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Abstract—With the proliferation of Internet of Things (IoT)
devices, real-time stream processing at the edge of the network
has gained significant attention. However, edge stream processing
systems face substantial challenges due to the heterogeneity
and constraints of computational and network resources and
the intricacies of multi-tenant application hosting. An optimized
placement strategy for edge application topology becomes crucial
to leverage the advantages offered by Edge computing and
enhance the throughput and end-to-end latency of data streams.
This paper presents Beaver, a resource scheduling framework
designed to deploy stream processing topologies across dis-
tributed edge nodes efficiently. Its core is a novel scheduler that
employs a synergistic integration of graph partitioning within
application topologies and a two-sided matching technique to
optimize the strategic placement of stream operators. Beaver
aims to achieve optimal performance by minimizing bottlenecks
in the network, memory, and CPU resources at the edge. We
implemented a prototype of Beaver using Apache Storm and
Kubernetes orchestration engine and evaluated its performance
using an open-source real-time IoT benchmark (RIoTBench).
Compared to state-of-the-art techniques, experimental evalua-
tions demonstrate at least 1.6× improvement in the number of
tuples processed within a one-second deadline under varying
network delay and bandwidth scenarios.

Index Terms—Edge Stream Processing, Topology Placement,
Resource Scheduling, Multi-tenancy

I. INTRODUCTION

There are growing interests in processing continuous and
time-sensitive data streams generated by Internet of Things
(IoT) devices at the edge of the network to meet low la-
tency, privacy, and location-aware computing requirements
of modern applications [1]–[3]. The traditional approach of
stream processing in remote data centers suffers from wide-
area network delays, heavy traffic that may overload the
network, and jitters caused by untrusted and unpredictable
network [4]. As a result, recent works [5], [6] have focused
on enabling Edge stream processing by utilizing distributed
edge computing nodes, such as IoT gateways, edge routers,
regional micro-datacenters, etc. as shown in Figure 1.

A stream processing application is defined by a logical
topology of operators connected into a Directed Acyclic
Graph (DAG), which processes data streams as they flow
from the source to the sink. Multiple such applications can
share the edge computing infrastructure to process real-
time data streams for quickly deriving insights and making
timely decisions. However, delivering optimal performance
for these applications requires careful placement of stream
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Fig. 1: IoT-Edge-Cloud architecture.

processing operators on distributed edge nodes. In contrast
to traditional cloud computing scenario, operator placement
in edge computing framework is more complex due to the
presence of a hierarchy of compute layers, limited network
bandwidth between the edge nodes, variable network delays,
and heterogeneous hardware. Furthermore, recent studies [7]–
[9] have shown that IoT workloads from different application
domains can have diverse and highly dynamic characteristics.
These factors pose significant challenges for resource schedul-
ing and application deployment in the edge environment.

Existing works [10]–[12] that focus on reducing the end-
to-end stream processing time employ operator placement
strategies that either disregard scenarios involving multiple
applications sharing the edge infrastructure or are inher-
ently biased towards applications that are scheduled ear-
lier. Importantly, they lack the system resilience to handle
the uncertainties within edge networks effectively. Our case
study in Section II using an open-source stream process-
ing engine, Apache Storm and a real-time IoT benchmark
(RIoTBench) [13] shows that existing resource scheduling
techniques are severely impacted by an increase in network
delay between the edge nodes, resulting in a significant drop
in application performance. Designing a scheduler that can
achieve robust performance for edge stream processing is a
key challenge, as it requires minimizing the worst-case re-
source bottleneck caused by the complex data flow dynamics
between stream operators, the variable network delay between
edge nodes, and the large number of possible ways to split
application topologies across heterogeneous nodes.

To address these challenges, we develop a resource schedul-



ing framework for strategic placement of stream operators on
distributed edge nodes. Our key contributions are:

• We develop a resource scheduling framework, Beaver,
that provides robust performance for stream processing
applications on a shared multi-layered edge environment.
It achieves consistent performance even in the face of
increased network delay and reduced bandwidth. In con-
trast to prior work [12], which depends on application-
level data rate control, our approach is non-intrusive and
does not require any modification of user’s code.

• We design a novel operator placement algorithm that
integrates graph theory-based application topology par-
titioning and game theoretic two-sided matching tech-
niques to iteratively identify an operator placement strat-
egy that minimizes the bottleneck across CPU, memory,
and network resources.

• We design and implement Beaver using a represen-
tative stream processing engine, Apache Storm, Docker
for containerization of stream operators, and Kubernetes
orchestration engine.

• We demonstrate Beaver’s robust performance gains
and resource utilization efficiency over Coda [11], Am-
nis [12], RStorm [10], and default Apache Storm under
varying network delays and bandwidth between the
edge nodes. Extensive evaluation using an open-source
real-time IoT benchmark (RIoTBench) [13] show that
Beaver outperforms state-of-the-art techniques with at
least 1.6× improvement in the number of processed
tuples within a one-second deadline.

The rest of the paper is organized as follows: Section II cov-
ers the background and motivation, Section III elaborates on
the design and implementation, Section IV details the testbed
setup and experimental results, Related work is discussed in
Section V, and conclusions are presented in Section VI.

II. BACKGROUND & MOTIVATION

A. Edge Stream Processing

Stream processing is a dominant distributed computing
paradigm for processing and analysis of high-volume, het-
erogeneous, and continuous data streams to extract insights
and actionable results in real time. Naturally, there is growing
interest in deploying stream-processing engines (SPEs), such
as Apache Storm, Apache Flink, etc., on IoT Gateways
and edge routers which are close to the end users and IoT
devices. These edge nodes have more computing resources
than wireless sensor networks but are still limited compared
to the cloud data centers. Data streams produced by IoT
devices are processed on these edge nodes using a data flow
programming model, where each application is packaged as a
directed acyclic graph (DAG) data structure, called a topology.
Individual data points (tuples) flow through a topology from
sources to sinks. The vertices correspond to stream operators,
while the edges denote the data flows between these operators.
An application’s query latency is determined by the end-
to-end stream processing time. The SPE scheduler maps
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Fig. 2: Impact of increased network delay on the performance
of ETL application. State-of-the-art resource scheduling tech-
niques were evaluated under a dynamic workload, while con-
currently executing three other stream processing applications.

the operators from the DAG into a physical execution plan
comprising multiple execution stages. Each stage can be
further subdivided into numerous tasks that can run in parallel.

B. Limitations of Existing Resource Schedulers

The resource schedulers in current SPEs, which are de-
signed for resource-rich cloud data centers may not be well-
suited for the resource-constrained edge environment. Even
new methods proposed for the edge are insufficient to handle
the challenges of geographically distributed edge nodes, such
as variable network delays and heterogeneous computing
capacity. To demonstrate the limitations of state-of-the-art
techniques, we conducted a case study on a testbed of virtual
machines (VMs) emulating the edge environment depicted in
Fig. 1. The edge network has a tiered structure, encompassing
nodes with diverse capacities across the access, aggregation,
and core layers. We used Linux TC (traffic control) tool
to control the network delay between the edge nodes. The
testbed hosted four concurrently running applications from
the RIoTBench [13], each facing a dynamic workload. We
evaluated the resource scheduling techniques of Amnis [12],
Coda [11], RStorm [10], and default Storm by measuring
the effective throughput of an ETL (Extraction, Transform,
and Load) application. We define effective throughput as the
number of tuples processed within a one-second deadline.

Fig. 2 (a) shows the results of a baseline case where
the network delay between the access and aggregation edge
nodes was set at 15 ms. Similarly, the network delay between
the aggregation and core edge nodes was fixed at 50 ms.
We observed that Amnis, Coda and RStorm achieve better
throughput than the default Storm in the face of dynamic
workload. However, when we repeated the experiments while
doubling the network delay between each tier of edge nodes,
there was a significant drop in the effective throughput for
all competing methods, as shown in Fig. 2 (b). Amnis and
Coda failed to process the tuples within one second when the
workload peaks around 65 minutes time, whereas RStorm and
Storm failed even earlier.

C. Challenges of Stream Operator Placement

Designing a robust scheduler for edge stream processing is
challenging as it requires minimizing the worst-case resource
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Fig. 3: Stream application execution pipeline in Beaver framework.

bottleneck in the face of complex and dynamic data flow,
network delay, and heterogeneous node distribution. Stream
operator placement, that minimizes the CPU, memory, and
network bottleneck, can be roughly modeled as a minimax
optimization problem in this context.

min
∀j∈{1,..,m}

max(
∑︂

1≤k≤K

Xk
j × CPUk

CPUj
,

∑︂
1≤k≤K

Xk
j ×MEMk

MEMj
,

∑︂
1≤k≤K

Xk
j ×DataRatek

BWj
)

s.t.
∑︂

1≤k≤K

Xk
j × CPUk

CPUj
≤ 1,∀j ∈ {1, ..,m}

∑︂
1≤k≤K

Xk
j ×MEMk

MEMj
≤ 1,∀j ∈ {1, ..,m}

∑︂
1≤k≤K

Xk
j ×DataRatek

BWj
≤ 1,∀j ∈ {1, ..,m}

∑︂
1≤j≤m

Xk
j ≤ 1, ∀k ∈ {1, ...,K}

(1)

Here, Xi
j is assigned the value of 1 if node j hosts operator

k, and 0 otherwise. k ∈ {1, ...,K} includes all application’s
operators. The CPU, memory, and network utilization of
operator k are denoted as CPUk, MEMk, and DataRatek,
respectively. The total available CPU, memory, and network
bandwidth resources available on node j are denoted as
CPUj , MEMj , and BWj respectively. The optimization
problem gets further complicated when we consider mini-
mizing network delay between stream operators placed on
distributed edge nodes. Thus, a heuristic solution is needed to
tackle the complexity of stream operator placement problem.

III. SYSTEM DESIGN

We present the design and implementation of Beaver.

A. Overview

The Beaver framework comprises three key components:
Resource Profiler, Logical Mapping Generator, and Physi-
cal Placement Module. As shown in Fig. 3, the Resource
Profiler obtains the baseline resource usage profile of user-
provided application topologies (DAGs) on a dedicated edge
node. Next, the Logical Mapping Generator employs a novel
scheduling algorithm (Algorithm 1) to generate a list of
matching pairs that associate each operator group with a cor-
responding edge node, where each group contains one or more
DAG operators. This is achieved by synergistically integrating
two-sided matching and application topology partitioning to
iteratively identify the optimal operator placement strategy.
Finally, the Physical Placement Module deploys each operator
group as Docker container on the designated edge node
using the Kubernetes Pod scheduler. This module implements
a pluggable scheduler for Apache Storm and automatically
configures Kubernetes Pod scheduler to realize the physical
placement of stream operators.

B. Resource Profiler

The Resource Profiler runs each application on a dedicated
edge node and measures the average utilization of CPU, mem-
ory, and network for each stream operator using Prometheus 1.
We profile an application using the maximum input data rate
based on the user’s specification. In this paper, we use VMs
with various vCPU and memory configurations to emulate
heterogeneous edge nodes. In the future, we will conduct ex-
periments with heterogeneous hardware including Raspberry
Pis with different CPU frequencies. Resource profiling can
be adapted to handle such scenarios by measuring normalized
resource units such as Google Compute Units (GCUs) [14].
An allocation of 1 GCU should provide about the same
amount of computational power on any machine.

1https://prometheus.io/

https://prometheus.io/


C. Logical Mapping Generator
The Logical Mapping Generator aims to provide a stream

operator placement strategy that minimizes the worst-case
resource bottleneck. It incorporates the game theoretic two-
sided matching technique, where the application side attempts
to find edge nodes with minimum resource bottleneck to place
its stream operators, and the edge infrastructure side attempts
to find stream operators with minimum resource demands.
However, classical two-sided matching treats each entity
independently and ignores the relationship between them [15].
This approach does not ensure optimal performance due to
data dependency between stream operators. To address this
issue, we introduce a topology-aware two-sided matching
algorithm that integrates iterative topology partitioning to
optimize operator placement.

1) Two-sided matching: We model stream operator place-
ment as a many-to-one matching problem using two distinct
sets of entities: a) G = {g1, ..., gi, ...gn} where gi is the DAG
of application i, which can be further split into groups of
stream operators; b) R = {r1, . . . , rj , . . . , rm} where rj is
a vector of available CPU, memory and network bandwidth
resources available on edge node j. The matching theory aims
to find the best matches between the two sets of entities
based on their mutual preferences [16]. The main idea is
to find a stable matching so that no pair of entities would
rather be matched with each other than with their assigned
matches. The preferences of these entities are determined by
the following ranking methods.

Application-side ranking involves evaluating each edge
node for DAG gi using Equation 2 and ranking them based
on the metric l(gi, rj), which represents the dominant factors
affecting the query latency. Lower metric values are preferred.

l(gi, rj) = max(
CPUgi

CPUj
,
MEMgi

MEMj
,
∑︂
u∈U

∑︂
z∈Z

DataRateu

BWz
) +

δqj

δqs
(2)

where CPUgi and MEMgi are the CPU and memory
utilization of DAG gi. CPUj and MEMj are CPU and
memory available on node j. The network utilization in terms
of input data rate from an upstream operator is denoted as
DataRateu, where the set U represents the upstream oper-
ators for gi. BWz denotes the network bandwidth available
on node z, where the set Z includes all nodes in the path
between an upstream operator u and the current DAG gi. δqj
is the network delay between node j and the farthest node q
where an upstream operator is assigned. δqs is delay between
the sink node s and the farthest node q where an upstream
operator is assigned.

Node-side ranking involves evaluating each DAG for edge
node j using Equation 3 and ranking them based on the
minimum residual resource ratio t(gi, rj), which represents
the fraction of node resource rj that will be left if DAG gi
is assigned to node j. Higher metric values are preferred.

t(gi, rj) = min(
CPUj − CPUgi

CPUj
,

MEMj −MEMgi

MEMj
,
BWj −

∑︁
u∈U DataRateu

BWj
)

(3)

TABLE I: NOTATIONS USED

Notation Description

DAGs a list of directed acyclic graphs

gi DAG of application i

T a list of DAGs waiting to enter matching phase

G a list of DAGs in the matching phase

m the number of edge nodes

rj resource vector of node j

Assign[j] a DAG matched to node j

Alloc(gi) resource allocation needed by DAG gi

t(gi, rj) t(gi, rj) is calculated by Eq. 3

PrefNodes[gi] a ranked list of nodes based on Eq. 2

Final[j] final list of DAGs matched with node j

2) Topology Partitioning: We apply topology partitioning
when a DAG’s resource requirement exceeds the available
resource on an assigned edge node, or the node finds a
DAG that is ranked higher than the one currently assigned.
Let (V,E) be a weighted graph representing an application
topology, where V is the set of vertices and E is the set
of edges. Let W = (wuv) be the weight matrix associated
with the graph, where the weight wuv between vertices u and
v represents the data flow rate between the corresponding
stream operators. We aim to partition the weighted graph
into two subsets, V1 and V2 such that the cut, C(V1, V2)
defined as the sum of the weights of the edges between V1 and
V2, is minimized. By minimizing the cut, we can effectively
reduce network traffic and improve overall performance. For
this purpose, we employ the spectral partitioning method,
which is known to provide high-quality solution by leveraging
the properties of the entire graph [17]. Spectral partitioning
utilizes the spectral properties of the graph Laplacian matrix
to achieve effective partitioning. The Laplacian matrix L is
computed as L = D−A, where D is the degree matrix and A
is the weighted adjacency matrix of the graph. By calculating
the eigenvalues and eigenvectors of L, we identify the Fiedler
vector, which is the eigenvector associated with the second
smallest eigenvalue. This Fiedler vector provides insights
into the graph’s connectivity facilitating optimal partitioning.
Vertices with positive values in the Fiedler vector are assigned
to V1, while those with negative values are assigned to V2.

3) Beaver Scheduling Algorithm: Algorithm 1 presents
the pseudo-code for our topology-aware two-sided matching
algorithm utilized by the Logical Mapping Generator. The
notations used in the algorithm are explained in Table I.
The algorithm takes a list of application topologies (DAGs)
as input and generates a mapping between subsets of the
DAGs and edge nodes. To initiate the scheduling process, we
employ the NodeRanking procedure to rank all the edge
nodes for each DAG gi in the matching list G, and store the
ranked list in PrefNodes[gi] (lines 2-3). Then, the algorithm
enters a loop that continues until it finds an appropriate



Algorithm 1: Beaver Scheduling Algorithm
Input : G← DAGs
Output: {Final[j] | j ∈ (1,m)}

1 T ← ∅;Final← ∅;PrefNodes← ∅; Assign← ∅
2 foreach gi ∈ G do
3 PrefNodes[gi]← NodeRanking(gi)

4 while G ̸= ∅ do
5 gi ← G.pop()
6 j ← PrefNodes[gi].pop()
7 if Assign[j] = ∅ and rj > Alloc(gi) then
8 Assign[j]← gi
9 Continue

10 else if rj > Alloc(gi) and
t(Assign[j], rj) < t(gi, rj) then

11 Assign[j]← gi
12 g′, g′′ ← AppPartition(Assign[j])

13 else
14 g′, g′′ ← AppPartition(gi)

15 if t(g′, rj) < t(Assign[j], rj) then
16 g ← g′ ∪ g′′

17 G.append(g)
18 Continue
19 G.append(g′)
20 T.append(g′′)
21 PrefNodes[g′]← NodeRanking(g′)
22 if G = ∅ and T ̸= ∅ then
23 for j = 1 to m do
24 Final[j]← Final[j] ∪ {Assign[j]}
25 rj ← rj − Alloc(Assign[j])
26 Assign[j]← ∅
27 G← T
28 T ← ∅
29 foreach gi ∈ G do
30 PrefNodes[gi]← NodeRanking(gi)

31 return {Final[j] | j ∈ (1,m)}

operator placement strategy that satisfies the preferences of
all applications (see lines 4-30). On each iteration, a DAG gi
is taken from the list G, and its highest ranking node j is
popped from the list PrefNodes[gi], to establish a possible
match. If no other DAG has been assigned to node j and the
available resource rj is sufficient to meet the resource demand
Alloc(gi), then gi is temporarily assigned to the node (see
lines 7-9). If another DAG Assign[j] is already assigned to
node j, the algorithm replaces it with gi if its residual resource
ratio t(Assign[j], rj) is lower than that of gi, and the node
has sufficient resource available. When the DAG fails to be
assigned to the node, the AppPartition function divides
it into two partitions, denoted as g′ and g′′ (see lines 10-12).
If the residual resource ratio of the new DAG g′ is lower than
that of the assigned DAG Assign[j], the algorithm combines

g′ and g′′ and appends to the matching list G (see lines 15-18).
Otherwise, g′ and g′′ are appended to the matching list G and
the waiting list T respectively. In addition, it ranks all edge
nodes for the new DAG g′. If the matching list G becomes
empty while there are still DAGs in the waiting list T , the
DAG assigned to node j is recorded in the final matched list
Final[j], and the resource available in the node is updated
based on the resource demand Alloc(Assign[j]) (see lines
23-25). Next, the DAGs in the waiting list T are moved to
the matching list G and the edge nodes are ranked for all
DAGs in the list (see lines 29-30). NodeRanking function
ranks each edge node for a given DAG gi based on the metric
l(gi, rj) given by Eq. 2. Nodes with lower metric values are
ranked higher. AppPartition function applies the Spectral
Partitioning technique described in Section III-C2 to split a
given DAG gi into two partitions, g′ and g′′.

Complexity Analysis: The worst-case time complexity of
the algorithm is O(m × n × k3). Here, m represents the
number of nodes within the edge cluster, n signifies the
number of stream processing applications, and k indicates
the total number of operators in the largest DAG. k3 is the
time complexity of the spectral partitioning technique. Note
that this worst-case estimation provides an upper bound; in
practice, the algorithm’s performance is reasonable.

D. Physical Placement Module
This module is responsible for executing the operator

placement strategy determined by Algorithm 1. We assume
that the edge nodes are set up as a Kubernetes cluster.
Our implementation includes a pluggable scheduler 2 for
Apache Storm and automatic configuration of Kubernetes Pod
scheduler 3 to enable precise assignment of grouped operators
to specific containers, and scheduling of the containers on
their designated edge nodes. The placement module config-
ures Kubernetes pod specification for each group of stream
operators constituting a DAG partition. The specification
includes a container image of Apache Storm and a nodeName
field that is mapped to the name of the designated edge
node. The Kubernetes pod scheduler places the pod on the
designated edge node based on this specification. Each pod
runs a daemon called the Supervisor, which listens for work
assigned to it and starts and stops worker processes as needed.
Our placement module configures the Supervisor with a tag
labeled as NodeName-DAGName, indicating the mapping
of the designated edge node with the DAG partition. The
pluggable scheduler assigns stream operators across the pods
based on the tags associated with the Supervisor process
running on them. We use the terms ‘pod’ and ‘container’
interchangeably since we run a single container in a pod.

IV. EVALUATION

A. Experimental TestBed
We setup a prototype testbed running the KVM hypervisor

to host eight Ubuntu (v16.04) Virtual Machines (VMs) em-

2https://storm.apache.org/releases/1.2.4/Storm-Scheduler.html
3https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/

https://storm.apache.org/releases/1.2.4/Storm-Scheduler.html
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
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ulating five access edge nodes, two aggregation edge nodes,
and one core edge node as shown in Fig. 1. Each access
edge node was equipped with 2 vCPUs and 4 GB RAM.
The aggregation edge node had 4 vCPUs and 8 GB RAM.
The core edge node had 8 vCPUs and 16 GB RAM. The
network delay and bandwidth between the edge nodes were
emulated using Linux’s TC tool 4. The network parameters
were chosen based on the previous works [12], [18], [19].
A Kubernetes (Version 1.23.0) cluster using these eight VMs
was built for container orchestration and management. Docker
(Version 20.10.7) was used as the container runtime engine.
Apache Storm (Version 2.1.0) served as the edge stream
processing engine. Each Storm supervisor encapsulated by a
container had 2 worker slots. We used Prometheus to collect
CPU, memory, and network usage data.

1) Datasets: We used two IoT datasets, including Sense
your City5 and NY city taxi trips6. The Sense your City
(SYS) is a real-world Smart Cities data stream collected from
sensors deployed across different cities on three continents.
Each city has multiple sensors, providing six types of obser-
vations every minute: temperature, humidity, ambient light,
sound, dust, and air quality. The New York City taxi trips
(TAXI) data includes smart transportation messages derived
from 2 million trips taken in 2013. Each trip record includes
pickup and drop-off dates, taxi and license details, start and
end coordinates with timestamps, the distance measured by
the taximeter, and taxes and tolls paid. For our benchmark
runs, we utilized aggregated data from January 2013 [8], [20].

2) Benchmarks: We used the RIoTBench benchmark suite
[13], which includes four IoT applications based on common
IoT patterns for data pre-processing, statistical summariza-
tion, and predictive analytics. For our analysis, we selected

4https://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
5http://datacanvas.org/sense-your-city/
6https://databank.illinois.edu/datasets/IDB-9610843
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two applications: ETL (Extraction, Transform, and Load)
and PRED (Predictive Analytics), as illustrated in Fig. 4.
The remaining two applications (STATS and TRAIN) were
excluded in our study since they are integrated with public
cloud services and are unsuitable for low-latency Edge stream
processing. Throughout our experiments, we concurrently ran
four applications: PRED-SYS, PRED-TAXI, ETL-SYS, and
ETL-TAXI. To produce a dynamic workload, we modified
RIoTBench’s input generator. At one-minute intervals, this
generator supplied Storm’s source task (Spout) with multiple
fixed-sized batches (10 tuples) of data. We adjusted the total
number of data batches at each interval to generate dynamic
input data rates as shown in Figure 5.

B. Evaluation Methodology

We conducted a comparative evaluation of Beaver against
four different methods: (i) Storm, the default scheduler in
Apache Storm that follows a round-robin algorithm, plac-
ing operators based on alphabetical sequence onto each
worker node. The number of nodes needs to be specified
by users. (ii) RStorm [10], a greedy method implemented
in Apache Storm, designed to maximize CPU utilization and
minimize network latency for increased overall throughput.
(iii) Amnis [12], a state-of-the-art approach that considers
data locality and resource constraints during physical plan
generation and operator placement for stream queries. (iv)
Coda [11], an approach that utilizes a stable many-to-one
matching algorithm to place the microservice-based topology
in a heterogeneous computing environment.

1) Topology Placement: Fig. 6 depicts the operator place-
ment for four applications utilizing the five strategies men-
tioned above. The operator names can be cross-referenced
with Fig. 4. Note that, except for Storm’ default scheduler,

https://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
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(b) The network bandwidth decreased from 100 Mb to 50Mb.
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(c) The network delay transitions from (15 ms, 50 ms) to (30 ms, 100 ms).

Fig. 7: The 95th percentile latency.

all other techniques assume that the resource requirements of
the operators can be specified by the user or obtained through
profiling. For instance, RStorm requires users to provide
details about the resource usage of each operator as input
parameters. Similarly, Amnis, Beaver, and CODA rely on
network topology information within the edge environment.

2) Performance metrics: The assessed metrics include: (i)
the Effective throughput: the number of tuples processed
within a real-time processing deadline (one second in this
paper) to generate outputs; (ii) the 95th percentile end-to-
end latency. Here, end-to-end latency is calculated as the
difference between the output timestamp and the timestamp
of the last input tuple that contributes to the output.

C. Performance Analysis

We performed a series of experiments encompassing di-
verse network delay and bandwidth scenarios to assess the ro-
bustness of Beaver in comparison to competing techniques.

1) Baseline scenario: As a baseline, the network delay
between the access and aggregation edge nodes was set at 15
ms, with a bandwidth of 100 Mbps. Similarly, the network
delay between the aggregation and core edge nodes was fixed
at 50 ms, with a bandwidth of 100 Mbps. Fig. 7a and Fig. 8a
show the 95th percentile latency and the effective throughput
of the four concurrent applications each facing a dynamic
workload. In the case of default Storm, network bandwidth
limitation at the aggregation2 node leads to poor tail latencies
for ETL-SYS and ETL-TAXI. While Coda faces a CPU
bottleneck at Edge1 between 60 to 100 minutes, impacting

the latency of PRED-SYS. Furthermore, Amnis, Coda, Storm,
and RStorm all experience a CPU bottleneck at Edge2,
resulting in subpar latency and low effective throughput for
PRED-TAXI. On the other hand, Beaver delivers exceptional
performance for all applications.

2) Reduced network bandwidth scenario: We repeated
the experiments with reduced network bandwidth (from 100
Mbps to 50 Mbps) between each tier of edge nodes. As
depicted in Fig. 7b and Fig. 8b, it becomes evident that
ETL-SYS encounters network bandwidth limitation leading
to performance degradation earlier than in the baseline case
when using the default Storm. Notably, the performance
of other methods exhibits consistent behavior, with Beaver
surpassing all competing techniques. These findings under-
score the pivotal role of more efficient network utilization in
optimizing the overall performance of diverse applications.

3) Increased network delay scenario: The spatial distri-
bution of edge nodes can introduce significant variations
in network delays between any pair of nodes. We repeated
the experiments with increased network delay (from 15 ms
to 30 ms) between the access and aggregation edge nodes.
Similarly, the network delay between the aggregation and
core edge nodes was increased from 50 ms to 100 ms. In
the cases of Amnis, Coda, and RStorm, ETL-SYS and ETL-
TAXI experience extremely poor performance between 60 to
100 minutes as shown in Fig. 7c and Fig. 8c. This is due
to the accumulation of data tuples in the outbound message
queue of stream operators, which is exacerbated by increased
network delay in conjunction with high data arrival rates. In
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(c) The network delay transitions from (15 ms, 50 ms) to (30 ms, 100 ms).

Fig. 8: Throughput of tuples processed with one second deadline.
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Fig. 9: Cumulative throughput of tuples processed with one second deadline for Fig. 8c.

contrast, PRED-CITY and PRED-TAXI were less affected
by these challenges, primarily due to their lower input data
rates. Fig. 9 compares the cumulative effective throughput of
various methods. Beaver exhibits at least 1.6X performance
improvement over the state-of-the-art techniques.

D. System Overhead Analysis

We analyzed the resource utilization on each edge node
to gain deeper insights into Beaver’s overall efficiency in
the increased network delay scenario, as depicted in Fig. 10,
Fig. 11, and Fig. 12. In the case of Storm, when CPU becomes
a bottleneck, there is a rapid increase in memory usage due
to the accumulation of intermediate data in memory. Notably,
this pattern was observed at Edge2, Edge4, Edge5, and
Aggregation2. Simultaneously, Storm exhibits higher network
bandwidth consumption at these edge nodes since it tries
to distribute operators evenly across the worker nodes. Con-
versely, for Amnis and RStorm, the bottlenecks were observed
at Edge2, with increased CPU and memory utilization leading
to significantly higher tail latencies, particularly evident in

PRED-TAXI. Coda, on the other hand, encountered resource
bottlenecks at Edge1 and Edge2, resulting in poor tail latency
for PRED-SYS and PRED-TAXI. Due to high network delay
between aggregation2 and core1 (2X higher than baseline
case), heightened outbound data queuing at Aggregation2
causes a surge in memory usage while diminishing CPU
utilization. This effect cascades to the preceding nodes, Edge4
and Edge5, prompting an increase in their memory usage and
a decrease in CPU utilization. This chain reaction ultimately
results in significantly elevated latency. Notably, Beaver re-
mains unaffected by the increased network delay due to its
minimal data transfer between Aggregation2 and core1 nodes.
As a result, Beaver outperformed other methods, significantly
mitigating potential resource bottlenecks and contributing to
a more effective system overall.

V. RELATED WORK

Edge and fog computing are rapidly evolving fields with
various approaches to address the challenges and oppor-
tunities of distributed computing. Many efforts focus on
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Fig. 10: CPU utilization for each edge node.
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Fig. 11: Memory utilization for each edge node.

reducing access latency and bandwidth consumption while
overcoming limitations like limited bandwidth and computing
power in edge cloud environments, e.g., Cloudlets [21]. These
limitations significantly impact the performance of edge and
fog computing systems, requiring researchers and developers
to consider them during design and implementation. Previ-
ous projects [6], [22] proposed programming abstractions to
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Fig. 12: Network Read/Write usage for each edge node.

optimize available resources, but they often overlooked multi-
tenant situations and complex real-world applications, leading
to limitations in throughput and latency.

Existing industrial stream processing systems (e.g., Flink,
Storm, Spark), are designed for low-latency intra-datacenter
settings with powerful resources and high network connectiv-
ity. They are unsuitable for edge stream processing. Stream
processing systems such as AWS IoT Greengrass and Azure
IoT Edge aim to improve data processing at the edge without
relying on cloud backend connectivity. These systems require
a hub device with limited computational capabilities and lack
support for distributed data-parallel processing, leading to
limited throughput and a single point of failure [23].

Several academic projects have focused on edge stream
processing systems. EdgeNet [24] is designed for individual
IoT device data processing rather than distributed stream
processing. EdgeWise [5] reduces backpressure but lacks
scalability due to a centralized bottleneck. Frontier [25]
focuses on fault-tolerance but overlooks edge dynamics and
heterogeneity. DART [23] aims for scalability and adaptability
but neglects resource bottleneck, leading to network conges-
tion. Amnis [12] and Coda [11] encountered challenges in
achieving a globally optimized placement and alleviating high
queue delays, especially as network delays increased. Amnis
also relies on intrusive mechanisms such as application-level
data rate control. Another Kubernetes-based method solely
considers the network score and a single application scenario
to determine the priority of pod placement decisions [26].
However, these works do not handle multi-tenant use cases
where multiple applications share the same hardware.

Several techniques have been explored to optimize resource



allocation in the edge-cloud continuum. Wang et al. [27]
managed application quality of service through client work-
load reduction and allocation of cloudlet resources. Araldo et
al. [28] implemented a polynomial-time resource allocation
algorithm to maximize utility for edge network operators.
Angelelli et al. [29] proposed multi-objective optimization-
based scheduling of serverless functions on heterogeneous
edge-cloud platforms. MicroSplit [30] utilized the Louvain
method to partition microservices into the edge and the cloud.
However, these works do not address the unique challenges
of real-time stream processing in multi-tiered edge infrastruc-
ture, which is the focus of this paper.

VI. CONCLUSION

We designed a resource scheduling framework that in-
corporates a synergistic integration of application topology
partitioning and a two-sided matching technique for optimal
placement of stream operators across distributed edge nodes.
Our prototype, Beaver, was implemented using Apache
Storm and orchestrated through Kubernetes. We assessed
its performance using RIoTBench, an open-source real-time
IoT benchmark. In comparison to state-of-the-art techniques,
Beaver showcases a minimum of a 1.6× improvement in
effective throughput, even in the presence of varying band-
widths and network delay scenarios. These results underscore
the efficacy of our approach in mitigating resource bottlenecks
across CPU, memory, and network at the edge, ensuring
the timely processing of IoT data streams. The substantial
performance enhancements achieved by Beaver underscore
its potential to elevate the efficiency and reliability of real-
time IoT applications.
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