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Abstract 19 

Riverbed elevations play a crucial role in sediment transport and flow resistance, making it 20 

essential to understand and quantify their effects. This knowledge is vital for various fields, 21 

including river engineering and stream ecology. Previous observations have revealed that 22 

fluctuations in the bed surface can exhibit both multifractal and monofractal behaviors. 23 

Specifically, the probability distribution function (PDF) of elevation increments may transition 24 

from Laplace (two-sided exponential) to Gaussian with increasing scales, or consistently remain 25 

Gaussian, respectively. These differences at the finest timescale lead to distinct patterns of 26 

bedload particle exchange with the bed surface, thereby influencing particle resting times and 27 

streamwise transport. In this paper, we utilize the fractional Laplace motion (FLM) model to 28 

analyze riverbed elevation series, demonstrating its capability to capture both mono- and multi-29 

fractal behaviors. Our focus is on studying the resting time distribution of bedload particles 30 

during downstream transport, with the FLM model primarily parameterized based on the Laplace 31 

distribution of increments PDF at the finest timescale. Resting times are extracted from the bed 32 

elevation series by identifying pairs of adjacent deposition and entrainment events at the same 33 

elevation. We demonstrate that in cases of insufficient data series length, the FLM model 34 

robustly estimates the tail exponent of the resting time distribution. Notably, the tail of the 35 

exceedance probability distribution of resting times is much heavier for experimental 36 

measurements displaying Laplace increments PDF at the finest scale, compared to previous 37 

studies observing Gaussian PDF for bed elevation.  38 
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Plain Language Summary 39 

The evolution of riverbed elevations is difficult to describe due to its highly variable and 40 

strongly non-linear nature. Understanding and quantifying dynamics of riverbed elevations are 41 

important for river engineering and stream ecology, and serve as the basis for numerical models 42 

of predicting sediment transport as well as interpreting stratigraphy from the past records. 43 

Through laboratory experiments, we have observed that the form of elevation increments PDF 44 

can change from Laplace to Gaussian as the timescale increases. This phenomenon is 45 

successfully modeled in this paper for the first time by the fractional Laplace motion, which 46 

essentially generates bed elevation series for the evolution of bed surface height at a certain 47 

spatial location of the bed. This series contain information on how long a bedload particle can 48 

rest (resting time) in the riverbed before it can be re-entrained to move downstream, the 49 

determination of which by other means (e.g. particle-tracking measurements) is challenging. By 50 

extracting resting times embedded in this bed elevation series, we obtain statistics (i.e. the tail 51 

behavior of the resting time distribution) that are key for correctly modeling the transport of 52 

bedload particles, and more specifically, that can help us to understand the anomalous bedload 53 

diffusion process. 54 

Key Words: Fractional Laplace motion, bed elevation, bedload transport, resting time 55 

distribution, anomalous diffusion  56 
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1. Introduction 57 

The evolution of riverbed elevations is difficult to describe as it exhibits high variability due to 58 

formation and migration of bedforms across multiple scales and types, fluctuations in grain size 59 

distribution, and the complex non-linear response to alterations in stream hydrology, among 60 

other influential variables. Understanding and quantifying dynamics of riverbed elevations are 61 

important for river engineering, stream ecology and can provide morphological boundary 62 

conditions to numerical models for predicting the transport of sediments, contaminants, 63 

microorganisms, as well as interpreting stratigraphy from the past records (Aberle et al., 2010; 64 

Best, 2005; Coleman & Melville, 1994; Ganti et al., 2014; Guala et al., 2014; Jerolmack & 65 

Mohrig, 2005; Jiang et al., 2022; Lee et al., 2022; Li et al., 2023; McElroy & Mohrig, 2009; 66 

Nikora & Walsh, 2004; Nikora et al., 1997; Simons & Richardson, 1962; Singh et al., 2023; 67 

Singh et al., 2009; Singh et al., 2013; Strom et al., 2004; Wu & Chen, 2014; Yarnell et al., 2006; 68 

Zhan et al., 2024; Zhang et al., 2024).  69 

Several studies have focused on characterizing riverbed elevations using different approaches 70 

of numerical simulations (e.g. Khosronejad & Sotiropoulos, 2017; Sotiropoulos & Khosronejad, 71 

2016; Viparelli et al., 2010), experiments (e.g. Aberle & Nikora, 2006; Monsalve et al., 2017; 72 

Pender et al., 2001; Singh et al., 2011; Wong & Parker, 2006; Wong et al., 2007), and field 73 

observations (e.g. Haschenburger, 1999, 2006; Hassan & Church, 1994; Nikora & Walsh, 2004; 74 

Parsons et al., 2005; Vázquez-Tarrío et al., 2021). For example, Pender et al. (2001) observed 75 

that for the spatial bed elevation, the probability distribution function (PDF) of bed elevation 76 

fluctuations around the mean shows Gaussian shape for well sorted sediments. Wong et al. 77 

(2007) analyzed temporal bed elevation data from the plane-bed of uniform grain size 78 

distribution and suggested that the bed elevation fluctuations around the mean can be 79 
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approximated using Gaussian distribution. However, they observed a slight deviation in the tails 80 

of the PDFs for extreme fluctuations. Aberle & Nikora (2006) explored the bed elevations PDF 81 

for armored bed conditions and argued that with increasing armoring discharge the range of bed 82 

elevation increases whereas its probability around the zero mean decreases. For field 83 

observations at the flood event scale, elevation data for the gravel-bed rivers suggest that the 84 

distribution of scour and fill depths during floods, which are similar to the elevation increments 85 

as measured in previous studies, follows an exponential distribution (Haschenburger, 1999, 86 

2006; Hassan & Church, 1994; Vázquez-Tarrío et al., 2021). 87 

In studying the streamwise transport of bedload sediment particles, the information embedded 88 

in the riverbed elevation fluctuations is particularly useful (Viparelli et al., 2022). Since the 89 

pioneering work of Einstein (Einstein, 1937; Einstein, 1950), the bedload particle transport has 90 

been theoretically described by two alternating processes of the particle hop (or step, the 91 

successive motions of a particle from start to stop) and particle rest (the static period between 92 

two hops, the duration of which is termed as the resting time). Recent investigations on the 93 

anomalous behaviors of streamwise transport of tracer particles have mostly attributed the source 94 

of this phenomenon to the heavy-tailed distribution of resting times (Bradley, 2017; Hassan et 95 

al., 2013; Martin et al., 2012; Pelosi et al., 2016; Pierce & Hassan, 2020a; Wu et al., 2020; Wu et 96 

al., 2019a; Wu et al., 2019b). Under this context, the behavior of riverbed elevation fluctuations 97 

characterizing the critical events of sediment particle deposition (related to upward motion of 98 

bed surface) and entrainment (downward surface motion) has provided a compact format of 99 

information, based on which the extraction of representative resting times of particles is possible 100 

(Martin et al., 2014; Pierce & Hassan, 2020b; Voepel et al., 2013). Specifically, focusing on one 101 

single particle, its deposition on the riverbed surface on a certain level causes the increase of the 102 
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elevation. Then after some time when the same particle is remobilized (entrained), the surface 103 

elevation decreases beneath that particular level due to the scour and the time difference between 104 

the two adjacent events by definition is an instance of the resting time of a particle. 105 

To the best of our knowledge, Voepel et al. (2013) are the first who proposed the method of 106 

extracting resting times through empirical time series of riverbed elevation fluctuations. This 107 

method essentially offers an alternative to the conventional means of measuring resting times by 108 

tracking trajectories of bedload particles from a Lagrangian perspective. Consequently, it 109 

simplifies the otherwise complicated experimental setup to recording elevations of the riverbed 110 

surface at fixed streamwise positions, which is inherently Eulerian. Several different models had 111 

been proposed for the purpose of generating riverbed surface elevation time series ever since 112 

(Martin et al., 2014; Pierce & Hassan, 2020b), which were then used for characterizing tails of 113 

the resting time distribution aiming at studying the downstream anomalous transport of bedload 114 

tracer particles. However, the obtained elevation time series, either experimentally (Martin et al., 115 

2014) or numerically (Martin et al., 2014; Pierce & Hassan, 2020b), exhibited monofractal 116 

behavior, that is, the increments PDF of the series is consistently Gaussian across different 117 

timescales. As a comparison, there had been different experimental investigations during which 118 

multifractal behaviors for the bed surface elevation series were observed (Aberle & Nikora, 119 

2006; Nikora & Walsh, 2004; Singh et al., 2011; Singh et al., 2012b), revealing that at the finest 120 

timescale (the sampling interval) the increments PDF is Laplace-like while at some larger 121 

timescale it is Gaussian. Given its key role in characterizing the events of deposition and 122 

entrainment of particles, the different form of increments PDF at the finest timescale is critical in 123 

affecting the tail characteristics of the resting time distribution, thereby further influencing the 124 

streamwise bedload particle transport. 125 
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In fact, the gradual transition of increments PDF (of the time series) from Laplace to Gaussian 126 

as the timescale increases had also been observed and studied in other processes like that for 127 

hydraulic conductivity (Meerschaert et al., 2004) and sediment transport rates (Ganti et al., 128 

2009), for example, which resulted in the development and application of a novel approach as 129 

the subordinated fractional Brownian motion (Meerschaert et al., 2004). This model is also 130 

known as the fractional Laplace motion (FLM) because at some fine scale the increments have a 131 

Laplace distribution (Kozubowski et al., 2006). As a brief introduction, Laplace motion is a 132 

stochastic process whose increments at some scale a show a symmetric two-sided exponential 133 

distribution (with respect to the mean at x = 0), which is also known as the Laplace distribution 134 

with its PDF expressed as:  135 

 
 

21 e ,
2

x
f x 






  (1) 136 

where σ is the standard deviation of the Laplace distribution (Ganti et al., 2009; Meerschaert et 137 

al., 2004). Laplace motion is a special case (with Hurst exponent H = 0.5) of fractional Laplace 138 

motion (Kozubowski et al., 2006), which can be generated based on a fractional Brownian 139 

motion (fBM) process BH(∙), whose operational time does not follow a physical time but is given 140 

instead by a Gamma process Γt with stochasticity:  141 

     ,H tL t B 
  (2) 142 

where the Hurst exponent H can be in the range of (0, 1). Note that fBM exhibits a correlation 143 

function defined as 144 
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where E(.) represents the expectation operator (Ganti et al., 2009). When H = 0.5, BH(t) reduces 146 

to the standard Brownian motion with independent increments, however, for other values within 147 

the range of 0 < H < 1, the increments of BH(t) demonstrate positive correlation for H > 0.5 and 148 

negative correlation for H < 0.5. 149 

The increments of the Gamma process (Γt+ν - Γt) have a Gamma distribution with the shape 150 

parameter ν and the scale parameter as unity, and its PDF can be expressed as: 151 

  
 

1e .1 xg x x


 


  (4) 152 

Equation (2) is also known as the subordinated stochastic process (Ganti et al., 2009), with the 153 

fBM BH(∙) called the parent process. For a specific process, two parameters—H (Hurst exponent) 154 

and σ (standard deviation)—are required for the parent process, along with one parameter ν 155 

(shape parameter) for the operational time. More discussions on the properties of the FLM by 156 

Eq. (2) and its parameters can be found in literature (Ganti et al., 2009; Kozubowski et al., 2006).  157 

In this paper, we apply the FLM model to describe fluctuations of riverbed elevation, aiming 158 

to reproduce its multifractal behaviors, particularly focusing on the Laplace distribution of the 159 

increments at the finest timescale. These distributions are then utilized for extracting resting 160 

times and analyzing the tail characteristics of the corresponding exceedance probability 161 

distribution. The paper is structured as follows. In the following section, we first briefly 162 

introduce the experimental data from field-scale laboratory experiments conducted at the St. 163 

Anthony Falls Laboratory, which is followed by details of the FLM model, as well as the 164 

algorithm used for extracting resting times. Section 3 starts with discussions on effects of 165 

parameters on the simulated shapes of increments PDF generated by the FLM model, and 166 

provides a demonstration of parameter estimation based on the empirical data. Also explored are 167 
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the conditions under which the FLM is reduced to a monofractal model, and how the size of 168 

dataset affects the numerical simulation results, as well as their implications. Summary and 169 

concluding remarks are provided in section 4. 170 

2. Data and methods 171 

2.1. Experimental data for bed elevations 172 

The data used in this study are from the physical experiments conducted in the large 173 

experimental flume at the St. Anthony Falls Laboratory, University of Minnesota. The flume was 174 

85 m long, 2.75 m wide, and 1.8 m deep with a maximum discharge capacity of 8500 L/s.  A 55 175 

m long upstream section of the flume was used for this study. The flume is a partially sediment 176 

recirculating channel (Parker & Wilcock, 1993) while the water flows through the channel 177 

without recirculation. Intake of the water in the channel is directly from the Mississippi River. 178 

To ensure quasi-dynamic equilibrium in both water and bed surface transport, a constant water 179 

discharge (Q) was introduced into the channel prior to data collection. The dynamic equilibrium 180 

state was assessed by verifying the stability of the 60-minute average total sediment flux (s(t)) at 181 

the downstream end of the test section.  182 

The data collected included time series of bed elevation, local velocity fluctuations using 183 

acoustic Doppler velocimetry (ADV), and instantaneous sediment transport rates s(t) using 184 

weighing pans at the downstream end of the 55 m long channel test section (see Figure 1), along 185 

with surface grain size distribution (Singh et al., 2010; Singh et al., 2012a; Singh et al., 2012b; 186 

Singh et al., 2009). Prior to the experimental run initiation, the channel bed consisted of a 187 

mixture of gravel and sand with overall median grain size D50 = 7.7 mm,  D16 = 2.2 mm and D84 188 

= 21.2 mm. The temporal bed elevations were measured using seven stationary submersible 189 
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 203 

Figure 2 shows the time series of bed elevation (a, b) for the discharges of 2000 L/s and 2800 204 

L/s, respectively, with their increments (c, d). As can be seen from the time series of bed 205 

elevation increments, several extreme fluctuations (spikes observed in c and d), resulting from 206 

the steep faces of bedforms (which were mainly dunes) in the elevation series are present, and 207 

the number of these fluctuations increases as the discharge increases for the same length of time 208 

series. This is due to faster movement of bed forms at higher discharges. For example, the 209 

average timescale for the movement of average-size bedform at the discharge of 2000 L/s is 210 

about 22 minutes, and 15 minutes for the discharge of 2800 L/s (for bedform (e.g. bedform 211 

height) characterization, see (Singh et al., 2012b)). These observed extreme fluctuations manifest 212 

themselves in the tails of the PDFs and can be seen in Figure 3(a) for the discharges of 2000 and 213 

2800 L/s at the finest resolution of a = 1, corresponding to 5 sec. Here, a represents the ratio 214 

between the down-sampling time interval and the acquisition time interval. The PDFs of the bed 215 

elevation increments for both discharges at the time scale of 500 sec (a = 100) are shown in 216 

Figure 3(b). By Figure 3, we demonstrate that the PDF of bed elevation changes shape (from 217 

two-sided exponential, or Laplace, to Gaussian) as a function of scale a, suggesting multifractal 218 

behavior (Parisi & Frisch, 1985; Venugopal et al., 2006). The previous monofractal results have 219 

shown a Gaussian distribution for the elevation increments at the finest scale, whereas for the 220 

multifractal behavior, it is a Laplace distribution at the finest scale. This distinction underscores 221 

the need for a model capable of capturing the correct process at the finest scale, which directly 222 

contributes to an appropriate description of the resting time distribution, and consequently, to the 223 

streamwise transport of bedload particles. 224 
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We note that in a prior study conducted by Singh et al. (2012), the analysis of the identical 225 

experimental dataset revealed that the tails of the elevation increments PDF exhibited a decay 226 

consistent with a power-law distribution. However, our current investigation focuses on 227 

characterizing the central portion (body) of the increments PDF, which we find to resemble a 228 

Laplace distribution, particularly evident at the finest timescale (see Figure 3a). This major 229 

difference in analysis stems from the specific aim of our paper, which centers on examining the 230 

distribution of resting times for bedload particle transport. Our emphasis lies in scrutinizing the 231 

body of the increments PDF, which unveils subtle fluctuations in the bed surface, offering 232 

insights into the dynamics of particle deposition and entrainment events.  233 

Although extreme events of scour and deposition are represented by tails of the increments 234 

PDF, they may not be directly responsible for extreme values of resting times, which are more 235 

dependent on the sequence of single events (e.g. successive negative increments may scour a 236 

remarkable depth to entrain buried particles) instead of their magnitudes. On the other hand, 237 

these extreme events of scour and deposition may also be constrained by the lower boundary of 238 

the riverbed (such as the bed rock at limited depth), implying that the increments PDF cannot 239 

maintain the power-law decaying in its tails (which motivates the use of the truncated Pareto 240 

distribution for the tails of increments PDF as in Singh et al. (2012b)). That said, we emphasize 241 

that it remains unclear whether the above-mentioned differences regarding power-law and 242 

exponential tails for bed elevation increments PDF will play an important role in affecting the 243 

tail behavior of resting time distributions, which is crucial to characterize the anomalous bedload 244 

transport, and will be investigated through obtaining the resting times from the elevation time 245 

series in this paper. 246 
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 247 

  248 

Figure 2: Time series of bed elevations h(t) (a, b), and their increments computed as h(t) = h(t + a) – h(t) for the 249 

discharges of 2000 L/s and 2800 L/s, respectively (c, d), collected at the downstream end and in the centerline of the 250 

channel at sonar 3 (see Singh et al. 2010, for schematic). The increments shown in (c) and (d) were computed at the 251 

finest resolution, a = 1, corresponding to the sampling interval of bed elevation, t = 5 sec. As can be seen the 252 

bedforms are present at both discharges and the variability increases with increasing discharge. 253 

  254 

Figure 3: PDFs of increments of bed elevations at the discharges of 2000 L/s and 2800 L/s for two different scales. 255 

The smaller scale (a) represents the finest resolution at which the bed elevations were sampled whereas the larger 256 

scale (b) represents approximately the timescale for larger bedforms. The solid black lines represent Laplace 257 

(symmetric two-sided exponential) distribution and Gaussian distribution in (a) and (b), respectively.  258 
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2.2. Resting times and bed surface elevations for bedload sediment transport 259 

If we track a bedload sediment particle (tracer) during the transport, its streamwise behavior 260 

can be described by a series of steps (or hops, successive motions of the particle from the start to 261 

the end of the movement) punctuated by resting times of random durations, as sketched by 262 

Figure 4 (a). In the pioneering work of Einstein (1937), the two fundamental elements of step 263 

length and resting period are considered as random variables, introducing the probabilistic 264 

description for the bedload sediment transport. It has been shown that according to Einstein’s 265 

theory and its later extension, the mean and variance for the PDFs of these two variables 266 

determine an advection-diffusion process (i.e. the coefficients of v and Dd) for the bedload 267 

transport: 268 

 2

2d
C C Cc D
t x x

  
 

  
，
  (5) 269 

where C is the tracer concentration, t is time, c is the virtual velocity of the tracer plume, x is the 270 

streamwise coordinate, and Dd is the diffusion coefficient. However, recent studies have revealed 271 

anomalous diffusion of bedload tracers indicating faster (super-diffusion) or slower (sub-272 

diffusion) scattering of the tracer plume for the asymptotic transport regime, which can be 273 

theoretically expressed, for example, based on the fractional advection-diffusion equation (e.g. 274 

see Schumer et al. (2009) and references therein): 275 

 
d

C C Cc D
t x x

 

 

  
 

  
，
  (6) 276 

where γ ≠ 1 and/or α ≠ 2 indicates anomalous diffusion, and the index γ can be specifically 277 

determined by the tail characteristics of the resting time PDF. 278 
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Compared with the relatively easy measurements and rich datasets existing for steps (step 279 

lengths) (Wu et al., 2023; Wu et al., 2021), the measurements for resting periods are much more 280 

difficult. The definition of resting times is essentially Lagrangian which has posed great 281 

difficulties in experimentally measuring the resting of a particle between two successive hops (or 282 

steps) by tracing along its trajectory, given that a single resting can be unexpectedly long when it 283 

gets buried after stopped traveling on top of the riverbed. This is particularly so in studying the 284 

anomalous diffusion of bedload tracer particles, because the tail of the resting time distributions 285 

is associated with extreme cases of long-time resting of particles, which plays a crucial role in 286 

determining the asymptotic diffusion regimes during bedload transport. Thus particle-tracking 287 

experiments in directly capturing resting times of bedload particles can hardly be insightful 288 

regarding demarcation of the tail characteristics of the resting time distribution, since both 289 

temporal and spatial scales of such experiments are usually small in laboratory (Liu et al., 2019). 290 

Conversely, the empirical method of determining the resting times based on the time series of 291 

riverbed elevations (Martin et al., 2014; Voepel et al., 2013) is Eulerian, translating 292 

measurements of an ensemble of resting times with respect to the transport of a single particle 293 

into that collected at a fixed streamwise position regarding the ensemble of different particles. 294 

This method enables a rapid capturing of a large number of resting times within a relatively short 295 

period of laboratory observations. For field cases, the riverbed elevation, for example, has been 296 

studied at the flood event scale using scour chains and scour indicators, providing information on 297 

scour and fill depths which are similar to the bed elevation fluctuations as measured in flume 298 

experiments, and can be seen as the variation of bed surface elevation at some coarser scale 299 

(Haschenburger, 1999, 2006; Hassan & Church, 1994; Vázquez-Tarrío et al., 2021). 300 
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In this paper, we follow intrinsically the same empirical method proposed by Voepel et al. 301 

(2013). Putting aside the specific definition on the unconditional exceedance distribution of 302 

resting times (Martin et al., 2014; Pierce & Hassan, 2020b; Voepel et al., 2013), the essence of 303 

this method is to extract all the resting times embedded in the bed elevation series, which is then 304 

considered as the ensemble (of resting times) for further analysis. The key for such an extraction 305 

is to identify a pair of adjacent deposition (bed surface increases across a certain elevation) and 306 

entrainment (after a period the bed surface decreases across the same elevation) events, the time 307 

difference between which gives an instance of the resting time.  308 

In Figure 4 we qualitatively illustrate the relation between resting times and bed surface 309 

elevations for bedload sediment transport. For a specific resting period (e.g., as shown in Figure 310 

4 b), the starting of it corresponds to the deposition of the tracer, leading to the increase in the 311 

bed surface elevation at a given spatial location A. The continued increase of the bed surface 312 

elevation indicates deposition of other particles at this same location (i.e. vertically above the 313 

tracer), while the decrease of the elevation means entrainment of this tracer, thus indicates the 314 

end of this considered resting period (Figure 4 b). An instance of resting time is thus extracted 315 

from the series of the bed surface elevations.  316 

We need to emphasize that the transport of bedload particles studied in this paper follows the 317 

pattern described in Figure 4(a). Specifically, the bedload tracer particles considered (e.g., 318 

gravels or pebbles) move discontinuously, with most of the time spent stationary on the riverbed 319 

surface. Consequently, for a specific location on the surface, increases in elevation are solely 320 

attributable to the arrival and subsequent settling of particles, while decreases are associated with 321 

particle remobilization from the bed surface. This contrasts with situations involving the 322 

continuous motion of bed material, such as sheet flow. We also note that since multiple resting 323 
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times can be extracted from the series in Figure 4(b), we do not set a threshold for the bed 324 

elevation. Instead, we base the extraction on the variation of elevation at each time step of the 325 

measurement (as described in our algorithm at the end of this section). The elevation change 326 

during a time step can be substantial, as illustrated in Figure 2, in which case the deposition or 327 

entrainment events involve more than one particle. However, if multiple particles move and stop 328 

together, they share the same resting time. 329 

An observation of Figure 2 suggests that, the negative increments (negative Δh) generally 330 

exhibit lower magnitudes compared to positive increments, indicating a higher (virtual) 331 

resolution in capturing the entrainment events. This higher resolution determines the resolution 332 

of the resulting resting times according to our algorithm devised based on the conceptual 333 

framework of Voepel et al. (2013). Although it is still possible that the negative increments may 334 

exceed the size of the largest particle, resulting in multiple particles sharing the same resting time, 335 

it is the best approach we can take to treat these samples as having only one resting time for 336 

statistical analysis at this specific temporal resolution of 5 seconds. 337 

For the obtained PDF of resting times, the tail instead of the body of the PDF is significant, 338 

particularly in explaining the anomalous diffusion of bedload tracer transport. The extreme 339 

events of long resting times correspond to those particles buried deep and entrained later. It is 340 

observed from the elevation series that entrainments at deep locations are generally gentle, 341 

reflecting higher resolution in those measurements. 342 
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 343 

Figure 4: Sketch for resting times embedded in bed surface elevation series. (a) Alternating hops and resting 344 

periods for the transport of a bedload sediment particle tracer. Note that the steps are simplified for demonstration 345 

as instantaneous given normally their short durations compared to the long resting periods. (b) The corresponding 346 

bed surface elevation series for a specific resting period of the tracer. 347 

Here we present the following algorithm to extract resting times. 348 

1) For a bed elevation series h(ti) with 1 ≤ i ≤ N, where N is the length of the series, we 349 

consider each of the record in the series from h(t1) to h(tN).  350 

2) Note that we first detect the deposition event, followed by identifying the corresponding 351 

entrainment event for the same particle in the subsequent elevation series. This sequencing 352 

is crucial because if an entrainment event is detected first, indicating that a specific particle 353 

on the bed surface has been entrained and traveled downstream, there will be no 354 

subsequent deposition event recorded for this particle at that location. Thus, for each 355 
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location x

Time t

Time t

Bed surface
elevation h

A

Resting period
Step length

(a)

(b)
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elevation record h(ti) identified as the starting point in step 1), if h(ti) > h(ti+1), signifying 356 

an entrainment event, it implies that there is no corresponding deposition event for this 357 

particle in the remaining elevation series. Consequently, we proceed to consider the next 358 

record h(ti+1), as outlined in step 1). Conversely, if h(ti) ≤ h(ti+1), we traverse the elevation 359 

series (from h(ti+1) to h(tN)) to identify the first record h(ti+r) satisfying h(ti) > h(ti+r), 360 

indicating the occurrence of an entrainment event at h(ti+r) for the particle previously 361 

deposited at h(ti). Hence, (ti+r - ti) represents an instance of resting time. 362 

3) Repeat the above procedure until the end of the bed elevation series. 363 

With these extracted resting times, we obtain the exceedance probability distribution to 364 

analyze the tail characteristics. 365 

3. Application of the FLM model for bed elevation fluctuations 366 

3.1. Effects of the shape parameter ν and the Hurst exponent H  367 

Regarding application of the FLM model for the bed surface fluctuations, in this section we 368 

present details on how relevant parameters are estimated, and how these parameters can affect 369 

the model predictions, results of which demonstrate the potential of the model in correctly 370 

capturing the experimental observations. 371 

The work by Ganti et al. (2009) applying the FLM model in the study of sediment transport 372 

series has proposed a straightforward means to estimate parameters of the model. Essentially, 373 

they attempted to preserve the multiscale characteristics in the measured time series, which is 374 

revealed by the structure functions, defined as 375 
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  (7) 376 
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where q is the order of the structure function, S(t) is the sediment transport series, N is the length 377 

of series and a is the timescale. Since the constraints of matching the simulated and measured 378 

results of Eq. (7) are generally overdetermined (i.e. these constraints cannot be all satisfied), 379 

Ganti et al. (2009) chose to minimize the mean squared error between the simulated and 380 

measured scaling exponents for the first three orders of Eq. (7), giving estimates for the Hurst 381 

exponent H and the shape parameter ν. By plotting those structure functions in the log-log plot 382 

and identifying the linear regions (for the scaling exponents) in the plot, the extracted scaling 383 

exponents are known to characterize the multifractality of the time series. Further matching the 384 

variances for the simulated and measured series gives the standard deviation σ for the model. 385 

However, parameters estimated by the above method can be seen as having provided a 386 

“globally optimal” prediction for the FLM model across different timescales (regarding the 387 

measured series), instead of focusing on (or putting on more weight for) the model performance 388 

at some specific timescale. For our study concerning the effects of riverbed elevation variations 389 

on the streamwise bedload tracer particle transport, the most important process is the elevation 390 

variations at the finest timescale describing the detailed events on particles’ deposition (elevation 391 

increases) and entrainment (elevation decreases), which can then be linked to the resting time 392 

distribution of particles (see the previous section 2.3). Thus, the priority in estimating the model 393 

parameters in the present study is to guarantee reproducing as close as possible the elevation 394 

increments at the finest timescale of a = 1, the PDF of which was demonstrated well 395 

approximated by the Laplace distribution Eq. (1) as shown in Figure 3 (a).  396 

Although in Figure 3 we have compared results corresponding to both discharges of Q = 2000 397 

and 2800 L/s to illustrate the intrinsic characteristics of multifractality (transition of PDF shape 398 

from Laplace to Gaussian as timescale increases), for brevity, the analysis hereinafter is only 399 
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based on that corresponding to Q = 2000 L/s due to qualitatively similar results exhibited for Q = 400 

2800 L/s. To estimate the parameters, we first analyze the effect of the shape parameter ν in 401 

controlling the shape of the increments PDF. We note that the shape parameter ν comes from the 402 

Gamma distribution of the increments of Gamma process, i.e. Eq. (4), which serves as the 403 

operational time for our considered subordinated stochastic process. Since the shape of Gamma 404 

distribution (with the scale parameter of unity) can be divided into three categories based on this 405 

shape parameter, i.e. ν < 1, ν = 1, and ν > 1, we expect that the simulated PDF for the 406 

increments of bed elevations based on Eq. (2) will also be controlled by the same critical value of 407 

unity for ν. For example, for the special case of ν = 1, the Gamma distribution is simplified into 408 

an exponential distribution, based on which we could expect that the increments PDF of the FLM 409 

(with H = 0.5) can be described by the two-sided exponential distribution (or the Laplace 410 

distribution, Eq. (1)). 411 

Here we show in Figure 5 the PDFs of the bed elevation increments for the shape parameter ν > 412 

1 (Figure 5 a and b) and ν < 1 (Figure 5 c and d). It is obvious that the variation of the shape of 413 

the PDFs follows the same pattern as that of the Gamma distribution. That is, around the area of 414 

Δh = 0 the distribution becomes “flatter” for ν > 1, while “spikier” for ν < 1. These shapes may 415 

be characterized by the indicator of kurtosis, commonly defined as the 4th order moment. 416 

In general, Figure 5 provides information for estimating FLM parameters. Specifically, for a 417 

Hurst exponent of (or close to) 0.5, the shape parameter ν should be equal to (or close to) unity 418 

for the Laplace distribution of increments PDF at the finest timescale. In addition, the Hurst 419 

exponent (or correlation parameter) is well known for characterizing how the increments of the 420 

fBM are correlated across scales. If the magnitude of fluctuations are independent, the fBM 421 

reduces to the classic Brownian motion with H = 0.5. As discussed earlier, Hurst exponent in the 422 
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range of (0, 0.5) indicates a negative correlation while a positive correlation in the range of (0.5, 423 

1). Mathematically, 2H can be related to the scaling exponent of the second order moment of the 424 

increments (Singh et al., 2011), which is a special case (q = 2) of Eq. (7): 425 

 426 

Figure 5: Effects of ν on PDFs of bed elevation increments simulated by the FLM model. The other 427 

parameters are H = 0.5 and σ = 4.2 mm. Note that the solid blue lines in (a) and (c) represent exponential fits to 428 

numerical results instead of PDFs. 429 
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  (8) 430 

where h(t) is the bed elevation series. In Figure 6 we fitted a straight line to the second order 431 

moment of the measured elevation series at the discharge of 2000 L/s with the slope of 0.9, 432 
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resulting in an estimation for the Hurst exponent H = 0.45, charactering the manner based on 433 

which the variance of the increments should increase across different timescales. Note that in the 434 

earlier study of Singh et al. (2011) based on the analysis of power spectral density for the bed 435 

topography, the spectral slope β = 1.92 was reported for the 2000 L/s case, which corresponds to 436 

an estimate of H = (β - 1) / 2 = 0.46, consistent with the present result of H = 0.45.  437 

 438 

Figure 6: Estimating the Hurst exponent H based on the second order moment as defined by Eq. (8). The 439 

scaling exponent (slope of the fitted line in the log-log plot) is equal to 2 H. 440 
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 441 

Figure 7: Effects of the Hurst exponent H on the PDF of elevation increments at two different timescales of a 442 

= 1 and a = 100, respectively. For the numerical simulations σ = 4.2 mm and ν =1 are used. 443 



JGR-ES 

25 

 

Given that H = 0.45 is close to H = 0.5, we can use the guess of ν = 1 (as discussed above) for 444 

further analysis. The last parameter σ can be determined by computing the standard deviation of 445 

the elevation increments at the finest timescale of a = 1 referring to our proposed constraint of 446 

capturing as much information as possible regarding the increments PDF at this timescale. The 447 

value of σ = 4.2 mm is obtained from the experimentally measured bed elevation series at the 448 

discharge of 2000 L/s. 449 

In Figure 7, we show the results of numerical simulations based on the FLM model Eq. (2) to 450 

further illustrate the effects of the Hurst exponent H. The first observation is that as H increases 451 

from 0.3 to 0.6, the value of H does not affect much the variance of increments PDF at the finest 452 

timescale of a = 1 (Figure 7 a, c, and e), but significantly for that at the larger timescale of a = 453 

100  (Figure 7 b, d, and f). In addition, the dependence of the variance on H is monotonic, i.e. the 454 

variance increases as H increases, regardless of the timescale at which we are analyzing. Also 455 

observed is that the variance at the larger timescale of a = 100, resulted from a specific value of 456 

H (= 0.45) in the numerical simulation, agrees with that by the experimental measurements 457 

(represented by the blue Gaussian solid line). In fact, the understanding of 2H being the scaling 458 

exponent (or slope in the log-log plot) of Eq. (8) explains most of the observations regarding 459 

Figure 7. For example, since the variance (related to the second order moment) of the increments 460 

increases in a power-law manner across timescales, it consequently has a greater value at a larger 461 

timescale, the value of which depends monotonically on the Hurst exponent H. 462 

  In field studies of gravel-bed rivers, it has been observed that the distribution of scour and fill 463 

depths during floods follows an exponential distribution (Haschenburger, 1999, 2006; Hassan & 464 

Church, 1994; Vázquez‐Tarrío et al., 2021). These measurements of scour and fill depths bear 465 

similarities to the bed elevation increments examined in this paper but on a different timescale. 466 
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Moreover, the observed exponential distributions for scour and fill depths align with the Laplace 467 

distribution discussed in this study. This suggests the potential applicability of the FLM model to 468 

analyze scour and fill depths observations. However, a more detailed analysis of field data is 469 

necessary, including an examination of whether these observations exhibit multifractal behavior. 470 

Additionally, further validation of these results may require observations of tracer transport 471 

processes. 472 

3.2. Gaussian PDF of elevation increments at the finest timescale (a = 1) 473 

In this section, we show that the FLM model can also reproduce results with monofractal 474 

characteristics, further validating its ability to capture experimental observations. 475 

It is known that FLM exhibits multifractal behavior (i.e. the increments PDF changes its shape 476 

across scales) only at some intermediate timescales, while revealing a monofractal behavior at 477 

the limit of very large timescales with the Gaussian increments PDF (Ganti et al., 2009; 478 

Kozubowski et al., 2006). However, results of Figure 5 (a) and Figure 7 (e) suggest that FLM 479 

may also approach a monofractal model under conditions of very small H or very large ν. We 480 

provide two examples in Figure 8 adopting a small Hurst exponent H = 0.1 (Figure 8a) and a 481 

large shape parameter ν = 10 (Figure 8b), respectively, where both the elevation increments 482 

PDFs are very close to Gaussian at the finest timescale of a = 1. To quantitatively evaluate the 483 

normality of results in Figure 8, we provide Quantile-Quantile plots in Figure 9 demonstrating 484 

how well these PDFs can be approximated by Gaussian distributions (Figure 9 a and c), as 485 

compared with cases for a larger H ( = 0.3, Figure 9b; see Figure 7a for the PDF) or a smaller ν ( 486 

= 2, Figure 9d; see Figure 5a for the PDF), respectively. 487 
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 488 

Figure 8: The Gaussian PDF for the elevation increments at the finest timescale of a = 1, which is achieved by 489 

adopting either a small Hurst exponent H = 0.1 (relative to 0.5), or a large shape parameter ν = 10 (relative to 490 

1). σ = 4.2 mm is used in the numerical simulations. 491 

This characteristics of monofractality for the FLM model is important in the sense that it 492 

demonstrates the capability of the model in reproducing some previous results where 493 

multifractality is not observed, either experimentally (Martin et al., 2014) or numerically (Pierce 494 

& Hassan, 2020b). Bed elevation series captured in those studies show strong negative 495 

correlations implying possibly small values of H (close to zero), leading to resting time 496 

distributions with scaling exponents close to -1 for their power-law tails, which is consistent with 497 

corresponding results (Martin et al., 2014; Pierce & Hassan, 2020b). 498 

Here we explain the observed monofractal behavior regarding the shape parameter ν by 499 

resorting to the analytical solutions of the structure functions for FLM (Ganti et al., 2009; 500 

Kozubowski et al., 2006): 501 
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  (9) 502 

It is known that at the limit of very large timescales (i.e. a is large) FLM is monofractal (Ganti et 503 

al., 2009; Kozubowski et al., 2006), effectively resulting in a large value for the product of a∙ν in 504 
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Eq. (9), which is equivalent to a large value of ν as we found by Figure 9 c and d. However, we 505 

note that this could not explain the effect of a small H in inducing the observed monofractality, 506 

which needs further investigation. 507 

 508 

Figure 9: Quantile-Quantile plot illustrating that as the decrease of the Hurst exponent H from 0.3 to 0.1, or 509 

increase the shape parameter ν from 2 to 10, the PDF of the elevation increments approaches Gaussian. The 510 

dashed red line (Reference line) indicates Gaussian distribution. 511 

3.3. Effects of the dataset size N 512 

In practice, it is always interesting to understand if an empirical series contains sufficient size 513 

of data to support meaningful analysis. That is, whether robust results can be obtained based on 514 

the limited-length empirical series. However, different means of the analysis may lead to 515 
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different answers, as we are going to demonstrate here and in the next subsection in estimating 516 

the FLM model parameters, based on the variance of the increments PDF and the scaling 517 

exponent of the tail of the resting time distribution, respectively. 518 

With our estimated parameters in the previous subsections (H = 0.45, ν = 1, and σ = 4.2 mm), 519 

we compare the FLM model results of bed elevation increments PDF with the experimental 520 

measurements at two different timescales in Figure 10, illustrating the effects of dataset size N on 521 

the distributions. The first set of model results (Figure 10 a and b) are based on the dataset size of 522 

N = 4 × 104, which is consistent with that used for previous figures of model simulations in this 523 

paper. In addition, a different dataset size of N = 4 × 103, which is an order of magnitude smaller 524 

and represents the size of the experimentally measured series, is adopted for Figure 10 c and d.  525 

Overall, Figure 10 gives us confidence that the model results reproduce closely the 526 

experimental measurements regarding the increments PDF. The dataset size of N = 4 × 103 may 527 

not be sufficient to guarantee a stable distribution of the PDF at the timescale of a = 100, but it 528 

generates results with stable statistical information like the variance. In other words, the 529 

simulated increments PDF changes for each realization (more profoundly at the larger timescale; 530 

and the experimental results can be seen as one special realization) with this smaller dataset size, 531 

however the changes for the variance of the PDF are very small, which supports a robust 532 

estimation of the parameters as we obtained in this study for the Hurst exponent H. With the 533 

increase of the dataset size to N = 4 × 104, the shape of the PDF is stabilized (Figure 10b), i.e., no 534 

significant changes in PDF shape among different realizations. 535 

We emphasize that through the preceding steps, the FLM model is appropriately calibrated to 536 

capture the observed elevation characteristics (Figure 10c and d). While the experimental data 537 

inevitably faces the “censorship problem” (Ballio et al., 2019), we can address this limitation by 538 
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increasing the sample size in the numerical simulation (Figure 10a and b). This step is crucial for 539 

the subsequent analysis of resting time distribution, as the distribution’s exact nature is unknown 540 

due to insufficient experimental observations. 541 

 542 

Figure 10: Effect of the size of dataset N used for numerical simulations. (a) and (b) show that with a 543 

relatively large N the simulated results can be accurately fitted by the Laplace distribution and Gaussian 544 

distribution at the finest timescale of a = 1 and a larger timescale of a = 100, respectively. With (c) and (d) we 545 

demonstrate that using a smaller N which is the same as that for the experimentally measured elevation 546 

variation time series, the simulated results at the larger timescale can change profoundly. Note that we selected 547 

a realization of the numerical simulation which agreed closely in shape with the experimental results (d). Also 548 

we note that variances do not change much for corresponding simulations with different N, demonstrating that 549 

variance can be used to robustly estimate the model parameters. 550 
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4. Tails of the resting time distribution 551 

Using the algorithm described in subsection 2.2, we can extract resting times embedded in the 552 

elevation series. We first show results of the exceedance probability distribution for the 553 

experimental data at the discharge of 2000 L/s in Figure 11 a, where a reference line fitted to the 554 

part of the tail close to the end of the distribution is shown with a scaling exponent of -0.705. 555 

This distribution is truncated around the time at the order of ~ 103 × 5s, where 103 is related to 556 

the size of the collected dataset and 5s is the sampling interval of measurements. It has been 557 

suggested that the exceedance distribution of resting times as described by the term of “return 558 

time” for the fractional Brownian motion decays as ~ tH-1 (Ding & Yang, 1995; Voepel et al., 559 

2013), relating the scaling exponent of the tail of the resting time distribution to the Hurst 560 

exponent. Thus, the measured results in Figure 11a should indicate a value of Hurst exponent of 561 

H = ~ 0.3, which is very different from the value of H = 0.45 estimated from the experimental 562 

observations (see Figure 6 and discussions thereafter).  563 

However, by the other three subfigures (b, c, d) in Figure 11 we demonstrate that this observed 564 

discrepancy between two estimated Hurst exponents based on different means are simply due to 565 

insufficient data in the collected series. Using N = 4 × 103 representing dataset size of the 566 

measured data, we repeat the numerical simulations based on the FLM model and pick out three 567 

realizations showing different scaling exponents for the exceedance probability distributions. 568 

The result can either be very close to the experimental measurements (Figure 11b), or show a 569 

heavier (Figure 11c) or a thinner (Figure 11d) tail than that in Figure 11a. Nevertheless, in the 570 

case of insufficient data for analysis, the slope of the tail is seen directly dependent on the order 571 

of magnitude of time when the resting time distribution is truncated (due to randomness in 572 

numerically generating the bed elevation series). For example, the larger timescale for the 573 
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truncation of the distribution, the heavier the tail of the distribution is (Figure 11 d, b, and c). 574 

Furthermore, for the special case of the same truncation timescale regarding both resting time 575 

distributions obtained experimentally and numerically (Figure 11 b), we observe great agreement 576 

between the two distributions (thus the same tail slope), implying the ability of the FLM model 577 

in reproducing correct resting times related to capturing characteristics of bed elevation series. 578 

This observation indicates that different tail behaviors of the bed elevation increments PDF 579 

(power-law as documented in Singh et al. (2012b) vs. exponential as described in this paper) 580 

may not significantly affect the resting time distribution. 581 

 582 

Figure 11: Exceedance probability distribution for resting times of particles extracted from bed elevation 583 

series with N = 4000. (a) The experimentally measured elevation series under the discharge of 2000 L/s. (b) A 584 
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selected realization of the numerical simulation which closely agree with the experimental measurements. (c) 585 

and (d) show realizations of numerical simulations with tails of the resting time distributions vary, which can 586 

either be milder (c), or steeper (d) than the measurements. 587 

We continue to increase the size of the dataset used for the simulation to N = 1 × 105, slightly 588 

over an order of magnitude larger than that for the experiment and obtain the exceedance 589 

probability distribution. The resulting slope of the distribution in the log-log plot are found much 590 

more consistent, the scaling exponents of which are around -0.55, as that plotted in Figure 12. 591 

This result emphasizes that cautions should be used in estimating the Hurst exponent by the 592 

resting time distribution, a robust estimation of which may require a large dataset and could be 593 

beyond the size of the empirically collected dataset.  594 

We need to emphasize that the Hurst exponent H = 0.45 in this study represents an “effective 595 

Hurst exponent” because we relate the scaling of the second order moment Eq. (8) to 2H, i.e. M 596 

(2, a) ~ a 2H, the form of which is monoscaling (corresponds to monofractality for the elevation 597 

series). A general form of M (q, a) ~ a τ(q) can be adopted for the multiscaling case, with a 598 

quadratic relation normally used for the spectrum of scaling exponents τ(q) = c1 q – c2 q2 / 2, 599 

where q is the order of the moment, and c1 and c2 are two scaling exponents; c2 is commonly 600 

referred to as the intermittency coefficient and characterizes multifractality (i.e. measure the 601 

departure from mono-scaling (Singh et al., 2011)) in a series. Thus, it is easy to find that rather 602 

than simply c1 (for the mono-scaling), the Hurst exponent is further modified by c2, as H = c1 – 603 

c2. More specifically, we can obtain c1 = 0.56 and c2 = 0.11 for the experimental results collected 604 

under the discharge of 2000 L/s for timescales between a = 1 and a = 26, compared with values 605 

of 0.53 and 0.12 in Singh et al. (2011), respectively. 606 

We highlight that the scaling exponent of -0.55 ( = H – 1) for the resting time distribution 607 

identified here from the FLM model based on the experiment observations (2000 L/s) indicates a 608 



JGR-ES 

34 

 

much heavier tail than that estimated in previous studies (scaling exponent of around -1.0 609 

(Martin et al., 2014; Pierce & Hassan, 2020b)), suggesting that the noted difference is due to 610 

multifractal behavior observed in the bed surface elevation series.  611 

 612 

Figure 12: Exceedance probability distribution for resting times of particles extracted from bed elevation 613 

series. Adopting an order of magnitude larger N (= 1×105) than that in Figure 11, results by the numerical 614 

simulations converge to the resting time distribution with the scaling exponent of ~ -0.55 for the tail, which is 615 

much heavier than that obtained in previous studies (Martin et al., 2014; Pierce & Hassan, 2020b) without 616 

observing the multifractality in the bed elevation series. 617 

5. Summary and conclusion 618 

The Fractional Laplace Motion (FLM) model is known to exhibit multifractal behavior in the 619 

generated spatial or temporal series, which capture a gradual change of the shape of increments 620 

PDF from the Laplace to the Gaussian distribution as the considered scale increases. In the field 621 

of sediment transport, this model has been applied to study the sediment transport series in 622 

observation of similar multifractal behaviors. In this paper, we explore the FLM model in 623 

simulating bed elevation fluctuations, which is closely related to the process of bedload tracer 624 

particle transport by providing a means of obtaining the resting times of particles when they 625 
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temporarily stop their motions in the course of downstream transport. However, we primarily 626 

considered reproducing the elevation increments PDF at the finest timescale as the constraints in 627 

estimating model parameters, which is different from the previous study for sediment transport 628 

series which focused on minimizing the difference between the simulated and measured time 629 

series regarding some multiscale characteristics across timescales.  630 

To assist parameters estimation, we have investigated effects of different parameters. The 631 

shape parameter ν emerges from the operational time of Gamma process (with the scale 632 

parameter of unity) for the subordinated stochastic process and affects the shape of the 633 

increments PDF in a similar way of affecting the Gamma distribution. Qualitatively, compared 634 

with the exponential distribution, the PDF becomes “spikier” close to the mode of the 635 

distribution for ν < 1, and “flatter” for ν > 1, when the Hurst exponent H is close to 0.5. 636 

Mathematically, H can be related to the scaling exponent of the second order moment of the 637 

increments; it affects the shape of the PDF in a similar manner as ν. We demonstrate that under 638 

conditions of smaller H (than 0.5) or larger ν (than 1), the shape of the increments PDF at the 639 

finest timescale approaches Gaussian (i.e. monofractality), indicating that the FLM model is 640 

capable of reproducing previous experimental and numerical results with respect to which 641 

multifractal behaviors are not observed.  642 

Bed elevation increments at the finest timescale describe detailed events of particle 643 

entrainment and deposition, which are key in resolving resting times of particles. In this paper, 644 

we use essentially the same empirical method by Voepel et al. (2013) to extract resting times 645 

from a given elevation time series, which is based on identifying pairs of adjacent deposition and 646 

entrainment events at the same elevation. Results show that the FLM model can reproduce 647 

resting times observed in experiments: the exceedance probability distributions for the simulated 648 



JGR-ES 

36 

 

and measured elevation series agree satisfactorily with each other. However, our model 649 

simulations also demonstrated that in case of insufficient size of the dataset, the slope of the tails 650 

of resting time distribution in the log-log plot can vary profoundly, leading to uncertainties in 651 

estimating Hurst exponent focusing on the tail characteristics under such circumstances. 652 

Therefore, we emphasize that caution should be made in estimating the model parameters 653 

concerning the size of the dataset. For example, although the shape of the increments PDF may 654 

not be stable for insufficient data at some large timescale, the variance of the PDF can still be 655 

converged for different realizations of the numerical simulation based on the FLM model, which 656 

can guarantee a robust estimation of the parameter like the Hurst exponent, in contrast to that 657 

done through the tails of the resting time distribution. We note that due to the observed 658 

multifractality for bed surface elevation series in the considered experimental measurements, the 659 

calculated resting time distribution has a much heavier tail with the exponent of ~ -0.55, 660 

compared with previous results of ~ -1.0 for the elevation series showing monofractal behaviors. 661 

This work can be seen as a step towards relating the micro-scale particle dynamics to the macro-662 

scale sediment transport statistics via minimum complexity stochastic models. 663 
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 242 

  243 

Figure 2: Time series of bed elevations h(t) (a, b), and their increments computed as h(t) = h(t + a) – h(t) for the 244 

discharges of 2000 L/s and 2800 L/s, respectively (c, d), collected at the downstream end and in the centerline of the 245 

channel at sonar 3 (see Singh et al. 2010, for schematic). The increments shown in (c) and (d) were computed at the 246 

finest resolution, a = 1, corresponding to the sampling interval of bed elevation, t = 5 sec. As can be seen the 247 

bedforms are present at both discharges and the variability increases with increasing discharge. 248 

  249 

Figure 3: PDFs of increments of bed elevations at the discharges of 2000 L/s and 2800 L/s for two different scales. 250 

The smaller scale (a) represents the finest resolution at which the bed elevations were sampled whereas the larger scale 251 

(b) represents approximately the timescale for larger bedforms. The solid black lines represent Laplace (symmetric 252 

two-sided exponential) distribution and Gaussian distribution in (a) and (b), respectively.  253 
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be substantial, as illustrated in Figure 2, in which case the deposition or entrainment events involve 321 

more than one particle. However, if multiple particles move and stop together, they share the same 322 

resting time. 323 

 324 

Figure 4: Sketch for resting times embedded in bed surface elevation series. (a) Alternating hops and resting periods 325 

for the transport of a bedload sediment particle tracer. Note that the steps are simplified for demonstration as 326 

instantaneous given normally their short durations compared to the long resting periods. (b) The corresponding bed 327 

surface elevation series for a specific resting period of the tracer. 328 

Here we present the following algorithm to extract resting times. 329 

1) For a bed elevation series h(ti) with 1 ≤ i ≤ N, where N is the length of the series, we consider 330 

each of the record in the series from h(t1) to h(tN).  331 
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the Laplace distribution of increments PDF at the finest timescale. In addition, the Hurst exponent 399 

(or correlation parameter) is well known for characterizing how the increments of the fBM are 400 

correlated across scales. If the magnitude of fluctuations are independent, the fBM reduces to the 401 

classic Brownian motion with H = 0.5. As discussed earlier, Hurst exponent in the range of (0, 0.5) 402 

indicates a negative correlation while a positive correlation in the range of (0.5, 1). Mathematically, 403 

2H can be related to the scaling exponent of the second order moment of the increments (Singh et 404 

al., 2011), which is a special case (q = 2) of Eq. (7): 405 

 406 

Figure 5: Effects of ν on PDFs of bed elevation increments simulated by the FLM model. The other parameters 407 

are H = 0.5 and σ = 4.2 mm. Note that the solid blue lines in (a) and (c) represent exponential fits to numerical 408 

results instead of PDFs. 409 
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  (8) 410 

where h(t) is the bed elevation series. In Figure 6 we fitted a straight line to the second order 411 

moment of the measured elevation series at the discharge of 2000 L/s with the slope of 0.9, 412 

resulting in an estimation for the Hurst exponent H = 0.45, charactering the manner based on which 413 

the variance of the increments should increase across different timescales. Note that in the earlier 414 

study of Singh et al. (2011) based on the analysis of power spectral density for the bed topography, 415 

the spectral slope β = 1.92 was reported for the 2000 L/s case, which corresponds to an estimate 416 

of H = (β - 1) / 2 = 0.46, consistent with the present result of H = 0.45.  417 

 418 

Figure 6: Estimating the Hurst exponent H based on the second order moment as defined by Eq. (8). The scaling 419 

exponent (slope of the fitted line in the log-log plot) is equal to 2 H. 420 
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 421 

Figure 7: Effects of the Hurst exponent H on the PDF of elevation increments at two different timescales of a = 422 

1 and a = 100, respectively. For the numerical simulations σ = 4.2 mm and ν =1 are used. 423 
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 468 

Figure 8: The Gaussian PDF for the elevation increments at the finest timescale of a = 1, which is achieved by 469 

adopting either a small Hurst exponent H = 0.1 (relative to 0.5), or a large shape parameter ν = 10 (relative to 1). 470 

σ = 4.2 mm is used in the numerical simulations. 471 

This characteristics of monofractality for the FLM model is important in the sense that it 472 

demonstrates the capability of the model in reproducing some previous results where 473 

multifractality is not observed, either experimentally (Martin et al., 2014) or numerically (Pierce 474 

& Hassan, 2020b). Bed elevation series captured in those studies show strong negative correlations 475 

implying possibly small values of H (close to zero), leading to resting time distributions with 476 

scaling exponents close to -1 for their power-law tails, which is consistent with corresponding 477 

results (Martin et al., 2014; Pierce & Hassan, 2020b). 478 

Here we explain the observed monofractal behavior regarding the shape parameter ν by resorting 479 

to the analytical solutions of the structure functions for FLM (Ganti et al., 2009; Kozubowski et 480 

al., 2006): 481 
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  (9) 482 

It is known that at the limit of very large timescales (i.e. a is large) FLM is monofractal (Ganti et 483 

al., 2009; Kozubowski et al., 2006), effectively resulting in a large value for the product of a∙ν in 484 
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Eq. (9), which is equivalent to a large value of ν as we found by Figure 9 c and d. However, we 485 

note that this could not explain the effect of a small H in inducing the observed monofractality, 486 

which needs further investigation. 487 

 488 

Figure 9: Quantile-Quantile plot illustrating that as the decrease of the Hurst exponent H from 0.3 to 0.1, or 489 

increase the shape parameter ν from 2 to 10, the PDF of the elevation increments approaches Gaussian. The 490 

dashed red line (Reference line) indicates Gaussian distribution. 491 

3.3. Effects of the dataset size N 492 

In practice, it is always interesting to understand if an empirical series contains sufficient size 493 

of data to support meaningful analysis. That is, whether robust results can be obtained based on 494 

the limited-length empirical series. However, different means of the analysis may lead to different 495 
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increasing the sample size in the numerical simulation (Figure 10a and b). This step is crucial for 519 

the subsequent analysis of resting time distribution, as the distribution’s exact nature is unknown 520 

due to insufficient experimental observations.521 

 522 

Figure 10: Effect of the size of dataset N used for numerical simulations. (a) and (b) show that with a relatively 523 

large N the simulated results can be accurately fitted by the Laplace distribution and Gaussian distribution at the 524 

finest timescale of a = 1 and a larger timescale of a = 100, respectively. With (c) and (d) we demonstrate that 525 

using a smaller N which is the same as that for the experimentally measured elevation variation time series, the 526 

simulated results at the larger timescale can change profoundly. Note that we selected a realization of the 527 

numerical simulation which agreed closely in shape with the experimental results (d). Also we note that variances 528 

do not change much for corresponding simulations with different N, demonstrating that variance can be used to 529 

robustly estimate the model parameters. 530 
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heavier the tail of the distribution is (Figure 11 d, b, and c). Furthermore, for the special case of 554 

the same truncation timescale regarding both resting time distributions obtained experimentally 555 

and numerically (Figure 11 b), we observe great agreement between the two distributions (thus the 556 

same tail slope), implying the ability of the FLM model in reproducing correct resting times related 557 

to capturing characteristics of bed elevation series. This observation indicates that different tail 558 

behaviors of the bed elevation increments PDF (power-law as documented in Singh et al. (2012a) 559 

vs. exponential as described in this paper) may not significantly affect the resting time distribution. 560 

 561 

Figure 11: Exceedance probability distribution for resting times of particles extracted from bed elevation series 562 

with N = 4000. (a) The experimentally measured elevation series under the discharge of 2000 L/s. (b) A selected 563 

realization of the numerical simulation which closely agree with the experimental measurements. (c) and (d) 564 
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et al., 2014; Pierce & Hassan, 2020b)), suggesting that the noted difference is due to multifractal 589 

behavior observed in the bed surface elevation series.  590 

 591 

Figure 12: Exceedance probability distribution for resting times of particles extracted from bed elevation series. 592 

Adopting an order of magnitude larger N (= 1×105) than that in Figure 11, results by the numerical simulations 593 

converge to the resting time distribution with the scaling exponent of ~ -0.55 for the tail, which is much heavier 594 

than that obtained in previous studies (Martin et al., 2014; Pierce & Hassan, 2020b) without observing the 595 

multifractality in the bed elevation series. 596 

5. Summary and conclusion 597 

The Fractional Laplace Motion (FLM) model is known to exhibit multifractal behavior in the 598 

generated spatial or temporal series, which capture a gradual change of the shape of increments 599 

PDF from the Laplace to the Gaussian distribution as the considered scale increases. In the field 600 

of sediment transport, this model has been applied to study the sediment transport series in 601 

observation of similar multifractal behaviors. In this paper, we explore the FLM model in 602 

simulating bed elevation fluctuations, which is closely related to the process of bedload tracer 603 

particle transport by providing a means of obtaining the resting times of particles when they 604 

temporarily stop their motions in the course of downstream transport. However, we primarily 605 
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