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Abstract—This paper brings together topics of two of Berger’s
main contributions to information theory: distributed source
coding, and living information theory. Our goal is to understand
which information theory techniques can be helpful in under-
standing a distributed source coding strategy used by the natural
world. Towards this goal, we study the example of the encoding of
location of an animal by grid cells in its brain. We use information
measures of partial information decomposition (PID) to assess
the unique, redundant, and synergistic information carried by
multiple grid cells, first for simulated grid cells utilizing known
encodings, and subsequently for data from real grid cells. In
all cases, we make simplifying assumptions so we can assess
the consistency of specific PID definitions with intuition. Our
results suggest that the measure of PID proposed by Bertschinger
et al. (Entropy, 2014) provides intuitive insights on distributed
source coding by grid cells, and can be used for subsequent
studies for understanding grid-cell encoding as well as broadly
in neuroscience.

Index Terms—Distributed source coding, grid cells, neuro-
science, Partial Information Decomposition

I. INTRODUCTION

A natural question that arises when examining problems of
representation in life sciences is: how does one understand a
code found in nature? In this work, we explore this question by
investigating the context of encoding of an animal’s location
by grid cells in the brain’s entorhinal cortex. The focus of
our work is on examining which information-theoretic tools
are applicable to the problem. Grid cell encoding, widely
studied in neuroscience and understood to be a sophisticated
form of encoding [1]-[10], brings together two of Berger’s
main contributions to information theory spanning decades:
distributed source coding, and neural encoding of informa-
tion. It is widely accepted that the grid cells perform a
distributed source coding, where the animal’s location is the
source being encoded. Berger’s pioneering works in distributed
source coding [11]-[19] were deep and impactful contribu-
tions to the field, creating problems that are still actively
pursued today, and tools that are actively utilized. Less well
known are his contributions to theoretical neuroscience. Berger

This work was supported in part by the National Science Foundation under
Grant CCF-CIF-1763561.

Ariel K. Feldman is with the Neuroscience Institute, Carnegie Mellon
University, Pittsburgh, PA 15213 USA (e-mail: arielfeldman@cmu.edu).

Praveen Venkatesh is with the Allen Institute and the University of Washing-
ton, Seattle, WA 98109 USA (e-mail: praveen.venkatesh@alleninstitute.org).

Douglas J. Weber is with the Mechanical Engineering Department and
Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213
USA (e-mail: dougweber@cmu.edu).

Pulkit Grover is with the Electrical and Computer Engineering Department
and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213
USA (e-mail: pgrover@andrew.cmu.edu).

wrote (through a long and fruitful collaboration with William
Levy [20]-[26] as well as beyond [27]-[31]) a set of deeply
theoretical works on “Living information theory”, the topic
(and the title) of his 2002 Shannon lecture [31]. The focus of
these works is on understanding encoding by neurons in the
brain, from single neurons to neural populations, from funda-
mental information-theoretic principles. What drove much of
his work is what is called the “Efficient Coding Hypothesis”
in neuroscience, which posits that the brain is efficient at its
use of resources [31].

Sreenivasan and Fiete were the first to suggest that grid
cells’ encoding of location, which is our focus here, is effi-
cient [2] in a Shannon-theoretic sense. They suggest that grid
cell “modules” (with each module encoding a phase in the
space) are spatial representations of short-period clocks (with
different periods), tiling the space for efficient (and, in fact,
error-resilient) representation. The work is one of many in the
field that examines grid cell encodings [3].

The focus of this work is not to contribute to this still
evolving literature. Instead, we focus on understanding which
information-theoretic tools can be applied to grid cell data,
and can provide deeper understanding of the problem. In
particular, of interest to us are tools from Partial Information
Decomposition (PID), which provide a richer set of inferences
than classical measures of conditional entropy and mutual
information. The need for definitions for PID was first raised
in neuroscience [32], [33] (see [34] for a nice tutorial) with the
objective of identifying synergistic information, when present,
and various definitions were developed over the years [35]-
[37]. Our focus is on understanding which PID definition
should and can be used to understand neural encoding'.

To understand which definitions should be used, we use
simulated grid cells with random binning of space (in the style
of Wyner-Ziv/Slepian-Wolf coding [38], [39]). We then create
“parity” grid cells that, together with the random-binning
grid cells, create Hamming coded grid cells. We use the
resulting simulated data and the intuition of Hamming codes
as a playground to test whether our chosen measure provide
insights consistent with information-theoretic understanding of
random binning and Hamming codes. We observe that while
a commonly used PID definition (of Williams and Beer [35])
does not transfer well to this domain, the definition posed by
Bertschinger et al. (often called “BROJA PID”, where BROJA
is an acronym of last names of the authors) [37] provides
answers consistent with information-theoretic intuition. To

In the spirit of Berger’s note on thinking “critically about information-
theoretic concepts and methods and then apply only those that genuinely
transfer to the new territory” [31].



assess whether this definition can be used in practice, we apply
it on real neural data. Again, in the spirit of identifying whether
the chosen definition is appropriate, we use cells that appear
to be from the same grid cell module (i.e., differing only in
phase, but not in scale of representation; see Section IV-E).
In Section IV-E, we estimate BROJA PID for real grid cells
likely from the same module to estimate unique, redundant,
and synergistic information in these cells. We run two PID
analyses. While the first PID analysis, on fine-grained location,
is shown to be equivalent to a conditional entropy analysis
(Section IV-C), the second (on very coarse-grained location,
left vs right half) provides different insights. Our observations
are in line with expectations of grid cell representations from
the same module, further supporting the potential of using the
BROJA PID definition in neuroscience.

In summary, the main contributions of this work are as
follows:

o We connect the encoding used by grid cells to represent
location with information-theoretic techniques for dis-
tributed source coding, specifically, to random binning.
We further use this connection to generate a set of
Hamming coded grid cells for baseline understanding of
random binning-based strategies.

o We use real grid cell data (from [10]) to quantify con-
ditional entropy scaling of grid cell representations, as
a cell’s output (codeword symbol) is conditioned on
an increasingly large set of other cells’ outputs (other
codeword symbols). Our analysis reveals that there is
significant dependence in binning across encoders, which
is expected as they are presumably drawn from the same
module.

o To perform a deeper analysis, we first inform the choice
of a suitable definition of Partial Information Decom-
position (PID) in this context, and then estimate the
PID quantities to understand how different cells together
represent information about the location. Specifically, we
study two cases: how grid cells represent the location
itself, and how they represent crude information about the
location, namely left versus right half of the environment.

Throughout this work, to estimate PID quantities, we use
the estimator developed in [40] for BROJA PID (definition
developed in Bertschinger et al. [37]). The spiking data
analyzed here is freely available, and was collected in Trettel
et al. [10] by implanting electrodes in the medial entorhinal
cortex of rats during an open field exploration experiment.

II. PRELIMINARIES

A. Partial information decomposition as a tool for under-
standing neural encoding

Historically, measures of entropy [41] and mutual informa-
tion [32], [42] have been applied in addressing questions about
information content, especially in neural contexts, including
in the pioneering work of Berger [11]-[19]. Entropy captures
the uncertainty in a random variable, A, with distribution
p(a), where A is the set of values that A can take and may
be expressed as: H(A) = — > . 4p(a)log, p(a), whereas
mutual information quantifies the dependence between the

two variables as the average reduction in the uncertainty
(i.e. entropy) of one random variable from its unconditional
entropy to the value given the value of another I(A; B) =
H(A) — H(A|B).

Partial information decomposition (PID) is an emerging
body of work [35], [37], [43] in information theory that
decomposes the mutual information I(M; (A, B)) about a
random variable M contained in the tuple (A, B) into four
non-negative terms as follows:

I(M;(A,B)) =Uni(M : A\ B) + Uni(M : B\ A)+ )
Red(M : (A, B)) + Syn(M : (A, B)).

Uni(M : A\ B) denotes the unique information about M that
is present only in A and not in B. Similarly, Uni(M : B\ A)
is the unique information about A present in B and not in
A. The term Red(M : (A, B)) is the redundant information
about M present in both A and B, and Syn(M : (A, B))
is the synergistic information not present in either A or B
individually, but present jointly in (A, B). All four of these
terms are nom-negative. Also notice that, Red(M : (A, B))
and Syn(M : (A, B)) are symmetric in A and B. Concep-
tually, PID aims to decompose mutual information into a
sum of terms representing unique, redundant and synergistic
information. For completeness, a brief introduction to PID is
provided in Appendix A. The following equality also holds:

I(M;A) =TUni(M : A\ B)+Red(M : (A4,B)). (2)

B. Grid cells as an appropriate neural population

To gain insights about encoding in the brain from PID, we
want to identify neural populations whose encoding schemes
are likely to depend on a mixture of the quantities in (1).
Spatially-tuned neurons have complex, and in the case of
certain cell types, distributed firing fields, and thus their com-
binations provide a mixture of the PID quantities described
in Section II-A. Grid cells, found predominantly in layer 2 of
the medial entorhinal cortex, are a functional classification of
mostly stellate, but also pyramidal, spatially-tuned neurons [8],
[44], [45]. The characteristic firing rates of these cells are
a function of the animal’s physical location in space. Grid
cells, along with place cells and several other spatially-tuned
functional cell types, compose the neural circuitry underlying
spatial reasoning; however, they differ from other spatially-
tuned neurons in how they encode an animal’s location. In a
typical rodent experimental paradigm (spatially on the order of
1 meter? in lab conditions), a given grid cell will have multiple
locations at which its firing rate is high, while place cells,
for example, will typically only exhibit one larger favored
firing location [46]. We refer to the collection of locations
at which a grid cell’s firing rate is heightened as that grid
cell’s firing field. The firing fields of different grid cells may
overlap, indicating a potential richness in the aforementioned
information quantities and thus making them an interesting
encoding to understand using PID.

III. GRID CELL ENCODING AS DISTRIBUTED SOURCE
CODING

We now describe grid cell encoding of location from an
information-theoretic perspective. In doing so, we utilize mod-
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Fig. 1. a) Left, an illustration of a rat exploring the I m X 1 m environment,
which, for the purpose of illustration, is discretized into 100 segments of
size 100 cm? each (i.e., 10 cm x 10 cm segments). Right, the firing map
of one grid cell (plotted based on data from [10]) as the rat moves through
the environment. b) Grid cell encoding described through lens of distributed
source coding. Multiple encoders encode the same source for reconstruction
by a decoder. A rate limited (and potentially noisy) channel may connect the
encoders to the decoder. Created with BioRender.com

els and results from the grid cell literature [2], [3], [47], and
summarize them (with some simplification) for readers famil-
iar with information theory. Grid cells are thought to perform
a distributed source coding (see Fig. 1) of a single source,
namely, the location of the animal in a limited region. For
simplicity, the outputs of the encoders (individual grid cells)
can be thought of as rate constrained (in nature, this abstracts
the limitations on firing rate of neurons). The decoder, e.g.
a subsequent region of the brain, is aware of all encoders’
encoding strategies, and uses them to decode the location to
some degree of precision. The environment is divided into
segments, a simplification of what is often seen in grid cells
fields? illustrated in Fig. 1(a). The actual degree of precision
is determined by which modules of grid cells are used by the
decoder (roughly, a module describes encoding strategy where
all encoders represent location using ‘segments’ of similar
size, see Fig. 1).

In this work, we assume for simplicity that the subsequent
circuitry only has access to cells from a single module,
which is specified by coarseness of quantization (bin size).
We further assume that each cell has a deterministic binary
output, depending on which segment the animal is in: it
either fires (1), or does not fire (0), corresponding to a rate
constraint of 1 bit in Fig. 1. We now describe how the
strategy used by grid cells resembles binning strategies in
distributed source coding literature. First, as discussed above,
the space is quantized into segments. The quantization error

2Grid cell firing fields are often better approximated using hexagonal
lattices, instead of the square lattice we use here, but that has little bearing on
our analysis and conclusions, and is done purely for simplicity of exposition.

is thus bounded by the resolution of the spatial quantization.
Posed as a distributed coding strategy, the quantized source
is the index denoting the segment of space, and is available
to each encoder. Assuming random coding, the codebooks at
the k£ encoders are independently generated as follows: using
random binning, each encoder’s codebook encodes the source
(i.e., the segment of space) by randomly assigning it one
of 2% bins (here, one of two bins, the ‘0’ bin, or the ‘1’
bin, as R = 1). The encoders encode using their respective
codebooks. The decoder utilizes encoding of each distributed
encoder, and finds the segment (if unique) that corresponds
to the k bits (grid cell outputs). If not unique, the decoder
declares an error. The probability of error of this strategy is
bounded by the following lemma.

Lemma 1. If k grid cells are available for N, number of
segments, the following upper bound on the error probability
holds for random coded grid cells:
Ngeg — 1

2k
In particular, if k = (14 n)logy Neeg, Pe <

P, < 3)

1
Nitg "

The proof is straightforward from random coding, and is
included in Appendix B for completeness. Note that Ngee
captures the distortion (quantization error) in reconstruction:
the larger its value, the smaller its distortion. It is important
to observe that binning in natural grid cells in a module is far
from independent: the firing fields are typically phase shifts
of each other [47]. However, random binning and independent
coding are well understood within information theory, so they
enable us to test our tools on simulated data prior to application
on real data. We also note that ours is the first work where
grid cell encoding has formally been connected with binning.

Why would such a distributed source coding strategy be
useful? After all, if only one source is being communicated,
then all encoders can coordinate, and it may appear that there
is no need for distributed strategies. However, binning could
still be an effective strategy here: a) binning effectively creates
an error-correcting (fountain) code that is resilient to erasures
(which, in biological context, can mean access to a required
number of neurons, but any k neurons suffice); b) in biological
plausibility of neural representations and computations, one
widespread criterion is whether it can be implemented® in a
decentralized fashion [48]-[50]; c) different questions may be
answered by the same firing patterns of multiple grid cells.
We explore (c) further in Section IV-E and Section V.

IV. UNDERSTANDING ENCODING OF MULTIPLE GRID
CELLS

A. Simple grid cell examples

Consider the 3 examples of simple, spatially-tuned neurons
in Fig. 2. Each neuron has a different firing field, and we ask
different questions about the animal’s location in the environ-
ment to illustrate how PID quantities change when altering
the question we ask of the firing fields. We will represent

3In fact, a stronger constraint is often imposed, where learning also must
happen in a decentralized fashion (see, e.g. [48]).
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Fig. 2. Partial information decomposition: Using very simplified examples
of spatially-tuned neurons, we discuss how combinations of 3 different firing
fields can be decomposed into unique, redundant and synergistic information,
based on different questions about the animal’s location. In this illustration,
each neuron’s firing field covers exactly half of the space. Neuron 1 fires
when the rat is in the left half of the environment, neuron 2 fires when the
rat is in the top half, and neuron 3 fires when the rat is in the right half of
the environment. The color of the quarters of space in the figure correspond
to the operation 1, & 1,. Created with BioRender.com.

whether or not neuron ¢ fired with the indicator function 1 ;.
For simplicity, this is assumed to be a deterministic function
of the location, i.e., 15, = 1 if the animal is within the
firing field, and O if not. Suppose we were to ask whether
the animal is in the left half of the environment (i.e., M is
whether the animal is in the left half), and we were given
access to the firing of neurons 1 and 2, where Neuron 1
(1 n,) only fires when the animal is in the left half of the
environment, and Neuron 2 (1 ,) only fires when the animal
is in the top half of the environment. Intuitively, using PID,
we should discover that the information from these neurons
about the animal’s position, specifically regarding the left vs.
right half of the environment, is entirely unique. In other
words, I(M; (1n,,1n,)) = Uni(M :1n, \1yn,) = 1 bit.
In contrast, if we were to ask the same question (keep M
the same), but use the firing of neurons 1 and 3, where
neuron 3 (1,) fires only when the animal is in the right
half of the environment, we would find that the information
provided by the neurons is entirely redundant. Given the
output of neuron 1, we will always know the output of
neuron 3, and vice versa — the information they possess
about the question M is the same. This is expressed as
I(M, (]1N17]]-N3)) = Red(M : ]1N17]lN3) =1 bit.

Expanding our question, consider the case regarding in-
formation about the quadrant the animal is in (upper left,
upper right, lower right, or lower left) contained in neurons
1 and 2, which have independent firing fields (in that one
is only a function of the x-axis value, and the other of
the y-axis value). The question now has 4 possible answers,
which we can represent with 2 bits. Due to the rate con-
straint of 1 bit per neuron (it either fires or does not), we
still know I(M;1y,) is maximally 1 bit for neuron ¢. The
knowledge that neuron 1, for example, fired would reduce
our uncertainty of which quadrant the animal is in by half

— only the upper left and lower left quadrants would be
the remaining candidates. Likewise, knowing neuron 2 fired
leaves us only two possible quadrants — the upper left or
the upper right. Given their firing fields are independent,
redundant information must be O bits. It follows, then, that
I(M;1y,) = 1 bit and I(M;1y,) = 1 bit. By applying
constraint (1), I(M; (1n,,1n,)) = Uni(M : 1y, \ 1n,) +
UHI(M : ILNQ \]lNl).

Suppose we were to ask a more complex question, such
as that represented by the “XOR operation” in Fig. 2, which
divides the environment into two pink quarters and two blue
quarters. Given neurons 1 and 2, to determine if the animal
is in a pink or blue quarter of the space (M), neither cell
on its own reduces uncertainty in the question. Knowing just
neuron 1 fired means there is equal probability the animal is
in either a pink or blue quarter; the same goes for knowing
just neuron 2 fired. However, when able to access the firing
of both neurons, performing 1y, @ 1y, not only reduces
uncertainty in the answer to the question, but answers it
completely. Thus, the information provided by neurons 1 and 2
about this question is entirely synergistic: I(M; (1n,,1n,)) =
Syn(M : (1n,,1n,)) =1 bit.

The problem of understanding grid cell distributed source
coding of location is a complex one, and requires careful
consideration of the PID definition used to assess grid cell
information content, as well as the message that the PI
decomposition is obtained for.

B. Selecting an appropriate PID measure

Within the scope of this work, we focus on two of the most
relevant PID measures. The first is the measure proposed in
the work of Williams and Beer [35], which was the first work
that imposed the constraint (1). Williams and Beer focused
on quantifying redundant information, imposing 3 axioms:
the symmetry axiom, the self-redundancy axiom, and the
monotonicity axiom [35], [37]. We refer the reader to the
original works for the definitions of these axioms. While there
is broad awareness of shortcomings of this measure [36], [37],
[51] in theory, it has nevertheless been used in some recent
neuroscience works [52], [53]. The second measure, BROJA
PID [37], focuses on defining the unique information and
redundant information in terms of the marginal distributions
P(m,a) and P(m,b), using the same notation as Section II-A.
This measure also follows the 3 axioms from [35], as well as
an additional identity axiom, as was first defined in [51]. From
the formulation of this measure, which is detailed in [37], we
expect BROJA PID to outperform the measure of Williams
and Beer in neuroscientific applications. Grid cells provide a
concrete example which reveals some of the limitations of the
measure of [35] in an existing neuroscience context, and how
[37] yields a more intuitive PID quantification.

Consider the case in which two spatially-tuned neurons have
independent encoding schemes (such as neuron 1 and neuron
2 in Fig. 2, each containing 1 bit of information about the
location of the animal). By definition, then, the firing of one
neuron should not decrease our uncertainty about the firing
of the other neuron. Using the constraint (1), we can assess



whether the estimators defined in [35] and [37] match the
conditions of our example. The estimator posed by Williams
and Beer would simplify (1) to the following:

I(M;(1n,,1n,)) =Red(M : (In,,1n,))+
SyH(M : (]lNu]lNz))'

In the above simplification, the value of I(M; (1y,,1n,))
is 2 bits. The Williams and Beer measure would attribute
the mutual information of location and each neuron’s firing
to the redundant information contained in both, and none
to unique information contained within each neuron’s firing,
which would maximally be 1 bit of information. Thus, the
remaining 1 bit would be attributed to synergistic information.

However, because the two neuron encodings are indepen-
dently generated, intuitively, we know that this should not be
the case, as is discussed in Section IV-A. The knowledge of
the firing of one neuron should not decrease the uncertainty
about the firing of the other, and the redundant information
between them should be 0 bits. When we apply the BROJA
PID [37], we see the constraint (1) simplify instead to:

I(Ma (]1N17]1N2)) :UHI(M Ay \]1N2)+
Uni(M . ]lN2 \]lNl).

In this simplification, the value of I(M; (1n,,1y,)) remains
2 bits. The BROJA PID measure correctly decomposes the
mutual information about location to the unique information
contained in each neuron’s firing, and redundant information
between the neurons is assigned O bits.

The redundant information is nonzero using Williams and
Beer. PID is also observed for our more realistic simulated grid
cell examples in Section IV-D. The proof for that is included
in Appendix D.

Hence, we choose to use the BROJA PID measure [37]. We
include a brief summary of the definitions of both measures
in Appendix A, and refer the reader to the original works for
a full discussion of the technical details.

C. PI Decomposition of Location Representation by Deter-
ministic Grid Cells

Lemma 2. For any 3 random variables L,Y1,Ys such that
Y: = fi(L) for i = 1,2, where f;(-) are deterministic
functions, the following holds:

Uni(L: ¥ \ Ya) = H(Yi|Y2).

The proof is in Appendix C.

In a deterministic setting where a grid cell is certain to
either fire or not fire at any location [, Lemma 2 says that
the unique information that a grid cell’s output carries with
respect to another grid cell’s output about location becomes a
conditional entropy term. L.e., the message M is the location
L, and the Y;’s are the outputs of single or multiple grid cells,
as those are deterministic functions of L. When applied to
neural data, Lemma 2 enables us to verify that the unique
information term of our PID estimator matches the conditional
entropy quantity H(Y7|Y2). As Lemma 2 only applies in
the deterministic case, we choose to move forward with the

assumption of a deterministic setting for validation purposes.
Despite this limitation, we expect that the application of the
BROIJA PID estimator would be appropriate for a probabilistic
model of grid cell encoding.

This Lemma guides our choice of messages and analyses
on simulated and real grid cells, in Sections IV-D and IV-E.

D. Simulated Hamming-coded grid cells
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Fig. 3. Simulated data: Average redundant and unique information about
location contained in one grid cell, with respect to a set S of other grid cells,
as the cardinality of S grows, for both Hamming(7,4) coded grid cells (H.)
and grid cells coded using a less efficient error correcting code (L.E.). Created
with BioRender.com

In this study, for two distributed location coding strategies,
we obtain the PI decomposition for one grid cell’s represen-
tation of location in relation with a set S of other grid cells
(where the size of S is varied). Specifically, the Hamming
coded grid cells (H. in Fig. 3) use random binning for the first
4 grid cells’ outputs. Here, we divide the space into 100 square
segments (10cm x 10cm). Then, each segment is binned in to
the ‘0’ bin or the ‘1’ bin randomly, with probability half (as is
done in Section III). The parity relationships described by the
(7,4)-Hamming code are used to encode the remaining 3 sym-
bols (the code length is kept short for computational efficiency
of estimation) in an element/segment-wise fashion. The “less
efficient” (L.E. in Fig. 3) code uses the following coding strat-
egy: it encodes the first four symbols using random binning,
and the remaining three symbols using pairwise XORs, with
the code being: [Xl, X27 X3, X4, X1 @XQ, X1 @Xg, X3@X4]



Because of Lemma 2, a PID analysis turns out to be equiv-
alent to a conditional entropy analysis. This is because, with
deterministic encoding, the PI decomposition of location has
zero synergistic information. From the proof in Appendix C,
we know that the set A, (in the BROJA definition of PID
quantities in [37]) collapses to a single point set in the deter-
ministic case, and thus Syn(M : (Y1,Y2)) = I(M; (Y1,Y2)) —
infyen, I4(M;Y1|Y2) = 0, i.e., the synergistic information is
zero. This is also observed in Fig. 3, which also shows average
unique and redundant information for Hamming-coded and
less-efficiently-coded grid cells. Precisely, the plot shows U, =
% > ﬁ ZSQX:Xi¢S,|S|:s Uni(L: X;\ S), and Ry =
D (HTL) >oscx:xi¢s,|s|=s Red(L : (X;,S)). The sum
of these two quantities is constant, and is the average mutual
information between L and X; (averaged over 7).

The average unique information measure, U, is related* to
the efficiency of a code: for efficient codes, parallel channels
should communicate independent information, and hence one
expects that H stays high as |S| increases, and then collapses
all at once. L.e., more efficient representations should exhibit a
sharp fall as the cardinality of the set S grows. At some point
while increasing the size |S|, the average unique information
any given grid cell has, with respect to the grid cells in S,
about the exact location in space, should suddenly drop. The
inclusion of one additional symbol should provide exclusively
redundant information about exact location. We illustrate this
concept next through comparing two coding strategies for
encoding using multiple grid cells.

In Fig. 3, as compared to a less efficient error correcting
code, the Hamming(7,4) neurons demonstrate a steeper fall as
the cardinality of S increases (esp. from 3 to 4), and the less
efficient code shows a fall in conditional entropy that is more
gradual and starts earlier.

Overall, for this thought experiment of simulated grid cells
with distributed coding strategies of different efficiencies,
the BROJA PID measure continues to provide quantification
consistent with intuition.

E. Real grid cells

1) Data: Using data from Trettel et al. [10], we analyze
grid cells across 5 rats exploring an open field of size Im x
Im. For our analyses, we use 5 grid cells from one session
for each rat. To determine the firing fields for these grid cells,
we first segment the space into bins of size 6.25 cm? (2.5cm
x 2.5cm). A bin was considered to be in the grid cell’s firing
field if, when comparing the total spike count in that bin with
the total time spent in the bin, the grid cell’s firing rate was at
least 1 spike/second. Upon visual inspection, as is illustrated
in Fig. 4, these firing fields matched our expectations of what
a grid cell firing field would look like, and appear to be from
the same module within each rat, based on the size of their
firing fields.

4Because unique information is the same as conditional entropy for
deterministic grid cells (Lemma 2), the unique information that is plotted

in Fig. 3 is the same as the average conditional entropy term: Hg =
1 n 1

w 2=t Ty 2oscx:X;¢8,|s|=s H(XilS).

< 1 meter >
A ) =)
u § 70 §
[0} (]
- ' < oo 2 W
|l I g
o . 5 50 3 20
] ~ ~
(O] n [ ] ot L et
= s [[* ® [lis
— |1 J Zlt0 2
i = | lo ~ [
e 8 E]
- n 1 'g Fr10 'g 5
y |® (] L] o L

Fig. 4. An example of two grid cells’ firing fields from the same rat, during
the same open field exploration session, overlaid. Bins depicted are of size
2.5cm X 2.5cm.

2) Expected results: Because the entire Im x 1m space is
divided into segments of 2.5cm x 2.5cm, the total information
about location is at most log,(1600) ~ 10.64 bits. When the
message M is the fine-grained location, we expect each cell to
have a mutual information of at most 1 bit with the message
(because each cell’s output is treated as binary). Because the
cells are drawn from the same module, we expect them to have
small but not negligible redundancy about location. Knowing
one cell’s output provides us some information about another
cell’s output. E.g., if their firing fields have very little overlap,
then the firing of one cell would imply that the other cell likely
did not fire. From Section IV-C and Appendix C, because our
mappings are deterministic, we expect synergistic information
about fine grained location to be zero. As we increase the
cardinality of the set S of other cells, given that each cell
provides at most 1 bit of information, and the total information
about the location is > 10 bits, we expect unique information
to fall, but not to very small values.

For coarse grained information (message is whether the
animal is present in left vs right half), we expect each cell by
itself to carry little information (in a mutual information sense)
about the message. Thus, we expect unique and redundant
information in each cell to be small. We also expect, for S of
small cardinality, that synergistic information will be small, as
a few cells are unlikely to reveal with high probability which
half the animal is in. However, with enough cells from the
same module (which we did not observe in this dataset), we
expect synergistic information to jump sharply to a large value.

3) Results: We computed our average conditional entropy
measure (average unique information), H,, on data collected
from 5 grid cells from the same animals in [10]. The result
from one rat is shown in Fig. 5 (top plot, top curve), and
we include results from the other 4 in Appendix E. We see
that average conditional entropy (unique information) falls
gradually but consistently, and by the time the cardinality of
the set S reaches 4, it has fallen substantially. This suggests
that there is significant pairwise dependence, and even more
substantial 3-way, 4-way, and 5-way dependence between grid
cell representations (that grows gradually). This suggests that
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Fig. 5. PI decomposition using the BROJA definition when the message is
fine-grained (top plot) and coarse-grained (bottom plot) location. When the
message is fine-grained location, each cell largely has unique information
about location with respect to other cells, with only a little redundant
information that increases to a significant value as the number of other cells
is increased. However, when the message is a coarser grained location (here,
the message is whether the animal is in the left or the right half), very little
information is contained even in 5 cells. Jitter is introduced in the bottom plot
for visual clarity.

grid cells’ encoding has significant but not large dependence (a
Sth grid cell still offers unique information over 4 grid cells).

We next perform PID analyses on this real grid cell data
to understand how they represent crude information about
location: specifically, the message M now is whether the
animal is in the left or right half of the environment. Here,
information about the message from the same grid cell firing
data is now probabilistic — a single grid cell’s firing no longer
tells us deterministically if the animal is in one half or the
other, but rather has different probabilities of firing. Without
the deterministic setting needed in Lemma 2, conditional
entropy is not equivalent to unique information for a given
grid cell, and thus is no longer a good measure of information
represented by that neuron. Hence, a PID analysis is needed,
where we use estimators from [40].

The resulting PID analysis, setting M as a random variable
indicating left vs right half, is shown in Fig. 5. Our analysis
reveals that the PID quantities are quite small, and that, within

them, synergistic information dominates. This is expected, as
the firing field for any one grid cell should not, in general, be
informative about which half of the environment an animal is
in, setting the value Uni(M : X; \ S) to zero. Since the mutual
information I(M; X;) of a single grid cell output with the
message (whether the animal is in the left or right half) should
be almost zero (because grid cell firing fields are typically not
concentrated in one half of the environment), by (2), both
Uni(M : X;\'S) and Red(M : (X;,S)) are also almost 0.
Thus, synergistic information dominates.

Broadly, all of these inferences are consistent with our
expectations in Section IV-E2.

V. DISCUSSION

The goal of this paper, through theoretical results, toy
examples, realistic examples, and real-world data analysis, is
on understanding which tools from information theory pro-
vide intuitive insights on a distributed source coding strategy
chosen by nature. The focus is on discerning which definition
from partial information decomposition provides intuitive de-
scriptions of these coding strategies. Several examples suggest
that BROJA PID provides more intuitive quantification of PID
quantities than the Williams and Beer PID definition. It is
important to note that there are other PID definitions as well
(see, e.g., [54]-[56]), and a similar rigorous examination of
their use in neuroscience should be done before they are
used. This work adds to increasing evidence that the BROJA
PID definition provides useful insights. However, we are also
interested in examining the “O”-Information definition [56] in
this context, as that specific definition does not require choice
of a message.

The focus here is not on obtaining new neuroscientific
insights as several simplifications were made in order to have
intuition on what the PID estimates could be, so that we could
understand which PID definition is more applicable. Thus,
while this work focused on single grid cell modules with
binary deterministic mapping, future work will examine use of
BROJA PID to understand distributed source coding in cases
where the firing field is not deterministic or binary. It will
also examine coding by several modules, a problem of deep
interest in neuroscience. There, because of different spatial
resolution of different modules, we expect successive refine-
ment strategies, another area where Berger made substantial
contributions [14], [57], [58], to play a critical role.
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APPENDIX A
A BRIEF INTRODUCTION TO PARTIAL INFORMATION
DECOMPOSITION

The Partial Information Decomposition (PID) framework
decomposes the mutual information I(M; (A, B)) about a
random variable M contained in (A, B) into four non-negative
terms as follows:

I(M; (A, B)) =Uni(M : A\B) 4+ Uni(M : B\A)+

Red(M : (A, B)) + Syn(M : (A, B)).

Uni(M : A\B) is the unique information about M that is
present only in A and not in B; Uni(M : B\A) is the
unique information about M that is in B and not in A.
Red(M : (A, B)) is the redundant information about M
present in both A and B, and Syn(M : (A, B)) is the syner-
gistic information not present in either of A or B individually,
but present jointly in (A, B).

Irrespective of the exact definition of individual PID terms,
the following identities hold [35], [37]:

I(M; A) = Uni(M : A\B) + Red(M : (A,B)). (4
I(M;A| B) = Uni(M : A\B) + Syn(M : (A, B)). (5)

Given the three equations (1), (4) and (5), and four unknowns
(the four PID terms), the PID terms are not uniquely specified.
However, defining any one of the terms (e.g., Uni(M : A\B))
is sufficient to obtain the other three.

Williams and Beer define the redundant information as I ;,:

Definition 1 (Redundant information I,,;, in [35]).

Imin(M; A, B) Zp Ymin{I(M =m; A),
m
(6)
BROJA PID defines the unique information:

Definition 2 (BROJA Unique Information [37]). Let A be
the set of all joint distributions on (M, A, B), and A, be the
set of joint distributions with the same marginals on (M, A)
and (M, B) as their true distribution, i.e, A, = {Q € A :
qg(m,a)=Pr(M=m, A=a) and q(m,b)=Pr(M=m, B=b)}.
Then, Uni(M : A\B) = mingen,, Io(M; A|B).

APPENDIX B
PROOF OF LEMMA 1

Random coding: each segment of each grid cell’s encoding
is randomly assigned a value 1 or 0. The k-bit output of £ grid
cells is received at the decoder. The decoder finds the segment
(if unique) that corresponds to the & bits. The probability that
an incorrect segment, say the (7,7)-th segment, also has the
same k-bit encoding is 2k due to random coding. Now, the
probability that any of the incorrect Ngg — 1 segments have

the same k-bit encoding is, by union bound, ng%fl

I(M =m;B)}

APPENDIX C
PROOF OF LEMMA 2

Proof. From the definition of Unique Information in BROJA
PID [37],

Uni(L: X0\ Xo) = inf I,(L; X1| Xa), %
q P

where A, is a set of 3-way joint distributions on L, X1, X»
such that:

p = {q(l,$1,l‘2) : q(l7x1) = p(l,xl),q(l,mg) = p(l,l‘g)}.
3
Now,
plt.a) = pp(anl) = { HOL B S A0

Note that ¢(l,z1) =
hence, also, ¢(l) =
Similarly,

p(l,z1) from the definition of A, (and
p()-

p(l,x2) = { g(l)'l

Now, we claim that A, is a single point set, i.e., A, = {p}
and hence ¢ = p. To see this, let us examine ¢(I, 1, x2) € Ay

q(l,z1,22) = q()g(z1|l)g(w2|l, 21)

if T = f2 (l)
otherwise

_ { q(l).l if T = fl(l),wz = fg(l)
0 otherwise
_ { p().1 if 2y = fi(l), z2 = f2(1)
0 otherwise
=p(l,x1,2). )

Le., the optimization in (7) is over a singleton, ¢ = p. Thus,

Ul’ll(L : X1 \XQ) = I(L,X1|X2)

= H(Xi1]|Xz2) — H(X1| X2, L)
= H(X1|X2),
where the last equality follows from the observation that X
is a deterministic function of L. O
APPENDIX D

Iin = 1 FOR RANDOMLY-BINNED GRID CELLS FOR
REPRESENTING LOCATION

Here, we compute I, for Ny (quantized) source lo-
cations, each randomly (Ber(!/2)) assigned a value by each
encoder (independently).

= Zp(l) ml_inI(L =
(G)Zp manp (xi5]1) log ()( ))

(l, z])
—meZple log —— p(Ops)’

In (a), note that the notation (borrowed from [35]) is slightly
unusual, with the following definition: I[(L = [;X;) :=

Imin(L;XlaXQ) Z7X2)

-(10)



Zm;j p(z4]1) log %, whe.re z;; are the (binary.) real-
izations of X;. Then, say f(I) is the output of the grid cell.
Let us examine the term inside the min; for a fixed [, say [

. p(lo, ij)
min » p(lo, i) log ————=
i ; P plo)p(wij)
(b) 1 .
. Nseg
= min Z N log T 1
{mij st wiz=flo)} = °°® Noeg "~ 2

0 . 1 (@ 1
mi =

i Ngeg

; (11)
Nseg

where (b) follows from noting that p(lo, z;;) = feg if f(lo) =

z;; and 0 otherwise, and because p(ly) = — and p(z;;) =

1/2. Also, (c) holds because the set {z;; s.t. ;}ij = f(lo)} is

a single point set, since only one value of x;; satisfies z;; =

f(lp). Further, (d) holds because the term inside the min in

the LHS of (d) does not depend on 4. From (10), (11), we get:
1

— =1

Imin(L;XlaXQ) == N,
seg

12)
l

APPENDIX E
ADDITIONAL GRID CELL PID ANALYSES
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Fig. 6. The figure provides PI decomposition for a fine-grained message (left)
and a coarse-grained message (right), as described in Section IV-E, on 4 other
rats (5 cells from each, likely belonging to the same module). The figures
confirm that, qualitatively, the PID behavior is the same across animals for
either choice of the message. Jitter is introduced in the right plots for visual
clarity.



