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A B S T R A C T   

Assessing the uncertainty associated with projections of climate change impacts on hydrological processes can be 
challenging due to multiple sources of uncertainties within and between climate and hydrological models. Here 
we compare the effects of parameter uncertainty in a hydrological model to inter-model spread from climate 
projections on hydrological projections of urban stream昀氀ow in response to climate change. Four hourly climate 
model outputs from the RCP8.5 scenario were used as inputs to a distributed hydrologic model (SWMM) cali-
brated using a Bayesian approach to summarize uncertainty intervals for both model parameters and stream昀氀ow 
predictions. Continuous simulation of 100 years of stream昀氀ow generated 90 % prediction intervals for selected 
exceedance probabilities and 昀氀ood frequencies prediction intervals from single climate models were compared to 
the inter climate model spread resulting from a single calibration of the SWMM model. There will be an increase 
in future 昀氀ows with exceedance probabilities of 0.5 %-50 % and 2-year 昀氀oods for all climate projections and all 
21st century periods, for the modeled Ohio (USA) watershed. Floods with return periods of g 5 years increase 
relative to the historical from mid-century (2046–2070) for most climate projections and parameter sets. Across 
the four climate models, the 90th percentile increase in 昀氀ows and 昀氀oods ranges from 17-108 % and 11–63 % 
respectively. Using multiple calibration parameter sets and climate projections helped capture the most likely 
hydrologic outcomes, as well as upper and lower bounds of future predictions. For this watershed, hydrological 
model parameter uncertainty was large relative to inter climate model spread, for near term moderate to high 
昀氀ows and for many 昀氀ood frequencies. The uncertainty quanti昀椀cation and comparison approach developed here 
may be helpful in decision-making and design of engineering infrastructure in urban watersheds.   

1. Introduction 

The climatic conditions that drive stream昀氀ow are changing world-
wide, including rapid increases in intensity and frequency of extreme 
precipitation events and shifting form and timing of precipitation (Pyke 
et al., 2011; Voskamp and Van de Ven, 2015). A growing majority of the 
world population lives in cities (Voskamp and Van de Ven, 2015) and 
urban areas are more vulnerable than rural to climate change impacts 
(Revi et al., 2014; Rosenzweig et al., 2019). Intensi昀椀cation of precipi-
tation due to climate change increases runoff from urban impervious 
surfaces which are hydrologically connected to waterways and causes 
more severe and widespread 昀氀ooding in urban areas. The combined 
consequences of urbanization and precipitation intensi昀椀cation that 

increase high stream昀氀ows and 昀氀ooding could lead to poor water quality 
of receiving water bodies (Wang et al., 2017), increases in erosion from 
streambeds and banks, and deterioration of the urban ecological envi-
ronment (Pyke et al., 2011). Neighborhood 昀氀ooding and infrastructure 
failure can result if existing drainage systems are not suf昀椀cient to handle 
increasing high 昀氀ows (O’Donnell and Thorne, 2020; Zhou et al., 2019). 

Increases in extreme rainfall across the United States require modi-
昀椀cations to existing hydrological design standards to account for climate 
change (Wright et al., 2021, 2019). The consequences of ignoring un-
certainties associated with climate change projections could lead to 
over-design or under-design of water infrastructure (e.g., Cook et al., 
2020). Over-design can be costly, and under-design could lead to risk of 
failure (Kim et al., 2019). Considering uncertainties during forecasting 
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of future hydrological variables can be helpful for decision makers and 
user groups to make robust and more sustainable decisions to achieve 
higher level of con昀椀dence during climate change adaptations (Krysa-
nova et al., 2018). 

A major challenge for understanding how climate change will impact 
urban hydrology is the cascading uncertainty associated with climate 
projections and hydrological modeling. Uncertainties in regional 
climate change projections can be due to choice of emissions scenarios, 
structure, parameterization, and resolution of climate models, and bias 
correction approach (Kundzewicz et al., 2018). Using hydrological 
models to understand climate change impacts brings additional sources 
of uncertainties, which are related to model representation of hydrologic 
processes, assumptions, spatial and temporal discretization, availability 
of data, computational resources, and calibration techniques (Joseph 
et al., 2018; Mendoza et al., 2015). There is rich literature on uncer-
tainty estimation in both climate science and hydrology (e.g., Feng and 
Beighley, 2020; Liu and Gupta, 2007; Steinschneider et al., 2012), and at 
their intersection in non-urban catchments (e.g., Bosshard et al., 2013; 
Chegwidden et al., 2019; Clark et al., 2016). There has been compara-
tively little work on uncertainty applied to understanding the hydro-
logical impacts of climate change in urban catchments (Lai et al., 2022). 
Jung et al., (2011) considered uncertainties in the projections of future 
昀氀ood frequencies in urban watersheds using the Precipitation Runoff 
Modeling System (PRMS) and found that climate model uncertainties 
were larger than hydrological model parameter uncertainties. However, 
PRMS does not represent the stormwater pipe network or connectivity of 
impervious surfaces, which are important determinants of urban hy-
drologic response (Meierdiercks et al., 2010; Sytsma et al., 2020). 

Parameter uncertainty is a signi昀椀cant source of uncertainty in com-
plex urban hydrological models that represent pipe 昀氀ow and impervious 
connectivity, like the popular Stormwater Management model (SWMM) 
(e.g., Li et al., 2016; Avellaneda et al., 2017). These features introduce 
parameters, such as imperviousness, depression storage on impervious 
surfaces, and sub catchment characteristic width, to which model per-
formance is sensitive (e.g., Barco et al., 2008; Perin et al., 2020; Shahed 
Behrouz et al., 2020). Recent work has also identi昀椀ed the issue of cali-
bration transfer parameter uncertainty in semi-distributed models like 
SWMM, when the optimal effective model parameters change with 
model forcing, including climate changes (Systma et al., 2022). 
Parameter uncertainties can be determined by using Monte Carlo sim-
ulations to generate parameter combinations that produce acceptable 
model performance (Beven, 2009; Deletic et al., 2012). Bayesian 
modeling approaches embrace multiple equally acceptable calibration 
parameters for the quanti昀椀cation of uncertainties associated with cali-
bration parameters in SWMM or other models (Avellaneda et al., 2017; 
Muleta et al., 2013; Zahmatkesh et al., 2015). Further, modeling studies 
of climate change impacts on urban stream昀氀ow mostly use event-based 
calibration and focus on design storms for analysis (e.g., Alamdari et al., 
2017; Wang et al., 2019), rather than focusing on continuous discharge 
simulations where antecedent conditions may have an in昀氀uence. 
Bayesian modeling approaches, combined with continuous simulations, 
present a pathway to evaluate the effects of hydrologic parameter un-
certainty in models that represent urban infrastructure, versus the un-
certainty arising from climate models. 

Both the magnitude and type of climate change and the consequent 
hydrological response are region speci昀椀c (Hayhoe et al., 2008; Joseph 
et al., 2018; Naz et al., 2016). The US Midwestern and Great Lakes re-
gion is expected to be substantially affected by increasing temperature 
and precipitation through the 21st century (Byun and Hamlet, 2018; 
Chien et al., 2013; Sharma et al., 2018), resulting in changes to 
stream昀氀ow. Increasing hydrological extremes, especially 昀氀ooding, are 
creating regional challenges for water management infrastructure, 
including urban stormwater conveyance systems (Wilson et al., 2023; 
Olds et al., 2018). Future climate change is projected to increase these 
stormwater challenges (e.g., Moore et al., 2016). However, previous 
studies that evaluate the impact of climate change in Midwest on 

hydrological extremes have not focused on urban stream昀氀ow, leaving an 
information gap for urban watershed managers. 

The goal of this research is to consider the effects of parameter un-
certainty in hydrologic modeling versus spread among a climate model 
ensemble on projected changes in urban stream昀氀ow and 昀氀oods for a 
typical urban watershed in the US Great Lakes region. Despite additional 
parameters required to represent urban watersheds, we hypothesized 
that uncertainty associated with using multiple climate models would be 
larger than the parameter uncertainties associated with SWMM hydro-
logic model calibration for the projection of 昀氀ow duration curves and 
昀氀ood frequencies in an urban watershed, based on studies in non-urban 
watersheds (e.g., Chegwidden et al., 2019; Clark et al., 2016). In a novel 
approach, we used a Bayesian calibration to incorporate uncertainties 
associated with calibration parameters in SWMM and compared them to 
the spread arising from four hourly climate model outputs in continuous 
simulations of 100 years of stream昀氀ow. The approach used in this 
research work helped identify and quantify uncertainties between 
multiple climate projections and within urban hydrological model 
parameterization across a wide range of 昀氀ows, providing guidance for 
future efforts to design infrastructure in the context of uncertainty. 

2. Materials and methods 

2.1. Study area and model structure 

The 20.63 km2, 30.3 % impervious West Creek watershed is typical 
of suburban-urban watersheds in the Cleveland metropolitan area of 
northeast Ohio, USA (Fig. 1). The Cleveland Hopkins International 
Airport, located 13 km to the west of the West Creek watershed has 
normal (1991–2020) mean annual precipitation of 1042 mm, mean 
annual temperature of 11.3 çC, and it receives snowfall during the 
months of November to April. West Creek, with a length of 14.4 km, 
drains into the Cuyahoga River and ultimately, Lake Erie. The storm-
water pipe network in the watershed is separate from the sanitary 
sewerage network and stormwater drains into West Creek at multiple 
locations. Low to moderate hydraulic conductivity of soils in West Creek 
allow some in昀椀ltration but these soils combined with impervious sur-
faces, also quickly drain runoff into drainage infrastructure, where it 
ends up in the stream (Cuyahoga County Planning Commission, 2001). 
Previously, subwatershed-scale paired watershed studies (Avellaneda 
et al., 2017; Jarden et al., 2016; Turner et al., 2016) and watershed-scale 
SWAT modeling (Avellaneda and Jefferson, 2020) have been used in the 
West Creek watershed to examine the impact of green infrastructure on 
stream昀氀ow, but these studies did not explore the effects of climate 
change. 

A distributed stormwater management model (SWMM5.1.015) was 
used to simulate stream昀氀ow at the watershed outlet (Rossman, 2010). 
Initial development of the SWMM model for West Creek was done by 
Northeast Ohio Regional Sewer District (NEORSD), and the model was 
modi昀椀ed and calibrated in this study. The watershed was divided into 94 
smaller sub-watersheds and water from the subwatersheds drains into 
the stream channel network. In the SWMM model, the stormwater 
management infrastructure consists of one storage node representing a 
1.25 ha dam pond, 236 conduits (including pipes and the open channel 
network) with a total length of 18.14 km, and 219 junctions. 

SWMM uses a mass balance approach for the simulation of watershed 
hydrology, while the routing of 昀氀ow in pipes and channels is done by the 
Saint Venant equation. Time series of precipitation, temperature, and 
evapotranspiration serve as inputs to simulate stream昀氀ow in SWMM. 
Potential evapotranspiration was calculated using the Penman-Monteith 
equation separately, following the American Society of Civil Engineers 
(ASCE) manual Allen et al., (2005), and then included as an input series. 
A modi昀椀ed Green-Ampt equation was used for the estimation of in昀椀l-
tration. The modeling of stream base昀氀ow was done with the help of the 
groundwater module in the SWMM model. SWMM considers and ana-
lyzes the base 昀氀ow separately for each subwatershed (Rossman, 2010). 
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The dynamic wave routing method with a routing step of 30 s was used 
in this study for the simulation of 昀氀ow. The routing step was chosen 
using a manual optimization of performance and simulation time. 

2.2. Climate and stream昀氀ow data 

For model calibration, precipitation data for 2013 through 2019 with 
a temporal frequency of 5 min from four meteorological stations sur-
rounding the watershed was provided by Northeast Ohio Regional 
Sewer District (NEORSD). Four meteorological stations were used for 
calibration to capture the spatial variability of precipitation across the 
watershed and 昀椀ll missing data. The percentage of missing data for each 
station was < 1 %. Missing data were 昀椀lled by linear regression between 
the datasets and data from the West Ridgewood meteorological station 
operated by Cleveland Metroparks, located within the West Creek 
watershed. Thiessen polygons were used to create a single precipitation 
time series for hydrologic model calibration (section 2.4). Stream昀氀ow 
data at 5-minute intervals from 2013 to 2019 was obtained from the U.S. 
Geological Survey (USGS 412453081395500) station located near the 
outlet of West Creek at Brooklyn Heights, Ohio. The percentage of 
missing data for stream昀氀ow ranges from 5-15 % per year, and missing 
data were excluded from calibration statistics. 

Modeled future temperature data that is required to calculate 
evapotranspiration and precipitation were extracted from the North 
American Coordinated Regional Climate Downscaling Experiment (NA- 
CORDEX), with a spatial resolution of 0.22ç/25 km and temporal reso-
lution of one hour (Mearns et al., 2009, Mearns et al., 2017). This spatial 
and temporal resolution represents the 昀椀nest climate model resolution 
publicly available at the time of the study. The NA-CORDEX time series 
are generated from dynamically downscaled regional climate models 
(RCMs) with differing parent global climate models (GCMs) forced by 
the RCP8.5 emission scenario. All four climate model outputs with one 
hour time step data available through NA-CORDEX in May 2020 were 
used in this analysis. These outputs are: (1) RegCM4 with parent GCM 
MPI-ESM-LR (hereafter “RegCM4_MPI-ESM-LR”), (2) WRF with parent 
GCM GFDL-ESM2M (“WRF_GFDL-ESM2M”), (3) WRF with parent GCM 
HadGEM2-ES (“WRF_HadGEM2-ES”), and (4) WRF with parent GCM 

MPI-ESM-LR (“WRF_MPI-ESM-LR”). The data were divided into four 
different periods historical (1976–2000), initial (2021–2045), mid 
(2046–2070), and late century (2071–2095). For bias correction, hourly 
historical data for 1976 through 2000 from Cleveland Hopkins Inter-
national Airport (CLE) were obtained from the Iowa Environmental 
Mesonet database (https://mesonet.agron.iastate.edu/climate/). The 
historical temperature, relative humidity, wind speed, solar radiation 
and atmospheric pressure datasets required to calculate evapotranspi-
ration were missing 0.42 %, 0.60 %, 0.50 %, 5.16 % and 0.3 % of ob-
servations, respectively. A mixture of future and historical climatic data 
were used to calculate future evapotranspiration because NA-CORDEX 
RCMs only provide future precipitation and temperature data. 

2.3. Bias correction and disaggregation of RCM outputs 

Bias correction is an important step for the postprocessing of RCM 
output for use in climate change projections, because it can remove 
biases including errors due to the imperfect parameters used for climate 
simulations and imperfect boundary conditions provided by a GCM 
(Chen et al., 2013). There are many different methods available for bias 
correction, ranging from simple scaling techniques to more advanced 
distribution mapping techniques (Luo et al., 2018). The quantile map-
ping approach was used here, because Chen et al., (2013) found this 
distribution-based bias correction technique was most useful for the 
North American region. Adjustments made using this method are based 
on large scale distribution of RCM outputs (Ps) with the observed time 
series known as reference time series (Po) using a transform function (h) 
(Aslam et al., 2020; Chen et al., 2013). The equation for the quantile 
mapping approach can be written as: 
Po= h(Ps) (1)  

The transformation for the known distribution of variable of interest is 
de昀椀ned in the equation below: 
Po = F−1

o (Fs(Ps)) (2)  

where Fs represents the Cumulative Distribution Function (CDF) of Ps 

Fig. 1. The West Creek watershed in (A) the United States, with the red dot representing the location of West Creek and (B) context of its SWMM subwatershed (gray 
borders), subwatershed imperviousness (colors), stream network (blue line), and surrounding meteorological stations (green triangles). (For interpretation of the 
references to colour in this 昀椀gure legend, the reader is referred to the web version of this article.) 
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and F−1o represents the inverse of CDF of Po. Bias corrections identi昀椀ed 
for the historical (1976–2000) RCM data, using the observed hourly 
precipitation and temperature data at Cleveland Hopkins International 
Airport, were applied to RCM projections of future temperature and 
precipitation. The bias correction of temperature and precipitation were 
performed separately on each time series, so the two series may not 
match in terms of weather pattern timing. Depth-duration-frequency 
analysis was performed on bias-corrected precipitation data using 
generalized extreme value function 昀椀tting using the L-moments method. 
Depth-duration-frequency analysis was performed for 1-hour and 24- 
hour storms and 5 different recurrence intervals (6-months, 1-year, 2- 
year, 5-year and 10-year). 

Previous efforts to model the hydrology of West Creek at hourly 
timesteps have underestimated peak 昀氀ows (Avellaneda and Jefferson, 
2020), so disaggregation of bias-corrected hourly RCM precipitation 
data to 5-minute intervals was used to improve the hydrologic model 
performance of urban stream昀氀ow dynamics. The NetSTORM model 
(Heineman, 2012) was used for disaggregation of RCM precipitation 
data from hourly to 5-minute timesteps. NetSTORM modi昀椀es a previous 
empirical stochastic disaggregation method (Ormsbee, 1989) by adding 
a spiking factor to improve performance and increase intensities at the 5- 
minute timescale. A spiking factor of 0.5 and pulse depth of 0.01 was 
used in this research, with spiking factor and pulse depth adjusted by 
manual calibration. 

2.4. Hydrologic model calibration and validation 

Selection of 16 parameters for calibration (Table 1) was based on 
sensitivity analysis using the sensitivity-based ratio tuning calibration 
tool (SRTC) available in PCSWMM (Computational Hydraulics Interna-
tional, Guelph, ON) and existing literature (Shahed Behrouz et al., 
2020). The SRTC tool consists of radio sliders that are helpful in 
changing parameters within the de昀椀ned range to match the simulated 
stream昀氀ow with observed stream昀氀ow. Calibration and validation of 昀椀ve 
parameters for snow melt and groundwater were done manually against 
snow water equivalent data from the Cleveland airport and stream昀氀ow 
data from USGS gauge respectively. 

An informal likelihood function (i.e., Nash and Sutcliffe ef昀椀ciency 
with shaping factor) available in the Differential Evolution Adaptive 
Metropolis (DREAM) algorithm was used for the uncertainty-based 

calibration (Freer et al., 1996; Vrugt, 2016) to 昀椀nd an optimal set of 
11 parameters that are equally acceptable as simulators of a watershed’s 
hydrology. (Schoups and Vrugt, 2010) tested the DREAM algorithm for 
the calibration of a simple conceptual rainfall-runoff hydrological 
model. This uncertainty-based calibration was used for six surface water 
parameters (related to imperviousness, roughness, depression storage, 
and width); three in昀椀ltration parameters; and two groundwater pa-
rameters (Table 1). Limits for parameter ranges explored during cali-
bration were identi昀椀ed from the literature (e.g., Shahed Behrouz et al., 
2020). The imperviousness and width parameters varied among the 
subcatchments based on subcatchment characteristics in the initial 
model. These two parameters were calibrated in the DREAM algorithm 
based on the percentage change from initial values. All other parameters 
were uniform across subcatchments. 

The summation of the squared errors as the basic likelihood measure 
was used in this study for the computation of results (Freer et al., 1996). 
This measure is 

L(θi|Qobs) = Glog
(

1−

3T
t=1
(Qobs,t − Qsim,i

)2

3T
t=1
(Qobs,t − Qobs

)2

)
(3)  

where L is the likelihood function of the ith parameter set conditioned on 
the observed discharge Qobs, θi represents a set of model parameters, 
Qobs,t represents observed discharge at time t, Qsim,i represents the 
simulated discharge at time t and is a function of θi , Qobs is the mean of 
the observed discharge, T is the total time, and G is a shaping factor. We 
have used a value of 10 for the shaping factor (Vrugt, 2016). 

An acceptance rate greater than 15 % and �R < 1.2 for all parameters 
used for calibration is a good indicator of acceptable performance and 
convergence (Vrugt, 2016). �R is a statistic to determine when conver-
gence of the sampled Markov chains has been achieved. The DREAM 
algorithm can calculate the acceptance rate and �R automatically for 
each chain during simulations. During the calibration phase, DREAM 
converged successfully within 10,000 simulations. After DREAM 
converged, a subset of 224 parameter sets were chosen based on 
acceptable values for the acceptance rate and available computing re-
sources (8 cores with 28 cores per node; 8x28 = 224). 

The median of stream昀氀ow from 224 calibration parameter sets 
simulations has been used to compare with observed 昀氀ow for both 
calibration and validation years. Water year 2017 data were used for 
calibration, because it was not unusually wet or dry relative to the 
available record. Water years 2015–2016 and 2018–2019 were used for 
model validation. Water year 2014 data were also used as a one-year hot 
start in the SWMM model to stabilize initial conditions. The performance 
of the calibrated model was calculated by using percentage coverage 
(observations falling within 95 % prediction intervals), Nash-Sutcliffe 
ef昀椀ciency coef昀椀cient (NSE), and coef昀椀cient of determination (R2). 

2.5. Stream昀氀ow analysis 

Once calibrated and validated, the SWMM model was used to 
simulate stream昀氀ow for one period with historical RCM data 
(1976–2000) and three future periods (2021–2095) for all four climate 
model outputs using each of the 224 sampled parameter sets, to capture 
the uncertainties associated with calibration parameters and variability 
across climate models. Stream昀氀ow metrics were calculated from 
discharge time −series from the 224 sampled parameter sets. 

Flow duration curves were constructed using the simulated stream-
昀氀ow time series from exceedance probability (P) of ranked stream昀氀ow 
data, using 
P = [M/(n + 1) ] (4)  

where, M represents the ranked position from highest to lowest and n 
represents the total number of values in the stream昀氀ow time series. Flow 
duration curves were calculated for each period and 昀氀ows at different 

Table 1 
Parameters used for calibration of the SWMM model. The limits for calibration of 
width and imperviousness represent the proportional change from the values for 
each subwatershed in the uncalibrated model.  

Parameters Calibration 
Method 

Representation Limits for 
Calibration 

Imperviousness (−) DREAM Surface water −0.3–0.3 
Width (−) DREAM Surface water −0.3–0.3 
N-Imperviousness (−) DREAM Surface water 0.01–0.02 
N-Perviousness (−) DREAM Surface water 0.01–0.4 
S-Imperviousness (in) DREAM Surface water 0–3 
S-Perviousness (in) DREAM Surface water 0–3 
Suction Head (in) DREAM In昀椀ltration 0–10 
Hydraulic Conductivity 

(in/hr) 
DREAM In昀椀ltration 0–1 

IMD max (−) DREAM In昀椀ltration 0.1–0.4 
A1 (−) DREAM Groundwater 0–0.5 
B1 (−) DREAM Groundwater 0–3 
Lower Groundwater loss 

rate (−) 
Manual Groundwater 0.005–0.01 

Unsaturated soil zone 
moisture(fraction) 

Manual Groundwater 0.25–0.35 

Minimum Melt 
Coef昀椀cient (−) 

Manual Snow Melt 0.0005–0.001 

Maximum Melt 
Coef昀椀cient (−) 

Manual Snow Melt 0.001–0.0017 

Base Temperature (F) Manual Snow Melt 29.5–31.5  

Z. Ul Hassan et al.                                                                                                                                                                                                                              



Journal of Hydrology 638 (2024) 131546

5

exceedance probabilities (0.5 %, 10 %, 25 %, 50 %) were extracted from 
昀氀ow duration curves to calculate the percentage change as compared to 
the historical period. Low 昀氀ows with an exceedance probability greater 
than 50 % were not used in further analysis, due to the limitations of 
calibration for low 昀氀ows using the SWMM model (Avellaneda et al., 
2017; Hamel et al., 2013; Hossain et al., 2019; Nayeb Yazdi et al., 2019). 
Flow duration curves were also calculated on a seasonal basis for sum-
mer (June-August), winter (December-February), spring (March-May), 
fall (September-November). 

The Gumbel distribution was used to estimate 昀氀ood frequencies of 
different return periods (2, 5, 10, 25, 50, 100 years) using the annual 
maximum 5-minute stream昀氀ow for each climate model output, analysis 
period, and parameter set. The Gumbel distribution has been extensively 
used in previous studies for the estimation of 昀氀ood frequencies e.g., 
(Al昀椀eri et al., 2015; Pang et al., 2022). 

We selected a single, representative parameterization of the SWMM 
model to use for quanti昀椀cation of the effects of inter-climate model 
spread on hydrologic projections. As our representative parameteriza-
tion, we identi昀椀ed the single parameter set that produced the 昀氀ow 
duration curve closest to the median stream昀氀ow at each quantile from 
all parameter sets, as measured by least value of root mean square error 
relative to the median stream昀氀ow. This was done separately for the 
historical period for each RCM and resulted in identi昀椀cation of the same 
parameter set for all climate model outputs (hereafter, the median 
parameter set). Note that the median parameter set may not produce the 
median of the cumulative distribution function (CDF) for speci昀椀c 昀氀ow 
return periods (Fig. 2). The median parameter set thus represents one 
realization of calibration for each climate model output (black dots in 
Fig. 2). Observing the range of these parameter sets (black horizontal 
lines in Fig. 2) allows us to assess the inter-climate model spread. In 
addition, the uncertainties associated with the hydrologic model 
parameterization are assessed through the 90 % prediction intervals (PI) 
of the CDF curves produced from each of the four climate models with 
the 224 parameter sets for the selected exceedance probabilities and 
昀氀ood frequencies (PIs shown as colored horizontal lines in Fig. 2). To 
summarize, the inter-climate model spread was assessed through the 
range of median parameter sets (width of black line, Fig. 2), while the 
hydrologic parameter uncertainty was assessed by the widths of all four 
PIs (colored lines, Fig. 2). If all four PIs are larger than the range of 
median parameter sets, we conclude that hydrological parameter 

uncertainty is more important than climate model spread (for example, 
Fig. 2a, all four colored line widths are larger than black line). 
Conversely, if the range of median parameter sets is larger than all four 
PIs, we conclude that climate model spread is more important than 
hydrological parameter uncertainty (for example, Fig. 2b, black line 
width is larger than all four colored lines). Finally, if the range of median 
parameter sets is smaller than some of the PIs but larger than others, we 
interpret this result to mean both uncertainties are approximately 
equally important (for example, Fig. 2c, black line is smaller than brown 
and green lines, but larger than blue and red lines). 

3. Results 

3.1. Changes in temperature and precipitation 

Raw climate model output overestimated total monthly precipitation 
and underestimated mean monthly temperature as compared to 
observed data (Fig. S1a-b). Mean absolute error (MAE) between 
observed and raw hourly precipitation and temperature data ranges 
from 0.24-0.29 mm and 0.5–0.9 çC respectively. After bias correction, 
MAE is reduced to 0.20–0.21 mm for precipitation and 0.1–0.2 çC for 
temperature. 

Across the four climate model outputs, bias-corrected mean annual 
temperature is projected to increase by 1.3–1.9 çC in the initial period, 
by 2.7–3.7 çC in the mid-century, and by 4.1–6.0 çC in the late century 
relative to historical temperatures (Table S1). Variation between the 
climate models in mean annual temperature is less for the historical 
period and more for the late century (Table S1). Across the four climate 
models, mean annual precipitation is projected to increase by 136–140 
mm during the initial period, 138–340 mm during the mid-century, and 
209–445 mm during the late century, relative to the historical period, 
(Table S2). The maximum increase in mean monthly precipitation oc-
curs in April (Fig. S2). 

Depth-duration-frequency curves for 1-hour storms show that there 
will be an increase in precipitation depth by 14–40 % in the late century 
relative to the historical period, for 6-month to 10-year return periods 
(Fig. 3). The range re昀氀ects variability across climate models, and all 
return periods have similar projected percentage increases. Results for 
the 24-hour storm show somewhat greater increases, with up to a 50 % 
increase in precipitation from 1- and 2-year storms (Fig. S4). 

Fig. 2. Illustration of the change from historical conditions for selected 昀氀ow exceedances produced by 224 hydrological parameter sets per climate model output 
(colored CDF curves), versus the range of change projected by a single realization (median parameter set, black dots) across climate model outputs. The horizontal 
lines below the CDFs illustrate the 90% PI for each climate model output (colored lines) and the inter-model spread for the median parameter set (black line). In (a), 
inter-climate model spread is smaller than all hydrological PIs for 昀氀ows with an exceedance probabilities of 0.05 for initial century period, indicating that hydro-
logical parameter uncertainty is more important than climate model spread. In (b), inter-climate model spread is larger than all hydrological PIs for an exceedance 
probabilities of 0.5 for initial century period, indicating that climate model uncertainty is more important than hydrological parameter uncertainty. In (c), inter- 
climate model spread is larger than some, but not all hydrological PIs, for an exceedance probabilities of 0.25 for initial century period, indicating that climate 
model and hydrological parameter uncertainty are approximately equal. 
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Fig. 3. Results of 1-hour depth-duration-frequency analysis for climate model outputs. The historical period is 1976–2000, initial is 2021–2045, mid is 2046–2070, 
and late is 2071–2095. RCMs are termed RCM1 (RegCM4 with parent GCM MP1-ESM-LR), RCM2 (WRF with parent GCM GFDL-ESM2M), RCM3 (WRM with parent 
GCM HadGEM2-ES), RCM4 (WRF with parent GCM MPI-ESM-LR). 

Fig. 4. Probability distribution of parameters used for calibration and validation of PCSWMM model for West Creek. Each distribution is based on 224 sampled 
parameter sets. The median of each distribution is shown with a blue dot. The values for width and imperviousness represent the proportional change from the values 
for each subwatershed in the uncalibrated model. (For interpretation of the references to colour in this 昀椀gure legend, the reader is referred to the web version of 
this article.) 
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3.2. Hydrological model performance 

91942191688125Probability distributions from the 224 parameter 
sets sampled after model convergence show distributions around the 
median parameter values (Fig. 4). The model performs well for high 
昀氀ows and rising and falling limbs of the observed and simulated 
hydrographs match well with each other (Fig. 5). Comparison between 
observed and median simulated discharges for four validation years 
found satisfactory performance in all years, with NSE ranging from 0.62 
to 0.74 and R2 ranging from 0.64 to 0.76 (Table 2). The percent of ob-
servations within the simulated 95 % prediction interval (coverage (%) 
in Table 2) for the years 2014 and 2015 was lower than 50 %, likely 
because of the higher percentage of low 昀氀ow periods during those years 
and the choice of likelihood function for calibration of the model. 
(Avellaneda et al., 2017) also found less good performance of a SWMM 
model for low 昀氀ow periods following calibration using NSE. 

Most parameter sets are tightly clustered around the median 
parameter set over the whole 昀氀ow duration curve (Figs. S5–S8). There 
were 8 parameter sets that showed a wide spread in 昀氀ow duration curves 
from median, especially for the medium and low 昀氀ows. The parameter 
sets showing this dispersion were consistent across climate model out-
puts. The median and low 昀氀ows exhibited a wider spread as compared to 
the high 昀氀ows. 

3.3. Flow duration curves 

Climate change increases stream昀氀ow in West Creek as compared to 
the historical period. The median 昀氀ow duration curves (FDC) (i.e., the 
FDC generated by the median parameter set) shifts upward in all future 
periods and in all climate model outputs for 昀氀ows with f 50 % ex-
ceedance (Fig. 6). For the 0.5 %, 10 %, 25 %, and 50 % exceedance 
probability 昀氀ows, the patterns of hydrological variation among climate 
model outputs and over time are broadly similar (Fig. 7, Figs. S9-S11). 
There is more agreement in percentage change of 昀氀ows across climate 
models during the initial period as compared to the mid and late periods 
(Fig. 7). 

To understand what information would be lost by considering only a 
single SWMM calibration for each climate model, we plotted the CDF 
from all 224 simulations of all four climate models (896 simulations 
total) and identi昀椀ed the four values that would be identi昀椀ed if only the 
median parameter set had been used (Fig. 8). For the median (50 % 
exceedance 昀氀ow), the four median parameter sets span ~ 60 % of the 

CDF in the initial period and ~ 80 % of the CDF in the mid and late 
periods, but the median parameter sets from WRF_HadGEM2-ES is very 
near the high end of the CDF (67–98 %) for all future periods (Fig. 8a). If 
only one hydrological simulation were done for each climate model, this 
result might not be considered an extreme projection of future change. 
For the 25 %, 10 %, 0.5 % exceedance 昀氀ows, the four median parameter 
sets bracket the steep part of the CDF, spanning about 60 % of the total 
CDF and are reasonably symmetrical around the median (Fig. 8cba). For 
some 昀氀ows in some future periods, median parameter sets from two 
climate models produce very similar results (e.g., 25 % exceedance, mid 
period). If median parameter sets generate results on the tail of the CDF, 
and only a single calibration is considered, the likelihood of a large or 
small change in 昀氀ow could be over-estimated. For example, for 0.5 % 
exceedance in the late period (Fig. 8a), two of the median parameter sets 
produce results that are around 0.2 on the overall CDF, which could lead 
to over-estimating the probability of a small change in future 昀氀ows. 

For most of the analyzed future 昀氀ows, climate model spread is more 
important than parameter uncertainty, based on comparing the range of 
median parameter sets and the 90 % PI for each model (Fig. 8). Over the 
21st century, both climate model spread and PIs increase, but climate 
model spread increases more quickly. For the initial period, 昀氀ows with 
0.5 % and 10 % exceedance have PIs that are greater than the range 
across climate models, so parameter uncertainty is more important for 
the overall uncertainty of those 昀氀ows (Fig. 8ab). For the 25 % exceed-
ance 昀氀ow, the two sources of uncertainty are approximately equal 
(Fig. 8c), whereas for 50 % exceedance 昀氀ows, climate model variability 
is more important than the parameter uncertainty (Fig. 8d). During the 
mid-century period, 0.5 % exceedance 昀氀ows are approximately equally 
affected by parameter uncertainty and climate model spread (Fig. 8a), 
but for the same period, smaller 昀氀ows are more affected by climate 
model spread than parameter uncertainty (Fig. 8b-d). During the late 
century, 昀氀ows with all exceedance probabilities have climate spread 
spread greater than the PI range, so climate model uncertainties are 
more important than parameter uncertainties as we move farther into 
the future (Fig. 8). 

3.4. Flood frequency analysis 

The use of multiple climate model outputs and parameter sets pro-
vides a range of possible 昀氀ood frequencies of 2, 5, 10, 25, 50 and 100 
return periods for all periods (Fig. 9, S16-S18). All four climate models 
produce an increase in the 2-year return period for all future periods 

Fig. 5. Simulations of predicted discharge by using 224 sampled parameter sets from DREAM for part of the calibration year (2017). The black dots represent the 
observations. The blue region represents the 95% predictive uncertainty bounds from discharge simulated by 224 parameter sets. The output time step is 5 min. (For 
interpretation of the references to colour in this 昀椀gure legend, the reader is referred to the web version of this article.) 
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(Fig. 9a), but there is considerable variability among climate models in 
terms of the ranges of changes. For return periods g 5 years, 
WRF_HadGEM2-ES projects a much smaller change in 昀氀ood magnitudes 
than the other climate models (Fig. 9b, Figs. S16 to S19). This difference 
relative to the other models was not apparent in examination of the 
precipitation depth-duration-frequency projections (Fig. 3, S3). 

Simulations using 224 sampled parameter sets provide a much larger 
range of future 昀氀ood predictions than using only the median parameter 
set for each climate model (Fig. 10). The steepest part of the CDFs of all 
return periods is well covered by the median parameter sets during the 
initial and mid periods, with only ~ 20 % and 10 %, respectively, of the 
largest projected changes not covered by the four median parameter 
sets. In the late period, however, >40 % of parameter sets produce 
changes greater than projected by any of the median parameter sets for 
昀氀oods with return periods g 5 years. This could lead to under-estimating 
the true likelihood of large changes, if only one calibration per climate 

model was used. 
For most future 昀氀oods, parameter uncertainty is approximately equal 

to or less important than climate model spread, but the importance of 
parameter uncertainty varies with 昀氀ood size and the future period 
(Fig. 10). As 昀氀ood magnitude increases, climate model spread increases, 
but the PI remains fairly stable. For the initial period, 昀氀oods with return 
periods from 2-25 years have PIs that are both larger and smaller than 
the range of the median parameter sets, so climate model spread and 
parameter uncertainties are approximately equally important (Fig. 10a- 
d). For the same period, 昀氀oods with return periods of 50 years and 100 
years shows that the climate model spread is more important than the 
parameter uncertainty (Fig. 10e-f). During the mid-century, both un-
certainties are equally important for 昀氀oods with return periods of 2 and 
5 years (Fig. 10ab), but for the 昀氀oods with larger return periods (10–100 
years) climate model spread is more important than parameter uncer-
tainty (Fig. 10c-f). During the late century, 昀氀oods with return periods of 

Table 2 
Summary of model performance statistics for the median discharge time series and the 224 parameter sets sampled after model convergence.  

Water year Phase Median Discharge time series 224 Parameter Set Range 
NSE R2 Coverage (%) NSE R2 Coverage (%) 

2017 Calibration  0.77  0.78 71 0.64–0.81 0.65–0.84 58–83 
2014 Validation  0.67  0.70 23 0.47–0.71 0.58–0.77 18–41 
2015 Validation  0.70  0.73 44 0.65–0.73 0.60–0.79 39–55 
2016 Validation  0.62  0.64 60 0.57–0.69 0.59–0.72 51–73 
2018 Validation  0.74  0.76 49 0.64–0.78 0.71–0.83 45–59  

Fig. 6. Flow duration curves for the historical and future periods. Each line represents the curve produced by the median parameter sets, i.e., those that generate the 
昀氀ow duration curve closest to the median for each climate model output in the historical period. The historical period is 1976–2000, initial is 2021–2045, mid is 
2046–2070, and late is 2071–2095. In terms of percent change from historical 昀氀ows, the impact of climate change is larger on the more frequent 昀氀ows as compared to 
the 0.5% exceedance 昀氀ows (Figs. S9-11). 

Z. Ul Hassan et al.                                                                                                                                                                                                                              



Journal of Hydrology 638 (2024) 131546

9

2 and 5 years (Fig. 10ab) showed that the parameter uncertainties are 
more important than climate model spread, but for the larger return 
periods 10–100 years, both uncertainties are approximately equally 
important (Fig. 10c-f). 

3.5. In昀氀uence of RCM and GCM on hydrological projections 

The choice of RCMs used in this analysis was limited to CORDEX 
datasets with 0.22ç/25 km spatial resolution and 1 h precipitation 
outputs. This resulted in two climate projections that had a shared 
parent GCM MPI-ESM-LR but had differing RCMs (REGCM4 vs. WRF). 

Fig. 7. Percentage change of 0.5% exceedance probability 昀氀ows as compared to the historical period for all four climate model outputs. This data is extracted from 
the 昀氀ow duration curves and each black dot represents output of 昀氀ow results from one parameter set. The width of the violin plots represents the shape of the 
distribution, while the black points represent the results from each parameter set. The initial period is 2021–2045, mid is 2046–2070, and late is 2071–2095. 
Percentage change for 10%, 25%, and 50% 昀氀ows are shown in Figs. S9–S11. 

Fig. 8. The cumulative distribution function (CDF) of percentage change of 昀氀ows as compared to the historical period for all 4 climate models. Each curve represents 
the data from 896 simulations (224 simulations for each of 4 climate models), while the horizontal lines represent the PI of SWMM results for one climate model. In 
all panels and for all periods, the PI from RegCM4_MPI-ESM-LR is the top horizontal line, WRF_GFDL-ESM2M is the second line, WRF_HadGEM2-ES is the third line, 
and WRF_MPI-ESM-LR is the bottom line. The black dots represent the values for the median parameter sets, i.e., those that generate the 昀氀ow duration curve closest to 
the median for each climate model in the historical period. The horizontal span of black dots represents the climate model spread for a single calibration. The initial 
period is 2021–2045, mid is 2046–2070, and late is 2071–2095. 
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These two climate projections generate similar hydrology during the 
initial period, but diverge later in the century. Three climate projections 
used WRF as the RCM, but had differing parent GCMs. When considering 
a single parameter set, variability among hydrological projections is 
largest during the late century period for sub-annual 昀氀ows with 0.5 % to 
50 % exceedance probabilities. WRF_HadGEM2-ES projects the largest 
changes in these 昀氀ows, aligning with its large projected changes to 6-mo 
to 1-year precipitation in both 1- and 24-hour storms by the late century. 
Conversely, three climate projections generate similar projected changes 
to 昀氀oods during the late century. WRF_HadGEM2-ES projects the 
smallest changes to 昀氀oods, despite producing the largest 24-hour storms 
with 2- to 10-year return periods. There is greater variability among 
climate projections in the mid-century period, for both 24-hour storms 
and 昀氀oods. Again, WRF_HadGEM2-ES projects a more modest change to 
昀氀oods with g 10 years return periods than the other climate models. 

4. Discussion 

Northeastern Ohio is getting warmer and wetter, leading to a sub-
stantial increase in urban stream昀氀ow over the 21st century. Despite 
differences in urbanization and watershed scale from previous studies 
on 昀氀ow regime impacts of 21st century climate change in the Great 
Lakes region, the magnitude of change in West Creek’s 昀氀ow regime is 
broadly consistent with other regional studies (e.g., Byun et al., 2019; 
Shrestha et al., 2021). Accepting multiple parameter sets during cali-
bration resulted in a broader range of hydrologic outcomes than was 
seen across the climate models when only one parameter set was used 
for SWMM modeling. Overall, uncertainty due to calibration parameters 

is approximately equally important to climate model spread for pro-
jecting changes to future moderate to high 昀氀ows and 昀氀oods. As has been 
previously shown for bias correction decisions (Malek et al., 2022), 
failure to account for model calibration uncertainties could lead to over- 
or under-design of critical urban water infrastructure, including bridges, 
culverts, pipes, and stormwater controls (Cook et al., 2017). 

The use of multiple climate models helps constrain con昀椀dence in the 
future 昀氀ows and 昀氀oods, by providing an assessment of agreement or 
spread in projections. Other studies have assessed the importance of 
RCM versus parent GCM for regional climate change predictions (e.g., 
Bukovsky and Mearns, 2020). In the study region, climate models may 
produce varying hydrologic outcomes as a result of their representation 
of the Great Lakes (Briley et al., 2021) and projections of low level jet 
dynamics (Zobel et al., 2018), among other differences. Our results show 
that HadGEM2-ES produces substantially different hydrology than the 
other models we considered, despite having fairly similar results to the 
other models in the precipitation depth-duration-frequency analysis. 
HadGEM2-ES projects more of an increase in summer precipitation, and 
a higher number of days with precipitation > 25 mm at mid-century, 
than other climate models (Figs. S21, S22), suggesting that both sea-
sonality and sequencing of heavy precipitation days may contribute to 
the differences in 昀氀ow projections, as observed in other systems (e.g., 
Berghuijs et al., 2016; Ye et al., 2017). Thus, choice of climate model can 
in昀氀uence predicted future high 昀氀ows and 昀氀oods beyond what is 
apparent from examination of precipitation depth-duration-frequency 
curves. Depth-duration frequency analysis was not suf昀椀cient to fully 
identify when climate model spread would be large for modeled 昀氀ows 
and 昀氀oods in continuous simulations. Engineering decisions in urban 

Fig. 9. Percentage change of 2-year and 25-year return period 昀氀oods as compared to historical for all four climate models. Each black dot represents the percentage 
change because of one parameter set, and the width of the violin plots represents the shape of the distribution, while the black points represent the results from each 
parameter set. The initial period is 2021–2045, mid is 2046–2070, and late is 2071–2095. Percentage change for 5-, 10-, 50-, 100-year 昀氀oods are shown in 
Figs. S16-S19. 
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watersheds are often based on depth-duration-frequency curves, which 
are used to synthesize design storms (e.g., Cook et al., 2017; Grimaldi 
et al., 2021). However, our results show that analysis of climate change 
effects based on only design storms could fail to capture the full range of 
stream昀氀ow response, and they suggest there is an important role for 
continuous stream昀氀ow simulations, not just design storms, to inform 
urban infrastructure decisions in the context of changing precipitation 
patterns. 

Compared to a single calibration, the use of multiple realistic cali-
bration parameters helps capture a much wider range of 昀氀ows for in-
dividual climate models, as well as in aggregate. The comparison of 
single vs multiple parameters suggests that for sub-annual 昀氀ows with 
exceedance probabilities of 0.5–25 %, >30 % of the changes projected 
by multiple calibrations are outside the range projected by single cali-
brations from the climate model ensemble. Both upper and lower ends of 
the CDFs are missed by single calibrations. The impact of calibration 
parameters is even greater in the case of 昀氀ood frequency analysis. For 

these rarer events, we miss 40 % of the CDF generated by multiple 
calibrations, when using only one calibration per climate model. Here 
we chose to focus on the median parameter set from a Bayesian cali-
bration approach, and this median parameter set may not be represen-
tative of a single “best” calibration using other approaches. Less 
exhaustive calibration approaches could produce a single parameter set 
that does not span as wide a range of projected changes as the median 
parameter set, or they may be biased lower or higher on the CDF. 
Extrapolating a distribution from four points (one per climate model) 
could result in over-con昀椀dence in a particular projected future (e.g., as 
seen for 10–100 year 昀氀oods in the late century, Fig. 10). Thus, choice of 
a single calibration parameter set could lead to the underestimation of 
the design parameters for stormwater drainage and 昀氀ood control 
infrastructure, similar to the effects seen by (Cook et al., 2020) from 
RCM resolution and bias correction. Continuous simulations of 100 
years of 昀氀ow using 224 parameter sets is computationally expensive, but 
it produced a wide range of 昀氀ows, enabling more robust estimation of 

Fig. 10. The cumulative distribution function (CDF) of percentage change of 昀氀ood frequencies as compared to the historical period for all 4 climate models. Each 
curve represents the data from 896 simulations (224 simulations for each of 4 climate models), while the horizontal lines represent the PI of SWMM results for one 
climate model. In all panels and for all periods, the PI from RegCM4_MPI-ESM-LR is the top horizontal line, WRF_GFDL-ESM2M is the second line, WRF_HadGEM2-ES 
is the third line, and WRF_MPI-ESM-LR is the bottom line. The black dots represent the values for the median parameter sets, i.e., those that generate the 昀氀ow 
duration curve closest to the median for each of the 4 climate models in the historical period. The horizontal span of black dots represents the climate model spread 
for a single calibration. The initial period is 2021–2045, mid is 2046–2070, and late is 2071–2095. 
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the uncertainties associated with 昀氀ows and 昀氀oods with different ex-
ceedance probabilities. 

When there is relatively good agreement among climate models (e.g., 
near term 昀氀ows), hydrologic model calibration uncertainty is particu-
larly important to consider, based on comparison of PI to inter-model 
spread of the median parameter set. When climate model spread was 
less than 30–35 % for the four model outputs examined, parameter 
uncertainty was larger or equally large using the Bayesian model cali-
bration approach employed here. For the West Creek watershed, 
parameter uncertainty was equally or more important to capture for 
most near-term (i.e., initial period) moderate to high 昀氀ows and 昀氀oods, as 
well as for late century 昀氀oods. Conversely, where climate model spread 
is large, such as during the mid-century for 昀氀oods or late century for 
moderate to high 昀氀ows, parameter uncertainty is relatively less impor-
tant. To reduce computational expense, a potential approach is to 
initially use a single calibration to assess climate model spread relative 
to speci昀椀c desired hydrologic metrics. If climate model spread is large, 
Bayesian calibration may not add much value, relative to expense. 

A full assessment of all sources of uncertainty in projections of the 
hydrological impacts of climate change in urban streams is impractical 
for most engineering applications. Along the cascade of choices from 
emissions scenario, GCM, downscaling technique, bias correction tech-
nique, precipitation disaggregation method, hydrological model selec-
tion, and model parameter calibration, we focused on uncertainty 
arising from the choice of downscaled GCM versus hydrological 
parameter uncertainty. This choice was motivated by the availability of 
multiple climate model outputs via NA-CORDEX (Mearns et al., 2017) 
and Bayesian calibration techniques (e.g., Vrugt, 2016) as putatively 
accessible to applied hydrologists and by previous work identifying 
these uncertainty sources as hydrologically important (e.g., Avellaneda 
and Jefferson, 2020; Feng and Beighley, 2020). Our work builds on 
previous studies evaluating the effects of GCM spatial and temporal 
scale, and bias correction techniques on infrastructure design uncer-
tainty (Cook et al., 2020). Unlike some studies in less urban watersheds 
(e.g., Addor et al., 2014; Feng and Beighley, 2020), we did not compare 
multiple hydrological models, in part because SWMM is so widely used 
for urban hydrological applications. Work remains to assess the uncer-
tainty imparted by the precipitation disaggregation (e.g., Müller-Thomy 
and Sikorska-Senoner, 2019) in the context of other uncertainties in the 
climate impacts projection cascade, especially in the context of projec-
ting changes to urban 昀氀oods. Nonetheless, the present work provides 
guidance on when climate model spread may be most important for 
uncertainty considerations, when hydrological parameter uncertainty is 
important, and examples of where caution is needed if parameter un-
certainty is not accounted for. 

5. Implications and conclusions 

By the end of the 21st century, under the RCP8.5 climate change 
scenario there will be major changes in the hydrology of urban streams 
in the Great Lakes region, as compared to a 1976–2000 baseline. Pro-
jections of increasing future high 昀氀ows and 昀氀oods in West Creek suggest 
that hydrologic changes arising from climate change can potentially lead 
to infrastructure damage, loss of human lives and ecosystem degrada-
tion in urban watersheds. These risks can be minimized by considering 
climate change in the planning of new infrastructure and management 
of existing infrastructure, including green stormwater infrastructure, 
stream restorations, and 昀氀ood warning systems (e.g., Giese et al., 2019; 
Perry et al., 2015). 

We show that consideration of multiple climate models and hydro-
logical model calibration parameter sets helps capture a wider range of 
potential climate change impacts on urban stream昀氀ow. Quanti昀椀cation 
of the wide range of uncertainties associated with climate change pro-
jections, including those arising from hydrologic model calibration, is 
helpful to understand the risks of over- or under-estimation of design 
variables for culverts and bridges, green infrastructure, and other 昀氀ood 

mitigation infrastructure in urban watersheds (Lai et al., 2022; Wright 
et al., 2021). 

Results from the SWMM model of West Creek show that where 
climate model spread is low to moderate, uncertainties related to cali-
bration parameter sets are important. Further, our results demonstrate 
that ignoring either climate model variability or hydrologic parameter 
uncertainty could lead to substantial under- or over-estimation of high 
昀氀ow and 昀氀ood magnitudes. While computationally expensive, a 
Bayesian calibration approach that accepts multiple realistic parameter 
sets enables the creation of CDFs of projected 昀氀ows. These CDFs can be 
used for data-driven decision making for water resources management 
that explicitly considers multiple sources of uncertainty. 
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