
Scaling of Algorithmic Bias in Pulse Oximetry with Signal-to-Noise Ratio

Jiaming Cao1, Neil Ashim Mehta1, Jingyi Wu2, Sossena Wood2, Jana M. Kainerstorfer2, Pulkit Grover1

Abstract— Recent work has noted a skin-color bias in existing
pulse oximetry systems in their estimation of arterial oxygen
saturation. Frequently, the algorithm used by these systems
estimate a “ratio-of-ratios”, called the “R-value”, on their way
to estimating the oxygen saturation. In this work, we focus on
an “SNR-related” bias that is due to noise in measurements.
We derive expressions for the SNR-related bias in R-value
estimation, and observe how it scales with the signal-to-noise
ratio (SNR). We show that the bias can arise at two steps of
R-value estimation: in estimating the max and min of a pulsatile
signal, and, additionally in taking ratios to estimate the R-value.
We assess the bias resulting from the combination of the two
steps, but also separate out contributions of each step. By doing
so, we deduce that the bias induced in max and min estimation
is likely to dominate. Because the SNR tends to get worse with
higher melanin concentration, our result provides a sense of
scaling of this bias with melanin concentration.

I. INTRODUCTION

Pulse oximetry (PulseOx) is based on the technique of
photoplethysmography (PPG) which optically estimates blood
volume changes in tissue due to cardiac pulsations. PulseOx
estimates arterial blood oxygen saturation non-invasively. It is
used extensively to monitor patients’ health at home and in the
clinics and ICUs. This paper is motivated by bias in PulseOx
estimates when recording on patients with darker skin tones
(e.g. [1], [2], [3], [4]). This bias is extremely unfortunate:
PulseOx is a critical tool in deciding the need for a ventilator
after acute respiratory distress syndrome (ARDS), e.g., due
to Covid-19 or other respiratory illnesses.

Melanin, a high-absorbing and high-scattering skin pig-
ment [5], is a known hindrance to PulseOx. Commonly,
PulseOx systems inject light at 2 wavelengths into the tissue
and measure the received light intensities. These are used to
estimate arterial blood oxygenation by noting that the arterial
component is the only one that is “pulsatile”, i.e., changes
with the cardiac pulse. PulseOx systems output the “SpO2

value”, i.e., the PulseOx estimate of the ground truth “SaO2”
value, i.e., the ground truth arterial oxygenation (which can
be obtained, e.g., through blood-gas measurements). The
classic algorithm for obtaining the SpO2 value (see, e.g. [6])
separates IAC,i, the pulsatile “AC-component” (caused by
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the cardiac pulsation), and IDC,i, the non-pulsatile DC
component (baseline intensity of the measured light), at the
two wavelengths (i = 1, 2). Next, the ratio: R =

IAC1/IDC1
IAC2/IDC2

,
called the “R-value”, is computed. The AC components
are normalized with the DC component at the respective
wavelength (hence the term “ratio of ratios” for the R-value).
This R-value is subsequently plugged into a “calibration
curve”, whose output is the SpO2 estimate. The division by
the DC-component is intended to normalize for variations,
including the effects of melanin (as explained through a
derivation in [6]). However, as is evident from several
classic [2], [3], [4] as well as recent works [1], [7], [8],
[9], melanin-related bias is still substantial.

Why does this bias arise? Rigorous simulation analyses [10]
show that, if melanin concentration is not accounted for, bias
arises because the paths that the photons take are altered due
to scattering by melanin particles. This altering of their paths
affects the relationship between the received intensity of light
and the transmitted intensity, not captured by a calibration
curve that is the same for all participants. Consequently,
calibration curves are biased, even when no measurement
noise is present. We call this bias the “noiseless bias”. Our
work identifies another source of bias in PulseOx estimates:
an “SNR-related” bias, that arises due to sensor noise. In
Section II, through theoretical results, we explain why the
SNR-related bias arises, and obtain the scaling of bias with
the SNRs at the two wavelengths in high-SNR situations. In
Section III, we use simulations that add noise to real data to
understand this scaling in practical situations.

Intuitively, reduced SNR would contribute to higher vari-
ability in PulseOx estimates. It might be less obvious why
it would contribute to a bias. In Section II, we show that
SNR-related bias arises at two steps of R-value estimation:
in estimating the AC-amplitudes by computing max and
min of a pulsatile signal, and, additionally in taking ratios
to estimate the R-value. We assess the bias resulting from
the combination of the two steps, but also separate out the
contributions of each step. By doing so, we show that the
bias induced in max and min estimation is likely to dominate
at high SNRs, but is present only when the SNRs at the
two wavelengths are substantially different. This bias term
rises roughly as 1√

SNR
(see Eq. (5) for the exact expression).

Our simulations in Section III confirm these predictions: the
bias rises roughly linearly with noise standard deviation (i.e.,
as 1√

SNR
), and, additionally, the bias is small when the SNRs

of at the two wavelengths are equal.
How does the SNR-related bias connect with skin color? As
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noted, melanin is highly absorbing and scatting [5], and causes
different signal attenuation at different wavelengths [11].
Indeed, simulation analyses in [12] show that the SNR is
lower for participants with higher melanin. Interestingly, even
seemingly small biases in R-value estimates, induced e.g. at
high SNRs, can induce fairly high biases in SpO2 estimates.
To see this, note that the calibration curve is approximately
linear (with a negative slope), as long as SpO2 is only varied
by a few percentage points. Thus, with a change in sign
(due to the negative slope), the bias in an R-value estimate
is approximately linearly proportional to the bias in the
respective SpO2 estimate. To understand this slope, in typical
calibration curves (e.g. see [13]), a small bias of ≈ 0.03
in the R-value estimate can affect a 1% bias in the SpO2

estimate, which is the average bias observed in PulseOx for
darker skinned participants in [8].

II. HOW DOES BIAS SCALE WITH SNR? A THEORETICAL
RESULT

As discussed, we focus on the classic algorithm that is
used in many commercial systems [14]. For simplicity of
analysis, we assume that the DC components are estimated
without bias or error, and thus they are not used in our
analysis. In simulations in Section III, we also estimate the
DC components, and show that the scaling of the bias in
R-value estimates with SNR remains qualitatively similar
even with the inclusion of the DC component.

First, in Section II-A, we introduce preliminary results,
which we use subsequently in Section II-B to assess the bias
and its scaling with SNR, where the assumptions in bias
assessment are clearly stated.

A. Lemmas that help estimate the bias

Lemma 1 (Max/min bias): For uniform, independent and
identically distributed (iid) noise, Zi ∼ U[−∆,∆], the
estimate Ẑmax = maxi{Zi} for i = 1, . . . , n has the bias:

Bias(Ẑmax) =
(n− 1)∆

n+ 1
, (1)

and variance

Var(Ẑmax) =
4n∆2

(n+ 1)2(n+ 2)
. (2)

Proof: We will now evaluate the bias for X̂max =
maxi{X + Zi}, where X > ∆ is a constant. Since the
computed bias does not depend on X , post computation of
the bias, we will simply subtract X from E

[
X̂max

]
to arrive

at the bias in Ẑmax.
Define Fmax(t) := Pr(X̂max ≤ t), the cumulative distribu-

tion function (cdf) of X̂max. Then,

E[X̂max] =

∫ ∞

0

(1− Fmax(t))dt

= X +∆− 2∆

n+ 1
,

Finally, after subtracting X , the bias in Ẑmax is:

Bias = ∆− 2∆

n+ 1
=

n− 1

n+ 1
∆. (3)

Variance can be calculated similarly.
Remarks: For applying Lemmas 1 in practice, one can, for

instance, examine the number of time-points at which the
(noiseless) signal is relatively constant, and plug in that value
of n. Alternatively, for a slowly varying signal, the result
can be rederived under assumptions of bounded slope. The
result shows that the bias in maximum estimation using the
estimate X̂max increases linearly with ∆ (for a fixed n). For
n = 0, there is no bias, as there is only one sample and that
sample itself is the estimate of the maximum. However, this
requires sampling the process at the (unknown) time at which
the maximum is attained.

Lemma 2 (Ratio-bias with biased numerator, denominator):
Assuming the bias of the estimators of y and x is bx and by ,
respectively, with independent, mean-0 additive noises zy
and zx of variances σ2

y and σ2
x, the resulting ratio estimator

R̂ = ŷ
x̂ has a bias:

E[R̂]−R ≈ (by −Rbx)

x

(
1− bx

x

)
+

Rσ2
x

x2
. (4)

Proof: The derivation builds on the textbook derivation
of ratio bias, see e.g. [15, Ch. 4]. The overall bias in R̂ is:

E
[
y + by + zy
x+ bx + zx

]
−R

= E

[
y + by + zy −R(x+ bx + zx)

x(1 + bx+zx
x )

]
(a)
≈ 1

x
E [(y + by + zy −Rx−Rbx −Rzx))

=
1

x
(by −Rbx)

(
1− bx

x

)
+

Rσ2
x

x2
,

where (a) uses the approximation that 1
1+η ≈ 1 − η for

η ≪ 1.1

B. Using lemmas to estimate bias and its scaling with SNR
in PulseOx estimates

Now, to apply the results in Section II-A to assess bias in
commonly used (two-wavelength) PulseOx systems, we make
the following assumptions (working backwards from PulseOx
calculation to light absorbance in the two wavelengths). First,
we assume that the bias in R-value estimate is linearly
proportional to the bias in the PulseOx estimate (with an
opposite sign). Second, enabled2 by Lemma 1, we assume
that the estimate ÎAC,j of IAC,j , the absorbance in the j-
th wavelength, has a bias bj = α∆j for some α > 0, and

1Here, this approximation holds best when the bias and noise are much
smaller than the signal value, which can be thought of as a high SNR
situation.

2A good choice of n from Lemma 1 is not known here as it depends on
sampling rate and its relation to how fast the signal changes. Instead, the
parameters α and γ capture the effect of n because functions of n form
multiplicative constants for bias and variance.
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variance σ2
j = γ∆2

j . We also assume that the noise that
caused these biases is independent for the two wavelengths.

These assumptions allow us to use Lemma 2. The assump-
tions hold under limited conditions. The first assumption
holds when the arterial O2 saturation (SaO2) only varies in
a small interval, and is more accurate when SaO2 takes a
value that is not very high (i.e., below 95%). The second
assumption relies on independence of noise, which holds,
e.g., if the dominant noise is thermal noise.

Under these assumptions, utilizing Lemma 2, the bias in
estimating ratio R (which is approximately negative of bias
in SpO2 estimate) is given by:

Bias ≈ αR

(
∆1

IAC,1
− ∆2

IAC,2

)(
1− α∆2

IAC,2

)
+

Rσ2
2

I2AC,2

=
αR
√
γ

(
1√

SNR1

− 1√
SNR2

)(
1− α√

γSNR2

)
+

R

SNR2
, (5)

where SNRi = I2AC,i/σ
2
i = I2AC,i/(γ∆

2
i ) and σ2

i = γ∆2
i .

Remarks: The first term in (5) scales as
√
1/SNR, or as

the noise standard deviation, if the ratios of the two SNRs is
kept constant and the SNRs are increased proportional to each
other. This is because the term (1− α/

√
γSNR2) approaches 1

at high SNR. The first term dominates the second term, which
scales as 1/SNR, at high SNR. However, if the two SNRs are
equal, the first term is zero, and the second term dominates
(and the bias would also be smaller). This motivates our
simulation scenarios in Section III, when we examine how
bias scales with SNR for real data corrupted by simulated
noise. There, we worsen the SNR while maintaining the noise
standard deviations as scalar multiples of each other.

III. SIMULATIONS-BASED ASSESSMENT OF HOW BIAS
SCALES WITH SNR

This section uses noise-corrupted real data to study effects
of SNRs at the two wavelengths on bias in the estimated
R-value. While Section II establishes that a bias is added, and
characterizes it theoretically, it makes several assumptions
on the signal, and has unknown parameters (α, γ). Further,
it ignores the effect of IDC . Simulations in this section thus
take us a step closer to practice, and also help us understand if
the results obtained in Section II are useful guiding principles
in practice.

“Ground truth” data: To create a realistic simulation, we
acquired near-infrared spectroscopy (NIRS) data, which is
the basis of photoplethysmography (PPG) data [16], from a
healthy participant’s finger in transmission mode, smoothened
it by filtering, and utilized it as the ground truth data on which
noise is added to study the effects of SNR. The data collection
and analysis was approved by Carnegie Mellon University’s
Institutional Review Board. The data was collected over a
10-minute period with a sampling frequency of 79.47 Hz at
2 wavelengths, 730 nm and 830 nm, indexed by 1 and 2,
respectively. An ISS Imagent system (ISS Inc., Champaign,

Fig. 1. Estimated bias in R-value for different noise standard-deviations
and SNRs. Predictably, as the noise standard-deviation increases (i.e. SNR
decreases), the magnitude of bias in R-value estimates increases. The sign
of bias depends on the relative SNR ratio between the 2 wavelengths. The
bias for matched SNRs is shown in red. Consistent with theoretical results
in Section II (specifically, Eq. (5)), the bias is small when the SNRs are
equal, and rises linearly with the standard deivation for unequal SNRs when
the SNR ratio, SNR1/SNR2, is kept constant.

IL) was used for the data acquisition. Minimum-order FIR
lowpass and highpass filters with a commonly used passband
(0.66-15 Hz) [17], designed to attain a -60dB attenuation in
the stopband, were employed.

For computing a ground-truth R-value, we split the data
into non-overlapping 2-second windows over which we
estimate the max and min of the signals to approximate
the AC amplitude of the j-th wavelength, IAC,j . These
AC components are normalized by their respective DC
components, IDC,j , estimated by taking the sample mean of
the signal in the 2-second window. The R-value is averaged
over all such windows (m=295):

R =
1

m

m∑
i=1

(IAC,1/IDC,1)
(i)

(IAC,2/IDC,2)(i)
. (6)

This value is assumed to represent the true parameter, R, in
the bias calculation, E

[
R̂
]
−R.

Simulated noisy data: We proceed to simulate the effect of
worsening SNR via the addition of uniform noise independent
and identically distributed across time at each wavelength. The
noise at the two wavelengths is generated independently and
the noise variance is varied modeling the effect of worsening
SNR, where the SNR of the j-th wavelength is defined as:

SNRj =
Ī2AC,j

σ2
j

, (7)

where ĪAC,j is estimated as the difference between the average
of all peaks and the average of all valleys of signal j. Since
it is, in general, hard to predict which of the two wavelengths
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would have higher SNR in practice, we assessed the bias-
noise relationship at various SNR1/SNR2 ratios, ranging
from 1/4 to 4 (shown by the color bar in Fig. 1).

Estimating R-value from noisy data: The filtering and
amplitude estimation process from above is performed now
on this noisy data, and the R-value estimated is averaged
over all 2-second windows to compute the average estimated
value:

E
[
R̂
]
=

1

m

m∑
i=1

(ÎAC,1/ÎDC,1)
(i)

(ÎAC,2/ÎDC,2)(i)
. (8)

Results: Fig. 1 plots the bias resulting from subtracting R
from E[R̂]. On the x-axis is σ1, the noise standard deviation
at 730 nm. The SNR-ratio value (indicated by the color
of the curve) determines the noise variance at the 830 nm
wavelength. Consistent with (5) in Sec. II-B, at equal SNRs
for the two wavelengths, the bias is small. Further, the
magnitude of the R-value bias scales approximately linearly
with σ1 (for fixed SNR-ratios), especially so for low and
moderate values of σ1, again, consistent with (5).

IV. DISCUSSIONS AND CONCLUSION

In this work, we demonstrate both mathematically and
using simulations that when the SNR of the PPG signals
worsen, the bias of R-value estimation, hence SpO2 esti-
mation, increases. However, there are nuances: when both
channels have similar SNR, the increase in bias magnitude
is small. When both channels have very different SNRs, the
bias magnitude is large. These results are consistent across
theory and simulations. Because darker skinned participants
have lower SNR for the same intensity of injected light,
This suggests that the SpO2 readings from highly pigmented
subjects can be highly inaccurate and thus bias clinical
decisions related to their health.

In practice, our assumptions in Sections II and III might be
simplistic (e.g., iid noise). Nevertheless, our results explain
when this SNR-related bias can be large, and how knowledge
of the underlying data statistics (e.g. through online estimation
of signal parameters or characterization of skin melanin
concentration) can be used to correct this bias.

For simplicity, we focus for the classic algorithm [6], that
estimates R-values on their way to SpO2 esttimation. While
this algorithm is commonly used in practice, other algorithms
that directly invert the modified Beer-Lambert law could also
be employed. Relatedly, some PulseOx systems use multiple
(> 2) wavelengths. Assessment of bias for such alternate
algorithms and/or multiple wavelengths is left for future
work.

What our study reveals is that, in addition to addressing
the “noiseless bias”, discussed in Section I (and studied, e.g.,
in [10]), we also need to address the “SNR-related bias” that
is the focus of our work. Removal of this SNR-related bias
appears to require estimation of SNR, which most current
systems do not perform. True equity might requires a change
in hardware as well. E.g., if the injected light intensity is

high enough, these biases will be sufficiently small that they
can be tolerated (e.g. <0.05% in PulseOx estimates).
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