Journal of Hydrology 638 (2024) 131546

]

ELSEVIER

journal homepage: www.elsevier.com/locate/jhydrol

Contents lists available at ScienceDirect

L ,JOURNAL OF
"HYDROLOGY

Journal of Hydrology

Research papers

Assessment of hydrological parameter uncertainty versus climate projection
spread on urban streamflow and floods

Zia Ul Hassan ™, Anne J. Jefferson ®", Pedro M. Avellaneda ““, Aditi S. Bhaskar ©

@ Department of Earth Sciences, Kent State University, Kent, OH, USA

Y Now at: Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA

€ School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA

4 Now at: Environmental Scientist, Clean Water Program, San Francisco Estuary Institute, 4911 Central Ave., Richmond, CA 94804
€ Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, USA

ARTICLE INFO

This manuscript was handled by Sally Elizabeth
Thompson, Editor-in-Chief, with the assistance
of Kyle Blount, Associate Editor

Keywords:

Climate change
Bayesian calibration
Uncertainty

Streamflow

Flood frequency
Regional Climate Models

ABSTRACT

Assessing the uncertainty associated with projections of climate change impacts on hydrological processes can be
challenging due to multiple sources of uncertainties within and between climate and hydrological models. Here
we compare the effects of parameter uncertainty in a hydrological model to inter-model spread from climate
projections on hydrological projections of urban streamflow in response to climate change. Four hourly climate
model outputs from the RCP8.5 scenario were used as inputs to a distributed hydrologic model (SWMM) cali-
brated using a Bayesian approach to summarize uncertainty intervals for both model parameters and streamflow
predictions. Continuous simulation of 100 years of streamflow generated 90 % prediction intervals for selected
exceedance probabilities and flood frequencies prediction intervals from single climate models were compared to
the inter climate model spread resulting from a single calibration of the SWMM model. There will be an increase
in future flows with exceedance probabilities of 0.5 %-50 % and 2-year floods for all climate projections and all
21st century periods, for the modeled Ohio (USA) watershed. Floods with return periods of > 5 years increase
relative to the historical from mid-century (2046-2070) for most climate projections and parameter sets. Across
the four climate models, the 90th percentile increase in flows and floods ranges from 17-108 % and 11-63 %
respectively. Using multiple calibration parameter sets and climate projections helped capture the most likely
hydrologic outcomes, as well as upper and lower bounds of future predictions. For this watershed, hydrological
model parameter uncertainty was large relative to inter climate model spread, for near term moderate to high
flows and for many flood frequencies. The uncertainty quantification and comparison approach developed here
may be helpful in decision-making and design of engineering infrastructure in urban watersheds.

1. Introduction

increase high streamflows and flooding could lead to poor water quality
of receiving water bodies (Wang et al., 2017), increases in erosion from

The climatic conditions that drive streamflow are changing world-
wide, including rapid increases in intensity and frequency of extreme
precipitation events and shifting form and timing of precipitation (Pyke
etal., 2011; Voskamp and Van de Ven, 2015). A growing majority of the
world population lives in cities (Voskamp and Van de Ven, 2015) and
urban areas are more vulnerable than rural to climate change impacts
(Revi et al., 2014; Rosenzweig et al., 2019). Intensification of precipi-
tation due to climate change increases runoff from urban impervious
surfaces which are hydrologically connected to waterways and causes
more severe and widespread flooding in urban areas. The combined
consequences of urbanization and precipitation intensification that
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streambeds and banks, and deterioration of the urban ecological envi-
ronment (Pyke et al., 2011). Neighborhood flooding and infrastructure
failure can result if existing drainage systems are not sufficient to handle
increasing high flows (O’Donnell and Thorne, 2020; Zhou et al., 2019).

Increases in extreme rainfall across the United States require modi-
fications to existing hydrological design standards to account for climate
change (Wright et al., 2021, 2019). The consequences of ignoring un-
certainties associated with climate change projections could lead to
over-design or under-design of water infrastructure (e.g., Cook et al.,
2020). Over-design can be costly, and under-design could lead to risk of
failure (Kim et al., 2019). Considering uncertainties during forecasting
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of future hydrological variables can be helpful for decision makers and
user groups to make robust and more sustainable decisions to achieve
higher level of confidence during climate change adaptations (Krysa-
nova et al., 2018).

A major challenge for understanding how climate change will impact
urban hydrology is the cascading uncertainty associated with climate
projections and hydrological modeling. Uncertainties in regional
climate change projections can be due to choice of emissions scenarios,
structure, parameterization, and resolution of climate models, and bias
correction approach (Kundzewicz et al., 2018). Using hydrological
models to understand climate change impacts brings additional sources
of uncertainties, which are related to model representation of hydrologic
processes, assumptions, spatial and temporal discretization, availability
of data, computational resources, and calibration techniques (Joseph
et al., 2018; Mendoza et al., 2015). There is rich literature on uncer-
tainty estimation in both climate science and hydrology (e.g., Feng and
Beighley, 2020; Liu and Gupta, 2007; Steinschneider et al., 2012), and at
their intersection in non-urban catchments (e.g., Bosshard et al., 2013;
Chegwidden et al., 2019; Clark et al., 2016). There has been compara-
tively little work on uncertainty applied to understanding the hydro-
logical impacts of climate change in urban catchments (Lai et al., 2022).
Jung et al., (2011) considered uncertainties in the projections of future
flood frequencies in urban watersheds using the Precipitation Runoff
Modeling System (PRMS) and found that climate model uncertainties
were larger than hydrological model parameter uncertainties. However,
PRMS does not represent the stormwater pipe network or connectivity of
impervious surfaces, which are important determinants of urban hy-
drologic response (Meierdiercks et al., 2010; Sytsma et al., 2020).

Parameter uncertainty is a significant source of uncertainty in com-
plex urban hydrological models that represent pipe flow and impervious
connectivity, like the popular Stormwater Management model (SWMM)
(e.g., Li et al., 2016; Avellaneda et al., 2017). These features introduce
parameters, such as imperviousness, depression storage on impervious
surfaces, and sub catchment characteristic width, to which model per-
formance is sensitive (e.g., Barco et al., 2008; Perin et al., 2020; Shahed
Behrouz et al., 2020). Recent work has also identified the issue of cali-
bration transfer parameter uncertainty in semi-distributed models like
SWMM, when the optimal effective model parameters change with
model forcing, including climate changes (Systma et al., 2022).
Parameter uncertainties can be determined by using Monte Carlo sim-
ulations to generate parameter combinations that produce acceptable
model performance (Beven, 2009; Deletic et al., 2012). Bayesian
modeling approaches embrace multiple equally acceptable calibration
parameters for the quantification of uncertainties associated with cali-
bration parameters in SWMM or other models (Avellaneda et al., 2017;
Muleta et al., 2013; Zahmatkesh et al., 2015). Further, modeling studies
of climate change impacts on urban streamflow mostly use event-based
calibration and focus on design storms for analysis (e.g., Alamdari et al.,
2017; Wang et al., 2019), rather than focusing on continuous discharge
simulations where antecedent conditions may have an influence.
Bayesian modeling approaches, combined with continuous simulations,
present a pathway to evaluate the effects of hydrologic parameter un-
certainty in models that represent urban infrastructure, versus the un-
certainty arising from climate models.

Both the magnitude and type of climate change and the consequent
hydrological response are region specific (Hayhoe et al., 2008; Joseph
et al., 2018; Naz et al., 2016). The US Midwestern and Great Lakes re-
gion is expected to be substantially affected by increasing temperature
and precipitation through the 21st century (Byun and Hamlet, 2018;
Chien et al., 2013; Sharma et al., 2018), resulting in changes to
streamflow. Increasing hydrological extremes, especially flooding, are
creating regional challenges for water management infrastructure,
including urban stormwater conveyance systems (Wilson et al., 2023;
Olds et al., 2018). Future climate change is projected to increase these
stormwater challenges (e.g., Moore et al., 2016). However, previous
studies that evaluate the impact of climate change in Midwest on
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hydrological extremes have not focused on urban streamflow, leaving an
information gap for urban watershed managers.

The goal of this research is to consider the effects of parameter un-
certainty in hydrologic modeling versus spread among a climate model
ensemble on projected changes in urban streamflow and floods for a
typical urban watershed in the US Great Lakes region. Despite additional
parameters required to represent urban watersheds, we hypothesized
that uncertainty associated with using multiple climate models would be
larger than the parameter uncertainties associated with SWMM hydro-
logic model calibration for the projection of flow duration curves and
flood frequencies in an urban watershed, based on studies in non-urban
watersheds (e.g., Chegwidden et al., 2019; Clark et al., 2016). In a novel
approach, we used a Bayesian calibration to incorporate uncertainties
associated with calibration parameters in SWMM and compared them to
the spread arising from four hourly climate model outputs in continuous
simulations of 100 years of streamflow. The approach used in this
research work helped identify and quantify uncertainties between
multiple climate projections and within urban hydrological model
parameterization across a wide range of flows, providing guidance for
future efforts to design infrastructure in the context of uncertainty.

2. Materials and methods
2.1. Study area and model structure

The 20.63 km?, 30.3 % impervious West Creek watershed is typical
of suburban-urban watersheds in the Cleveland metropolitan area of
northeast Ohio, USA (Fig. 1). The Cleveland Hopkins International
Airport, located 13 km to the west of the West Creek watershed has
normal (1991-2020) mean annual precipitation of 1042 mm, mean
annual temperature of 11.3 °C, and it receives snowfall during the
months of November to April. West Creek, with a length of 14.4 km,
drains into the Cuyahoga River and ultimately, Lake Erie. The storm-
water pipe network in the watershed is separate from the sanitary
sewerage network and stormwater drains into West Creek at multiple
locations. Low to moderate hydraulic conductivity of soils in West Creek
allow some infiltration but these soils combined with impervious sur-
faces, also quickly drain runoff into drainage infrastructure, where it
ends up in the stream (Cuyahoga County Planning Commission, 2001).
Previously, subwatershed-scale paired watershed studies (Avellaneda
etal., 2017; Jarden et al., 2016; Turner et al., 2016) and watershed-scale
SWAT modeling (Avellaneda and Jefferson, 2020) have been used in the
West Creek watershed to examine the impact of green infrastructure on
streamflow, but these studies did not explore the effects of climate
change.

A distributed stormwater management model (SWMM5.1.015) was
used to simulate streamflow at the watershed outlet (Rossman, 2010).
Initial development of the SWMM model for West Creek was done by
Northeast Ohio Regional Sewer District (NEORSD), and the model was
modified and calibrated in this study. The watershed was divided into 94
smaller sub-watersheds and water from the subwatersheds drains into
the stream channel network. In the SWMM model, the stormwater
management infrastructure consists of one storage node representing a
1.25 ha dam pond, 236 conduits (including pipes and the open channel
network) with a total length of 18.14 km, and 219 junctions.

SWMM uses a mass balance approach for the simulation of watershed
hydrology, while the routing of flow in pipes and channels is done by the
Saint Venant equation. Time series of precipitation, temperature, and
evapotranspiration serve as inputs to simulate streamflow in SWMM.
Potential evapotranspiration was calculated using the Penman-Monteith
equation separately, following the American Society of Civil Engineers
(ASCE) manual Allen et al., (2005), and then included as an input series.
A modified Green-Ampt equation was used for the estimation of infil-
tration. The modeling of stream baseflow was done with the help of the
groundwater module in the SWMM model. SWMM considers and ana-
lyzes the base flow separately for each subwatershed (Rossman, 2010).
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Fig. 1. The West Creek watershed in (A) the United States, with the red dot representing the location of West Creek and (B) context of its SWMM subwatershed (gray
borders), subwatershed imperviousness (colors), stream network (blue line), and surrounding meteorological stations (green triangles). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

The dynamic wave routing method with a routing step of 30 s was used
in this study for the simulation of flow. The routing step was chosen
using a manual optimization of performance and simulation time.

2.2. Climate and streamflow data

For model calibration, precipitation data for 2013 through 2019 with
a temporal frequency of 5 min from four meteorological stations sur-
rounding the watershed was provided by Northeast Ohio Regional
Sewer District (NEORSD). Four meteorological stations were used for
calibration to capture the spatial variability of precipitation across the
watershed and fill missing data. The percentage of missing data for each
station was < 1 %. Missing data were filled by linear regression between
the datasets and data from the West Ridgewood meteorological station
operated by Cleveland Metroparks, located within the West Creek
watershed. Thiessen polygons were used to create a single precipitation
time series for hydrologic model calibration (section 2.4). Streamflow
data at 5-minute intervals from 2013 to 2019 was obtained from the U.S.
Geological Survey (USGS 412453081395500) station located near the
outlet of West Creek at Brooklyn Heights, Ohio. The percentage of
missing data for streamflow ranges from 5-15 % per year, and missing
data were excluded from calibration statistics.

Modeled future temperature data that is required to calculate
evapotranspiration and precipitation were extracted from the North
American Coordinated Regional Climate Downscaling Experiment (NA-
CORDEX), with a spatial resolution of 0.22°/25 km and temporal reso-
lution of one hour (Mearns et al., 2009, Mearns et al., 2017). This spatial
and temporal resolution represents the finest climate model resolution
publicly available at the time of the study. The NA-CORDEX time series
are generated from dynamically downscaled regional climate models
(RCMs) with differing parent global climate models (GCMs) forced by
the RCP8.5 emission scenario. All four climate model outputs with one
hour time step data available through NA-CORDEX in May 2020 were
used in this analysis. These outputs are: (1) RegCM4 with parent GCM
MPI-ESM-LR (hereafter “RegCM4_MPI-ESM-LR”), (2) WRF with parent
GCM GFDL-ESM2M (“WRF_GFDL-ESM2M"), (3) WRF with parent GCM
HadGEM2-ES (“WRF_HadGEM2-ES”), and (4) WRF with parent GCM

MPI-ESM-LR (“WRF_MPI-ESM-LR”). The data were divided into four
different periods historical (1976-2000), initial (2021-2045), mid
(2046-2070), and late century (2071-2095). For bias correction, hourly
historical data for 1976 through 2000 from Cleveland Hopkins Inter-
national Airport (CLE) were obtained from the Iowa Environmental
Mesonet database (https://mesonet.agron.iastate.edu/climate/). The
historical temperature, relative humidity, wind speed, solar radiation
and atmospheric pressure datasets required to calculate evapotranspi-
ration were missing 0.42 %, 0.60 %, 0.50 %, 5.16 % and 0.3 % of ob-
servations, respectively. A mixture of future and historical climatic data
were used to calculate future evapotranspiration because NA-CORDEX
RCMs only provide future precipitation and temperature data.

2.3. Bias correction and disaggregation of RCM outputs

Bias correction is an important step for the postprocessing of RCM
output for use in climate change projections, because it can remove
biases including errors due to the imperfect parameters used for climate
simulations and imperfect boundary conditions provided by a GCM
(Chen et al., 2013). There are many different methods available for bias
correction, ranging from simple scaling techniques to more advanced
distribution mapping techniques (Luo et al., 2018). The quantile map-
ping approach was used here, because Chen et al., (2013) found this
distribution-based bias correction technique was most useful for the
North American region. Adjustments made using this method are based
on large scale distribution of RCM outputs (Ps) with the observed time
series known as reference time series (P,) using a transform function (h)
(Aslam et al., 2020; Chen et al., 2013). The equation for the quantile
mapping approach can be written as:

P,= h(Ps) (€8]

The transformation for the known distribution of variable of interest is
defined in the equation below:

P, = F,*(Fy(Py)) (2)

where Fs represents the Cumulative Distribution Function (CDF) of Py
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and F;! represents the inverse of CDF of P, Bias corrections identified
for the historical (1976-2000) RCM data, using the observed hourly
precipitation and temperature data at Cleveland Hopkins International
Airport, were applied to RCM projections of future temperature and
precipitation. The bias correction of temperature and precipitation were
performed separately on each time series, so the two series may not
match in terms of weather pattern timing. Depth-duration-frequency
analysis was performed on bias-corrected precipitation data using
generalized extreme value function fitting using the L-moments method.
Depth-duration-frequency analysis was performed for 1-hour and 24-
hour storms and 5 different recurrence intervals (6-months, 1-year, 2-
year, 5-year and 10-year).

Previous efforts to model the hydrology of West Creek at hourly
timesteps have underestimated peak flows (Avellaneda and Jefferson,
2020), so disaggregation of bias-corrected hourly RCM precipitation
data to 5-minute intervals was used to improve the hydrologic model
performance of urban streamflow dynamics. The NetSTORM model
(Heineman, 2012) was used for disaggregation of RCM precipitation
data from hourly to 5-minute timesteps. NetSTORM modifies a previous
empirical stochastic disaggregation method (Ormsbee, 1989) by adding
a spiking factor to improve performance and increase intensities at the 5-
minute timescale. A spiking factor of 0.5 and pulse depth of 0.01 was
used in this research, with spiking factor and pulse depth adjusted by
manual calibration.

2.4. Hydrologic model calibration and validation

Selection of 16 parameters for calibration (Table 1) was based on
sensitivity analysis using the sensitivity-based ratio tuning calibration
tool (SRTC) available in PCSWMM (Computational Hydraulics Interna-
tional, Guelph, ON) and existing literature (Shahed Behrouz et al.,
2020). The SRTC tool consists of radio sliders that are helpful in
changing parameters within the defined range to match the simulated
streamflow with observed streamflow. Calibration and validation of five
parameters for snow melt and groundwater were done manually against
snow water equivalent data from the Cleveland airport and streamflow
data from USGS gauge respectively.

An informal likelihood function (i.e., Nash and Sutcliffe efficiency
with shaping factor) available in the Differential Evolution Adaptive
Metropolis (DREAM) algorithm was used for the uncertainty-based

Table 1

Parameters used for calibration of the SWMM model. The limits for calibration of
width and imperviousness represent the proportional change from the values for
each subwatershed in the uncalibrated model.

Parameters Calibration Representation  Limits for
Method Calibration
Imperviousness (—) DREAM Surface water —0.3-0.3
Width (=) DREAM Surface water -0.3-0.3
N-Imperviousness (—) DREAM Surface water 0.01-0.02
N-Perviousness (—) DREAM Surface water 0.01-0.4
S-Imperviousness (in) DREAM Surface water 0-3
S-Perviousness (in) DREAM Surface water 0-3
Suction Head (in) DREAM Infiltration 0-10
Hydraulic Conductivity DREAM Infiltration 0-1
(in/hr)
IMD max (—) DREAM Infiltration 0.1-0.4
Al (-) DREAM Groundwater 0-0.5
B1(-) DREAM Groundwater 0-3
Lower Groundwater loss Manual Groundwater 0.005-0.01
rate (—)
Unsaturated soil zone Manual Groundwater 0.25-0.35
moisture(fraction)
Minimum Melt Manual Snow Melt 0.0005-0.001
Coefficient (—)
Maximum Melt Manual Snow Melt 0.001-0.0017
Coefficient (—)
Base Temperature (F) Manual Snow Melt 29.5-31.5
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calibration (Freer et al., 1996; Vrugt, 2016) to find an optimal set of
11 parameters that are equally acceptable as simulators of a watershed’s
hydrology. (Schoups and Vrugt, 2010) tested the DREAM algorithm for
the calibration of a simple conceptual rainfall-runoff hydrological
model. This uncertainty-based calibration was used for six surface water
parameters (related to imperviousness, roughness, depression storage,
and width); three infiltration parameters; and two groundwater pa-
rameters (Table 1). Limits for parameter ranges explored during cali-
bration were identified from the literature (e.g., Shahed Behrouz et al.,
2020). The imperviousness and width parameters varied among the
subcatchments based on subcatchment characteristics in the initial
model. These two parameters were calibrated in the DREAM algorithm
based on the percentage change from initial values. All other parameters
were uniform across subcatchments.

The summation of the squared errors as the basic likelihood measure
was used in this study for the computation of results (Freer et al., 1996).
This measure is

T 2
Z<Q—Qs>) ®

L(61| Qobx) GlOg <1 ZL (Qabs)t _ @)2
where L is the likelihood function of the i parameter set conditioned on
the observed discharge Qs, 0; represents a set of model parameters,
Qops: represents observed discharge at time t, Qgm; represents the
simulated discharge at time t and is a function of 6; , Qs is the mean of
the observed discharge, T is the total time, and G is a shaping factor. We
have used a value of 10 for the shaping factor (Vrugt, 2016).

An acceptance rate greater than 15 % and R < 1.2 for all parameters
used for calibration is a good indicator of acceptable performance and

convergence (Vrugt, 2016). R is a statistic to determine when conver-
gence of the sampled Markov chains has been achieved. The DREAM

algorithm can calculate the acceptance rate and R automatically for
each chain during simulations. During the calibration phase, DREAM
converged successfully within 10,000 simulations. After DREAM
converged, a subset of 224 parameter sets were chosen based on
acceptable values for the acceptance rate and available computing re-
sources (8 cores with 28 cores per node; 8x28 = 224).

The median of streamflow from 224 calibration parameter sets
simulations has been used to compare with observed flow for both
calibration and validation years. Water year 2017 data were used for
calibration, because it was not unusually wet or dry relative to the
available record. Water years 2015-2016 and 2018-2019 were used for
model validation. Water year 2014 data were also used as a one-year hot
start in the SWMM model to stabilize initial conditions. The performance
of the calibrated model was calculated by using percentage coverage
(observations falling within 95 % prediction intervals), Nash-Sutcliffe
efficiency coefficient (NSE), and coefficient of determination [R?).

2.5. Streamflow analysis

Once calibrated and validated, the SWMM model was used to
simulate streamflow for one period with historical RCM data
(1976-2000) and three future periods (2021-2095) for all four climate
model outputs using each of the 224 sampled parameter sets, to capture
the uncertainties associated with calibration parameters and variability
across climate models. Streamflow metrics were calculated from
discharge time —series from the 224 sampled parameter sets.

Flow duration curves were constructed using the simulated stream-
flow time series from exceedance probability (P) of ranked streamflow
data, using

P=[M/(n+1)] @
where, M represents the ranked position from highest to lowest and n

represents the total number of values in the streamflow time series. Flow
duration curves were calculated for each period and flows at different
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exceedance probabilities (0.5 %, 10 %, 25 %, 50 %) were extracted from
flow duration curves to calculate the percentage change as compared to
the historical period. Low flows with an exceedance probability greater
than 50 % were not used in further analysis, due to the limitations of
calibration for low flows using the SWMM model (Avellaneda et al.,
2017; Hamel et al., 2013; Hossain et al., 2019; Nayeb Yazdi et al., 2019).
Flow duration curves were also calculated on a seasonal basis for sum-
mer (June-August), winter (December-February), spring (March-May),
fall (September-November).

The Gumbel distribution was used to estimate flood frequencies of
different return periods (2, 5, 10, 25, 50, 100 years) using the annual
maximum 5-minute streamflow for each climate model output, analysis
period, and parameter set. The Gumbel distribution has been extensively
used in previous studies for the estimation of flood frequencies e.g.,
(Alfieri et al., 2015; Pang et al., 2022).

We selected a single, representative parameterization of the SWMM
model to use for quantification of the effects of inter-climate model
spread on hydrologic projections. As our representative parameteriza-
tion, we identified the single parameter set that produced the flow
duration curve closest to the median streamflow at each quantile from
all parameter sets, as measured by least value of root mean square error
relative to the median streamflow. This was done separately for the
historical period for each RCM and resulted in identification of the same
parameter set for all climate model outputs (hereafter, the median
parameter set). Note that the median parameter set may not produce the
median of the cumulative distribution function (CDF) for specific flow
return periods (Fig. 2). The median parameter set thus represents one
realization of calibration for each climate model output (black dots in
Fig. 2). Observing the range of these parameter sets (black horizontal
lines in Fig. 2) allows us to assess the inter-climate model spread. In
addition, the uncertainties associated with the hydrologic model
parameterization are assessed through the 90 % prediction intervals (PI)
of the CDF curves produced from each of the four climate models with
the 224 parameter sets for the selected exceedance probabilities and
flood frequencies (PIs shown as colored horizontal lines in Fig. 2). To
summarize, the inter-climate model spread was assessed through the
range of median parameter sets (width of black line, Fig. 2), while the
hydrologic parameter uncertainty was assessed by the widths of all four
PIs (colored lines, Fig. 2). If all four PIs are larger than the range of
median parameter sets, we conclude that hydrological parameter
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uncertainty is more important than climate model spread (for example,
Fig. 2a, all four colored line widths are larger than black line).
Conversely, if the range of median parameter sets is larger than all four
PIs, we conclude that climate model spread is more important than
hydrological parameter uncertainty (for example, Fig. 2b, black line
width is larger than all four colored lines). Finally, if the range of median
parameter sets is smaller than some of the PIs but larger than others, we
interpret this result to mean both uncertainties are approximately
equally important (for example, Fig. 2c, black line is smaller than brown
and green lines, but larger than blue and red lines).

3. Results
3.1. Changes in temperature and precipitation

Raw climate model output overestimated total monthly precipitation
and underestimated mean monthly temperature as compared to
observed data (Fig. Sla-b). Mean absolute error (MAE) between
observed and raw hourly precipitation and temperature data ranges
from 0.24-0.29 mm and 0.5-0.9 °C respectively. After bias correction,
MAE is reduced to 0.20-0.21 mm for precipitation and 0.1-0.2 °C for
temperature.

Across the four climate model outputs, bias-corrected mean annual
temperature is projected to increase by 1.3-1.9 °C in the initial period,
by 2.7-3.7 °C in the mid-century, and by 4.1-6.0 °C in the late century
relative to historical temperatures (Table S1). Variation between the
climate models in mean annual temperature is less for the historical
period and more for the late century (Table S1). Across the four climate
models, mean annual precipitation is projected to increase by 136-140
mm during the initial period, 138-340 mm during the mid-century, and
209-445 mm during the late century, relative to the historical period,
(Table S2). The maximum increase in mean monthly precipitation oc-
curs in April (Fig. S2).

Depth-duration-frequency curves for 1-hour storms show that there
will be an increase in precipitation depth by 14-40 % in the late century
relative to the historical period, for 6-month to 10-year return periods
(Fig. 3). The range reflects variability across climate models, and all
return periods have similar projected percentage increases. Results for
the 24-hour storm show somewhat greater increases, with up to a 50 %
increase in precipitation from 1- and 2-year storms (Fig. S4).
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Fig. 2. Illustration of the change from historical conditions for selected flow exceedances produced by 224 hydrological parameter sets per climate model output
(colored CDF curves), versus the range of change projected by a single realization (median parameter set, black dots) across climate model outputs. The horizontal
lines below the CDFs illustrate the 90% PI for each climate model output (colored lines) and the inter-model spread for the median parameter set (black line). In (a),
inter-climate model spread is smaller than all hydrological PIs for flows with an exceedance probabilities of 0.05 for initial century period, indicating that hydro-
logical parameter uncertainty is more important than climate model spread. In (b), inter-climate model spread is larger than all hydrological PIs for an exceedance
probabilities of 0.5 for initial century period, indicating that climate model uncertainty is more important than hydrological parameter uncertainty. In (c), inter-
climate model spread is larger than some, but not all hydrological PIs, for an exceedance probabilities of 0.25 for initial century period, indicating that climate

model and hydrological parameter uncertainty are approximately equal.
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3.2. Hydrological model performance

91942191688125Probability distributions from the 224 parameter
sets sampled after model convergence show distributions around the
median parameter values (Fig. 4). The model performs well for high
flows and rising and falling limbs of the observed and simulated
hydrographs match well with each other (Fig. 5). Comparison between
observed and median simulated discharges for four validation years
found satisfactory performance in all years, with NSE ranging from 0.62
to 0.74 and R? ranging from 0.64 to 0.76 (Table 2). The percent of ob-
servations within the simulated 95 % prediction interval (coverage (%)
in Table 2) for the years 2014 and 2015 was lower than 50 %, likely
because of the higher percentage of low flow periods during those years
and the choice of likelihood function for calibration of the model.
(Avellaneda et al., 2017) also found less good performance of a SWMM
model for low flow periods following calibration using NSE.

Most parameter sets are tightly clustered around the median
parameter set over the whole flow duration curve (Figs. S5-S8). There
were 8 parameter sets that showed a wide spread in flow duration curves
from median, especially for the medium and low flows. The parameter
sets showing this dispersion were consistent across climate model out-
puts. The median and low flows exhibited a wider spread as compared to
the high flows.

3.3. Flow duration curves

Climate change increases streamflow in West Creek as compared to
the historical period. The median flow duration curves (FDC) (i.e., the
FDC generated by the median parameter set) shifts upward in all future
periods and in all climate model outputs for flows with < 50 % ex-
ceedance (Fig. 6). For the 0.5 %, 10 %, 25 %, and 50 % exceedance
probability flows, the patterns of hydrological variation among climate
model outputs and over time are broadly similar (Fig. 7, Figs. S9-511).
There is more agreement in percentage change of flows across climate
models during the initial period as compared to the mid and late periods
(Fig. 7).

To understand what information would be lost by considering only a
single SWMM calibration for each climate model, we plotted the CDF
from all 224 simulations of all four climate models (896 simulations
total) and identified the four values that would be identified if only the
median parameter set had been used (Fig. 8). For the median (50 %
exceedance flow), the four median parameter sets span ~ 60 % of the
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CDF in the initial period and ~ 80 % of the CDF in the mid and late
periods, but the median parameter sets from WRF_HadGEM2-ES is very
near the high end of the CDF (67-98 %) for all future periods (Fig. 8a). If
only one hydrological simulation were done for each climate model, this
result might not be considered an extreme projection of future change.
For the 25 %, 10 %, 0.5 % exceedance flows, the four median parameter
sets bracket the steep part of the CDF, spanning about 60 % of the total
CDF and are reasonably symmetrical around the median (Fig. 8cba). For
some flows in some future periods, median parameter sets from two
climate models produce very similar results (e.g., 25 % exceedance, mid
period). If median parameter sets generate results on the tail of the CDF,
and only a single calibration is considered, the likelihood of a large or
small change in flow could be over-estimated. For example, for 0.5 %
exceedance in the late period (Fig. 8a), two of the median parameter sets
produce results that are around 0.2 on the overall CDF, which could lead
to over-estimating the probability of a small change in future flows.

For most of the analyzed future flows, climate model spread is more
important than parameter uncertainty, based on comparing the range of
median parameter sets and the 90 % PI for each model (Fig. 8). Over the
21st century, both climate model spread and PIs increase, but climate
model spread increases more quickly. For the initial period, flows with
0.5 % and 10 % exceedance have Pls that are greater than the range
across climate models, so parameter uncertainty is more important for
the overall uncertainty of those flows (Fig. 8ab). For the 25 % exceed-
ance flow, the two sources of uncertainty are approximately equal
(Fig. 8c), whereas for 50 % exceedance flows, climate model variability
is more important than the parameter uncertainty (Fig. 8d). During the
mid-century period, 0.5 % exceedance flows are approximately equally
affected by parameter uncertainty and climate model spread (Fig. 8a),
but for the same period, smaller flows are more affected by climate
model spread than parameter uncertainty (Fig. 8b-d). During the late
century, flows with all exceedance probabilities have climate spread
spread greater than the PI range, so climate model uncertainties are
more important than parameter uncertainties as we move farther into
the future (Fig. 8).

3.4. Flood frequency analysis

The use of multiple climate model outputs and parameter sets pro-
vides a range of possible flood frequencies of 2, 5, 10, 25, 50 and 100
return periods for all periods (Fig. 9, S16-518). All four climate models
produce an increase in the 2-year return period for all future periods
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-
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Fig. 5. Simulations of predicted discharge by using 224 sampled parameter sets from DREAM for part of the calibration year (2017). The black dots represent the
observations. The blue region represents the 95% predictive uncertainty bounds from discharge simulated by 224 parameter sets. The output time step is 5 min. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 2
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Summary of model performance statistics for the median discharge time series and the 224 parameter sets sampled after model convergence.

Water year Phase Median Discharge time series 224 Parameter Set Range
NSE R? Coverage (%) NSE R? Coverage (%)
2017 Calibration 0.77 0.78 71 0.64-0.81 0.65-0.84 58-83
2014 Validation 0.67 0.70 23 0.47-0.71 0.58-0.77 18-41
2015 Validation 0.70 0.73 44 0.65-0.73 0.60-0.79 39-55
2016 Validation 0.62 0.64 60 0.57-0.69 0.59-0.72 51-73
2018 Validation 0.74 0.76 49 0.64-0.78 0.71-0.83 45-59
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Fig. 6. Flow duration curves for the historical and future periods. Each line represents the curve produced by the median parameter sets, i.e., those that generate the
flow duration curve closest to the median for each climate model output in the historical period. The historical period is 1976-2000, initial is 2021-2045, mid is
2046-2070, and late is 2071-2095. In terms of percent change from historical flows, the impact of climate change is larger on the more frequent flows as compared to

the 0.5% exceedance flows (Figs. S9-11).

(Fig. 9a), but there is considerable variability among climate models in
terms of the ranges of changes. For return periods > 5 years,
WRF_HadGEM2-ES projects a much smaller change in flood magnitudes
than the other climate models (Fig. 9b, Figs. S16 to S19). This difference
relative to the other models was not apparent in examination of the
precipitation depth-duration-frequency projections (Fig. 3, S3).
Simulations using 224 sampled parameter sets provide a much larger
range of future flood predictions than using only the median parameter
set for each climate model (Fig. 10). The steepest part of the CDFs of all
return periods is well covered by the median parameter sets during the
initial and mid periods, with only ~ 20 % and 10 %, respectively, of the
largest projected changes not covered by the four median parameter
sets. In the late period, however, >40 % of parameter sets produce
changes greater than projected by any of the median parameter sets for
floods with return periods > 5 years. This could lead to under-estimating
the true likelihood of large changes, if only one calibration per climate

model was used.

For most future floods, parameter uncertainty is approximately equal
to or less important than climate model spread, but the importance of
parameter uncertainty varies with flood size and the future period
(Fig. 10). As flood magnitude increases, climate model spread increases,
but the PI remains fairly stable. For the initial period, floods with return
periods from 2-25 years have PIs that are both larger and smaller than
the range of the median parameter sets, so climate model spread and
parameter uncertainties are approximately equally important (Fig. 10a-
d). For the same period, floods with return periods of 50 years and 100
years shows that the climate model spread is more important than the
parameter uncertainty (Fig. 10e-f). During the mid-century, both un-
certainties are equally important for floods with return periods of 2 and
5 years (Fig. 10ab), but for the floods with larger return periods (10-100
years) climate model spread is more important than parameter uncer-
tainty (Fig. 10c-f). During the late century, floods with return periods of
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2 and 5 years (Fig. 10ab) showed that the parameter uncertainties are 3.5. Influence of RCM and GCM on hydrological projections

more important than climate model spread, but for the larger return

periods 10-100 years, both uncertainties are approximately equally The choice of RCMs used in this analysis was limited to CORDEX

important (Fig. 10c-f). datasets with 0.22°/25 km spatial resolution and 1 h precipitation
outputs. This resulted in two climate projections that had a shared
parent GCM MPI-ESM-LR but had differing RCMs (REGCM4 vs. WRF).
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Figs. S16-S19.

These two climate projections generate similar hydrology during the
initial period, but diverge later in the century. Three climate projections
used WRF as the RCM, but had differing parent GCMs. When considering
a single parameter set, variability among hydrological projections is
largest during the late century period for sub-annual flows with 0.5 % to
50 % exceedance probabilities. WRF_HadGEM2-ES projects the largest
changes in these flows, aligning with its large projected changes to 6-mo
to 1-year precipitation in both 1- and 24-hour storms by the late century.
Conversely, three climate projections generate similar projected changes
to floods during the late century. WRF HadGEM2-ES projects the
smallest changes to floods, despite producing the largest 24-hour storms
with 2- to 10-year return periods. There is greater variability among
climate projections in the mid-century period, for both 24-hour storms
and floods. Again, WRF_HadGEM2-ES projects a more modest change to
floods with > 10 years return periods than the other climate models.

4. Discussion

Northeastern Ohio is getting warmer and wetter, leading to a sub-
stantial increase in urban streamflow over the 21st century. Despite
differences in urbanization and watershed scale from previous studies
on flow regime impacts of 21st century climate change in the Great
Lakes region, the magnitude of change in West Creek’s flow regime is
broadly consistent with other regional studies (e.g., Byun et al., 2019;
Shrestha et al., 2021). Accepting multiple parameter sets during cali-
bration resulted in a broader range of hydrologic outcomes than was
seen across the climate models when only one parameter set was used
for SWMM modeling. Overall, uncertainty due to calibration parameters

10

is approximately equally important to climate model spread for pro-
jecting changes to future moderate to high flows and floods. As has been
previously shown for bias correction decisions (Malek et al., 2022),
failure to account for model calibration uncertainties could lead to over-
or under-design of critical urban water infrastructure, including bridges,
culverts, pipes, and stormwater controls (Cook et al., 2017).

The use of multiple climate models helps constrain confidence in the
future flows and floods, by providing an assessment of agreement or
spread in projections. Other studies have assessed the importance of
RCM versus parent GCM for regional climate change predictions (e.g.,
Bukovsky and Mearns, 2020). In the study region, climate models may
produce varying hydrologic outcomes as a result of their representation
of the Great Lakes (Briley et al., 2021) and projections of low level jet
dynamics (Zobel et al., 2018), among other differences. Our results show
that HadGEM2-ES produces substantially different hydrology than the
other models we considered, despite having fairly similar results to the
other models in the precipitation depth-duration-frequency analysis.
HadGEM2-ES projects more of an increase in summer precipitation, and
a higher number of days with precipitation > 25 mm at mid-century,
than other climate models (Figs. S21, S22), suggesting that both sea-
sonality and sequencing of heavy precipitation days may contribute to
the differences in flow projections, as observed in other systems (e.g.,
Berghuijsetal., 2016; Ye et al., 2017). Thus, choice of climate model can
influence predicted future high flows and floods beyond what is
apparent from examination of precipitation depth-duration-frequency
curves. Depth-duration frequency analysis was not sufficient to fully
identify when climate model spread would be large for modeled flows
and floods in continuous simulations. Engineering decisions in urban
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Fig. 10. The cumulative distribution function (CDF) of percentage change of flood frequencies as compared to the historical period for all 4 climate models. Each
curve represents the data from 896 simulations (224 simulations for each of 4 climate models), while the horizontal lines represent the PI of SWMM results for one
climate model. In all panels and for all periods, the PI from RegCM4_MPI-ESM-LR is the top horizontal line, WRF_GFDL-ESM2M is the second line, WRF_HadGEM2-ES
is the third line, and WRF_MPI-ESM-LR is the bottom line. The black dots represent the values for the median parameter sets, i.e., those that generate the flow
duration curve closest to the median for each of the 4 climate models in the historical period. The horizontal span of black dots represents the climate model spread
for a single calibration. The initial period is 2021-2045, mid is 2046-2070, and late is 2071-2095.

watersheds are often based on depth-duration-frequency curves, which
are used to synthesize design storms (e.g., Cook et al., 2017; Grimaldi
et al., 2021). However, our results show that analysis of climate change
effects based on only design storms could fail to capture the full range of
streamflow response, and they suggest there is an important role for
continuous streamflow simulations, not just design storms, to inform
urban infrastructure decisions in the context of changing precipitation
patterns.

Compared to a single calibration, the use of multiple realistic cali-
bration parameters helps capture a much wider range of flows for in-
dividual climate models, as well as in aggregate. The comparison of
single vs multiple parameters suggests that for sub-annual flows with
exceedance probabilities of 0.5-25 %, >30 % of the changes projected
by multiple calibrations are outside the range projected by single cali-
brations from the climate model ensemble. Both upper and lower ends of
the CDFs are missed by single calibrations. The impact of calibration
parameters is even greater in the case of flood frequency analysis. For

these rarer events, we miss 40 % of the CDF generated by multiple
calibrations, when using only one calibration per climate model. Here
we chose to focus on the median parameter set from a Bayesian cali-
bration approach, and this median parameter set may not be represen-
tative of a single “best” calibration using other approaches. Less
exhaustive calibration approaches could produce a single parameter set
that does not span as wide a range of projected changes as the median
parameter set, or they may be biased lower or higher on the CDF.
Extrapolating a distribution from four points (one per climate model)
could result in over-confidence in a particular projected future (e.g., as
seen for 10-100 year floods in the late century, Fig. 10). Thus, choice of
a single calibration parameter set could lead to the underestimation of
the design parameters for stormwater drainage and flood control
infrastructure, similar to the effects seen by (Cook et al., 2020) from
RCM resolution and bias correction. Continuous simulations of 100
years of flow using 224 parameter sets is computationally expensive, but
it produced a wide range of flows, enabling more robust estimation of

11
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the uncertainties associated with flows and floods with different ex-
ceedance probabilities.

When there is relatively good agreement among climate models (e.g.,
near term flows), hydrologic model calibration uncertainty is particu-
larly important to consider, based on comparison of PI to inter-model
spread of the median parameter set. When climate model spread was
less than 30-35 % for the four model outputs examined, parameter
uncertainty was larger or equally large using the Bayesian model cali-
bration approach employed here. For the West Creek watershed,
parameter uncertainty was equally or more important to capture for
most near-term (i.e., initial period) moderate to high flows and floods, as
well as for late century floods. Conversely, where climate model spread
is large, such as during the mid-century for floods or late century for
moderate to high flows, parameter uncertainty is relatively less impor-
tant. To reduce computational expense, a potential approach is to
initially use a single calibration to assess climate model spread relative
to specific desired hydrologic metrics. If climate model spread is large,
Bayesian calibration may not add much value, relative to expense.

A full assessment of all sources of uncertainty in projections of the
hydrological impacts of climate change in urban streams is impractical
for most engineering applications. Along the cascade of choices from
emissions scenario, GCM, downscaling technique, bias correction tech-
nique, precipitation disaggregation method, hydrological model selec-
tion, and model parameter calibration, we focused on uncertainty
arising from the choice of downscaled GCM versus hydrological
parameter uncertainty. This choice was motivated by the availability of
multiple climate model outputs via NA-CORDEX (Mearns et al., 2017)
and Bayesian calibration techniques (e.g., Vrugt, 2016) as putatively
accessible to applied hydrologists and by previous work identifying
these uncertainty sources as hydrologically important (e.g., Avellaneda
and Jefferson, 2020; Feng and Beighley, 2020). Our work builds on
previous studies evaluating the effects of GCM spatial and temporal
scale, and bias correction techniques on infrastructure design uncer-
tainty (Cook et al., 2020). Unlike some studies in less urban watersheds
(e.g., Addor et al., 2014; Feng and Beighley, 2020), we did not compare
multiple hydrological models, in part because SWMM is so widely used
for urban hydrological applications. Work remains to assess the uncer-
tainty imparted by the precipitation disaggregation (e.g., Miiller-Thomy
and Sikorska-Senoner, 2019) in the context of other uncertainties in the
climate impacts projection cascade, especially in the context of projec-
ting changes to urban floods. Nonetheless, the present work provides
guidance on when climate model spread may be most important for
uncertainty considerations, when hydrological parameter uncertainty is
important, and examples of where caution is needed if parameter un-
certainty is not accounted for.

5. Implications and conclusions

By the end of the 21st century, under the RCP8.5 climate change
scenario there will be major changes in the hydrology of urban streams
in the Great Lakes region, as compared to a 1976-2000 baseline. Pro-
jections of increasing future high flows and floods in West Creek suggest
that hydrologic changes arising from climate change can potentially lead
to infrastructure damage, loss of human lives and ecosystem degrada-
tion in urban watersheds. These risks can be minimized by considering
climate change in the planning of new infrastructure and management
of existing infrastructure, including green stormwater infrastructure,
stream restorations, and flood warning systems (e.g., Giese et al., 2019;
Perry et al., 2015).

We show that consideration of multiple climate models and hydro-
logical model calibration parameter sets helps capture a wider range of
potential climate change impacts on urban streamflow. Quantification
of the wide range of uncertainties associated with climate change pro-
jections, including those arising from hydrologic model calibration, is
helpful to understand the risks of over- or under-estimation of design
variables for culverts and bridges, green infrastructure, and other flood
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mitigation infrastructure in urban watersheds (Lai et al., 2022; Wright
et al., 2021).

Results from the SWMM model of West Creek show that where
climate model spread is low to moderate, uncertainties related to cali-
bration parameter sets are important. Further, our results demonstrate
that ignoring either climate model variability or hydrologic parameter
uncertainty could lead to substantial under- or over-estimation of high
flow and flood magnitudes. While computationally expensive, a
Bayesian calibration approach that accepts multiple realistic parameter
sets enables the creation of CDFs of projected flows. These CDFs can be
used for data-driven decision making for water resources management
that explicitly considers multiple sources of uncertainty.
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