximally impactful leverage points for intervention®. Gini
coefficients (G) provide a measure of equality in the distribution of a
variable, with a value of zero indicating that the variable is uniformly
distributed (that is, all irrigated counties produce equal amounts
of irrigation-related emissions) and a value of 1 indicating perfect
inequality (thatis, asingle county produces allirrigation-related emis-
sions)***°, The Gini coefficient for total irrigation-related emissions
indicates that the distribution of county-level emissions is highly
skewed (G = 0.86). Moreover, G of emissions s larger than G of irrigated
area (G =0.82),indicating that the spatial concentration of emissions
is greater than would be expected given the spatial concentration of
irrigated area.

The spatially concentrated nature of the distribution of irrigation-
related emissions clarifies geographic targets for GHG mitigation.
Notable hotspots of irrigation-related emissions occur in the High
Plains Aquifer region, the Mississippi Delta, California’s Central and
Imperial Valleys and Southern Arizona (Fig. 2a). Although county-level
irrigation-related emissions are tightly correlated with irrigated area
(Supplementary Fig. 2; »=0.77, P< 0.001), the area-based emissions
intensity of irrigation also contributes to spatial variability in emis-
sions. Forinstance, the highest-emitting decile of counties hasanaver-
age emissionsintensity of 1.0 tCO,e ha™, while the remaining counties
have an average emissions intensity of 0.50 tCO,e ha™. High-emitting
counties are often associated with higher per-hectare water use, higher
aridity, higher groundwater reliance and the presence of aninterbasin
transfer (Supplementary Fig. 3).

Different emissions sources also exhibit different degrees of spa-
tial concentration and different distributions (Figs. 2b and 3), suggest-
ing that the most effective mitigation actions may vary depending on
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Fig.2| County-level distribution of total irrigation-related GHG emissions
and spatial concentration by source. a, County-level map of total GHG
emissions fromirrigation. b, The cumulative proportion of emissions occurring
within a given proportion of counties that contain irrigation. The colour scale in
aissquare-root transformed for improved visibility, and counties in white do not
have any crop irrigation per the USGS 2015 water use dataset used in the analysis.

Cumulative proportion of irrigated counties

The dashed black line in b represents a hypothetical uniform distribution
ofirrigationamong counties, and the black, red, light-blue and green lines
represent the observed distribution of irrigation-related emissions from on-farm
pumping, nitrous oxide, groundwater degassing and energy use for interbasin
transfers, respectively.

the locally dominant emissions source. Emissions due to interbasin
transfers are the most spatially concentrated (G = 0.99), followed by
CO, degassing from supersaturated groundwater (G = 0.93), on-farm
pump energy use (G =0.91) and elevated N,0 emissions (G = 0.88).
On-farm energy use is the dominant source of irrigation-related emis-
sions across 90% of irrigated counties, which contain 78.2% of irrigated
land. Elevated N,O emissions are the dominant source in 7% of counties
(containing 9.6% of irrigated land), primarily in areas where pumping
emissions and groundwater reliance are low. Groundwater degassing is
the dominant emissions sourcein 55 counties (10.0% of irrigated land),
including much of the Lower Mississippi River Valley region. Although
energy use for interbasin transfers is the dominant emissions sourcein
only 15 counties, the emissions impact is substantial in those locations.

Groundwater degassing

We estimated that CO, degassing from groundwater that is used for
irrigation emits 2.4 MtCO, yr™ (95% CI1.5-3.7 MtCO,e), at a national
average volume-based rate of 30,866 tCO, km™ of groundwater.
These emissions are highly spatially heterogeneous (Fig. 3a,b) and
are concentrated in the Mississippi River Valley region, which has
experienced steady growthinirrigated area* and irrigation volumes*
since the 1970s to support increasing corn and soybean production®
in addition to rice and cotton. County-level degassing emissions are
correlated with groundwater extraction volumes (r= 0.68), but emis-
sions are also strongly influenced by the spatial variance in the partial
pressure of CO, (pCO,) in groundwater (Supplementary Fig. 4). For
example, groundwater extractions from the 81 counties overlaying
the Mississippi River Valley Alluvial Aquifer account for only 21% of
total groundwater withdrawals nationally, but they produce 54% of
the total degassing emissions with an average degassing emissionsrate
thatis 250% of the national average due to a higher groundwater pCO,.
As a counterpoint, the 237 counties overlying the High Plains Aquifer
produce only 15% of degassing emissions while accounting for 24% of
groundwater withdrawals.

Localized reductions in groundwater withdrawals in areas with
high pCO, values will be needed to reduce emissions from groundwater
degassing. Increasing the water use efficiency of irrigation systems
may reduce withdrawals of groundwater and, therefore, the emissions
fluxes attributable to degassing and groundwater pumping, even if
consumptive water use (that is, the volume leaving the system via
evapotranspiration) is not substantially reduced by improved system

efficiency***. For example, approximately 68% of irrigated areain the
Mississippi River Valley utilizes highly inefficient flood or furrowirriga-
tionsystems*, and nearly all rice is grown with continuous flooding*®.
Irrigation application rates for maize and soybean are approximately
49% and 51% lower, respectively, under pivot irrigation than furrow
irrigation*?, and implementation of alternate wetting and drying sys-
tems can reduce water application rates for rice by 39% (ref. 46). CH,
emissions can also be reduced via alternate wetting and drying, as
discussedin the section onadditional emissions sources below. Reduc-
tions in degassing emissions would be proportional to reductions in
groundwater withdrawals, suggesting strong mitigation potential for
this emissions flux viaimproved irrigation water use efficiency. How-
ever, switching to more efficient irrigation systems does not always
reduce water withdrawals, as it can lead to an expansion in irrigated
areaand encourage planting of more water-intensive crop varieties*.
Thus, policy efforts to regulate total groundwater withdrawals will be
needed alongside improvements in system efficiency. Additionally,
mitigation of degassing emissions viareduced groundwater withdraw-
als should be undertaken with consideration of crop yield impacts,
as yield reductions may lead to increased GHG emissions through
cropland intensification or expansion elsewhere.

Our estimate of CO, emissions from groundwater degassing falls
within the range of another national-scale estimate developed using
a national average value for groundwater bicarbonate concentra-
tionand an estimate of groundwater depletion (1.7 MtCO, yr™; 95% CI
0.9-2.6 MtCO, yr™)*, though our mean estimate is 1.4 times higher.
Two key methodological differences underly the difference between
these two estimates. First, we derive spatially resolved pCO, estimates
from groundwater pH, alkalinity and temperature, rather than rely-
ing on a national average value of bicarbonate concentrations. This
spatial resolution allows for alignment of the large variability in both
groundwater extractions and pCO,. Second, we consider the gross
flux from all groundwater extractions, rather than only groundwater
depletion. Although thereis a potential return flux of CO, to the aquifer
viagroundwater recharge, the timescale of this return, particularly for
mineral-derived carbon, may be long enough that it is irrelevant for
shorter-term GHG accounting and irrigation decision-making. Future
work to assess potential return fluxes and their timelines, analyse
degassing of dissolved N,O from groundwater and evaluate interannual
variability in groundwater extractions would further clarify the impact
of groundwater degassing on agricultural GHG emissions.
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Biogenic soil N,0 emissions

We estimate that irrigation contributes 2.9 MtCO,e annually (95% CI
2.7-3.0 MtCO,e) through increased N,O emissions on irrigated crop-
lands (Fig. 3c,d). This direct contribution of irrigation represents
approximately 9.9% of the total direct N,O emissions (29.1 MtCO,e)
that are produced on the 21.5 Mha of irrigated cropland included in
this analysis. Given thatirrigationincreases N,O emissions by causing
periods of elevated soil moisture that promote denitrification®**,
avoidance of saturated conditions through improvedirrigation sched-
uling may mitigate increased N,O emissions. Additional reductionsin
irrigation-related direct N,O emissions from cropland soils are poten-
tially achievable through management practices such as the optimi-
zation of N application rates*®, use of controlled-release fertilizers*
and use of nitrification inhibitors*® (though inhibitors may increase
indirect emissions™).

Total irrigation-related N,O emissions and per-area rates of
emissions are much higher in the western USA than the east. The five
highest-emitting states (Nebraska, Texas, Idaho, Kansas and California)
produced 68% of the total emissions attributed to irrigation despite
containing only 46% of the irrigated cropland. These high-emitting
states are characterized by both 49% higher average N use per hectare
and 41% lower average ratios of precipitation to evapotranspiration
than the remaining states, both of which are likely drivers of higher
per-hectareirrigation-related N,O emissions rates. In contrast to these
high-emitting areas, the model indicates that irrigation reduces N,0
emissions in three eastern states on average (Maryland, Rhode Island
and Connecticut). It is possible that irrigation in these areas either
improves plant uptake of N or increases nitrate leaching to ground-
water or runoff in surface water, thus reducing direct losses of N as
N,O from croplands. However, increased runoff and leaching of N may
leadtoincreasesinindirect N,O emissions off-farm. Additionally, both
the average area-based rate of decrease (—0.9 CO,e ha™) and the total
irrigated area in these states (54,657 ha) are very small, resulting in a
negligible reduction of only 59 tCO,e in total. Sharp gradients at state
boundaries in the percentage of emissions contributed from each
source (Fig. 3b,d,f,h), such as the high relative contribution of N,O in
Idaho, arise from reliance on some state-level input data and should
beinterpreted with caution.

To provide additional confidence in our estimate in light of model
uncertainties, we performed asimplified Intergovernmental Panel on
Climate Change (IPCC) Tier 1 calculation® using a global database of
measured climate- and irrigation status-specific emissions factors™
asarobustness check. Notably, these emissions factors were not from
paired, co-located irrigated and rainfed systems, but rather included all
cropland emissions factors in the database that contained information
onirrigation status. Based on these emissions factors and the same
dataset of Ninputs that was used for the metamodel, we estimated that
5.8 MtCO,e (95% CI2.4-10.2 MtCO,e) were attributable to increased
N,O fromirrigationin 2017 (Supplementary Fig.5). This Tier 1 estimate
of N,O emissions is larger than the metamodel results and has awider
uncertainty band, though the Cls of the Tier 1 and DayCent-based
estimates overlap.

The analytical approaches used for the estimation of irrigation-
related N,O emissions capture the variability in N,O emissions attrib-
uted to irrigation but assume that no other model variables change,
suchascroplandarea, crop types or Ninputs. Inreality, the elimination

of irrigation would be accompanied by other management and land
use changes such as retirement of croplands where production is not
feasible without irrigation and reductions in N fertilizer application
for systems that transition to rainfed production, further reducing
N,O emissions. On croplands that would be retired without irrigation,
all N,O emissions from applied N could be considered attributable to
irrigation. This analysis does not capture hypothetical area or man-
agement changes and, thus, provides a lower-bound estimate for the
contribution of irrigation to N,O emissions, reflecting only emissions
directly attributable to increased moisture inputs. Future work may
considerirrigation-driven changesin cropland areaand management
to account for emissions impacts in areas where rainfed production
isnot possible and/or N application rates are higher under irrigation.

Field-scale studies have generally focused on measuring the
effectof alteredirrigation regimes, such as comparing N,O emissions
under sprinkler versus floodirrigation or differentirrigation water vol-
umes, rather than comparisons of adjacentirrigated and non-irrigated
systems**. Additional in situ measurements of N,O emissions from
comparable, co-located irrigated and rainfed fields across a range
of environmental conditions (where rainfed production is feasible)
and management practices will be needed to reduce uncertainty in
the impact of irrigation on N,O emissions and facilitate scalability.
Furtherimprovementsto N,O emissions estimates may be achievable
through the use of additional biogeochemical models, refinements
in model representation of irrigation, and improvements in fertilizer
use datasets.

Energy use for interbasin transfers

We evaluated energy use along 103 active interbasin transfer projects
that supply irrigation water, which in total produce an estimated
1.1MtCO,e yr (95% Cl 0.6-1.8 MtCO,e) from the delivery of irriga-
tionwater (Fig. 3e,f). Interannual variability in pumping volumes and,
thus, inenergy requirements can be large; this variability underlies the
relatively wide Cl for this estimate. Many of interbasin transfers also
supply water for municipal, domestic or industrial uses, so emissions
for each transfer were scaled by the proportion of water delivered for
irrigation. Some major projects supply very little water to agricultural
users but have substantial total energy use and emissions, such as the
Colorado River Aqueduct in California and the Coastal Water Author-
ity Canals in Texas. Notably, 65% of the transfers (67 transfers) do not
require any external energy inputs and instead rely primarily ongravity
flow through canals and pipelines to transport water. This includes
several very large transfers, such as the All American and Los Angeles
Canals in California, the Fryingpan-Arkansas Project in Colorado and
the Diamond Fork Projectin Utah. Inverted siphons and, insome cases,
hydraulic lift pumps enable uphill travel without energy inputs along
these projects.

Among the 36 projects that do involve pump energy use, emis-
sions are heavily dominated by two projects with large transfer vol-
umes, substantial elevation gain and long conveyance distances. The
Central Arizona Project (CAP; 379,484 tCO,e yr™) and the California
State Water Project (SWP; 519,347 tCO,e yr™) produced 85.4% of the
national total emissions associated with interbasin transfers of irriga-
tion water. In contrast, 22 transfers had emissions footprints of less
than1,000 tCO,e yr™, and the remaining 12 transfers produced between
1,030and 65,469 tCO,e yr. Allbut one of the projects rely on electrical

Fig. 3 | Source-specific maps of GHG emissions and their relative
contribution. a-h, County-level maps of total GHG emissions from irrigation
(left; thatis, a, ¢, e and g) and the percentage of irrigation-related GHG emissions
within each county (right; thatis, b, d, fand h) attributed to groundwater
degassing (aandb), elevated N,O (c and d), energy use for interbasin transfers
(eandf) and on-farm energy use for pumping (g and h). Ineandf, the red lines
indicate interbasin transfer conveyance paths that require energy for pumping,
and the blacklines indicate interbasin transfer paths that do not require energy

for pumping. The emissions associated with interbasin transfers are allocated
equally to the counties containing each conveyance path, regardless of pump
station locations. The colour bars for emissions estimatesina, c,eand gare
square-root transformed to better illustrate the patterns. Counties in white are
not associated with emissions for the source owing to not having any reported
groundwater use for cropirrigation (aandb), ground or surface water use for
irrigation (¢, d, gand h) or interbasin transfers (e and f).
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pumps (the exception being the Lower Neches Valley Authority Canals
in Texas, which has one natural gas pump station).

Given heavy reliance on electricity, reductions in the emissions
intensity of the electrical grid will serve to directly reduce emissions
frominterbasin transfers. Additionally, hydropower is produced along
the paths of many of the major transfer projects, and some projects
haveinvested in construction of renewable energy generation to meet
pump energy demand. For example, approximately half of the power
used forthe SWPis produced at hydroelectric generating plantslocated
alongthe projectitself, which also deliver hydropower to the electrical
grid.Since the 2019 closure of the coal-fired Navajo Generating Station,
which supplied the majority of energy needed to power pumping along
the CAP, the CAP has established long-term contracts to source 6% of
its power from the Hoover Dam hydroelectric generating plantand 7%
from new solar development.

Emissions associated with energy use for within-basin water con-
veyance by irrigation organizations were not estimated in this study
owing to extremely large number of organizations involved in irriga-
tion water delivery. Future efforts to develop a national inventory of
within-basin water infrastructure would facilitate further analysis of
the energy and emissionsimplications of intrabasin water conveyance.

Additional emissions sources

Two additional emissions sources that are influenced by irrigation
include enhanced methane emissions from rice production systems
and methane emissions from surface reservoirs that store irrigation
water. The 2023 US GHG Inventory estimates that US rice production
systems, allof whichareirrigated, produced 16.8 MtCO,e of CH,in 2017
(ref. 36), although the 95% Cl extended from 4.2 to 29.4 MtCO,e and
estimates vary between Tier 1, Tier 2 and Tier 3 accounting strategies™.
We excluded rice CH, emissions from the present analysis because there
isnorainfedrice productioninthe USAto serveasacounterfactual to
emissions fromirrigated rice production and because several spatially
explicitestimates of methane production fromrice have already been
generated. Although eliminating irrigation for rice production is not
feasibleinmuch of therice-growing areainthe USA, reducingirrigation
intensity through practices such as alternate wetting and drying has
potential to reduce CH, production by 39-83% (refs. 56,57). Surface
water storage and delivery infrastructure, including reservoirs, canals
and constructed ponds, were estimated to produce 20.1 MtCO,e of CH,
in2020. However, most reservoirs and similar infrastructure are mul-
tipurpose, with uses for power generation, flood control, recreation,
habitat, navigation and public supply inadditiontoirrigation. Reservoir
end uses are not comprehensively tracked, and thus, identifying the
share of reservoir emissions attributable explicitly to water use for
irrigation is non-trivial. Opting to include rice and reservoir methane
productionwould substantially increase the estimated GHG emissions
impact of irrigation.

Conclusions

We estimate that USirrigation produces 18.9 MtCO,e annually through
pump energy use, groundwater degassing of CO,and increasesinN,O
emissions circa2020. Irrigation-related emissions are predominately
attributable to energy use (72% of total emissions) and groundwater use
(79% of total emissions). They are also highly spatially concentrated,
leading to geographic hotspots of irrigation-related emissions inwhich
emissions mitigation actions can be targeted towards the key sources.
Asenergy use accounts for the majority of total emissions, pump elec-
trification and grid decarbonization will be effective strategies for
reducingirrigation-related emissions nationwide. Reductionsin degas-
sing emissions will require reductions in groundwater extractions,
particularly from aquifers with high pCO,, which will be achievable in
partthroughincreasedirrigation system efficiency. Effectiveirrigation
scheduling and improved efficiency may additionally help mitigate
excess N,0 emissions by minimizing periods of very high soil moisture

contents, particularly when coupled with interventions to reduce the
excessreactive Nload such as use of controlled-release fertilizers and
optimized N application rates. Additional work to assess interannual
variability in irrigation-related emissions and evaluate implications
of hypothetical policy scenarios may be useful for further targeting
mitigation efforts.

To our knowledge, this is the most comprehensive national-scale
analysis of irrigation related emissions so far, and we believe that the
resultant database has several important uses. First, the incorpora-
tion of irrigation-related emissions into life cycle assessment mod-
els will improve GHG accounting of products derived from irrigated
crops. Second, the data provide insight into potential future changes
inirrigation-related emissions due to changing environmental condi-
tions, such as increased crop water demand, groundwater depletion
and altered surface water availability, among others. Third, the data
enable consideration of the GHG emissions impacts of irrigation policy
decisions, such as incentives for irrigation expansion or improve-
ments to system efficiency, whichis particularly relevant forirrigation
policy decisions motivated by climate change adaptation. Insum, these
spatially resolved, source-specific estimates of GHG emissions from
irrigation will enable more thorough evaluation of trade-offs between
increased crop productivity, increased water scarcity and increased
emissions in the context of continued irrigation expansion.

Methods

Groundwater degassing

Source data. We collected a suite of well water chemical species and
parameters, including alkalinity, pH and salinity of the groundwater
systemin the contiguous USA from the US Geological Survey (USGS)**.
Specifically, we selected 11 different parameter codes for alkalinity
(00418, 00421, 29801, 29802, 29803, 39036, 39086, 39087, 99431,
00410 and 90410), three parameter codes for pH (00400,00403 and
00408) and four parameter codes for salinity (that is, total dissolved
solids) (70300, 70301, 70303 and 00515) according to the USGS param-
eter coding system®". For each of these parameters, we removed the
samples that were not labelled as ‘Groundwater’. We further calculated
the average value of each of the parameters for the samples that have
the same ‘Activity Identifier’ (anidentifier for each measurement). Out-
lier data, defined as values lower than the 0.5th percentile and higher
than the 99.5th percentile of each parameter, were removed. Sites
with multiple measurementsina day were averaged ona daily basis for
each parameter. To maintain a high-quality average annual signal, we
removed the sites that lacked at least one data point for each season.
We also removed data points from the winter season (December, Janu-
ary and February) to reflect the potential irrigation season in most of
the USA. After data filtering, the average value of each parameter for
each site was calculated by sequentially aggregating the samples by
month, season and year. Note that, for pH values, we first converted
original pH values from -log,,([H*]) scale to the [H*] concentration
scale (mol 1) before data aggregation and then converted them back
to —log,o([H']) in the final step. This resulted in our final groundwater
dataset (3,918 sites) with alkalinity, pH and salinity (Supplementary
Fig.6). The Marchto November average land surface temperatures for
these groundwater sites (Supplementary Fig. 7) were extracted from
the CHELSA dataset (Climatologies at High Resolution for the Earth’s
Land Surface Areas)>.

Dataanalysis. The aqueous concentration of CO,([CO,],,) inground-
water was determined using compiled data on alkalinity, pH, salin-
ity and surface temperature via the ‘seacarb’ R package’®. Utilizing
globally averaged atmospheric CO, concentrations from the National
Oceanic and Atmospheric Administration Global Monitoring Labora-
tory* for 2015-2020 (excluding data from December, January and
February), we calculated the equilibrium concentration of aqueous

C0,([CO,],q ) ingroundwater, based on groundwater pH, salinity and
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surface temperature™. Subsequently, the difference between [CO,],,
and [CO,],q ¢q ([CO,],q — [CO,],q ) Was computed for all sampling loca-
tions. To spatially extend these results, we employed inverse distance
weighting tointerpolate the calculated [CO,],, — [CO,],q ¢q Values across
the contiguous USA ata 0.1° resolution. These interpolated values were
then aggregated to the county-level average and integrated with the
corresponding irrigation groundwater withdrawals for each county.

Assuming that all excess CO, in the groundwater would be
degassed into the atmosphere, the CO, flux from irrigation to the
atmosphere was calculated using équation 1):

Fc0,=(1C0 1,4 ~1C0u1 o)X Virigaton @

Here, f.o, represents the carbon degassing flux resulting from irriga-
tion, [CO,],qis the actual CO, concentration in the groundwater upon
its extraction, [CO,l,, ¢, is the equilibrium CO, concentration in the
groundwater and V,igaion iS the volume of groundwater withdrawn for
irrigation. County-levelirrigation groundwater use datawere acquired
from the USGS database ‘Estimated Use of Water in the United States
for 2015'* (the most recent year available at the county scale) and
modified to account for golf course irrigation, as detailed in Supple-
mentary Methods.

A 95% Cl was constructed using a Monte Carlo approach. First,
the standard errors of [CO,],, and [CO,],, ., Were estimated using the
default implementation of the ‘errors’ function in the ‘seacarb’ pack-
age’®, which propagates uncertainties associated with alkalinity, pH,
salinity, temperature, atmospheric CO, concentration and seven key
dissociation constants used in the calculation. We assumed a standard
measurement error of 1% for pH and alkalinity, used the standard error
ofthe monthly mean atmospheric CO, concentrations toincorporate
uncertainty in the timing of pumping, and used the default standard
uncertainty values for all remaining variables. The standard error
of the difference of [CO,], q and [CO,],, for each measurement was
calculated by taking the square root of the sum of squared errors. To
incorporate uncertainty in the spatial interpolation step, we conducted
1,000 iterations of the interpolation of [CO,],q ¢, — [CO,],q values. For
eachinterpolationiteration, we first randomly sampled the sites tobe
included (withreplacement). From each selected site, we then sampled
from a distribution of potential [CO,],q ¢, — [CO,],, values generated
with the ‘rnorm’ function using the calculated mean and standard
error of the estimate for each site. These sampled values were used as
theinputdatafortheinterpolation,and the 2.5thand 97.5th percentile
values from the bootstrapped iterations were used to calculate the CI
for the national emissions estimate.

Biogenic emissions

Source data. The analysis of irrigation’s contribution to N,O emis-
sions relied on an existing, point-level timeseries of agricultural GHG
emissions and sinks that was developed for the US GHG Inventory*®.
Detailed descriptions of the database development and model inputs
are available in section 5.4 of the 2023 US GHG Inventory Report™®.
Briefly, direct N,O emissions for 22 major crops grown on mineral soils
and most non-federal managed grasslands were estimated using Day-
Cent, an ecosystem biogeochemical model with a daily timestep®**'. We
utilized input and output data from the site-level DayCent model runs
conducted at US Department of Agriculture (USDA) National Resource
Inventory (NRI) survey locations on agricultural lands for 1990-2017.
Each site was associated with an expansion factor, indicating the land
area with similar physical and management characteristics, to allow
for upscaling. Key land use and management input dataincluded crop
type and areas, irrigation, fertilization rates (from synthetic ferti-
lizers and manure), cover crop management, tillage, and planting
and harvest dates. Numerous data sources were leveraged for these
underlying DayCent analyses reported in the US GHG Inventory, includ-
ing the USDA NRI®?, USDA National Resource Conservation Service

Conservation Effects and Assessment Project, the USDA Economic
Research Service Agricultural Resource Management Surveys and the
USDA Census of Agriculture, among others. Fertilizer application rates
were harmonized with sales data from the USGS®* and the Association of
American Plant Food Control Officials reports, and manure input data
were harmonized with estimates of the total manure available for land
application. These nitrogen use data are somewhat uncertainand may
presentan opportunity forimproving N,O estimates, particularly with
respect to the spatial distribution of nitrogen application. In addition
to management data, the DayCent simulations utilized weather data
from PRISM (Parameter-elevation Regressions on Independent Slopes
Model)**, soil physical properties from the Soil Survey Geographic
Database® and MODIS Enhanced Vegetation Index data®®®” to inform
primary productivity.

Metamodel development. To isolate the effect of irrigation on N,O
emissions from US croplands and pastures, we fit ageneralized linear
mixed-effects model of DayCent predictions of N,O-N ha™’. The rate of
N,O emissions was modelled with a gamma distribution and log link
functionto avoid prediction of negative N,O fluxes®. A random slope
was included per site to account for non-independence of DayCent
predictions across years. Twelve systematic predictors and two interac-
tion terms were also included in the model (Supplementary Table 3).
Specifically, binary predictors were included for irrigation status,
previous-year fallow and a transition to cropland from grassland within
the previous 3 years. Categorical predictors were included for crop
type (16 categories) and tillage, including categories for conventional
tillage, reduced tillage, no-till and ‘not applicable’ (for permanent
pasture). Continuous predictors were included for total N application
rate, precipitation minus evapotranspiration (P-ET), mean annual tem-
perature, per cent sand, bulk density, soil pH and soil organic carbon.
All continuous predictors were modelled as second-order orthogonal
polynomials to allow for quadratic effects and reduce multicollinear-
ity. Finally, interactions betweenirrigation and N application rate and
irrigation and P-ET were alsoincluded as these variables may modulate
the effect of irrigation on N,0 emissions.

Themodel was fit onatotal of 6,651,156 observations, representing
258,832 unique cropland and pasture sites, using the ‘Ime4’ package®. A
total of 849,365 of the observations were irrigated. Variable inclusionin
the fullmodel was based on mechanistic drivers of N,O emissions vari-
ability and data availability, and all predictors significantly influenced
N,O emissions (a = 0.05). We calculated the average out-of-sample
root mean square error by randomly resampling 80% of the sites in
the database for training the model and using the remaining 20% of
the sites for testing. The final metamodel effectively reproduced the
DayCent emissions estimates (Supplementary Fig. 8; root mean square
error490 gN,0-N ha™, R*=0.86 at the site-year level).

Metamodel projections and uncertainty estimates. The metamodel
was then used to generate predictions of the area-based rate of N,O
emissions onirrigated croplands under two scenarios: (1) the baseline
scenariowithfullirrigationand (2) ahypothetical no-irrigation scenario
withirrigationsettozerobutotherwise identical input data. The differ-
encebetween the baseline N,0 estimates and the no-irrigation scenario
was used to approximate the additional N,O emissions attributable to
irrigation. Importantly, the no-irrigation scenario does not represent
the cropland retirement or decreasesin Napplication rates that would
be expected in the absence of irrigation. This method therefore pro-
duces a conservative estimate of irrigation related N,O emissions as
itreflects only the increase attributable to changes in soil moisture.
We used ablock bootstrapping approachto generate a 95% Cl for
N,O emissions estimate. Individual sites were resampled with replace-
ment, and all observations for the resampled sites were used to refit
the metamodel, generate predictions under the baseline and the
no-irrigation scenario, and calculate the total change in N,O emissions.
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This procedure was repeated 1,000 times, and the Cl was calculated as
the 2.5th and 97.5th percentile estimates. The calculated Cl for irriga-
tion’s contribution to N,0 emissions reflects only the uncertainty
stemming from the metamodel itself, and not the uncertainty associ-
ated with the predicted site fluxes from the DayCent model, which
are considerable. For example, the 95% CI for the US GHG Inventory
estimate of total direct N,O emissions fromall croplandsin2015 ranges
from26% below to 31% above the central estimate, afterincorporating
uncertainty in input data, parameterization and structural uncer-
tainty in the DayCent model. Moreover, uncertainty in N,O emissions
estimatesis larger at smaller spatial scales®® than at the national scale.

N,O emissions mapping. The total CO,e (E) associated with N,O emis-
sionsattributed toirrigation for each state (s) was calculated according
toequation (2). Here, Rrepresents the rate of N,O emissionsin grams of
NinN,O per hectare associated withirrigationin each surveylocation
(summed by state), My,o is the molar mass of N,O (44.013 g mol™) and
M,,is the molar mass of N, (28.0134 g mol™). The ratio of molar masses
isused to convertgrams of Nin N,O to grams of N,O before multiplying
by G, the100-year global warming potential of N,O from the IPCC Sixth
Assessment Report without feedbacks (273 g CO,e per gN,0), and A4,
theland area (hectares) inthe state represented by the survey location
according tothe NRI.

M,
EszZRxML;ZOxGxA

(2)
The NRI expansion factors (A) for upscaling reflect the area that the
survey location represents with respect to land cover, management,
climate and soil characteristics and are based on astratified sampling
approach at the county and township levels. These area estimates
contain larger uncertainty at smaller spatial scales (ex. counties) than
at larger spatial scales (ex. states). To account for trends in irrigated
area over time, the average irrigated area for each land use type and
county was taken from 2015-2017 for upscaling. We found that the
total irrigated land area represented in the NRI data included in the
analysis (21.5 Mha) was reasonably consistent with the USGS 2015
‘Estimated Use of Water in the United States’ database (23.4 Mha) but
that the county-level distribution of irrigated area from the NRI data
was not consistent with the USGS data (Supplementary Fig. 9) owing
to uncertainty inherentin the NRIsampling approach. For consistency
with other emissions sources, emissions estimates were summed to
the state level and then allocated to the county level by multiplying
the state-level total emissions by the proportion of statewide irrigation
water use that occurs within that county. New Hampshire, Vermont,
New York and Maine each contained zero or oneirrigated observation
eachand, thus, were grouped for aggregation and downscaling. West
Virginia contained no irrigated observations and was grouped with
Virginia for aggregation and downscaling. County-level surface and
groundwater irrigation water use data were acquired from the USGS*
and modified to account for surface water conveyance losses’ and golf
courseirrigation, as detailed in Supplementary Methods.

Comparison with Tier 1 methodology. In addition to the metamodel
generated estimates, we produced a second, independent estimate
of the contribution of irrigation to biogenic emissions using a Tier 1
approach and adatabase of experimentally derived emissions factors
compiled by Hergoualc’h et al.>. This database contains 255 emissions
factors that explicitly indicate irrigation status, which are further
brokendownby IPCC climate type (‘wet’ versus ‘dry’based ona P/P-ET:
threshold of 0.65). For this calculation, we took the average of emis-
sions factors under each of the following conditions: irrigated in a
wet climate (n=20), irrigated inadry climate (n =106), non-irrigated
in a wet climate (n = 85) and non-irrigated in a dry climate (n = 44).
Consistent with IPCC guidelines®, we calculated county-level aridity

index as mean P/P-ET using 1988-2018 TerraClim data’ and classified
the counties as wet or dry accordingly, matching them with the relevant
emissions factors. Using the same N input and land use data that were
compiled for the US GHG Inventory and the metamodel analysis, we
again calculated estimated emissions on irrigated croplands under
irrigated and non-irrigated scenarios. The difference between these
two estimates is indicative of the additional N,O emissions due to
irrigation. To construct a 95% ClI for this estimate, emissions factors
from each category were resampled with replacement to calculate a
new average emissions factor for each climate-irrigation category.
The emissions calculations were repeated 1,000 times, and the 2.5th
and 97.5th percentile estimates from this bootstrapped distribution
were taken as the 95% CI.

Energy use for interbasin transfers

Data collection. Interbasin water transfers that were currently active
inthe USA and had irrigation listed as at least one of the purposes of
the project were identified from Siddik et al.*>. Transfers that were part
ofasingleinterconnected project and managed by the same operator
were then consolidated, producing a list of 136 unique systems for
further investigation. Thirty of these projects were excluded from
consideration after evaluating government records, satellite imagery
and, whenneeded, contacting the operator. Exclusions were due to at
least one of the following criteria: (1) the transfer did not supply any
agricultural users, only municipal, domestic or industrial users, (2)
the transfer was contained entirely within and operated exclusively
for an individual ranch or (3) the transfer was no longer active. For
transfers contained within an individual ranch, the energy use emis-
sionsare capturedinour estimate o'fon-farm pumping emissions (see
‘On-farm energy use for pumping’ section). There were 106 projects
included in the analysis.

The operator of each project was identified via web search and
contacted viaemail (or phone, if email was unavailable) with arequest
for records from 2017-2022 related to (1) pump energy use along the
transfer, (2) the proportion of water delivered to agricultural users
and (3) static pump head, if available. Up to three follow-up emails
were sent to non-responsive operators, as needed. Then, a formal
public records request was submitted, consistent with state public
records legislation. Finally, a minimum of two attempts were made to
contact the operator via phone. Operators of 15 transfers remained
non-responsive after these attempts. Energy requirements for these
transfers were estimated on the basis of the best available information
about pump head, pumping volumes and the average energy intensity
of comparable projects. For three small transfer projects with evidence
of pumping, insufficientinformation was available to estimate energy
use and the transfers were excluded from the analysis. Detailed infor-
mationabout the estimation process for each transfer missing dataand
further information about the three excluded transfers are provided
in Supplementary Methods.

If the operator was not immediately identifiable, county or city
water districts, water conservancy organizations, researchers working
in water conveyance, and state and/or regional water agencies in the
surrounding area were contacted in an attempt to identify transfer
operators. If the search for the operator failed, satellite imagery and
all available documentation related to the transfer, such as historical
reports, documentation from state engineering offices, and state
water infrastructure databases were inspected for any indication of
pumping. There was no evidence of pumping from data sources for
22 transfers, which were assumed to be gravity-fed. If there was an
indication of pumping and the operator was not found, the datawere
treated as missing.

Calculation of GHG emissions. There were 67 transfers that did not
rely on pumping plants and therefore were not associated with any
emissions. For transfers that did involve pumping, data availability
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varied between projects, and the temporal coverage and type of data
for each project are detailed in Supplementary Table 4. Energy use
records were variably supplied as direct usage data, expenditures
forelectricity or the rate of energy use per volume of water coupled
with pumping volumes. For projects that reported expenditure,
energy use was calculated by dividing electricity expenditures by
state-level annual average retail electricity prices for industrial users.
Retail electricity prices for industrial users were accessed from the
US Energy Information Administration. Electricity use data were
then converted to emissions by multiplying by the annual average
emissions factor for electricity consumption across all balancing
authorities intersected by the path of the interbasin transfer, based
on an hourly dataset of electrical grid emissions factors adjusted
for the transfer of electricity across balancing authority bounda-
ries”. One project reported natural gas usage in addition to elec-
tricity, which was converted to emissions using an emissions factor
of 53.608 kg per MMBtu,:taken from the Environmental Protection
Agency Greenhouse Gas Emissions Factor Hub. For mapping, emis-
sions were allocated evenly among counties containing the path of
the transfer, regardless of the location of the pump station or the site
of electricity generation.

Uncertainty estimation. We used a bootstrapping approach to cal-
culate 95% Cls for our estimate of GHG emissions from interbasin
transfers by resampling with replacement 10,000 times from all avail-
able values used in the calculation. For projects with data supplied as
anannual timeseries of electricity use, we randomly selected ayearin
eachresampling and then amonthly emissions factor for the associated
year to account for uncertainty in the timing of pumping. For projects
with datasupplied asan annual timeseries of energy expenditures, we
followed the same procedure but additionally resampled from monthly
energy prices. For projects with missing energy use data, we addition-
ally resampled from the energy intensity, the pump head and/or the
pumping volume, as applicable.

On-farm energy use for pumping

Emissions from on-far'm energy use forirrigation pumping were calcu-
lated in Driscoll et al. (2024). Briefly, data on energy expenditures for
irrigation pumps from the 2018 USDA Irrigation and Water Manage-
ment Survey were coupled with concurrent energy prices from the
Energy Information Administration and emissions factors from the
Environmental Protection Agency to calculate emissions for each fuel
and water source at the state level. Emissions were then downscaled
to the county level on the basis of 2015 USGS irrigation water use data
(adjusted for golfirrigation and conveyance losses), with groundwater
pumping emissions scaled by groundwater depth. Emissions from
on-farmelectrical energy use forirrigation pumping reflect the site of
irrigation, not necessarily the site of electricity generation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

County-level emissions estimates and associated Cls, broken down by
emissions source and water source, are available as Supplementary
Table 2. The data required to reproduce the figures and analyses pre-
sented in this manuscript are available on Zenodo at https://doi.org/
10.5281/zenodo0.12552398 (ref. 37). The raw data used to calculate
emissions estimates for groundwater degassing are available in the
same repository. The raw data used to calculate emissions from indi-
vidual interbasin transfer operators are available uponrequest to the
corresponding author. The raw National Resource Inventory data
underlying the N,O emissions model are confidential, and data access
isregulated by the USDA.

Code availability

The code used to produce the figures and analyses presented in
this manuscript are available on Zenodo at https://doi.org/10.5281/
zenodo.12552398 (ref. 37).
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Statistical modeling & inference
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(See Eklund et al. 2016)
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Models & analysis
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D |:| Multivariate modeling or predictive analysis
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