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Abstract

The availability of electronic health records (EHR) has opened opportunities to sup-
plement increasingly expensive and difficult to carry out randomized controlled trials
(RCT) with evidence from readily available real world data. In this paper, we use EHR
data to construct synthetic control arms for treatment-only single arm trials. We pro-
pose a novel nonparametric Bayesian common atoms mixture model that allows us to
find equivalent population strata in the EHR and the treatment arm and then resam-
ple the EHR data to create equivalent patient populations under both the single arm
trial and the resampled EHR. Resampling is implemented via a density-free impor-
tance sampling scheme. Using the synthetic control arm, inference for the treatment
effect can then be carried out using any method available for RCTs. Alternatively
the proposed nonparametric Bayesian model allows straightforward model-based in-
ference. In simulation experiments, the proposed method exhibits higher power than
alternative methods in detecting treatment effects, specifically for non-linear response
functions. We apply the method to supplement single arm treatment-only glioblas-
toma studies with a synthetic control arm based on historical trials.
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1 Introduction

We introduce a novel Bayesian nonparametric regression model to construct syn-
thetic control arms from external real world data (RWD) to supplement single arm
treatment-only trials. The use of common atoms across multiple random probabil-
ity measures is a critical feature of the proposed construction. Models with similar
features have been used before in the literature, including Denti et al. (2021); Camer-
lenghi et al. (2019); Rodriguez et al. (2008); Teh et al. (2006).

Randomized controlled trials (RCT) are the gold standard in evidence-based eval-
uation of new treatments. RCTs are, however, increasingly associated with bottle-
necks involving volunteer recruitment, patient truancy and adverse events (Nichol
et al., 2010) and hence are often very time consuming, expensive and laborious. This
is of particular concern for rare diseases, such as glioblastoma (GBM). With digitiza-
tion of health records and other advances in medical informatics, new data sources are
becoming available that can supplement RCTs. For example, relevant information on
a control treatment is often available from completed RCTs, electronic health record
data, insurance claims data or patient registries from hospitals (Franklin et al., 2019).
Such external data, also referred to as RWD, can augment or substitute the control
group in the target clinical trial (Davi et al., 2020). This has led researchers to con-
sider the creation of synthetic control arms from RWD (see Schmidli et al. 2020 for a
review). However, the heterogeneity of RWD prohibits the direct use of patient level
data as a control arm, lest differences with the actual treatment population with re-
spect to patient profiles bias inference on treatment effects (Burcu et al., 2020). Many
existing methods adjust for the lack of randomization in treatment assignments by
correcting the bias in the response model and hence can be sensitive to the specifica-

tion of the treatment assignment as well as the response model as we discuss below.



In this article, we take a fundamentally different approach by resampling the RWD to
construct a cohort equivalent to the treatment arm in terms of their covariate profiles
which can then serve as the (synthetic) control arm.

There is a fast growing literature on the problem of incorporating RWD in clin-
ical trials. Traditional meta-analytic approaches aim to combine information across
studies to construct comparisons of treatments (Sutton and Abrams, 2001). Power
prior (Prevost et al., 2000; Chen and Ibrahim, 2000), commensurate prior (Hobbs
et al., 2011) and elastic prior (Jiang et al., 2023) constructions try to incorporate
information from historical data by way of informative prior models. However, these
approaches may be inadequate when the RWD population is considerably more het-
erogeneous than the experimental arm; see Miiller et al. (2023) for a review.

Many methods to incorporate RWD in trial design and data analysis are based on
propensity scores (PSs), defined as the conditional probabilities of treatment assign-
ment given covariates. In the context of incorporating external data, investigators
often use PSs for a patient being selected into the current trial versus the external
data; in case of supplementing a single arm treatment-only trial, the PSs are identical
to treatment assignments. Rosenbaum and Rubin (1983) showed that an unbiased
estimate of the average treatment effect can be obtained by PS adjustments. Most
PS-based methods can be broadly classified to be based on matching, stratification,
weighting, or regression. Matching is used to achieve covariate balance across differ-
ent arms. However, matching PSs do not generally imply matching covariates (King
and Nielsen, 2019). Stratification splits the data into strata with respect to PSs and
calculates an average treatment effect as a weighted average of within-stratum esti-
mates (Wang et al., 2019; Chen et al., 2020; Lu et al., 2022). PS-stratification may

be sensitive to the definition of the strata and weight-based estimators may be sen-



sitive to the misspecification of the PS model (Zhao, 2004). Regression adjustments,
that use the PS as a regressor for the outcome, address these issues (Rosenbaum
and Rubin, 1983) but the estimates may again be biased if the regression model is
misspecified (Vansteelandt and Daniel, 2014). Bayesian nonparametric models that
avoid a particular parametric family or structure, such as linearity, of the regression
relationship have thus also been proposed (Wang and Rosner, 2019). Nevertheless,
consolidated unidimensional PSs can be inadequate in matching multivariate covari-
ates from multiple studies (Stuart, 2010; King and Nielsen, 2019). Additionally, these
methods often do not efficiently use all available data by dropping unmatched data.
Finally, some other methods (Hasegawa et al., 2017; Li and Song, 2020), although
not specifically designed to create synthetic controls, also integrate multiple studies
using the covariate distributions.

In this article, we develop an alternative approach based on Bayesian nonparamet-
ric (BNP) mixture models. Mixture models imply a random partition of experimental
units linked to different atoms in the mixture (Dahl, 2006). We exploit this prop-
erty to propose a BNP common atoms mixture (CAM) model to introduce matched
clusters of patients in a treatment-only trial data set and a (typically much larger)
RWD. We show how such matched clusters allow a density free importance resampling
scheme to generate a subpopulation of the RWD such that the distribution of covari-
ates in the subpopulation can be considered to be equivalent to the single-arm trial.
That is, the patients in a matching RWD cluster can be considered digital clones of
patients in a matching cluster in the single-arm trial.

The proposed CAM model allows, among other things, the following two alterna-
tives for inference on treatment effects. Having established equivalent patient popula-

tions, inference can in principle proceed as if treatment had been assigned at random,



using inference for RCTs. Alternatively, we propose model-based inference using an
extension of the CAM model with a sampling model for the outcome. While both al-
ternatives are based on the same underlying CAM model, we prefer the model-based
inference on treatment effect as a more explicit and principled approach.

The proposed CAM model builds on related BNP models in the literature, in-
cluding the hierarchical Dirichlet process (DP) (Teh et al., 2006) which allows for
information sharing across multiple groups through common atoms, the nested DP
(Rodriguez et al., 2008) which can identify distributional clusters, and Camerlenghi
et al. (2019) who proposed a latent mixture of shared and idiosyncratic processes
across the sub-models. Denti et al. (2021) proposed a CAM model for the analysis of
nested datasets where the distributions of the units differ only over a small fraction
of the observations sampled from each unit. In contrast to these constructions, the
CAM model proposed here introduces more structure as needed in our application
by setting up two nonparametric Bayesian mixture models with shared atoms and
constraints on the implied clusters.

The rest of this paper is organized as follows. Section 2 describes the glioblastoma
study that motivated this work. Section 3.1 introduces the proposed common atoms
mixture model on the covariates and how it can handle variable dimensional covari-
ates of different data types; Section 3.2 introduces a novel density-free importance
resampling scheme to achieve equivalent populations; and Section 3.3 discusses the
general common atoms regression model, a flexible mixture of lognormals for censored
survival outcomes and an easy to use graphical tool for model validation. In Section
4, we discuss two alternative strategies for inference on treatment effects. Section 6
presents simulation studies. Section 7 shows results for the motivating GBM data.

Section 8 concludes with final remarks. Below, in Table 1, we list the many acronyms



used in the paper for easy reference.

Table 1: List of acronyms

Acronym Full forms Acronym Full forms
AUC area under the receiver operat- | DP Dirichlet process
ing characteristic curve GBM glioblastoma
BART | Bayesian additive regression | IS importance sampling
tree PPMx product partition model with re-
BNP Bayesian nonparametric gression on covariates
CAM common atoms mixture PS propensity score
CA- common atoms PPMx RCT randomized controlled trial
PPMx RWD real-world data

2 Motivating Application in Glioblastoma

Our motivating application arises from a GBM data science project at MD Anderson
Cancer Center. GBM is a devastating disease with the average life expectancy of
less than 12 months in the general population (Ostrom et al., 2016). Despite decades
of intensive clinical research, the progress in developing an effective treatment for
GBM lags behind that of other cancers (Aldape et al., 2019). In the last 30 years,
only two drugs (carmustine wafers and temozolomide) have been approved by the
Federal Drug Administration (FDA) for patients with newly diagnosed GBM (Fisher
and Adamson, 2021). These drugs extend median survival by less than three months
and neither offers a potential for cure. One major cause of the high failure rate of
the drug development for GBM is suboptimal design of phase II trials, in particular,
the lack of a control arm in many studies (Grossman et al., 2017). A review of
phase I/II GBM trials from 1980 to 2013 found that only 20 (5%) were randomized
compared to 365 (95%) single-arm trials (Grossman and Ellsworth, 2016). Reasons
for the dominance of single-arm trials include the small number of GBM patients
available for clinical trials and investigator’s desire to speed up drug development

and reduce trial costs. GBM is a rare disease by the definition of the Orphan Drug
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Act (FDA, 2020). Unfortunately, the high heterogeneity of GBM patients makes
single-arm trials highly susceptible to bias, contributing to the fact that almost all
phase II trials showing promising treatment effects failed in phase III RCTs (Mandel
et al., 2017). The objective of the GBM data science project is to address this
pressing issue by leveraging historical data collected at the MD Anderson Cancer
Center. The overarching goal is to develop a platform for future single-arm clinical
trials in GBM, with synthetic controls constructed from the historical database to
enhance the evaluation and screening of new drugs. Working towards this goal, we
describe here a method to create synthetic controls, as the engine of the platform, for
future trials.

We work with a database that comprises records from 339 highly clinically and
molecularly annotated GBM patients treated at MD Anderson over more than 10
years. Once the system is set, the database is expected to be continuously updated
with new patient data collected at MD Anderson Cancer Center and potentially also
be combined with the data from other institutions.

After discarding variables with minimal variability across patients and relying on
clinical judgment, we identified 11 clinically important categorical covariates. These
covariates are commonly considered as prognostic factors in GBM treatments (Nam
and de Groot, 2017; Alexander et al., 2019) and are briefly described in Table 2.

Figure 1 shows the categorical covariates in the historical database and a future
treatment-only study which we elaborate in Section 7. Figure S.1 in the supplemen-

tary materials highlights the lack of randomization in the two populations.



Table 2: Description of the covariates in the GBM data.

Covariate Description

Age dichotomized at 55 years

KPS Karnofsky performance score, categorized into three classes:
“< 607, “(60,80]” and “> 80”

RT Dose radiation therapy dose: dichotomized at 50 Gray

SOC received standard-of-care (concurrent radiation therapy and temo-
zolomide): Yes/No

cT participation in a therapeutic trial: Yes/No

MGMT status of MGMT (OS-methylguanine-DNA methyltransferase) gene:
methylated (M), unmethylated (UM) or uninterpretable (UT)

ATRX loss of the ATRX chromatin remodeler gene: Yes/No

Gender gender

EOR extent of tumor resection: “total”, “subtotal” or “laser interstitial
thermal therapy” (LITT, Patel and Kim, 2020)

Histologic grade | grade of astrocytoma: IV (GBM) (most cases), or
I-TIT (low-grade or anaplastic) (few)

Surgery reason | “therapeutic” or “other” (relapse)
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Figure 1: Glioblastoma dataset of 11 baseline categorical covariates with missing
entries in the two treatment arms. The left block shows the historical patients. The
(smaller) right block shows a hypothetical future trial.

3 Common Atoms Mixture Model

We first introduce a model for matching patients with respect to their covariate
profiles across different treatment arms and then an extension of the model to also
include outcomes. Later we will introduce two alternative methods for inference on

treatment effects that build on this model.



3.1 Common Atoms Mixture Model on the Covariates

Suppose we have S datasets (X, Ys,), s =1,2,...,S, comprising p-dimensional co-
variate vectors X ; = (Xs,1,. .- ,Xs,i,p)T and corresponding responses Y ; associated
with patients i = 1,...,n,. In this article, we assume the responses to be univariate.
Let s = 1 refer to the arm for the (new) experimental therapy, and s = 2,...,.S denote
the RWD datasets. Focusing on the motivating GBM application, we elaborate the
model for S = 2 with a single RWD set. When we have multiple historical datasets,
i.e., when S > 2, we would simply merge them and consider the merged data set
to be a single RWD with increased heterogeneity as illustrated in Section S.9.6 of
the supplementary materials. For a valid evaluation of treatment effects, it is then
important to verify equivalent patient populations, i.e., matching the distributions of
X, under s = 1 versus s = 2, or to otherwise adjust for any detected differences
(Burcu et al., 2020). As the RWD population can be from a variety of sources, such
data are typically more heterogeneous than the patient population in the ongoing
trial. We develop a novel BNP CAM model with this specific feature to model the
two distributions. The proposed CAM model gives rise to a random partition of sim-
ilar X ; and a matching partition of Xs ;. Clusters under the latter partition can be
considered digital clones of the matching clusters of the earlier partition.

We first construct the model for covariates X5 ; in the RWD. Let 5 = {Z’j};";l and
o = {2 }?‘;1 denote cluster-specific parameters and weights, respectively. We let

F3(Xo,i|m2,C)

I .o
iid

T id oo = = =
Xoi | Coma~ 32 m25q(Xoi [ C), G| &~ Go((j ] &), w2~ GEM(az). (1)
Here q(- | 5]) is a suitably chosen kernel with parameter Z’j, Go(- | &) is a prior
distribution for the Z’j’s, and GEM(«) is a stick-breaking prior on the mixture weights

corresponding to a DP with mass parameter « > 0 (Sethuraman, 1994). Let G =



P T2,j0¢ (*) denote a discrete probability measure with atoms at the Ej’s. An
- J
equivalent hierarchical model representation of (1) is

iid

X0 | G q(X0i]G), GIGRG, Glag€~DP{an,Go(-[€)},  (2)
where DP(«, Gp) is a DP with base measure G and concentration parameter o (Fer-
guson, 1973). The discrete nature of the DP random measure G gives rise to possible
ties between the (;’s, which define the desired clusters. For later reference we define
notations for these ties and clusters. Let ¢* = {¢¥, j = 1,...,k(nz)} denote the
distinct values in {¢;;i = 1,...,na2}, let ca; = j if §; = ¢F denote cluster membership
indicators defining clusters C; = {i : ¢; = CJ*} We assume the distribution of X ;

be a mixture with the same kernel ¢ and the same atoms ¢*,

Fi(X1,4|m1,6*)

iid —k N .
X | ¢~ Zj(:nf) m,q(X1; [ €), 1 ~ Dir {kf‘,;), ey %}7 (3)
where 1 = (711,..., T k(my)), Dir(as,...,a,) indicates an r-dimensional Dirichlet
distribution with parameters aq,...,a,, and a; > 0 is a concentration parameter.

Note that model (3) is defined conditionally on (1) and ¢* such that F; and F; share
the same set of atoms. Importantly, the construction avoids the imputation of clusters
(strata) with only X ;’s. There is always a corresponding (non-empty) cluster for
the X5,;’s from the RWD. This is important for the upcoming constructions. The
motivation here is that, owing to the bigger size of the RWD compared to the trial
arm, X, can be expected to exhibit greater heterogeneity than X (see, e.g., the right
panel in Figure 2).

In summary, we define Fy (X | 71, ¢*) = Ef(:"f) m1;q(X | ¢F) and Fy(X | 7, ¢) =
Z;; ma;q(X | CN']), with the prior on atoms and weights as discussed. Figure 2

shows a stylized representation of the generative process of the proposed CAM model.

Notice that here atom 53 is not linked with any X, observation and hence k(ng) = 3.
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Figure 2: An illustration of the CAM model: In the generative model, there are a
total of four atoms (.4 shared between RWD and the treatment arm (left panel).
Despite having positive weight, the atom 53 is not associated with any sample from
the RWD (right panel) and hence the density of the treatment arm is also allowed to

be supported only on the remaining non-empty clusters El, 52, 54 of the RWD. The
atom (s is linked with only the RWD (right panel). A cluster for the treatment arm
alone is however not permissible.

Accordingly, Fi(- | 71, ¢*) is a mixture of three components. Finally, no observation
from X, is linked to 52. The X,,’s linked to El and 54 can be regarded as digital
clones of the X ;’s linked to the same atoms.

The described CAM model is different from existing BNP mixture models. In
(1)-(3), the atoms linked to X are always a subset of those atoms that are linked to
X, which is not naturally the case for the hierarchical DP model (Teh et al., 2006).
Also, unlike the nested DP (Rodriguez et al., 2008) and the common atoms nested
DP (Denti et al., 2021) models, there is no notion of clustering distributions. That
is, p{F1(X | m1,¢*) = Fo(X | m2,¢)} = 0 a priori. Instead, the intention here is to
cluster similar covariate values across the datasets.

Regarding the concentration parameters oy, we assume log oy ~ N(fiq, 02) for s =

1,2. Ascolani et al. (2022) showed that a hyper-prior on the concentration parameters

can solve the problem of inconsistency of DP mixtures (Miller and Harrison, 2013).

Handling mixed data types and missing values: An appealing feature of the

proposed CAM model over existing approaches is the easy use of covariates of different
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data-types and missing values. Covariates in RCTs often comprise different data-
types including continuous, discrete and categorical variables. Missing values are also
quite common. For example, in Figure 1, there are a large number of missing values
for the ATRX gene which has only recently been identified as a therapeutic target
for glioma (Haase et al., 2018) and was therefore not commonly recorded before.

Many existing methods for handling missing data rely on imputation (Choi et al.,
2019), possibly at the expense of an additional layer of prediction errors. Alterna-
tively, data records with missing variables may be dropped altogether, resulting in a
reduced sample size.

Assuming missingness completely at random, the proposed CAM model avoids
these issues by accommodating variable dimensional covariates in a principled manner
by considering a separate univariate kernel for each covariate. Note that a mixture
with independent kernels can still accommodate marginal dependence between the
covariates (Ghosal and van der Vaart, 2017, Section 7.2.2, pp 175). Specifically, let
O;; = {j + X, is recorded} denotes the set of observed covariates for patient ¢ in

dataset s. We use independent kernels
Q<Xs,i \ CJ*) = ngom. qé(Xs,i,z | Cﬁe% GO(C; ’ 5) = H?:l gO,E(C}iz ’ 5)7 (4)

where g(- | Cﬁz) is a univariate kernel corresponding to the ¢** covariate with param-
eters C¥, and go (5, | &) is a prior on ¢F, with hyper-parameters §. The likelihood
function of X ; is then computed on the basis of only the observed values. The kernel
q¢ is chosen to accommodate the data-type of the ¢ covariate. The model allows
co-clustering of X, ; with some missing variables and another fully observed X ;;
see Section S.3 of the supplementary materials for additional details. Missingness
patterns other than completely at random can be handled by introducing additional

hierarchy in the model, see, e.g., Linero and Daniels (2018) for a review.
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3.2 Density-free Importance Resampling of RWD

Building on the fitted CAM for covariates, we propose an importance resampling
method to create a subpopulation of X5 that can be considered to be equivalent to
X (see below for a definition of equivalence that is being used here). Under the
assumption of no unmeasured confounders, the X5 ;’s in the sampled (or weighted)
subpopulation can be assumed to follow the same distribution as X, ;, and be con-
sidered digital clones of the X, ;. With such equivalent populations, in principle, any
desired method for randomized clinical trials can subsequently be used to carry out
inference on treatment effects. Such focus on equivalent populations follows recent
recommendations by the FDA (FDA, 2021).

Recall that Fy denotes the mixture model for X ;, s = 1,2, under (1) and (3),
respectively. We define equivalent populations as a subset (possibly all) of X, together
with a set of weights such that expectation of any function of interest g(X; ;) under
X ; ~ Fy can be evaluated as a (weighted) Monte Carlo average using these X, (and
the weights). Here we assume that all stated expectations exist and that the order of
taking expectations and limits can be switched.

Recall that Fy(- | 2, ) = >y maq(- | E’J) Alternatively, the joint model of
(X, c) can be expressed as Fy! (Xy;, co; | 7, C) = q(Xa, | Ecz’i)m’(m. For easier
housekeeping, we assume (' = E] for j =1,...,k(ns), i.e., the first k(ny) atoms are
linked with the Xb,’s. Accordingly, we let Fy(- | m,¢) = ngﬂ m15q(- | Z’j) using
the same first k(ny) atoms observed in the X5 population. This is the exact construc-
tion of (1) and (3). For an equivalent population, we require weights w; attached to

(X4, c2,) (using w; = 0 to drop samples) such that:

EF1 (|1,8) {g(Xl z)} EFH (-72,C) {g(X2;C2>} Wlthg X2ac2 sz X2z7c22)

The weights w; are functions of ¢o; and 7 ; as follows. Define ny ; = |Cy |, the cardi-
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nality of the earlier introduced clusters Cy ;. Then ——— 3. ; g(Xs,;) is an unbiased
j ,

1
n2,
estimator of Eq(_‘gj)g(X) and
G= 5 m5{ Dicen, 7 0(Xaa) | = X1 20 g( X)) (5)

is an unbiased estimator of B, - #9(X). We then recognize 71, , /na.c,, as the ideal

weights. Since we only observe X but not m; and ¢, we replace 7y, ,/n2.,, in g by
a Monte Carlo average under posterior MCMC simulation to get the desired equality

simulation-exact (i.e., in the limit as n;,ny and the number of MCMC simulations

increases). Let m = 1,..., M index the posterior sample and use ng?), ng;), etc. to
indicate parameter values in the m** sample. We use
~ M
G =Y wig(Xa), wioc Sy w" /i (6)
Co 4 Ca5

with w; being the importance sampling weight for X5 ;. The X5 ;’s can be resampled
with these weights to obtain the desired subpopulation with distribution Fy(z | 71, ¢)
(Skare et al., 2003). This resampled subpopulation of X5 can then be regarded as

equivalent in distribution to X;. Algorithm 1 summarizes the procedure.

Algorithm 1: Density-free importance resampling of RWD and validation
1 Input two data sets X; and Xos.
2 Fit the CAM model to the data using MCMC simulation. Let ng) and

cgm) be the m™ MCMC sample of 7, and ¢, respectively, and ngj) be the
size of cluster Cy; in the m™ MCMC iteration for m = 1,..., M.
3 Calculate importance sampling weights

M (m) (m) L
in(Zmﬂchg"O/ngcgm)’ i=1,...,n9.
'©2.4 1©2.4

4 Resample a subpopulation of size n; from X5, with importance resampling
weights w; with replacement.

5 Test for equivalence of X; and the resampled subpopulation of X5 using a
supervised classification algorithm (e.g., a BART as described in the text).

To test the equivalence of the two populations, we use a Bayesian additive re-
gression tree (BART, Chipman et al., 2010) in Step 5 of Algorithm 1. In extensive

simulation studies in Section 6, we notice that an AUC (area under the receiver oper-
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ating characteristic curve) less than 0.6 yields excellent empirical performance. Once
equivalence is achieved, in principle any existing approach for inference on treatment
effects can be used (see Section 4 and later).

Note that even if the RWD population is not a heterogeneous superset of the
current trial, one can still fit the CAM model. In case the RWD is not comparable,
Step 5 of Algorithm 1 can discriminate the two populations and the AUC can quantify
the degree of incongruence.

In general, importance sampling schemes need the ratio of the target density (in
our case, F) and the importance sampling density (in our case, F3). For our problem,
this would require high-dimensional density estimation. Even if the densities were
known, importance sampling would be plagued by unbounded weights (Au and Beck,
2003). Exploiting the common atoms structure, our proposed scheme however avoids
evaluation of the marginal multivariate densities. We therefore refer to this as a
density-free importance resampling scheme, and for brevity often simply as an IS
scheme. In the denominator of w;, the use of ny ; (which by definition are > 1) avoids
complications arising from unbounded weights. Conventional importance sampling
schemes are asymptotically consistent. This is seen to hold in numerical experiments
with our algorithm as well. Additional discussions on Algorithm 1 are in Section S.4

of the supplementary materials.

3.3 Regression with CAM Model on Covariates

Note that up to here we only concerned ourselves with the covariates, without any
reference to the outcomes Y. In preparation for one of the strategies in the upcoming
discussion of treatment comparison (Section 4), we now augment the CAM model to

include a sampling model for the outcomes. That is, we add a response model on top
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of the CAM model on covariates.

The extended model defines a regression of Y ; on covariates X ; by first grouping
patients with similar covariate profiles into clusters and then adding a cluster-specific
sampling model for the outcome Y;;. That is, the overall model specifies a regres-
sion of Y;,; on X, via a random partition. A major advantage of this approach is
that it allows a variable-dimension covariate vector — a feature that is not straight-
forward to include in a regression otherwise. Similar product partition models with
regression on covariates (PPMx, see also S.2 in the supplementary materials) were
considered by Miiller et al. (2011) and Page et al. (2022), albeit without any notion
of common atoms. We will therefore refer to the model proposed below as the com-
mon atoms PPMx (CA-PPMx). Formally, we introduce cluster-specific parameters
0, ={0,,; j=1,...,k(n2)}, and assume

(Yai | 05, coi = ) ™ h(Yas | B45), (7)
for a suitable choice of h. For example, for an event-time response, h could be a
lognormal, exponential or Weibull model. The response model (7) depends on the
covariates indirectly via c,;’s, i.e., the partition induced by the covariates. Within
stratum C; = C ;UCy ;, the response models allows for a treatment comparison based
on (60, ;,605;), which can then be averaged with respect to the assumed distribution
of X, ; to define an average treatment effect.

For the implementation in the motivating case study, we let Y,; denote the log
OS (overall survival) times and assume h(Y;; | 6s;) to be a normal kernel with
6,; = (11s5,0% ;). Such mixtures are highly flexible (Ghosal et al., 1999), making them
an attractive choice for many applications. We complete the model with conjugate
normal-inverse-gamma (NIG) priors on the (us;, 07 ;)’s. In summary, we have

. ind ind 2. _9 iid
Yiil Csi = J, 05 ~ N(#s,j,df,j), Hs,j | O-ij ~N (Mo, :—;) ) 05,32 ~ Ga(ag, bo), (8)
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where Ga(ag, bp) is a gamma distribution with mean aq/by. We add the hyper-priors

2

=) and log by ~ N(my, s2) on the main location-scale controlling hyper-

po ~ N(my,, s
parameters py and by while fixing the precision hyper-parameters kg and ay. Choices
of these hyperparameters are discussed in Section S.7 of the supplementary materials.
Finally, for a goodness-of-fit test under the proposed model, we use the approach of
Johnson (2007) to build a graphical tool based on quantile plots. Such visual tools

are often quite effective for detecting departures from model assumptions (Meloun

and Militky, 2011, Chapter 2). See Section S.5 in the supplement for more details.

4 Inference on Treatment Effects

4.1 Two-step Importance Sampling (IS) Approach

We already described the use of the weights 7, ; in the CAM model to achieve equiv-
alent patient populations. This allows a straightforward approach to treatment com-
parison. Using the adjusted (resampled) subpopulation of X5, one can proceed with
inference on the treatment effect using any method relying on equivalent patient pop-
ulations across the two arms. We refer to this approach as the “two-step IS” and
use it in the simulation studies and applications in Sections 6 and 7, respectively.

This approach does not make use of the outcome model of Section 3.3.

4.2 Model-Based Inference for Treatment Effects

Alternatively, we implement inference using the response model of Section 3.3, i.e.,
the full CA-PPMx. We refer to this approach as “model-based inference”. We
assume that the desired inference on treatment effects takes the form of inference for

some notion of difference d(+, ) of the marginal distributions under the two treatment
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arms, Ag = 6 {f1(- | 01,71), fo(- | 62, 72)} . However, since the covariate populations
in the two treatment arms can be substantially different, comparison between the
marginal (with respect to the covariates) outcome models f;(Y7; | 61, 71) and fo(Ya,; |
0., ;) can be biased. We need to appropriately adjust for the differences in the two
populations. We do this by replacing f, as follows. Exploiting the common atoms
structure of the proposed CA-PPMx, there is an operationally simple method to
carry out this adjustment and infer treatment effects. Since within each cluster, the
covariate populations can be considered equivalent, the adjustment for the lack of
randomization amounts to adjusting the corresponding cluster weights. We define
Y | 82.m0) = S50 mh(Y | 6).

where the mixture components h(Y | 65 ;) of the response model in the RWD are
weighted by 7y, i.e., the cluster weights associated with X; (rather than 7y). Thus
fg is the distribution of outcomes under control in the treatment population or in other
words, the response of an average individual from the trial arm potentially treated
with the control therapy. With these notions, we define the population adjusted

treatment effect as

Ao = 6{fi(- | 81, m), fal- | 02, m1)}. (9)
For example, when Y is a univariate response variable and 0(f1, f2) = Ef (Y) — Ep, (Y),
Ka simplifies to Ze = Zf(:"f) T {Eh(y‘gld) (Y) — ]Eh(y|92‘j)(Y)}, which further reduces
to Ag = 3500 w1y — pag) when pgj = Envio, p{T(Y)}.

In general, each cluster of covariates in the CAM model can be interpreted as a
homogeneous sub-population of patients. For the j* group, the average treatment
effect is 6{h(Y | 61;),h(Y | 5 ;)} and its proportion in the target population is 7y ;.
The reported treatment effect (9) includes the adjustment with the sub-population

proportions 7 ;. On a related point, the proposed model-based inference on treatment

effects in the CA-PPMx model can be interpreted as a stochastic propensity score
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stratification approach. See Section S.6 in the supplementary materials for the details.

We prefer the Bayesian model-based approach to avoid discarding unmatched
patient records from the RWD from the analysis. The two-step IS can be useful to

validate the results obtained by the model-based approach.

5 Posterior Computation

We develop an efficient Gibbs sampler for posterior inference in the proposed CAM
model for non-conjugate mixture of lognormals on survival outcomes. One poten-
tial complication arises from the varying dimension of 7r; depending on the observed
atoms in Xs. Posterior simulation with variable dimensional parameters generally
involves complicated trans-dimensional Markov chain Monte Carlo (Green, 1995), of-
ten resulting in poor mixing and computational inefficiencies. Our posterior sampling
algorithm avoids such complications while rigorously maintaining the architecture of

the CAM model. See Section S.8 in the supplementary materials for more details.

6 Simulation Study

We first describe the simulation scenarios.

CAM scenario: We first consider a scenario where the covariates are generated from

a CAM model. In this scenario, we take the first ¢ = p — 3 covariates to be con-
tinuous and the remaining 3 to be binary. For the trial arm s = 1, we gener-

ate X114 s 2521 7T17qu(,U;j,O'j2~Iq) and Xi s Bernoulli(gy) for ¢ = ¢+1,...,p.

For the RWD arm, s = 2, we generate Xo; 1,4 s 25:1 WQyqu(uj,O—szq) and

2,00 ~ 232:1 t;Bernoulli(p;) for ¢ = g+1,...,p where 1; = 731 + T and 1y = ma3.

We take 1; < 15 ensuring that the X5 population is substantially different from X,
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in having more heterogeneity.

MIX scenario: In this scenario, we generate X ; S Z;?:l 75 i Np (s 5, 0.051,). We take

w1 = poj for all 7 < k but set py, # poy so that the atoms in the treatment arm
are not exactly a subset of those in the RWD. Given the typically larger heterogeneity
of the RWD, this is not a realistic scenario. We include it to evaluate the approach
under model misspecification. Different weights attached to the atoms in the two
populations result in significantly different marginal densities.

Interaction scenario: In this scenario, we resample from the historical GBM database

of 339 patients to create a future single-arm trial population. Let F(X) denote
the (unknown) distribution of the covariates in the database, and Z be an indicator
variable such that Z = s if X is selected into arm s. That is, we sample X ; i.i.d.
from p(X;,) o< F(X1,)-e(X1,) and Xy, from p(Xs;) o F(Xs,;)-{1—e(Xy;)} where
e(X) =Pr(Z=1|X) is the PS of assignment to the treatment arm. We set e(X)
to be a logistic regression with pairwise interactions between some covariates. We
can sample X, ; by simple weighted resampling of the historical database, without
explicitly knowing F'(-).

Oracle scenario: In this fourth and final scenario, we proceed as in the Interaction

scenario but now with e(X) defined as a logistic regression with main effects of the
true predictors only, i.e., as if an oracle had revealed the right predictors.

Outcome model: Under the CAM and MIX scenarios, we generate Yy, = 6+ f(X1,;)+

€1, and Ya,; = f(Xy,) + €2, where f(-) is a nonlinear function; in the Interaction and
Oracle scenarios we generate Y;; = d + XITZ,B +e,; and Yy, = X;iﬁ + €2, where
€s,i N N(0,1) for i = 1,...,ns and s = 1,2, implying 0 as the true treatment effect.
We repeat the experiments for 6 = —1,0,1, 3.

We repeat the simulations in the CAM and MIX scenarios for p = 10,20, ny =
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50, 100, 150 and set ny = 6 x ny for all setups, keeping the ratio of the population sizes
consistent with the GBM application. For each (n,p,d) combination in the CAM
and MIX scenarios, we perform 500 independent replications. Under the Interaction
and Oracle scenarios, there are p = 11 covariates and we use n; = 49. To avoid
reporting summaries that might just hinge on a lucky choice of the logistic regression
coefficients in e(+) and to remove one source of randomness unrelated to the methods
under comparison, we independently sample different sets of regression coefficients
(from a discrete mixture distribution) for each of the 500 repeat simulations. Further

details are provided in Section S.9.2 of the supplementary materials.

Analyses: We compare the CA-PPMx model with the PS-integrated power prior
and composite likelihood approaches (Wang et al., 2019, 2020; Chen et al., 2020) as
implemented in the psrwe R package, and a two-step population matching approach.
We perform seven different analyses for each of the four scenarios to estimate the treat-
ment effect Ay which we define here as the difference in mean outcomes, i.e., §. The
analyses are (1) CA-PPMz: The proposed CA-PPMz model of Section 4.2; (ii) IS-LM:
The two-step IS approach introduced in Section 3.2. We first sample a subpopulation
of size n; from X, following the importance resampling scheme proposed in Section
3.2 and subsequently estimate the treatment effect between the subpopulation and
the treatment arm by fitting a linear model; (iii) and (iv) PP-Logistic and PP-RF":
Two PS-based power prior approaches using logistic regression and random forest
(Breiman, 2001), respectively; (v) and (vi) CL-Logistic and CL-RF: Two composite
likelihood based approaches with logistic and random forest classifier based PSs, re-
spectively; and finally, (vii) Matching: A distance based bipartite matching method
designed to match treatment and control groups in observational studies (Hansen and

Klopfer, 2006) and subsequently using a linear model for detecting treatment effects
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as implemented in the optmatch R package.

Equivalence of populations: In preparation for inference under the two-step IS
approach, we generate equivalent populations using the density-free importance re-
sampling scheme discussed in Section 3.2 based on the fitted CAM model. To formally
test for equivalence of the adjusted datasets, we implement Step 5 in Algorithm 1.
We first merge the datasets and then try to classify patients in the merged sample as
originally RWD or single-arm treatment cohort (s = 2 vs. s = 1 in our earlier nota-
tion). For classification, we use BART and report the boxplots of the area under the
receiver operating characteristic curve (AUC) of the classification accuracy across the
independent experiments for all simulation settings in Figure 3. For comparison, we
also subsample randomly (instead of using the IS weights) and report the AUCs in the
same figure. We refer to the two sampling strategies as IS and Random, respectively.

In Figure 3(a), the Random resampling strategy yields high AUC, indicating that
the two populations are substantially different and adjustment in the RWD popula-
tion is necessary before using it as synthetic control. For both, the CAM and MIX
scenarios, the performance of the IS scheme improves with increasing sample size.
This is expected as for small sample sizes X5 is lacking enough data to produce a
subsample equivalent to X;. AUC values close to 1 under the CAM scenario imply
that the true populations are indeed very different in this case. In contrast, the AUC
values close to 0.5 under the IS scheme indicate near equivalence after adjustment.
In both scenarios, AUC is substantially reduced under the IS resampling scheme,
implying that the proposed CAM model indeed adjusts for the lack of randomization.

Results under the last two scenarios are shown in Figure 3(b). Recall that in both
scenarios the simulation truth is not based on the CAM model. Still, the fit under

the proposed CAM model achieves near perfect adjustment as shown in the figure.
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Figure 3: Boxplots of the area under the receiver operating characteristic curve (AUC)
of the classification accuracy for a merged dataset consisting of X; and the subsam-
pled X, using BART, and trying to classify into originally X; versus X,. Two
subsampling schemes are used - the importance sampling (IS) strategy in Section
3.2 and simple random resampling. Here AUCs close to 0.5 imply near equivalence
between the populations. Panel (a) shows the AUCs in the CAM and MIX scenarios
across different sample sizes and number of covariates; and (b) shows the AUCs under
the Interaction and Oracle scenarios.

Inference on treatment effects: In each simulation setup, we test Hy : 6 = 0
versus Hy : 6 # 0 at 5% level of significance. We elaborate the testing procedure
in Section S.9.1 of the supplementary materials. We report power in Figure 4, with
detailed numerical results appearing in Tables S.1, S.2 and S.3 in the supplementary
materials. Under the PS-based approaches, the power remains below 15% across all
scenarios (not shown in the figure). Fully model-based nonparametric CA-PPMx has
higher power than I[S-LM and Matching when the true response models are non-linear.
In contrast, the IS-LM and Matching perform comparably and have higher power than
the CA-PPMx approach in Interaction and Oracle scenarios where the true response

model is linear, but are susceptible to model misspecification as reflected in the CAM

22



ny =50 ny =100 ny =150

1.00-
0.75-
0.50-
0.25-

20007 """

8 1.00-
0.75-
0.50-

0.25-
0.00-""-‘.1 _—

ower

Method ® CA-PPMx 4 IS-LM # Matching

(a) CAM (top) and MIX (bottom) scenarios.

Scenario: Interaction Scenario: Oracle

Method @ CA-PPMx # IS-LM 4 Matching
(b) Interaction (left) and oracle (right) scenarios.

Figure 4: Power of detecting treatment effects in different simulation setups for a
5% level of significance test: Seven methods are used to estimate the effects where
IS-LM and CA-PPMx are based on the proposed CAM model. Panel (a) corresponds
to the CAM (top) and MIX (bottom) scenarios. Panel (b) shows results under the
Interaction (left side) and the Oracle (right side) scenarios.

and MIX scenarios. This is because IS-LM and Matching assume a linear model
for the outcome, which happens to match the simulation truth in the Interaction
and Oracle scenarios. Except under the PS-based approaches, power increases with

increasing sample size, indicating that PS-based methods may require a much larger
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population size in the RWD to adjust for the lack of randomization.

7 Application in Glioblastoma

We return to the motivating case study of creating a synthetic control for a hypothet-
ical upcoming single-arm GBM trial. The sample size of the trial is n; = 49, similar
to past trials (Vanderbeek et al., 2018). The endpoint of interest is overall survival
(OS). We evaluate the operating characteristics of the proposed design by simulating
L =100 trial replicates. See Berry et al. (2010, Section 2.5.4) for a discussion of the
role of frequentist operating characteristics in Bayesian inference. To create treat-
ment arm data, we first select covariates X;; by randomly selecting patients from
the historical database. To generate a realistic non-equivalent patient population, we
select not uniformly but using a logistic regression on the covariates (as described
in the Interaction scenario in Section 6). The treatment effect is quantified by the
hazard ratio (HR) between the treatment arm and the (synthetic) control arm, with
the null and alternative hypotheses Hy : HR =1 vs. H; : HR < 0.6 at 50 weeks. The
HR of 0.6 was suggested by clinical collaborators as a meaningful clinical target.

We show results under two alternative scenarios (a) Hp: no treatment effect (i.e.,
HR = 1), created by keeping the OS for the patients in the treatment arm as originally
observed in the historical database (since the patients received treatments with similar
efficacy); and (b) H;: there is a clinically meaningful treatment effect. We created
H; by increasing the OS of patients in the treatment arm with an increment that
would correspond to a HR of 0.6 under an exponential model.

We apply three methods to make inference on the treatment effect: (i) IS-based
two-step procedure: Here we first create equivalent patient populations using Algo-

rithm 1 and then proceed with inference on the treatment effect as if patients were
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randomly assigned to treatment and control; (ii) Matching-based two-step procedure:
Operationally similar to (i) but now the Matching method discussed in Section 6 is
used to create equivalent patient populations; and (iii) Model-based inference: The

extension of the CAM model to include the outcomes Y ;, as described in Section 4.2.

(i) IS-based two-step procedure: In preparation for inference, we start with
a test for equivalence of the subsampled population in each of the L = 100 repeat
simulations. Figure 5 plots the relative frequencies for each covariate in the treatment
arm (red) and in the synthetic control arm constructed from the RWD using: (a) the
IS sampling following Algorithm 1 (green) and (b) random sampling (blue). Very
different frequencies in the two arms under random resampling indicate significant
differences in the covariate distributions between the treatment and the control arms.

For most covariates, the differences are however greatly reduced by the IS scheme.
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Figure 5: Covariate distributions before and afte adjustments. The red bars show the
distributions of the covariates in the treatment arm. The green and blue bars show
the distributions of the covariates in the synthetic control arms formed using the IS
and random resampling schemes, respectively.
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Figure 6: Inference under treatment effects under the two-step procedures: Panel (a)
shows histograms of the p-values corresponding to a logrank test under the Cox PH
model comparing the survival curves between the treatment arms; Panel (b) shows
the Kaplan-Meier curves and pointwise confidence intervals for treatment (blue) and
control (red) arms under scenarios Hy (left) and Hy, respectively. The top and bottom
panels of (a) and (b) show the results corresponding to the IS and Matching based
approaches, respectively.

Once we establish equivalence of the patient populations, we proceed with infer-
ence for the treatment effect. We use a Cox proportional hazard (PH) model (Cox,
1972) and the logrank test (Peto and Peto, 1972) to compare the survival functions.
The top panel of Figure 6(a) shows inference summaries over the L = 100 repetitions.
The figure shows the histograms of p-values under Hy (blue) and H; (red). Under
Hy, p-values are almost uniformly spread out over [0, 1]. In contrast, under H;, the
histogram of p-values over repeat simulations is peaked close to zero.

Finally, we identify representative simulations from the L repetitions under each
of the two scenarios by finding the instance with p-value closest to the median of the
respective histograms. For these two representatives, we show Kaplan-Meier (KM)

survival curves in the top panels of Figure 6(b), respectively. We observe that the
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survival curves in the two arms are quite alike with wide confidence intervals under the
Hy scenario, whereas significant improvements in the survival times can be observed

for the treatment arm for the first 80 weeks under the H; scenario.

(ii) Matching-based two-step procedure: We use the Matching procedure to
create a synthetic control and then follow the same routine of (i) for inference on
treatment effects. The results are provided in the bottom panels of Figures 6(a) and
6(b). The distribution of the p-values under the H; scenario is less peaked around 0
compared to the IS-based procedure. This is also reflected in the representative KM
plot under H; in having a much wider confidence interval around the survival curve
possibly indicating the IS-based approach is doing better than Matching in creating

equivalent populations.

(iii) Model-based inference: As it is not straightforward to account for the un-
certainty in creating the synthetic control in the aforementioned two-step procedures,
we consider a fully model-based approach. For inference on treatment effects, we first
assess goodness-of-fit of the CA-PPMx model (see Section S.5 in the supplementary
materials for details). Quantile-quantile plots for the two scenarios are shown in Fig-
ure 7(a). Near diagonal lines indicate no evidence for a lack of fit. We then evaluate
the posterior probability p, = p(HR < 0.6 | Data) (with ¢ indexing the L = 100
repeat simulations) at ¢ = 50 weeks under the proposed model. The left panel of
Figure 7(b) shows histograms of p, under Hy (in blue) and under H; (in red). As
desired, the posterior probabilities are clustered near 0 under Hy, but are peaked near
1 under H;.

Finally, we identify a representative simulation again by selecting the repeat simu-

lation ¢ with posterior probability p, closest to the median of the respective histograms
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Figure 7: Inference under treatment effects under the model-based approach: Panel
(a) shows quantile-quantile plots to assess model fit from Section S.5 in the supple-
mentary materials; the left plot of panel (b) shows posterior probabilities p(HR <
0.6 | Data) under repeat simulations, and on the right posterior estimated hazard
ratios for OS with pointwise 95% credible regions are shown under Hy and H;.

under each of the two scenarios. For each of the two scenarios, we plot the posterior
estimated hazard ratios (blue and red for simulation under Hy and Hy, respectively),
together with pointwise 95% posterior credible intervals in the right panel of Figure
7(b). Under Hy (blue), HR is almost equal to 1 with wide credible intervals, whereas
under H; (red), HR is significantly below 1 with high posterior probability. The me-
dian (over the L simulations) posterior probabilities p,(HR < 0.6 | Data) are 0.08

and 0.98 under Hy and Hi, respectively.
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8 Discussion

With a long term goal of setting up a platform for future single-arm early-phase
clinical trials in GBM, where new patients only receive experimental therapies, in
this article we developed a Bayesian nonparametric approach for creating synthetic
controls from RWD. We introduced a Bayesian CAM model that clusters covariates
with similar values across different treatment arms.

The flexibility of the CAM model makes it easily generalizable to other problems,
e.g., to create two synthetic treatment arms to compare two treatments based on
RWD from electronic health records.

Another direction for extensions could build on extracting propensity scores as
inference summaries under the CA-PPMx model. This is briefly discussed in Section
S.6 of the supplementary materials.

A limitation of the current model is scalability to high-dimensional covariates.
In the GBM application, we rely on 11 clinically important categorical covariates
that are commonly considered as prognostic factors in GBM treatments. However,
in many applications candidate covariates can be high-dimensional. Implicit in the
current construction is the assumption that the recorded covariates are clinically
relevant for the disease or condition under consideration, and the approach may not be
appropriate when large numbers of unscreened candidate covariates are used. Recent
advances in Bayesian model-based clustering by Chandra et al. (2021) could be useful

to construct high-dimensional generalizations.

Supplementary Materials

Supplementary materials include additional discussion of the motivating dataset, a
brief review on the PPMx, detailed discussion of the graphical goodness-of-fit test
for the regression model, an alternative interpretation of our model-based inference
approach, choices of hyperparameters, details of the posterior simulation scheme,
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additional simulation studies and associated details, and MCMC convergence diag-
nostics. C++ and R programs implementing the methods developed in this article and
R Markdown files with instructions are provided in a separately attached Codes.zip
folder.
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S.1 Historical Data and Potential Future Trial

Figure S.1 shows summaries for the covariates described in Section 2 in the historical database
and a potential future single-arm trial. Marginal frequencies for each of the covariates are
plotted clearly highlighting the differences between the two populations.
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Figure S.1: Relative frequency plots of the covariates in the two treatment arms.
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S.2 Product Partition Model with Regression (PPMx)

Let 2 = 1,...
the data consists of covariates X; = (X;1,...
X ={X;,...,.X,}and Y ={Y7,...
respectively. Let p, = {51, ...,
1 < k, < n. An equivalent representation of p, introduces cluster membership indicators

.n be the indices of n data points. For the i
T

? XZ,P)

, Y, } be the complete set of covariates and responses

unit (patient, in our case),
and response variables Y;. Let

Sk, } denote a partition of the n units into k, subsets, where

c; = j if and only if i € S;. Let X7 be the covariates corresponding to the samples in S;.
In the PPMx, it is believed that data points with more similar covariate values are more
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likely to a priori be in the same cluster and the corresponding responses are also very sim-
ilar. The prior consists of two functions - (i) a cohesion function denoted by ¢(S; | ) > 0
for S; C {1,...,n} associated with a hyper-parameter « discerning the prior belief of co-
clustering of the elements of S;, and (ii) a similarity function denoted by g(X7 | £) and
parametrized by &, formalizing the ‘closeness’ of the X;’s in the cluster S; by producing
larger values of g( X7 | €) for X,’s that are more similar. Using the similarity and cohesion
functions, the PPMx assumes .
(pn | X, 0,8) o [Je(S; | a)g(X | €). (5.1)
j=1
A default choice for the first factor is ¢(S; | @) = ax (|S;|—1)!, where @ > 0 and |-| being the
cardinality of a set, which is identical to probability function for a random partition under
the Chinese restaurant process (Ferguson, 1973). For the second factor, Miiller et al. (2011)
suggested the following default choice for similarity functions

9(x7 1€ = [ TLa(X: 1 ¢)Gal¢; | €)dc; (8.2)
i€S;

With a conjugate sampling model and prior pair of ¢ and Gy, the integral in (S.2) is
analytically available, facilitating easy computation. The pair is used to assess the agreement
of the data points in \S; rather than any notion of statistical modeling.

The model construction is concluded by specifying a sampling model for the response

variable Y;’s. Let ¢; = j if ¢ € S; denote cluster membership indicators for all 7 = 1,...,n.
For a given partition p,, we introduce cluster-specific parameters 8 = {6;,...,0;, } and
assume
. ind iid
Yi10.c=5 S h(Yi|6). 6,]0%116, ), (5.3)

where h is a sampling model and II(- | ¢) is a prior on 6; with possible hyper-parameters ¢.
Recognizing that X;’s may not be random, with slight abuse of notations, under the
similarity function (S.2) the PPMx can be equivalently stated as

iid

Xilei=4.CRaXi &), GIENGHCE), plpa) o [T 1 ). (5.4)

S.3 Missing Data in PPMx

Following the thread of the discussion on handling missing data from Section 3.1 of the
main paper, we would like to point out that the model never rules out the possibility of co-
clustering a unit with missing entries with fully observed units. For the following argument
consider (S.4) with

. ind
Xi | G = ]7CJ = (Cj,l) cee 7Cj,p)T ~ Hg:l QK(Xz‘,Z | Cj,€)7
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that is, with ¢(X; | ;) factoring over covariates. While implementing inference using a
Gibbs sampler, we then update the ¢; as follows

(e; =j | Xy, Crr,c—i) o< (e; =j | e—y) X H§:1 qQ(Xis | G, (S.5)

where c_; is the set of ¢;’s for / =1, ..., n excluding c;.

Now consider the case where we have missing observations in some components of X;
and let O; = {1 < ¢ < p: X,,is observed} be the indices of the observed variables in X;.
In this case (S.5) changes to

M(c; =j | Xi,Curr,ci) o< I(c; = j [ e-i) X [heo, qe(Xie | Go)-

While updating the cluster membership of the units, only the observed variables X, /’s in X
are matched with the corresponding (;, for all £ € O;. A more detailed discussion can be
found in Page et al. (2022).

S.4 Variations of the Importance Resampling Scheme

S.4.1 Number of Patients to Resample from the RWD

Due to various reasons (see, e.g., Hey and Kimmelman, 2014, for a review), in two-arm
designs the allocation of patients in the treatment and control arms are generally considered
to be equal, including in particular early-phase GBM trials (Stupp et al., 2014; Nabors
et al., 2015; Vanderbeek et al., 2018). As a rule of thumb, we thus recommend the size of
the resampled population to be equal to the treatment arm population.

However, if desired any different ratio of sample sizes in treatment and control arm, say
R : 1, could be used. In that case, even if the the distribution of the covariates in the
two arms are same after the importance resampling population adjustment, the AUC of any
classifier used in step 5 of Algorithm 1 would be R/(R + 1), rather than 0.5.

S.4.2 Averaging over Multiple Resamplings

It may be tempting to average over multiple, say R, instances of the random importance-
resampling, to remove one source of variability. But this gives rise to some fundamental
problems. For illustrative purpose, we refer to Section 7 of the main manuscript where we
discuss the application in GBM. There we use the importance resampling strategy to generate
an equivalent subpopulation of the treatment arm and then use the Cox proportional hazard
model to test for treatment effects. In Figure 6(a), we plot the histogram of p-values under the
null scenario which resembles the Unif(0, 1) distribution. Now for R resamplings we would
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have multiple p-values corresponding to each of the R resampled populations. Subsequently
we need a statistic to summarize the p-values, let us denote it by 7'. Letting py,...,pr be
the p-values thus obtained, the distribution of T'(py,...,pr) will not be U(0, 1) anymore
under the null. We therefore recommend against it. As importance resampling schemes are
asymptotically unbiased (Skare et al., 2003), under reasonably large sample sizes, a single
resampled population should be adequate.

S.5 (Goodness-of-Fit Test for Continuous Responses

We use the approach of Johnson (2007) to suggest a graphical goodness-of-fit tool to validate
the mixture of lognormals model for the CA-PPMx. The procedure is valid as long as h in (7)
is a univariate continuous density, i.e., as long as the response variables are univariate and
continuous. For the moment, we suppress the additional s subindex on (X;,Y;),i=1,...,n.
Let m(Y | X) be the marginal distribution after integrating out all model parameters

m(y | X)=3 [ {H (Y, | ea>} (0. c1., | X).

We implement a test of fit based on the following result. Assuming that m(Y | X) is the
true marginal distribution of Y, we have:

Proposition 1. Let w = (0,c1.,) be a sample from their posterior, H(y | 8) = ffoo h(z |
0)dz be the CDF, and U; = H(Y; | 6,,), i = 1,...,n. Then, U; S Unif(0, 1).

Proof. Let wy.,, = {us,...,u,} and define A(uy.,;w) =N {y: H(y | 0.) < u;}. Then,
Pr(U; <w;foralli=1,...,n) = // dll(w | X, Y)m(Y | X)dY.
A(ur:n;w)

Note that II(w | X,Y) = {[[_, h(Y: | 0.,)} I(w | X)/m(Y | X). Substituting this in the
above equation, we get .
Pr(U; <w; foralli=1,...,n)= / {/ []r(v: 1 Hci)dY} dll(w | X).
A(uriniw) j—q
Now, the term inside the parenthesis integrates to [[;_; u; which is independent from IT(w |
X). Hence the proof. O

To understand the implications, consider the distribution (Y ,w | X) for a hypothetical
data set (X,Y). First sample @ = (0,¢1.,) from pw | X) = p(e | X) p(@ | ¢, X)
and then (Y | @, X) from the sampling model (7). Letting U; = H(Y; | 6z), we then
have U; S Unif (0,1). Assuming that the observed data Y do in fact arise from the assumed
marginal model m(Y | X)), Proposition 1 sets up sampling from the alternative factorization
p(Y w|X)=m(Y | X) plw|Y,X). It follows that Uy, and Uy, are indistinguishable

in distribution. The latter, U;.,, can be readily obtained from the posterior samples of
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w. Letting Ul(fz) denote the evaluation under the m*™ posterior MCMC sample w™), a
goodness-of-fit test can then be carried out to validate the uniform distribution.

Note that the Ul(:”;)’s vary across different posterior samples w™ while also having hi-
erarchical dependence since all of them are sampled conditionally on the same Y (and X).
Although in principle formal prior-predictive-posterior based tests be carried out (Johnson,
2007; Cao et al., 2010), it can be numerically infeasible for complex models like ours. As a
practical alternative, goodness-of-fit can be assessed by inspecting the quantile-quantile plots
of Ul(fz). Such visual tools can be effective for detecting departures from model assumptions
(Meloun and Militky, 2011, Chapter 2). We use it to assess the model fit in Section 7.

To assess the goodness-of-fit in the GBM application, where the outcomes are right-
censored survival data, we extend the result in the following corollary.

Corollary 1. Suppose we have right-censored survival outcomes (Y;,v;) with covariate X
where v; = 1 1f Y; is an observed failure time, for i = 1,...,n. Following the notations of
Theorem 1, define U; = H(Y; | 0.,) if v; = 1, else if v; = 0 define U; = H(Y; | 0.,) + vi{1l —
H(Y; | 6.)}, where ~; Y Unif(0, 1) independent from Y;. If the observed failure times are
independent of the censoring times, then U, ~ Unif (0, 1).

Proof of Corollary 1. Let Y; be the true failure time of the it individual, that is”?i > Y; with
equality if and only if v; = 1. Letting U; = H(Y; | 8.,), Theorem 1 implies Uy, S Unif (0, 1).
Note that

H(Y: | 6,) = v;H(Y: | 6:) + (1 —vi) [H(Y; | ) + {H(Y; | 6.) — H(Y; | 6.,)}| -
Since H(Y; | 6..) ~ Unif(0,1) and is independent of Y;, H(Y; | 8.,) + {H(Y; | 6.,) — H(Y; |
0.)}|Y:, 0. ~Unif{H(Y; | 0.,), 1} which follows the same distribution as v;{1-H(Y; | 6.,)}.
Hence the proof. O

S.5.1 Illustrating Example for the Graphical Goodness-of-Fit Test

We illustrate the Bayesian goodness-of fit test in a linear regression problem. We simulate
data (X;,Y;),i=1,...,n (= 1,000) from the following mixture distribution
Yi | X; ™ moN(ag + B Xi, 08) + (1 — 7o) Exp(ag + 87 X)), (5.6)

where X;’s are p (= 5)-variate continuous covariates and Exp(a) denotes an exponential dis-
tribution with mean a. However, we fit the following misspecified Bayesian linear regression
model on the data using the MCMCpack R package

likelihood: Y; | X; ™ N(a + BT X;, o2);

prior: (a,3) ~N,,1(0,10 x I,;), 02 ~ Ga(0.1,0.1). (S.7)

For varying values of 7y, we show quantile-quantile plots in Figure S.2 where we see
deviation from the diagonal y = x straight-line aggravates as my — 0, i.e., with increasing
model misspecification.
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Figure S.2: Quantile-quantile plots for increasing model misspecification: Data are generated
from model (S.6) for different values of my and the Bayesian linear regression model in
Eqn (S.7) is fitted where my = 0.0 and 1.0 denote the extreme misspecified model and the
true model, respectively. Deviation from the diagonal y = x straight-line aggravates with
increasing model misspecification.

S.6 Alternate Interpretation of the CA-PPMx

In Section 4.2, we introduced a model-based approach for inference on treatment effects in the
CA-PPMx model. An alternative interpretation of the approach arises from observing the
following connection with methods based on PS stratification (Wang et al., 2019; Chen et al.,
2020; Lu et al., 2022). The CAM model can be interpreted as a stochastic PS stratification.
To see this, first re-index all patients and patient specific variables across s = 1,2 as i =
1,..., N = ny + ny and define Z; € {1,2} if patient ¢ was originally in data set s = 1 or 2,
respectively. Assuming equal sample sizes ny = ng, we have p(Z; = 1 | ¢; = 5)/p(Z; = 2 |
¢; = j) = m;/ma . That is, the terms in the CAM model correspond to different PS ratios
for the selection of a patient into s = 1 versus s = 2. Grouping patients in clusters C} is
then interpreted as stratification by PS, with clusters C; defining the strata. Within each
stratum we report treatment effect 9, = 5{h(Y | 61;),h(Y | 65;)}. Compare the discussion
in Section 4.2.

Whereas fixed consolidated unidimensional PSs may be inadequate in matching multi-
variate covariates (Stuart, 2010; King and Nielsen, 2019) and hence sensitive to the specifi-
cation of the PS model (Zhao, 2004), inference under the proposed CAM model overcomes
limitations by naturally including uncertainty in the stratification.
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S.7 CA-PPMx Specifications and Hyperparameters

Recall the setup from Section 3.1 and the notations from Eqn (4). For categorical co-
variate X, with categories 1,...,my, we choose q,(Xs¢ | {¢) = Mult(1; (1, - - -, Coum,) and
90.0(Ceas- -+ Com,) = Dir(1,...,1) to choose a uniform distribution over the simplex. For
continuous Xy, we choose q( Xy, | €) = N(Xygpixe,0%,) with ¢¢ = (uxe,0%,) and
goe(px.e, 0% 1) = NIG(px e, 0% 30,1, ax,1), Le., pxe | 0%, ~ N(0,0%,), ox7 ~ Galax,1).
Following standard practice, we center px, around zero. Based on previous experience on
Gaussian mixture models, we set ax = #continuous covariates + 30, as a small prior vari-
ance on Ugu’s favors a larger number of occupied clusters in the mixture model a posteriori,
allowing for a more flexible fit. Recall that we have assumed log as ~ N(j1o,02) for s = 1,2
on the concentration parameters in models (1) and (3). To specify weakly informative priors,
we set the hyperparameters y, and o2 such that E(a,) = 1 and var(a,) = 10 a priori for
s=1,2.

Regarding the parameters of the sampling model for survival outcomes in Eqn (8), we
set kg = 1 and ag = 10 to ensure a thin-tailed base-measure. In our experience, with too
heavy tailed prior distributions, small sample performance can easily get dominated by the
prior. Regarding the hyperprior on the mean parameter 19, we choose m,, using an empirical
Bayes type approach. Letting n be the number of observed failures combining the RWD and
the current trial, we set m, = %ZS Zi:ysﬂ:l Y;i, i.e., the grand mean of the log-observed
failure times across all arms. We further set si = 1. Regarding the hyperprior on the scale
parameter by, we choose my;, and si such that E(by) = 5 and var(by) = 20 a priori to set a
weakly informative hyperprior.

Regarding the real-valued continuous responses in the simulation studies in Section 6, we
use the model in Eqn (8) on the actual response variables with v,,; = 1 for all ¢ and s.

S.8 Posterior Computation

For computational convenience in the practical implementation, we consider the degree k
weak limit approzimation (Ishwaran and Zarepour, 2002a,b) of the GEM () distribution in
(1), i.e., we use a Dir(aq/k, ..., as/k) distribution, with fixed but large enough k. We set
k = 15 for all our simulation experiments and applications.

We develop a Gibbs sampler to avoid computational issues with a Gaussian mixture
models on the log transformed survival outcomes with censoring. Without loss of generality
we assume Y ;s (log transformed outcomes) are supported on the entire real line and describe
our algorithm for a mixture of Gaussian distributions. Let v, ;’s be the censoring indicators
such that v,; = 1 implies Y} ; is an observed failure time; else if it is censored in the interval
(Ysii, Ysiw) then vg; = 0. For left and right censoring, we take Y;;, = oo and Y;,;; = —o0,
respectively. Let 1752 be the true failure times, that is }7“ =Y, if and only if v,; = 1. Off-
line, before starting MCMC simulation, we initialize 378, at some admissible value for v5; =0
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and cluster membership indicator variables ¢; and ¢y. For the CAM model on covariates,
we consider a conjugate pair ¢, and go, for £ = 1,...,p. This allows us to analytically
marginalize with respect to the atoms (;’s. This strategy results in substantially improved
mixing of the Markov chain.

The sampler iterates through the following steps. In Step 1, we impute i,i’s for the
censored observations; in Step 2, we update the cluster membership indicators ¢; and e¢y;
in Step 3, we update hyper-parameters related to the response model that allows sharing
of information via a hierarchical model; in Step 4, we update the parameters required to
implement the strategies outlined in Sections 3.2 and 4.2; finally in Step 5 we update the
Dirichlet hyperparameters for the two mixture models.

Step 1 We define the set Ss;_; = {i : ¢cs; = j} \ {i}, nsj—i = |[Ssj—il, Ksj—i = Ko + N j—i,

Yij—i= Zress,j,_i Yor/Nsji—is Msj—i = (Koo + T j—iY s j—i) [ Ks j—ir Qsj—i = Qo + Nsj—i/2,
bs,j,—i = b[) + ZTES ) _(Y;’T — Ys,j,—i)2/2 + 7157]‘7_7;/{0(}/573'7_2' — ,LL())2/K,57J‘7_Z‘. Then for all ¢ =

8,7,—1
1,...,ns and s = 1, 2, generate
~ Y, with probability 1 if vs; = 1;
Y~

7 bsj—i(Ks,j,—i+1)
t20«s,j,—i {/"Ls,j,*ia Qs j—iks,j—i ‘ (m,i,h K,i,u) )

where tg{u,0? | (a,b)} is a central Student’s t-distribution, with degrees of freedom df,
median p and scale parameter o, truncated to the set (a,b).

Step 2 Letting f.{- | df,u,o*} and Fi{- | df,u,c*} denote the pdf and cdf of a central
Student’s t—distribu:cion with degrees of freedom df, median y and scale parameter o, respec-

' beji(keyit1)
tively, we define 1, {Y;z | Dty i s iy 222 i(Fs i )} if vy, = 1

As,j,—iks,j,—i

Yy s,4(1) = F {Ys’w | 20155 iy s j—i, M}

As,j,—iks,j,—i

bs j,—i(Ks,j,—it1)

—Ft {Ys,i,l | 2@57‘7'7_1‘,/,657]‘7_1', } otherwise.

Recall from Section 3.1 (see page 11) that Oy is the set of indices of the covariates observed
for X ;, and define the sets C;, = U2_, {i : i € Sj,£ € Oy, } and X = W2 {Xsij 1 €Cle}
Define the functions g/(X;3 | &) = [ [liec,, @¢(Xsie | Gi0)90,0(Cjie | €0)dC;0 and ¥y 5(i) =

9e(X;91€0)
Héeos,i e EAnTIk Then, ¢; can be updated as
H(Cl,i :j —) X (nl,j,,i -+ Oél/k?<n2>> X wY;l,j@‘) X wX;l,j(i) for j = 1, R k(ng)

Similarly ¢, can be updated as
H(Cg,i :j | —) =1if ny; > 0 and Nngj—i = 07
else H(Cg,i = j ’ —) X (ng’j7,i -+ CYQ/k) X iﬂy;g’j(i) X Qﬂx;g’j(i) fOI‘j = 1, R k.

Step 3 Define b= log by and let H(uo,g | 171,1:,11,172,1:”2) be the joint posterior density of
to and b given Y ;’s, k1 and k, 2 be the number of non-empty clusters in the two cohorts
respectively. Then,
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(o —m,)? (b= my)?

log H(HOag ‘ i;1,1:7117 i}2,1:112) =K — + (kn,l + knyg)aolg

252 257
k’(n2) 2 Avd 2
1 K _|_ ns 4Y8 .
Z<a0+_> log b +_ Molfvo+ Z ( 0o iYsi) 7
- — 2 Ko + Ng j
j=1 s=1 (ISP ’

where K is a constant and YSJ- = Zz‘essj }7“ We sample py and b using a Hamiltonian
Monte Carlo (HMC) algorithm (Duane et al., 1987).

Step 4 For j =1,... k, wedefine the set S5 ; = {i : ¢5; = j}, Ksj = Ko+ns, fs; = (Koo +

MY 5j)/Kajs Gsj = o+ Ns /2, bej = by + > ores,; Yor — Yaj)?/2+ nsjk0(Ys; — pho)?/Kis -
Then,

bsj(#s5 + 1) -
Hsj ~ toa, ; {Msm o } ) g ,JZ ~ Ga(asm bs,j)v (S.8)
5,515,
. a1 Qaq . Qg Q9
N (O T R o).
™ Ir (nl,l + K () N1 k(ny) + k(ng)) D) Ir |\ ngq + — I ,No g + 3
For s = 1, we only sample for j = 1,...,k(ny) in (S.8). Note that the dimension of 7 can

vary across MCMC samples.

Step 5 With lognormal priors on the Dirichlet mixture hyperparameters oy and as, log ag ~
N(pta; 02), s = 1,2, the log-posterior pdfs are given by

1 _ 2
_|_ Z log al/k’n2)+n1)_1og (log a1 — 1a)

1 —

logll(ey | =) = Ky +log =————

2 )
F i1, >0 lel) 20'a
F(a ) [(as/k +no) (log s — p1a)”
log IT —) =Ky +log ———— log ————— —1 —-_——
ogll{as [ =) = K3 +log (s + 1) +an>0 () 0g (o 202

As the respective pdfs are differentiable with respect to a; and as, we sample the parameters
using HMC.

Remark 1. Note that in Step 2, Cj, is the set of data points in S; with observed covariate
t, X9 is the collection of the observed values of the covariate £ in S; and ge( X7 | &) is
the joint marginal density. A conjugate pair qo and go, ensures the analytical availability
of go and Vx5 (i) becomes the conditional distribution of X,,; given ;2. For continuous
real-valued X, j,, we may take qo(- | ;) to be the univariate Gaussian pdf where ; is the set

of associated mean and variance parameters, and go,(C; | &) to be a normal-inverse-gamma
9e(X91€e)

X;,(Z\{Xs,j,z}\ﬁe

t-distribution density; for categorical X, e, a convenient choice can be the multinomial-

density (compare Section S.7). In this case, the ratio ol ] reduces to a central
0

Dirichlet pair which again yields an analytical expression of the ratio.

In the GBM application and simulation studies in Section 6, we have considered conjugate
normal-inverse-gamma and multinomial-Dirichlet conjugate pairs for continuous real-valued
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covariates and categorical covariates, respectively. For all simulation studies and GBM
application, we consider 6,000 MCMC iterations, discarded the first 1,000 as the burn-in
samples, and saved every 5 MCMC sample to reduce autocorrelation.

Finally we note that the complete conditional for 7 ; in step 4 could be used to implement
Rao-Blackwellization (Robert and Roberts, 2021) in the evaluation of the weights w; in (6)
by replacing m ; with the conditional posterior means.

S.9 Additional Details on Simulation Studies

S.9.1 Procedure to Test for Treatment Effects in Section 6

Recall that in Section 6 we test Hy : 0 = 0 versus H; : 0 # 0 in each simulation setup. To
compute the power, we first estimate the treatment effect, say 5 in each setup. Estimated
treatment effects under CA-PPMx are evaluated using the posterior mean of Eqn (9). To
evaluate type-1I error rates we use the empirical distribution of § under simulation truth
0 = 0 for each of the seven methods under consideration across the 500 repeat simulations
to obtain their distributions under Hy. We evaluate the empirical 2.5% and 97.5% quantiles,
say S\L and /5\U and define the test function Cb(g) = ﬂgaé[&,%] controlling the type-I error at
5% level of significance.

S.9.2 Details on Simulation Truths

CAM scenario: We set (111 = p111 = 2 and p; = 0 for all 7 > 2, and po5 = p106 = 2 and
pe; =0 forall j ¢ {5,6}, 0]2 = 0.05 for all 7 = 1,2, 3. Regarding the mixture weights, we set
m1 =m2 = 0.5 and m; = Mo = 1/6 and m 3 = 2/3. Regarding the categorical covariates
we set o1 = 0.85, 9o = 0.65.

MIX scenario: We take & = 4. Recall that p;; = poj for all j < k, say p; =

(tj1s -5 pjp)t.  For each j < k, we take pjoji1 = Hj2j42 = 2 and p;, = 0 for
all ¢ ¢ {27 + 1,25 + 2}. Finally for psr = (sk1,---,skp)’ with s = 1,2, we set
ik = s =2, ko = 1 and gy e =0 for all £ ¢ {7,8,9}; and po g okt+1 = Hok k2 = 2
and por, = 0 for all ¢ ¢ {2k + 1,2k + 2}. In each repeat simulation we generate
Wi, ..., w1, = SRSWR(L, ..., 4) where SRSWR,.(S) denotes the simple random sampling
scheme with replacement of size r from the set S. Then we set m ; = wy ;/ fo:l wy , for all
j=1,...,k weset mp; =1/kforall j=1,... k.

Interaction scenario: Recall the covariates in the GBM dataset from Table 2 in the

main manuscript. We consider pairwise interactions between (Gender, Age) and (RT Dose,
Age). Following that, we have one-hot-encoded the covariates with more than two categories
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(e.g., KPS) so that we are left with all binary covariates (including the interactions). Let
X; = (Xi1,...,X;p)" be the covariates corresponding to patient record i with p being the
number of covariates.
For each repeat simulation, we then generate b = (by, ..., b,)T = SRSWR,(—1,0.75). We
T
then assign the patient record ¢ to the treatment arm with probability %.

Oracle scenario: We follow the exact same strategy as described in the Interaction sce-

nario but without pairwise interactions.

Outcome model: Forx = (21,...,2,)", we take f(€) = B11(z,51.95,00>1.25)— B2 L (g >1.25 24> 1.25)+
B3 (z5>1.25,06>1.25) + Bal(@, 1 >12,>1)- In each repeat simulation we let £, B2 s Unif (40, 60),
Ps ~ Unif(225,275) and S, ~ Unif(—5, —1).

In the Interaction and Oracle scenarios we simulate the linear regression coefficients

B=(B,....5,)" % Unif(-10, 10).

S.9.3 Implementation of Matching and PS-Based Approaches

PS-based approaches: We implemented the composite likelihood and power-prior ap-

proaches using the psrwe R package. We set the hyperparameters as recommended in the
vignette. We create 5 strata (suggested in the package vignette) and borrow n; patients
from the RWD for all simulation studies. For the PS model, we consider both, linear logistic
regression and the random forest classifier.

Matching: We implemented these approaches using the optmatch R package. Following
the recommendations in the vignette, we set one control to be matched to each treatment.
It makes the matched control population to be of the same size as the treatment arm. We
then fit a linear model to estimate the treatment effect o.
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S.9.4 Bias for the Methods Considered in Section 6
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Figure S.3: The bias in detecting treatment effects across different simulation setups: Seven
methods are used to estimate the effects where IS-LM and CA-PPMx are based on the
proposed CAM model. Panel (a) corresponds to the CAM (top) and MIX (bottom) scenarios.
Panel (b) shows results under the Interaction (left side) and the Oracle (right side) scenarios.
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S.9.5 Power for the Methods Considered in Section 6

The PS-based approaches yield very similar results. Therefore, for easier apprehension we
only show the results for CL-RF together with the other types of methods in Tables S.1 and
S.2, and the rest of the PS-based methods in Table S.3.

Table S.1: Power of detecting treatment effects under CAM and MIX scenarios

Scenario: CAM | Scenario: MIX ||

Scenario: CAM | Scenario: MIX |

0 ‘ ‘ ny p Power ‘ ny p Power H ‘ ny p Power ‘ ny p Power ‘
50 10 0.024 | 50 10 0.056 50 10 0.054 | 50 10 0.042

100 10 0.032 | 100 10 0.066 100 10 0.080 | 100 10 0.090

150 10 0.048 | 150 10 0.118 150 10 0.080 | 150 10 0.072

-1 50 20 0.206 | 50 20 0.052 50 20 0.050 | 50 20 0.056
100 20 0.040 | 100 20 0.050 100 20 0.068 | 100 20 0.052

150 20 0.062 | 150 20 0.030 150 20 0.118 | 150 20 0.064

50 10 0.050 | 50 10 0.050 50 10 0.050 | 50 10 0.050

100 10 0.050 | 100 10 0.050 100 10 0.050 | 100 10 0.050

x| 150 10 0.050 | 150 10 0.050 150 10 0.050 | 150 10 0.050

0 E 50 20 0.050 | 50 20 0.050 || = |50 20 0.050 | 50 20 0.050
~ 100 20 0.050 | 100 20 0.050 ; 100 20 0.050 | 100 20 0.050
< | 150 20 0.050 | 150 20 0.050 || = | 150 20 0.050 | 150 20 0.050
L.). 50 10 0.048 | 50 10 0.056 E 50 10 0.056 | 50 10 0.090
-g 100 10 0.890 | 100 10 0.266 || = | 100 10 0.064 | 100 10 0.080
% 150 10 0.950 | 150 10 0.674 § 150 10 0.112 | 150 10 0.042

1 =150 20 0.058 | 50 20 0.142 50 20 0.064 | 50 20 0.048
100 20 0.806 | 100 20 0.534 100 20 0.082 | 100 20 0.074

150 20 0.924 | 150 20 0.826 150 20 0.096 | 150 20 0.082

50 10 0.866 | 50 10 0.056 50 10 0.146 | 50 10 0.132

100 10 0.960 | 100 10 0.746 100 10 0.358 | 100 10 0.216

. 150 10 0.998 | 150 10 0.754 150 10 0.472 | 150 10 0.154
3 50 20 0.966 | 50 20 0.754 50 20 0.164 | 50 20 0.078
100 20 0.958 | 100 20 0.900 100 20 0.312 | 100 20 0.228

150 20 0.998 | 150 20 0.900 150 20 0.518 | 150 20 0.240

50 10 0.056 | 50 10 0.014 50 10 0.050 | 50 10 0.076

100 10 0.056 | 100 10 0.056 100 10 0.064 | 100 10 0.044

150 10 0.042 | 150 10 0.060 150 10 0.096 | 150 10 0.100

-1 50 20 0.044 | 50 20 0.046 50 20 0.040 | 50 20 0.058
100 20 0.076 | 100 20 0.034 100 20 0.046 | 100 20 0.076

150 20 0.060 | 150 20 0.046 150 20 0.038 | 150 20 0.062

50 10 0.050 | 50 10 0.050 50 10 0.050 | 50 10 0.050

100 10 0.050 | 100 10 0.050 100 10 0.050 | 100 10 0.050

150 10 0.050 | 150 10 0.050 || oo | 150 10 0.050 | 150 10 0.050

0 E 50 20 0.050 | 50 20 0.050 _:E 50 20 0.050 | 50 20 0.050
51100 20 0.050 | 100 20 0.050 || £ | 100 20 0.050 | 100 20 0.050
O | 150 20 0.050 | 150 20 0.050 g 150 20 0.050 | 150 20 0.050
'g 50 10 0.044 | 50 10 0.016 || 5 | 50 10 0.078 | 50 10 0.070
<1100 10 0.030 | 100 10 0.062 || 2 | 100 10 0.076 | 100 10 0.084
§ 150 10 0.040 | 150 10 0.042 || B | 150 10 0.150 | 150 10 0.106

1 50 20 0.038 | 50 20 0.042 | = |50 20 0.068 | 50 20 0.092
100 20 0.064 | 100 20 0.040 100 20 0.104 | 100 20 0.070

150 20 0.074 | 150 20 0.052 150 20 0.052 | 150 20 0.070

50 10 0.072 | 50 10 0.020 50 10 0.112 | 50 10 0.162

100 10 0.056 | 100 10 0.030 100 10 0.216 | 100 10 0.278

150 10 0.024 | 150 10 0.044 150 10 0.414 | 150 10 0.382

3 50 20 0.034 | 50 20 0.066 50 20 0.154 | 50 20 0.132
100 20 0.064 | 100 20 0.038 100 20 0.206 | 100 20 0.230

150 20 0.046 | 150 20 0.030 150 20 0.236 | 150 20 0.294
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Table S.2: Power of detecting treatment effects under Interaction and Oracle scenarios

Method‘ Scenario ‘ 6 Power H Method‘ Scenario ‘ 6 Power

-1 0.079 -1 0.085

) 0  0.052 ) 0 0.052

y Interaction | 4 0.047 Interaction | 0.083

= 3 0.116 = 30497
e =

= -1 0.077 2] -1 0.091

O 0 0.053 0 0.053

Oracle | 1 0084 Oracle | 1 0,092

3 0.132 3 0.570

-1 0.064 -1 0.108

0  0.053 0 0.050

Interaction | 4 0.062 » Interaction | 4 0.121

E. 3 0.071 é 3 0.575

5 -1 0.061 E -1 0.103

0 0.053 = 0 0.053

Oracle | 1 0039 Oracle | 1 0122

3 0.043 3 0.752

Table S.3: Power of the PS-based methods in CAM and MIX scenarios (upper table) and
Interaction and Oracle scenarios (lower table)

| | Scenario: CAM | Scenario: MIX | | Scenario: CAM | Scenario: MIX | | Scenario: CAM | Scenario: MIX |

g ‘ ‘ ny p Power ‘ ny p Power ‘ ‘ ny p Power ‘ ny p Power ‘ ‘ ny p Power ‘ ny p Power ‘
50 10 0.082 | 50 10 0.022 50 10 0.062 | 50 10 0.022 50 10 0.068 | 50 10 0.016

100 10 0.044 | 100 10 0.072 100 10 0.050 | 100 10 0.056 100 10 0.044 | 100 10 0.064

150 10 0.036 | 150 10 0.056 150 10 0.048 | 150 10 0.064 150 10 0.036 | 150 10 0.070

-1 50 20 0.060 | 50 20 0.044 50 20 0.036 | 50 20 0.026 50 20 0.058 | 50 20 0.040
100 20 0.062 | 100 20 0.038 100 20 0.074 | 100 20 0.036 100 20 0.060 | 100 20 0.034

150 20 0.060 | 150 20 0.044 150 20 0.066 | 150 20 0.052 150 20 0.048 | 150 20 0.048

50 10 0.050 | 50 10 0.050 50 10 0.050 | 50 10 0.050 50 10 0.050 | 50 10 0.050

100 10 0.050 | 100 10 0.050 100 10 0.050 | 100 10 0.050 100 10 0.050 | 100 10 0.050

-E 150 10 0.050 | 150 10 0.050 150 10 0.050 | 150 10 0.050 E 150 10 0.050 | 150 10 0.050

0 b% 50 20 0.050 | 50 20 0.050 E 50 20 0.050 | 50 20 0.050 -a 50 20 0.050 | 50 20 0.050
3 100 20 0.050 | 100 20 0.050 2, 100 20 0.050 | 100 20 0.050 S 100 20 0.050 | 100 20 0.050

A, | 150 20 0.050 | 150 20 0.050 | A4 | 150 20 0.050 | 150 20 0.050 | 4 | 150 20 0.050 | 150 20 0.050

Q_'.' 50 10 0.058 | 50 10 0.030 "‘g 50 10 0.072 | 50 10 0.018 U 50 10 0.060 | 50 10 0.020

'g 100 10 0.040 | 100 10 0.054 | = | 100 10 0.036 | 100 10 0.054 '8 100 10 0.036 | 100 10 0.058

< | 150 10 0.028 | 150 10 0.042 § 150 10 0.044 | 150 10 0.034 | = | 150 10 0.030 | 150 10 0.048

1 é') 50 20 0.034 | 50 20 0.050 50 20 0.028 | 50 20 0.024 ﬁ 50 20 0.028 | 50 20 0.048
100 20 0.040 | 100 20 0.038 100 20 0.068 | 100 20 0.032 100 20 0.036 | 100 20 0.040

150 20 0.062 | 150 20 0.054 150 20 0.080 | 150 20 0.060 150 20 0.064 | 150 20 0.048

50 10 0.084 | 50 10 0.018 50 10 0.072 | 50 10 0.020 50 10 0.072 | 50 10 0.026

100 10 0.040 | 100 10 0.038 100 10 0.062 | 100 10 0.026 100 10 0.044 | 100 10 0.028

150 10 0.038 | 150 10 0.050 150 10 0.028 | 150 10 0.044 150 10 0.034 | 150 10 0.056

3 50 20 0.052 | 50 20 0.064 50 20 0.038 | 50 20 0.042 50 20 0.048 | 50 20 0.064
100 20 0.042 | 100 20 0.042 100 20 0.060 | 100 20 0.030 100 20 0.040 | 100 20 0.038

150 20 0.040 | 150 20 0.028 150 20 0.058 | 150 20 0.040 150 20 0.038 | 150 20 0.038

Method‘ Scenario ‘ 6 Power H Method‘ Scenario ‘ 6 Power

-1 0.060 -1 0.058
0 0.052 0 0.052

g Interaction | 0.058 2 Interaction | 0.058
-:g’o 3 0.062 -go 3 0.058
n -1 0.065 o -1 0.063
3 0 0.053 = 0 0053
Oracle 1 0.036 Oracle 1 0.036

3 0.043 3 0.045

-1 0.061 -1 0.066

& 0  0.053 = 1o 0033
A, Oracle 1 0.039 a, Interaction | 1 (057
A 3 003 & 3 0.064
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S.9.6 Multiple Historical Controls

We consider a setup with historical controls arising from multiple sources, i.e., with S > 2. As
mentioned earlier in Section 3.1, we merge the historical datasets and treat the merged data
set as a single RWD population with increased heterogeneity. We study the performance of
the CA-PPMx model in this scenario via simulation studies. We extend the MIX scenario dis-

cussed in Section 6. We generate the treatment arm X ; S Z?Zl m1;Np(pj, 021,). We gener-

ate two RWD datasets from X, S Zf;ll 72, Np(pj, 0%I,) and X3, S 25:2 73N, (5, 02L,).
In this construction, the historical populations X5 and X3 are substantially different, with
one distinct atom each, as well as varying weights for the common atoms. Letting Xy denote
the merged X, and X3 population, we fit the CA-PPMx model on X; and Xso. Note that
the current trial population X has an extra atom compared to each of the RWD populations
but the merged X and X; share common atoms.

We generate the response Y, w N( + X[;8,1) and Y, by N(X[,8,1) for s = 2,3
implying 6 to be the true treatment effect. We let ny, no and ns denote the sample sizes
in the three populations, respectively where we set no = ng = 3 X ny in coherence with
the simulation studies in Section 6. We set the dimension of the covariates p = 10 and
repeat the the experiments for 6 = —1,0,1,3 and ny, = 50,100,150. We plot the power
of discovering the treatment effect in Figure S.4 calculated in the exact same manner as
described in Section 6. We observe that the power increases with respect to both sample
size and strength of the treatment effect.

1.00-
0.75-
03) 50
0(2 0.50- -~ 100
150
0.25-
0.00- . v v
-1 1 3
6]

Figure S.4: Multiple historical data in the CA-PPMx model: We combine different historical
datasets and combine them as a more heterogeneous single population and subsequently fit
the CA-PPMx model. We observe that the power increases with respect to both sample size
and strength of the treatment effect.
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S.9.7 Effect of Missing Confounders

In this section we briefly study the effect of missing confounders on inference under the
proposed CA-PPMx model. In particular we consider the case where a confounding factor is
completely unobserved. In such cases causal inference methods are often biased; see Nguyen
et al. (2017) and the references therein for a detailed review. However, in many applications,
multivariate covariates are often correlated among each other. Several imputation methods
for partially observed confounders are based on this assumption (Cole et al., 2006; Moons
et al., 2006). In such cases, observing and using another covariate which is correlated to the
missing confounder as predictor can reduce bias. We study this in a simulated example.

We consider a regression setup in a case-control study (X, Ys:), ¢ = 1,...,n,
s = 1,2 with bivariate covariate X,; = (X,i1, Xsi2)T. First, we generate X ;1 ~
Z?:l 75,;N(pj,0.01) and subsequently generate X,;o = mX,;1 + €5, where ¢, " N(0,1)
and m € R. Then, we generate the responses Y1, =0 4+ 8X;,1 + €1, and Yy, = X971 + €2,
where € ; by N(0,1) implying § to be the true treatment effect. Thus conditionally on the
Xsi1's, the responses Yj;’s are independent of the X;;2’s. We take ny = 50, ny = 300,
k =3, (2, p2, p3) = (=3,0,3), § = 3 and § = 1. We repeat the simulation experiment
independently 100 times and randomly generate the 7, ;’s in each replicate.

2.0-

1.5-
@ Scenario
m B3 Observed
o 4 o- B Unobserved

0.5 é i
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Figure S.5: Effect of missing confounder in the CA-PPMx model: The bias in estimating
the treatment effect decreases as the correlation between the observed covariate and the
unobserved confounder increases.

We consider two analysis scenarios: (1) Unobserved: X, ; is assumed to be unobserved
and the CA-PPMx model is fitted using (X2, Ys,); (2) Observed: the CA-PPMx model is
fitted using (X, Ys;). We compute the bias in estimating the treatment effect ¢ for varying
values of m in both scenarios. We show boxplots of the biases over the repeat simulations
in Figure S.5.

Note that for m = 0, X, and X, ;2 are uncorrelated. Additionally, |corr(X; 1, Xs,2)|
is an increasing function of |m|. Coherently, the bias is maximum in the Unobserved scenario
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for m = 0 as the X, ;2’s carry no information regarding the confounding factor X ;’s. The
marginal correlation between the observed covariate and the response increases with m and
accordingly we see a reduction in the bias. This simulation study indicates that the CA-
PPMx method will not yield terribly biased results as long as the data includes observed
covariates that are correlated to the unmeasured confounder.

S.9.8 Computation Times for the CA-PPMx Method

In this section we report computation times of the MCMC sampler proposed in Section S.8
across different sample sizes and covariate dimensions. We consider the CAM and MIX
scenarios and the exact same simulation setups discussed in Section 6 of the main paper.
Since the model implementation times do not depend on the treatment effect size, we report
the computation times for § = 3 only. Computation times for 6,000 MCMC iterations in
seconds for a single repeat simulation on an Intel Core i9-13900K CPU with 128GB of RAM
are provided in Figure S.6 where we see that the computational cost increases with the
covariate dimension p as well as the sample size n;.

Scenario: CAM Scenario: MIX
40-
™ 60-
©
5
i 50 i
§ 30 p
10
£ 40- -~ 20
OEJ 20-
= 30-
10 b L]
) ) ) 20- ; ? ?
50 100 150 50 100 150
Ny

Figure S.6: Computation times of the MCMC sampler in seconds: n; and p denotes the
number of patients in the current trial arm and the dimension of the covariates, respectively.

S.10 MCMC Diagnostics

In this section, we provide some convergence diagnostics of the MCMC sampler discussed in
Section S.8 for one trial replicate discussed in Section 7. We show traceplots and Geweke’s
convergence diagnostics (Geweke, 1992) for some selected parameters, using an implementa-
tion in the ggmeme R package (Ferndndez-i Marin, 2016).

Recall the importance resampling weights w; o Z—ZZ in Eqn (5) attached to the historical
patients. We evaluate MCMC convergence diagnostiz:s for the five w;’s with the largest
posterior means, the lognormal hyperparameters py and by mentioned in Step 3 and the
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Dirichlet mixture hyperparameters oy and as in Step 5 of the MCMC sampler in Section

S.8. The results, provided in Figure S.7, do not suggest any convergence or mixing issues.
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Figure S.7: MCMC convergences diagnostics for some selected parameters: Panel (a), (b)
and (c) shows results for the top five w; :Zi with largest posterior means, the lognormal

€24
hyperparameters g and by and the Dirichlet mixture hyperparameters a; and as in Step
5, respectively. In each panel, we show the corresponding traceplots across the thinned out

MCMC samples on the left, and Geweke’s diagnostics on the right.
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