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Abstract: This paper conducts a comprehensive study on intermittent computing within IoT envi-
ronments, emphasizing the interplay between different dataflows—row, weight, and output—and a
variety of non-volatile memory technologies. We then delve into the architectural optimization of
these systems using a spatial architecture, namely IDEA, with their processing elements efficiently
arranged in a rhythmic pattern, providing enhanced performance in the presence of power failures.
This exploration aims to highlight the diverse advantages and potential applications of each combina-
tion, offering a comparative perspective. In our findings, using IDEA for the row stationary dataflow
with AlexNet on the CIFAR10 dataset, we observe a power efficiency gain of 2.7% and an average
reduction of 21% in the required cycles. This study elucidates the potential of different architectural
choices in enhancing energy efficiency and performance in IoT systems.

Keywords: intermittent computing; systolic array; non-volatile memory; accelerator

1. Introduction

As we enter a new era of computation, characterized by an exponential increase in
the complexity of tasks being performed, the field of deep learning has been experiencing
monumental advancements. These advancements have been fueled by the development
of novel hardware, namely deep learning accelerators, which are specifically designed to
facilitate complex computation and data processing tasks associated with deep learning
algorithms. Deep learning accelerators, an embodiment of application-specific integrated
circuits (ASICs), exhibit an exceptional capacity for high-speed, large-scale computation.
These dedicated hardware units comprise an array of processing elements (PEs) designed
to optimize the computational efficiency of deep learning algorithms. The intricate design
of these accelerators allows for the simultaneous execution of multiple operations, dramati-
cally reducing computational latency and providing unprecedented computational power.
However, the conventional design strategies employed in deep learning accelerators often
overlook energy efficiency, a critical parameter in the current scenario of constrained energy
resources and green computing initiatives. The PEs, the atomic units of these accelerators,
play a fundamental role in determining overall performance and energy consumption. They
perform computations at an extraordinary speed but consume considerable energy in the
process. A careful examination and optimization of these PEs could, therefore, substantially
improve both the energy efficiency and performance of deep learning accelerators [1,2]. On
the other hand, energy harvesting systems provide a sustainable solution to the energy
constraints of these accelerators. They have the potential to provide continuous power
harvested from ambient sources, thereby extending the operational life and enhancing the
overall efficiency of deep learning accelerators. Recent developments in energy harvesting
technologies have demonstrated promising advancements, yet there is still much room
for improvement. In this context, the demand for an intermittent, energy-aware design
scheme is increasingly becoming evident. To address this need, our study conducts a
comparative analysis of different dataflows, row-stationary (RS), weight-stationary (WS),
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and output-stationary (OS), utilizing various non-volatile memory (NVM) technologies.
We extend beyond the scope of traditional architectures by examining these combinations
in the context of intermittent-aware design. This approach not only offers insight into
the performance enhancements achievable through these diverse configurations, but also
highlights the potential for improved energy efficiency. For instance, we considered a
comprehensive approach, which can optimize both the performance and energy efficiency
of deep learning accelerators by focusing on their PEs and integrating energy harvesting
systems [3,4].

This paper introduces a detailed exploration of these dataflows and NVM technolo-
gies using IDEA architecture, which is implemented as part of our examination using
different dataflows. We showed how different dataflow strategies and NVM choices can
significantly impact energy efficiency and performance using intermittent-aware deep
learning accelerators.

2. Background

At the heart of any ASIC machine learning accelerator lies the central principle of
dataflow processing, a method with profound implications for data reuse. From a high-level
perspective, dataflow processing comes in various forms, each with its inherent benefits and
limitations. The static dataflow architecture is where the entire dataflow graph is compiled
prior to execution. The advantages of such a scheme are evident in its increased data
reuse and commendable power efficiency, underpinned by a reduced memory footprint.
However, it poses challenges in accommodating dynamic alterations in model architectures,
an inherent trade-off for its stellar power efficiency and lower memory requirements. On
the contrary, dynamic dataflow architectures curate their dataflow graph during runtime.
This dynamism fosters adaptability and is particularly appropriate for rapidly evolving
machine learning models. The price paid for such flexibility manifests in lower data reuse,
diminished power efficiency, and a more substantial memory footprint compared to its
static counterpart [5]. Straddling these two extremes is the hybrid dataflow architecture,
a system that blends static and dynamic elements. This union encourages flexibility while
optimizing computational efficiency. However, the complexity of its implementation poses
a noteworthy challenge. Moreover, several dataflow optimization techniques are commonly
used in ASIC accelerators for deep learning, especially to optimize matrix multiplication
and convolution operations, known as stationary dataflows. There are a variety of stationary
dataflows, each keeping a specific type of data fixed (“stationary”) within the PEs to
maximize data reuse. In the WS method, the neural network weights remain stationary.
Although this technique allows for significant weight reuse, it potentially falls short when
the reuse of input and output data is high. On the contrary, the input stationery technique
emphasizes the reuse of input data, leading to potential inefficiencies when weight reuse is
high. The OS (or Partial Sum Stationary) method keeps partial sums stationary, attempting
to optimize both input and weight reuse. The trade-off comes with a higher requirement
for local storage and potential inefficiencies when the same output is not used repeatedly.
The RS (Column Stationary) technique, on the other hand, maintains a whole row (column)
of data stationary. This approach aims to balance input, weight, and output reuse, but it
introduces higher design and control complexity and necessitates additional local storage.
The choice of the appropriate dataflow architecture and stationary dataflow type in an ASIC
accelerator is challenging and hinges on a multitude of factors, including the complexity
and specifics of machine learning workloads, adaptability requirements, power constraints,
and performance goals [6–9].

2.1. Energy Harvested System
2.1.1. Ambient Energy Sources

Ambient energy sources, such as solar and wind power, are vital in pursuing sustain-
able and renewable energy solutions. These sources harness energy from the environment
and convert it into usable forms of power. Solar energy, derived from sunlight, can be
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captured through photovoltaic panels, while wind energy is harnessed by wind turbines.
Both solar and wind power offer significant advantages, including abundant availability,
reduced carbon emissions, and long-term cost savings [10,11]. Figure 1 illustrates the volt-
age traces from a building’s solar and wind energy systems throughout the day, revealing
unique patterns. These patterns provide valuable information about how these ambient
energy sources generate and consume energy. On the other hand, RFID (Radio Frequency
Identification) technology uses a unique power source that distinguishes it from other
electronic devices [12]. Unlike traditional devices that rely on internal batteries or wired
connections, RFID systems draw power wirelessly from the reader or interrogator. This
remarkable feature is enabled by electromagnetic induction. When an RFID reader emits
a radio frequency signal, it creates an electromagnetic field that induces a small current
in the antenna of the RFID tag. This induced current serves as the power source for the
tag, allowing it to communicate and transmit data back to the reader. This innovative
power supply method eliminates the need for bulky batteries or constant maintenance,
making RFID an efficient and versatile solution for various applications, such as inventory
management, access control, and supply chain optimization. Although high-energy bursts
are beneficial, the intermittent nature of these sources can disrupt the operation, causing
data loss or glitches and leading to unpredictable results [13–15].

Our research has focused on using the RFID source to design a specialized architecture.
On the basis of the observed behaviors of this source, our proposed architecture considers
the intermittency and variability of this energy source. By carefully designing our system
to adapt to fluctuations in voltage levels and harness the available energy efficiently, we
aim to optimize energy utilization and minimize dependency on non-renewable resources.

Time Time

Vo
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ge
 (V
)
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lta
ge
 (V
)

(b)(a)

Figure 1. Voltage traces of (a) solar and (b) wind sources [16].

2.1.2. Intermittent Computing

Energy-harvesting devices utilize intermittent computing, a technique characterized
by short periods of program execution punctuated by power failures. Despite the inherent
challenges associated with intermittent computing, numerous studies have concentrated on
implementing techniques and systems that harness this form of computing across various
levels, including hardware, software, and circuitry. Certain challenges must be taken into
consideration during design. Resources are finite; thus, the less energy a device requires
for computation, the more tasks it can execute. The execution time of each task can vary
significantly, and on occasion, intensive tasks may be interrupted by power failures. This
can lead to the expiration of data or computation before the task is completed. Developers
of energy-harvesting devices require intuitive, valuable language and software support;
they need the ability to interact with their sensors despite intermittent power supplies [17].
Moreover, they require comprehensive knowledge of both hardware and energy harvesting
behaviors. Additionally, some tasks are atomic and should only begin when sufficient
power is available. This requires effective task scheduling and power management.

Software-level techniques for intermittent computing involve the use of checkpoints
and task-based programming models [18]. Checkpointing enables the preservation of
volatile states in non-volatile memory (NVM), allowing computation to resume after a
power failure. Meanwhile, task-based systems break programs into short tasks and resume
execution of the last completed task. Task-based systems often employ various memory



Micromachines 2024, 15, 343 4 of 19

management techniques, such as privatization and variable copying. Additionally, there
are hardware modifications and approaches based on speculation and watchdog timers to
optimize data storage and restore tasks during power failures. Programming languages
such as Chain and Mayfly simplify intermittent computing by segmenting programs
into tasks and managing time and memory consistency. Compiler-based approaches
analyze program sections and determine the minimum number of checkpoints needed to
prevent incompatibilities. These software-level techniques and languages offer strategies
to overcome the challenges of intermittent computing and facilitate efficient operation in
energy harvesting systems.

Architecture-level techniques for intermittent computing offer various solutions to
overcome the challenges of power failures and optimize energy efficiency [19,20]. Ap-
proximate computing techniques are used to reduce the accuracy of computations for
improved performance and efficiency. Checkpointing schemes based on FRAM-based
unified memory and SRAM-NVM hybrid caches minimize overhead and enhance data
storage and retrieval. Machine learning approaches dynamically adjust the microarchitec-
ture and resource allocation based on power supply conditions. Hardware solutions such
as Clank track memory access to detect write-after-read sequences, while the Cascaded
Hierarchical Remanence Timekeeper (CHRT) provides resilient timekeeping during power
failures. Hardware/software co-design approaches allow for dynamic reconfiguration of
energy buffers and task-based execution. Non-volatile processors (NVPs) integrate NVMs
for an instant on/off execution and reduced leakage power. FPGA-based designs and
TFETs are explored for efficient intermittent computing systems. To push the boundaries
of energy harvesting devices and intermittent computing, a co-design approach is vital,
entailing the development of novel hardware and software strategies that optimize AI
applications on these intermittent computing systems. Exploring combinations of tech-
niques, such as integrating NVM into deep learning approaches, can further enhance the
capabilities of these systems. This paper proposes an innovative approach by combining
the aforementioned techniques with integrating NVMs. Taking advantage of the unique
characteristics and capabilities of NVM, we enhance the performance and efficiency of
intermittent computing systems. By exploring intermittent-aware accelerators comprehen-
sively, this paper contributes to the advancement of the field and provides valuable insight
for future energy-efficient computing.

2.2. Emerging Non-Volatile Memory

By providing persistent storage, NVMs play an important role in battery-less systems.
Unlike volatile memories, NVMs retain stored information without a continuous power supply.
This characteristic makes them well-suited for applications requiring long-term data storage
and reliable operation. Several types of NVMs have been developed, including Resistive
Random Access Memory (ReRAM), Ferroelectric RAM (FeRAM), non-volatile random access
memory (nvSRAM), Spin-transfer Torque Magnetic Random Access Memory (STT-MRAM),
and Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM). Each of these offers
unique advantages in terms of performance, scalability, endurance, and power efficiency. We
evaluate our proposed architecture with all the mentioned technologies based on Table 1.

Table 1. Features of non-volatile technologies.

Technology nvSRAM [21] ReRAM [22] FeRAM [23] STT-
MRAM [24]

SOT-
MRAM [24]

Read time (ns) 0.22 5 60 5 10
Write time (ns) 0.24 5 60 10 1
Read energy (fJ) 50 2700 9000 10 10
Write energy (fJ) 3000 2700 9000 100 10
Read Power (mW) 0.22 0.54 0.15 0.002 0.001
Write Power (mW) 12.5 0.54 0.15 0.01 0.01
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ReRAM provides high density, low power consumption, and fast switching speed,
making it an attractive alternative to traditional memory technologies. ReRAM works
by reversibly changing the resistance of dielectric solid-state material between high and
low states using the phenomenon of resistive switching. This unique behavior enables
ReRAM to store and retrieve data effectively. Furthermore, ReRAM’s compatibility with
existing CMOS fabrication processes makes it a promising candidate for next-generation
memory devices. ReRAM has been shown to have potential applications in neuromorphic
computing [22].

FeRAM utilizes the unique properties of ferroelectric materials, which exhibit spon-
taneous polarization that can be reversed by an external electric field. As a result of this
characteristic, FeRAM is able to store data in a non-volatile manner. Based on Table 1,
FeRAM consumes less power in comparison to nvSRAM and ReRAM and is extremely
durable. The read and write speed is lower compared to all other examined memories.
These attributes make FeRAM an attractive candidate for unreal-time applications, such as
intermittent computing [23].

nvSRAM is an innovative type of memory that combines the benefits of SRAM and
non-volatility. Unlike traditional SRAM, which loses data when power is cut, nvSRAM
utilizes non-volatile storage elements, such as ferroelectric or magnetic materials, to retain
data even without power. This unique property of nvSRAM makes it highly desirable
for applications that require both fast and reliable data access, as well as data persistence
during power outages. nvSRAM offers the advantage of instant data availability upon
power-up, eliminating the need for time-consuming data restoration processes. A major
goal of nvSRAM is to have a minimal impact on SRAM’s fundamental structure. While
many nvSRAMs have been presented, including 4T2R, 7T1R, and 8T2R, herein, 7T1R [21]
is leveraged.

STT-MRAM operates based on the phenomenon of spin transfer torque (STT), where a
spin-polarized current is used to manipulate the magnetic orientation of a storage element.
This offers advantages such as high endurance, fast read and write speeds, and low power
consumption. Its compatibility with standard CMOS processes makes it an attractive option
for next-generation memory architectures [24].

SOT-MRAM has been identified as one of the best NVM technologies based on Table 1,
which shows great promise in recent research. SOT-MRAM utilizes the spin–orbit inter-
action to manipulate the magnetization direction of the storage element. By applying an
electric current through a heavy metal layer, the spin–orbit torque can induce a change in
the magnetic state, allowing for non-volatile data storage. SOT-MRAM offers several addi-
tional advantages, including fast switching speed, low power consumption, and scalability.
Ongoing research is focused on improving the performance and reliability of SOT-MRAM,
as well as exploring its integration with existing semiconductor technologies [24].

2.3. Recent Studies

Recent advancements in intermittent computing and NVM technologies have paved
the way for significant improvements in energy efficiency and system reliability, particu-
larly in the context of energy-constrained devices and systems. The integration of these
technologies plays a crucial role in the development of computing systems capable of
operating under fluctuating power conditions while minimizing energy consumption and
data loss. In exploring this field further, various research efforts have focused on optimizing
data movement and computation in DNN accelerators, employing strategies such as RS,
WS, and OS to improve performance and efficiency. RS techniques aim to minimize the
movement of input feature map rows by keeping them stationary within the processing
elements. This strategy is beneficial in reducing the energy consumption associated with
data movement. Significant contributions in this area include the development of resource-
efficient convolutional networks and the proposition of low-complex mapping algorithms
for spatial DNN accelerators [25–30]. WS methods focus on keeping the weights within the
processing elements stationary, optimizing the reuse of weights across different operations
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to minimize data transfers [31]. This approach is highlighted in different studies [32–34],
which explore dynamic resource allocation and the design of accelerators for efficient matrix
multiplication. All these contributions demonstrate the versatility and potential of WS in
various applications [35,36]. On the other hand, OS strategies ensure that the output data
remain stationary within the processing elements, thereby optimizing the computation of
outputs and reducing the need for data movement. This concept is elaborated in different
studies [37–39] which discuss design and optimization strategies for systolic array-based
and FPGA-based DNN accelerators. Other studies, such as [40,41], furthermore, explore
the benefits of OS in enhancing computational efficiency. Each of these strategies has dis-
tinct advantages in the design and optimization of DNN accelerators, addressing specific
challenges related to data movement and computational efficiency. The next section will
delve into the “Proposed Intermittent-Aware Design”, comparing these strategies against
various non-volatile technologies to highlight their contributions to energy efficiency and
system reliability in energy-constrained computing environments.

3. Proposed Intermittent-Aware Design Exploration

In this section, we aim to compare three dataflow strategies (RS, WS, and OS) alongside
various non-volatile technologies. To facilitate this comparison, we will utilize a simulated
architecture known as IDEA, which serves as the backbone for our analysis and experi-
mentation. This exploration is grounded in the spatial organization of PEs configured in a
32 × 32 matrix, akin to the configurable systolic arrays found in contemporary accelerator
generators. The configuration allows for dynamic dataflow alterations, supporting both
output-stationary and weight-stationary dataflows, reminiscent of the flexibility seen in
state-of-the-art accelerator templates. Figure 2a depicts the top-level structure of the archi-
tecture used for implementation. The system’s structure encompasses a spatially organized
array of 1024 PEs assembled in a square matrix of 32 × 32 for our architecture [42]. This is
complemented by an 864-kB Global Buffer (GLB). Each PE’s ability to interface with adja-
cent PEs or the GLB via the NoC system is reflective of the intricate interconnect networks
that enhance data transfer efficiencies in advanced DL accelerators. For computational
data transfer purposes, each PE can interface with its vertically adjacent PEs or interact
with the GLB, facilitated by a network-on-chip (NoC) system. Modified PE architecture
comprises three types of registers: input feature map (ifmap) buffer, Weight (W)/Filter
buffer, and partial sum (psum) buffer. Each buffer’s capacity to interface with non-volatile
backup memory options for the data retention during power loss is a testament to the
robustness of memory hierarchies that are crucial in minimizing data loss and optimizing
energy use, mirroring the accumulator and scratchpad memory parameters configurable in
modular accelerator designs. Each buffer can have a non-volatile backup memory, ensuring
data retention even during power loss. In this section, we explore how integrating different
NVM technologies with these buffers will impact the resilience and energy efficiency of
the IDEA architecture in various dataflow scenarios. Figure 2b illustrates the structure of
the PE, where the buffers suffixed with “V/NV” represent volatile/non-volatile memories.
In intermittent computing environments, incorporating NVM technologies is crucial for
minimizing data loss and maximizing energy efficiency. To facilitate data access and storage
in NVMs across all PEs, two universal write signals (w1/w2) are employed for writing from
NV/V to V/NV memories. These control lines, interconnected with the power manage-
ment unit, underscore the architectural emphasis on power-aware control mechanisms,
which is a shared concern in designing accelerators that support a wide array of power and
performance trade-offs.

The IDEA architecture is inspired by optimized dataflows and NVM checkpointing.
Figure 3 shows the dataflow offered by our architecture.
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Figure 2. (a) The IDEA architecture and (b) processing element.
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Figure 3. The RS dataflow in a 3 × 3 PE array for processing a 2D convolution. (a) Filter rows are
consistently shared between rows of PEs. (b) The ifmap rows are applied diagonally to the PEs. Thus,
diagonally adjacent PEs receive the same ifmap value. (c) Finally, the psums are propagated and
accumulated vertically across PEs.

We considered three different dataflows, including RS, WS, and OS. The RS dataflow
allocates the computational tasks related to any given Convolutional Neural Network
(CNN) configuration across the PE array. This dataflow method simultaneously reduces
the movement of all data categories, including ifmaps, filters, and psums/ofmaps. In this
dataflow approach, each primitive performs operations on a single row of filter weights
and ifmap values, thereby producing a single row of psums. These psums are subsequently
combined to generate the output feature map (ofmap) values. By assigning each primitive
to a specific PE for execution, the computation of each row pair remains stationary within
that PE. We organize a group of PEs, depicted as a PE Set in Figure 3b, to conduct a 2D
convolution. This arrangement exploits data reuse between primitives and the accumula-
tion of psums, thus avoiding the need to access data from the GLB and off-chip DRAM.
According to the proposed dataflow architecture, different operational characteristics are
applied to different directional orientations. Specifically, the process of filtering rows will
be conducted horizontally, applying the ifmap will occur diagonally, and accumulating
the partial sums will be implemented vertically. This model integrates the use of two
distinct shift registers. For the ifmap, a linear shift register is employed, which features
a shift-enable functionality based on the stride size. This allows for the systematic and
sequential processing of the ifmap data, facilitating efficient resource allocation and control
flow. On the other hand, the filter utilizes a Linear Feedback Shift Register (LFSR), which
instigates a shift in the register at each clock cycle. Moreover, the architecture incorporates
two multiplexers, which are instrumental in directing the input for addition operations.
Based on the enable signals of the multiplexer, the adder will add the output of MAC opera-
tion to the stored psum or the stored psum with the output of the adjacent PE. In the context
of matrix computations, when employing a 2 × 2 matrix as a filter and a 3 × 3 matrix as an
input feature map, every PE performs the MAC operation, as illustrated in Figure 4.
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Figure 4. Example of RS dataflow in a 2 × 2 PE set for processing a 2D convolution.

Furthermore, the non-volatile register keeps its data even when there is a reset.
The volatile memory temporarily stores information until the power level reaches the
backup threshold. When that happens, the data are saved in the non-volatile register until
the power level increases again. This allows the accelerator to quickly resume computations
using the saved data from the non-volatile register.

We extend our exploration to include the WS and OS dataflows, depicted in
Figures 5 and 6, respectively. These dataflows are examined alongside the RS to provide a
comprehensive view of how different dataflow strategies impact the performance and effi-
ciency of the IDEA architecture when integrated with NVM technologies. In the WS, each
PE is assigned a specific weight (or a set of weights), which remains constant throughout
the computation process. The ifmap values are streamed across the PE array row by row,
allowing for the simultaneous computation of the psum within each PE. This minimizes
the need for data movement, particularly for the weights, which are this scheme’s most
stationary data types. The effectiveness of the WS dataflow in conjunction with NVM
technologies is particularly notable in scenarios requiring high-weight reuse. As the ifmap
rows propagate through the array, each PE multiplies its stationary weight by the incoming
ifmap value, accumulating the result into the psum. Once all the necessary ifmaps have
been processed, each PE contains a complete psum for its respective output feature map
row. The psums are then passed down the array or aggregated within the PEs to produce
the final ofmap values. The WS dataflow is particularly effective in reducing memory
bandwidth requirements and power consumption, as it avoids the frequent loading and
unloading of weights, making it an efficient choice for hardware implementations of CNNs.
On the other hand, in OS, each PE is dedicated to computing a single psum element.
The psum values remain stationary within their respective PEs until the entire computation
for that specific ofmap element is completed. This dataflow is especially efficient when
paired with NVM technologies, as it further reduces the data movement of psums. In this
dataflow, filter rows are fed horizontally across each PE row, while the corresponding ifmap
rows flow vertically down the columns of PEs. The PEs perform multiply-accumulate
operations on the incoming filter and ifmap data, updating the psums stored within each
PE. These psums are the intermediate values that eventually make up the final ofmap
elements. The key advantage of the OS approach is that it minimizes the movement of
psums, which can be data-intensive to shift around the PE array. By keeping the psums
stationary and only moving the filter and ifmap values, the architecture can reduce the data
bandwidth requirements and power consumption, leading to more efficient processing.
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Figure 5. The WS dataflow in a 3 × 3 PE array for processing a 2D convolution. (a) Weights are
stationary inside each PE. (b) The ifmap rows are consistently shared between rows of PEs. (c) Finally,
the psums are propagated and accumulated vertically across PEs.

Figure 6. The OS dataflow in a 3 × 3 PE array for processing a 2D convolution. (a) Filter rows are
consistently shared between rows of PEs. (b) The ifmap rows are propagated vertically across PEs.
(c) Finally, the psums are stationary inside PEs.

Architecture Behaviour

The finite state machine of the system is presented in Figure 7, where there are three
voltage thresholds, i.e., tr1, tr2, and tr3, for wake-up, backup, and shutdown, respectively,
which we considered as 2.5, 1.5, and 0.8 V. During system startup, the system initially
enters the Start state. It remains in this state until the power supply voltage (pw) exceeds
the first threshold value, denoted as tr1. At this point, the system’s state can be changed
to either Load (Ld) or Computation (Cp), based on the value of the register flag (rf ). The rf
is a one-bit register that indicates whether the backup process before the shutdown was
successful or not. In Ld, the signal w1 is set to ‘1’. Consequently, the values of all non-
volatile registers are transferred into volatile registers, enabling the system to continue
with the previous computation. If the backup process fails, all the volatile registers must
be loaded from the off-chip memory. After loading the registers, the system transitions
to the Cp state. The system remains in this state until the power supply voltage drops
below the tr2 threshold value. This threshold represents a critical voltage level, indicating
the need to back up all the required memories. When this occurs, the system’s state is
immediately changed to Backup (Bk). In this state, the w2 is set to ‘1’, and the values of all
volatile registers are copied into NVMs. If the system has sufficient power to complete the
backup process, the state changes to Sleep (Sl), and the rf is set to ‘1’. However, if there
is insufficient power to keep the system alive, the state transitions to the off state. Sl
can be exited in two possible ways. If pw exceeds the threshold value tr1, the system
can return to normal operation. On the other hand, if the power supply voltage drops
below the tr3 threshold value, it indicates that the system is in the off state. Once enough
energy is observed (i.e., the power supply voltage exceeds tr3), the state machine restarts
from the Start state. It is worth noting that in Cp, the value of the rf should be reset to ‘0’.
The corresponding voltage thresholds and their impact on system behavior are illustrated
in Figure 8.
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Figure 7. The proposed state machine considered in the IDEA architecture.
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Figure 8. Defined thresholds for the evaluation; T1, where the system starts computing, T2, where
the data is sent from volatile registers to non-volatile registers, T3, where computing starts again, and
T4, where the system shuts down/goes to sleep.

4. Evaluation Platform

This section provides an overview of the experimental setup used to investigate the
performance of the proposed IDEA architecture. It encompasses particulars pertaining to
the dataset harnessed, the assessment measures adopted, and the computational simula-
tion environment instantiated for experimental evaluation. Furthermore, it describes the
methodology used to compare different dataflows and NVM technologies in the context of
intermittent-aware computing. To verify our approach’s functionality, using the IDEA archi-
tecture, we evaluate different dataflows and NVM technologies’ performance under similar
conditions. A system-level in-house framework is developed, shown in Figure 9; we used
the cycle-by-cycle dynamic scheduling for the cycle count from the scheduler component
and also modified McPAT component code to consider the power consumption of Read and
Write power usage of non-volatile registers. This modification allows us to accurately gauge
the impact of different NVM technologies on the power efficiency of various dataflows. In
our architecture, the Aladdin Simulator operates as a specialized, integrated framework
for accurate modeling and performance simulation. The workflow begins with ingesting
“C Code” as the primary input. An “LLVM Tracer” subsequently analyzes and traces this
code, transforming the raw code into an optimized representation amenable to precise
simulation. Post-transformation, the data are channeled into the “LLVM Engine”. During
this step, the engine interacts with embedded memory and CPU models, facilitated by the
gem5 simulation environment. This synergistic interaction enables the computation of two
critical performance metrics: power consumption and cycle count. Through this intricate
process, the Aladdin Simulator block provides comprehensive, multi-faceted insights into
the efficiency and operational dynamics of the system under study.
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Figure 9. Proposed validation and evaluation framework.

4.1. Experimental Setup

In our experimental setup, we simulate the RS, WS, and OS dataflows, drawing
inspiration from [25,31,37], to evaluate their performance in the context of convolution
operations under intermittent power conditions. The IDEA architecture comprises a PE
set designed to maximize locality and minimize unnecessary data movement, with the
added dimension of examining how different NVM technologies affect these aspects. When
exploring different dataflows, we adjust the PE set size and configuration to suit the
specific requirements of each dataflow strategy, providing a comprehensive comparison
of their effectiveness in various scenarios. Given that convolutional layers account for
approximately 90% of the overall power consumption in neural networks, our utilization
of the mentioned dataflow significantly improves efficiency. Our architecture comprises
the mentioned PE set to maximize locality and minimize unnecessary data movement,
effectively computing the output for the target dataset. The PE set size is determined
based on the specific requirements of the deep CNN being executed. Factors such as the
network’s layer sizes, parallelism considerations, and memory constraints may influence
the determination of the PE set size. When this number surpasses our architecture’s
capacity, we employ a partitioning approach, specifically tiling, to divide the computation
into smaller subsets. On the other hand, when the computed number is less than the
capacity, we engage the necessary number of PEs. The remaining PEs are then designated
to assume the role of routers within the system.

4.2. Non-Volatility and Intermittency Behaviors

As previously explained, each PE is equipped with two registers (one volatile and
one non-volatile). To mimic the function of non-volatile registers, we adopted the method
proposed in the NORM architecture [20]. We implemented a signal that interconnects
all components, excluding non-volatile registers. Upon activation of the reset signal,
the volatile registers are purged, while the non-volatile registers remain untouched by the
reset operation. Data are held in the volatile memory until the power level descends below
the second threshold. At this juncture, the data are backed up and maintained in the NVMs
until the power level ascends above the wake-up threshold. Following this, we validate
whether the data have indeed been preserved in the non-volatile register. If confirmed,
these stored data are then utilized for the following computations. We conducted six
different variations in our study to examine various scenarios. In the first scenario, we
utilized NVMs for all weights, ifmaps, and psums. The second scenario involved non-
volatile registers for weights and psums, while the third scenario employed them for ifmaps
and psums. The remaining scenarios exclusively employed NVMs for weights, ifmaps,
and psums, respectively.

To incorporate the behavior of intermittency into our study, we adopted a method-
ological approach that involved simulating an intermittent power source characterized by
a predetermined sequence of voltage levels that cyclically repeat. In order to accurately
represent the behavior of intermittent power, we introduced a virtual energy source within



Micromachines 2024, 15, 343 12 of 19

our simulation framework, designed to mimic the functionality of a battery. This virtual en-
ergy source was responsible for accumulating energy during periods of power availability
and deducting energy consumption during periods of power unavailability. Throughout
the simulation process, we closely monitored several key parameters to ensure an accurate
representation, including power/voltage levels, power availability, and the level of the
virtual energy source. Monitoring was achieved by observing the behavior of the power
source and virtual battery, as well as tracking the power consumption associated with
various computational operations. Specifically, we assign a power consumption value of
5.03 pJ for each MAC operation [43]. To conduct our simulations, we utilized different
voltage traces, as shown in Figure 10, regarding an RFID source [44], with the vertical axis
representing voltage and the horizontal axis representing time.

1

2

3

4

5

1

2

3

4

5

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Different voltage traces of RFID sources, (a–h), utilized in the evaluation.

4.3. Proof-of-Concept: AlexNet on CIFAR10

Dataset: We use CIFAR10 for RGB images of size 32 × 32. It has 60,000 images evenly
distributed in ten distinct classes, of which 50,000 and 10,000 examples are used for training
and testing, respectively. CIFAR10 has gained widespread recognition as a widely used
benchmark dataset in the domains of machine learning and computer vision for image
classification tasks. The selection of this dataset was driven by its well-established nature
and the extensive usage it has received in the field.

Neural network architecture: We specifically chose the AlexNet neural network archi-
tecture, renowned for its successful utilization in various image analysis tasks. The AlexNet
architecture is known for incorporating multiple convolutional layers, which have proven
to be highly effective in extracting meaningful features from images. It is important to
note that the original design of the AlexNet architecture was primarily tailored for larger
input sizes, typically 227 × 227 images. Consequently, there may be concerns regarding its
applicability and effectiveness when applied to datasets with smaller image dimensions,
such as CIFAR10. However, we addressed this potential limitation by meticulously adjust-
ing the hyperparameters of each layer to adapt the model and optimize its performance
specifically for accommodating the CIFAR10 database [45]. This approach enabled us to
overcome the inherent challenges associated with the discrepancy in image dimensions
and attain a high level of effectiveness in our experiments.

4.4. Performance Evaluation

Setup: To accurately assess the power consumption, we utilized the gem5-Aladdin
simulator as a crucial tool in our evaluation process [46]. The gem5-Aladdin simulator
offers a comprehensive framework for computer architecture simulation by combining the
functionalities of gem5 and Aladdin, two widely used simulation tools. To capture the
specific power consumption characteristics of our designs, we made specific modifications
to the configuration of the gem5-Aladdin simulator. To ensure an accurate representation
of power consumption, we extended the capabilities of the gem5-Aladdin simulator to
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account for the power consumed during read-and-write operations performed on non-
volatile registers. By modifying these operations, we incorporated the power consumption
associated with these operations into our evaluation. The gem5-Aladdin simulator mainly
operates on C code for computation. However, due to limitations in analyzing two-
dimensional (2D) arrays within the gem5-Aladdin framework, we opted to convert these
arrays into one-dimensional (1D) arrays. This conversion allowed us to effectively analyze
and evaluate the power consumption of our proposed architectures without compromising
the accuracy of the results. To estimate energy consumption and latency, based on Table 1,
and to calculate power, we divided the energy by time. This table provided valuable
information regarding the energy and latency values associated with both read and write
operations. Based on this table, we ensured that our power and latency estimations were
based on relevant and reliable data, contributing to the robustness of our evaluation process.
Furthermore, as mentioned above, we considered tr1 = 2.5 V, tr2 = 1.5 V, and tr3 = 0.8 V.

The experimental results presented in Figures 11–13 demonstrate instances where
lower power consumption is observed, which can be attributed to reduced computational
requirements stemming from the preservation of data in non-volatile registers. Moreover,
eliminating transmission between the PE and off-chip DRAM contributes to the overall
reduction in power consumption. As shown in Figures 11–13, when the non-volatile
backup is enabled for all registers, power consumption increases in all traces. As a result
of reducing the number of non-volatile registers, power consumption decreases. In some
traces, such as trace Figure 10b, the power consumption is higher even when using only
one non-volatile register to store a single integer, compared to the baseline where no non-
volatile registers are used to save data during power failures. This scenario represents the
worst-case for our trace as the voltage level frequently drops below tr2. Consequently, it
necessitates backup from all registers while ensuring that the voltage never falls below
tr3. As a result, the system remains continuously powered on, eliminating the need to
restore the value from the NVMs. However, in other traces, we observed that in certain
scenarios (particularly when saving only the ofmap, which requires saving one integer,
or the weight, which requires saving three integers), the power consumption is lower than
the baseline. This suggests that storing data in NVMs can be more power-efficient compared
to the power of transferring data from the main memory to each PE and recalculating the
psum from scratch. Additionally, if we scale up our structure, targeting larger spatial
dimensions for filters/inputs, and CNN architecture, this power-saving feature becomes
more pronounced as the number of memory references significantly increases. By storing
data in NVM, the power consumption associated with data transmission and recomputing
from scratch can be eliminated, enabling instant computing. Furthermore, by using new
technologies that have lower read and write power consumption, such as SOT-MRAM,
in some scenarios, we have less power consumption than the baseline. However, using
additional NVMs imposes memory area overhead ranging from 16% to 100%, where psums’
registers and all PEs’ registers include extra non-volatile elements, respectively.

Figure 14 presents a comparative analysis of different implementations within our
design framework. We explored two distinct scenarios by integrating non-volatile technolo-
gies, specifically SOT-MRAM and NvSRAM, and benchmarked them against three existing
implementations: Eyeriss [25], NVDLA [31], and DianNao [37]. This comparison aims to
highlight the performance and efficiency differences between our proposed solutions and
established designs in the field.
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Figure 11. Power consumption (mW) of different scenarios using the RS dataflow, as a result of
various eight various traces (a–h) shown in Figure 10.
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Figure 12. Power consumption (mW) of different scenarios using the WS dataflow, as a result of
various eight various traces (a–h) shown in Figure 10.
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Figure 13. Power consumption (mW) of different scenarios using the OS dataflow, as a result of
various eight various traces (a–h) shown in Figure 10.

In addition to slight improvements in power consumption using IDEA, the obtained
results indicate the number of cycles required to perform AlexNet’s operations are sum-
marized in Table 2. On average, we observed an enhancement in the number of cycles by
approximately 21%. This reduction in computational cycles can be interpreted as lower
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energy consumption. The energy consumption of DRAM for input activation is notably
high. Integrating NVM within PEs can present a more energy-saving alternative than
the conventional approach, where all registers are volatile. With volatile registers, any
power interruption requires the system to reboot, which mandates fetching the ifmaps and
weights from DRAM again. This introduces latency into the system’s recovery process and
entails additional energy consumption, as accessing and retrieving data from DRAM is a
relatively power-intensive task. As an illustration, our tests using AlexNet on the CIFAR10
dataset indicated a 2.7% enhancement in power efficiency with the proposed architecture,
as shown in Figure 14.

Table 2. Number of required cycles performing the AlexNet considering the target traces in Figure 10.

NVM-Enhanced IDEA Improvement (%)
Trace in Figure 10 Baseline

RS OS WS RS OS WS
(a) 2276 1748 1935 2048 23.16 14.9 10
(b) 7813 7715 7731 7780 1.25 1.04 0.42
(c) 5117 3525 4349 4505 31.10 15 11.9
(d) 3564 2930 3046 3194 17.80 14.6 10.38
(e) 8038 6010 6398 6787 25.19 20.4 15.56
(f) 6561 5103 5477 5801 22.22 16.52 11.58
(g) 4019 3364 3571 3784 16.3 11.14 5.84
(h) 3753 2943 3103 3309 21.58 17.37 11.83
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Figure 14. Power consumption (mW) comparison for different studies using various traces; (a) [31]
for trace 4, (b) [37] for trace 7, and (c) [25] for trace 3.

5. Discussion and Future Work
5.1. Observation 1

Our results demonstrate that the combination of the RS dataflow and SOT-MRAM
technology yields the best performance and power efficiency improvements. The RS
dataflow is designed to optimize data locality and minimize data movement, which is
crucial for reducing energy consumption in computational processes. By keeping data
operands stationary within processing elements as much as possible, the RS dataflow
maximizes data reuse and minimizes the energy-intensive operations of data transfer
between memory and processing units. This approach not only leverages spatial locality by
processing data points in close physical proximity, but also significantly reduces the energy
costs associated with data movement.

The traditional architectures often incur substantial power consumption due to fre-
quent data transfers between memory and processing units, which represents one of the
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largest components of overall energy expenditure in computational systems. This inef-
ficiency is further exacerbated in high-performance computing applications, where the
volume and velocity of data movement can dramatically inflate energy costs. In addressing
this critical challenge, our approach significantly curtails the power consumed in data
movement, which is traditionally the most energy-intensive aspect of system operation.
By optimizing data locality and minimizing unnecessary data transfers, the RS dataflow
inherently reduces the bulk of power consumption that characterizes conventional com-
putational processes. SOT-MRAM technology complements the RS dataflow with its fast
switching speeds, low power consumption, and high endurance. The integration of SOT-
MRAM into our architecture enhances the energy efficiency and performance of the system
by providing a reliable, high-speed memory solution that aligns with the RS dataflow’s re-
quirements for minimized energy expenditure and maximized computational throughput.
The low energy consumption and durable nature of SOT-MRAM, coupled with its ability
to preserve data integrity even under intermittent power conditions, ensure that computa-
tions can proceed efficiently without data loss. Given that data movement accounts for a
considerable portion of the system’s total power consumption, our innovative combination
of RS dataflow and SOT-MRAM technology directly target and mitigates this primary
energy drain. This strategic alignment not only enhances overall system efficiency but also
represents a pivotal shift towards more sustainable computing architectures, where the
reduction of energy spent on data movement is paramount. These enhancements are critical
in the context of modern computing, where power efficiency is not merely an operational
advantage but a fundamental requirement for scalability and environmental sustainability.
By significantly diminishing the power consumed through data movement—traditionally
the dominant factor in a system’s energy profile—our architecture sets a new benchmark
for power-efficient computing.

In the combination of RS and SOT-MRAM scenario, we achieved a 2.7% gain in
power efficiency and a 21% reduction in required cycles. This substantial improvement
in both power efficiency and computational speed underscores the effectiveness of our
approach, demonstrating that the combination of RS dataflow and SOT-MRAM technology
is particularly effective, yielding the best-observed improvements in performance and
power efficiency by effectively reducing energy consumption while enhancing system
reliability and speed.

5.2. Observation 2

As the landscape of memory technologies rapidly evolves, our study delivers criti-
cal insights aimed at refining systolic array designs, marking a pivotal step toward the
next generation of hardware enhancements. These enhancements are instrumental in
reducing energy consumption and boosting the speed and efficiency of forthcoming com-
puting systems. By integrating computing technologies capable of handling interruptions
with non-volatile memory, the proposed IDEA architecture sets a robust groundwork for
advancements in eco-friendly computing. The relevance of our findings is poised to es-
calate as energy harvesting gains traction, offering invaluable strategies for developing
systems optimized for low-power scenarios, thereby contributing significantly to the field
of sustainable computing.

5.3. Future Work

The significance of our work lies in its contribution to the ongoing effort to optimize
computing systems for energy conservation and operational efficiency, addressing the criti-
cal challenges faced by the IoT ecosystem. Looking forward, we envision several promising
directions for future research. Exploring the application of our findings to a broader array
of workloads and computing environments could further elucidate the versatility and
scalability of the IDEA architecture. Additionally, investigating the integration of emerg-
ing NVM technologies that offer even greater energy savings and performance benefits
holds the potential to substantially advance the state of the art. Finally, the development
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of adaptive dataflow strategies, leveraging advances in machine learning and artificial
intelligence, could enable dynamic optimization of computing resources in response to
varying workloads and operational conditions. By pursuing these avenues, future research
can build on our work to unlock new possibilities in the design of efficient and effective
computing systems for the IoT and beyond.

6. Conclusions

This paper delved into the evolving realm of intermittent computing within energy-
constrained IoT environments, highlighting a comprehensive study that spans various
dataflows and NVM technologies. Our research, transcending the confines of a singular
architectural model, demonstrated significant performance and energy efficiency enhance-
ments across a spectrum of systolic array designs. Notably, in our empirical evaluation with
AlexNet on the CIFAR10 dataset for the proposed IDEA architecture, we achieved a 2.7%
gain in power efficiency and a 21% reduction in required cycles in the best-case scenario.
These results illustrate the profound impact of integrating diverse NVM technologies with
different dataflow methods. Through this integration, we pave the way for next-generation
computing systems that are more energy-efficient, robust, and capable of operating effec-
tively in energy-constrained environments. The adoption of such advanced technologies
and methodologies signifies a critical step towards the realization of sustainable computing
ecosystems capable of supporting the increasing demands of the IoT landscape. Our find-
ings lay a foundation for the continuous evolution of computing architectures, promising
significant strides in performance, power efficiency, and environmental sustainability
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The following abbreviations are used in this manuscript:

NVM Non-volatile memory
PE Processing Element
ASIC Application-specific integrated circuit
CNN Convolutional Neural Networks
MAC Multiplication-and-Accumulation
ifmap Input Feature Map
ofmap Output Feature Map
W Weight
WS Weight Stationary
OS Output Stationary
RS Row Stationary
GLB Global Buffer
CHRT Cascaded Hierarchical Remanence Timekeepe
ReRAM Resistive Random Access Memory
FeRAM Ferroelectric RAM
nvSRAM Non-Volatile Random Access Memory
SOT-MRAM Spin-Orbit Torque Magnetic Random Access Memory
STT-MRAM Spin-Transfer Torque Magnetic Random Access Memory
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