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Abstract

The availability of electronic health records (EHR) has opened opportunities to sup-
plement increasingly expensive and difficult to carry out randomized controlled trials
(RCT) with evidence from readily available real world data. In this paper, we use EHR
data to construct synthetic control arms for treatment-only single arm trials. We pro-
pose a novel nonparametric Bayesian common atoms mixture model that allows us to
find equivalent population strata in the EHR and the treatment arm and then resam-
ple the EHR data to create equivalent patient populations under both the single arm
trial and the resampled EHR. Resampling is implemented via a density-free impor-
tance sampling scheme. Using the synthetic control arm, inference for the treatment
effect can then be carried out using any method available for RCTs. Alternatively
the proposed nonparametric Bayesian model allows straightforward model-based in-
ference. In simulation experiments, the proposed method exhibits higher power than
alternative methods in detecting treatment effects, specifically for non-linear response
functions. We apply the method to supplement single arm treatment-only glioblas-
toma studies with a synthetic control arm based on historical trials.
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1 Introduction

We introduce a novel Bayesian nonparametric regression model to construct syn-

thetic control arms from external real world data (RWD) to supplement single arm

treatment-only trials. The use of common atoms across multiple random probabil-

ity measures is a critical feature of the proposed construction. Models with similar

features have been used before in the literature, including Denti et al. (2021); Camer-

lenghi et al. (2019); Rodŕıguez et al. (2008); Teh et al. (2006).

Randomized controlled trials (RCT) are the gold standard in evidence-based eval-

uation of new treatments. RCTs are, however, increasingly associated with bottle-

necks involving volunteer recruitment, patient truancy and adverse events (Nichol

et al., 2010) and hence are often very time consuming, expensive and laborious. This

is of particular concern for rare diseases, such as glioblastoma (GBM). With digitiza-

tion of health records and other advances in medical informatics, new data sources are

becoming available that can supplement RCTs. For example, relevant information on

a control treatment is often available from completed RCTs, electronic health record

data, insurance claims data or patient registries from hospitals (Franklin et al., 2019).

Such external data, also referred to as RWD, can augment or substitute the control

group in the target clinical trial (Davi et al., 2020). This has led researchers to con-

sider the creation of synthetic control arms from RWD (see Schmidli et al. 2020 for a

review). However, the heterogeneity of RWD prohibits the direct use of patient level

data as a control arm, lest differences with the actual treatment population with re-

spect to patient profiles bias inference on treatment effects (Burcu et al., 2020). Many

existing methods adjust for the lack of randomization in treatment assignments by

correcting the bias in the response model and hence can be sensitive to the specifica-

tion of the treatment assignment as well as the response model as we discuss below.
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In this article, we take a fundamentally different approach by resampling the RWD to

construct a cohort equivalent to the treatment arm in terms of their covariate profiles

which can then serve as the (synthetic) control arm.

There is a fast growing literature on the problem of incorporating RWD in clin-

ical trials. Traditional meta-analytic approaches aim to combine information across

studies to construct comparisons of treatments (Sutton and Abrams, 2001). Power

prior (Prevost et al., 2000; Chen and Ibrahim, 2000), commensurate prior (Hobbs

et al., 2011) and elastic prior (Jiang et al., 2023) constructions try to incorporate

information from historical data by way of informative prior models. However, these

approaches may be inadequate when the RWD population is considerably more het-

erogeneous than the experimental arm; see Müller et al. (2023) for a review.

Many methods to incorporate RWD in trial design and data analysis are based on

propensity scores (PSs), defined as the conditional probabilities of treatment assign-

ment given covariates. In the context of incorporating external data, investigators

often use PSs for a patient being selected into the current trial versus the external

data; in case of supplementing a single arm treatment-only trial, the PSs are identical

to treatment assignments. Rosenbaum and Rubin (1983) showed that an unbiased

estimate of the average treatment effect can be obtained by PS adjustments. Most

PS-based methods can be broadly classified to be based on matching, stratification,

weighting, or regression. Matching is used to achieve covariate balance across differ-

ent arms. However, matching PSs do not generally imply matching covariates (King

and Nielsen, 2019). Stratification splits the data into strata with respect to PSs and

calculates an average treatment effect as a weighted average of within-stratum esti-

mates (Wang et al., 2019; Chen et al., 2020; Lu et al., 2022). PS-stratification may

be sensitive to the definition of the strata and weight-based estimators may be sen-
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sitive to the misspecification of the PS model (Zhao, 2004). Regression adjustments,

that use the PS as a regressor for the outcome, address these issues (Rosenbaum

and Rubin, 1983) but the estimates may again be biased if the regression model is

misspecified (Vansteelandt and Daniel, 2014). Bayesian nonparametric models that

avoid a particular parametric family or structure, such as linearity, of the regression

relationship have thus also been proposed (Wang and Rosner, 2019). Nevertheless,

consolidated unidimensional PSs can be inadequate in matching multivariate covari-

ates from multiple studies (Stuart, 2010; King and Nielsen, 2019). Additionally, these

methods often do not efficiently use all available data by dropping unmatched data.

Finally, some other methods (Hasegawa et al., 2017; Li and Song, 2020), although

not specifically designed to create synthetic controls, also integrate multiple studies

using the covariate distributions.

In this article, we develop an alternative approach based on Bayesian nonparamet-

ric (BNP) mixture models. Mixture models imply a random partition of experimental

units linked to different atoms in the mixture (Dahl, 2006). We exploit this prop-

erty to propose a BNP common atoms mixture (CAM) model to introduce matched

clusters of patients in a treatment-only trial data set and a (typically much larger)

RWD. We show how such matched clusters allow a density free importance resampling

scheme to generate a subpopulation of the RWD such that the distribution of covari-

ates in the subpopulation can be considered to be equivalent to the single-arm trial.

That is, the patients in a matching RWD cluster can be considered digital clones of

patients in a matching cluster in the single-arm trial.

The proposed CAM model allows, among other things, the following two alterna-

tives for inference on treatment effects. Having established equivalent patient popula-

tions, inference can in principle proceed as if treatment had been assigned at random,
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using inference for RCTs. Alternatively, we propose model-based inference using an

extension of the CAM model with a sampling model for the outcome. While both al-

ternatives are based on the same underlying CAM model, we prefer the model-based

inference on treatment effect as a more explicit and principled approach.

The proposed CAM model builds on related BNP models in the literature, in-

cluding the hierarchical Dirichlet process (DP) (Teh et al., 2006) which allows for

information sharing across multiple groups through common atoms, the nested DP

(Rodŕıguez et al., 2008) which can identify distributional clusters, and Camerlenghi

et al. (2019) who proposed a latent mixture of shared and idiosyncratic processes

across the sub-models. Denti et al. (2021) proposed a CAM model for the analysis of

nested datasets where the distributions of the units differ only over a small fraction

of the observations sampled from each unit. In contrast to these constructions, the

CAM model proposed here introduces more structure as needed in our application

by setting up two nonparametric Bayesian mixture models with shared atoms and

constraints on the implied clusters.

The rest of this paper is organized as follows. Section 2 describes the glioblastoma

study that motivated this work. Section 3.1 introduces the proposed common atoms

mixture model on the covariates and how it can handle variable dimensional covari-

ates of different data types; Section 3.2 introduces a novel density-free importance

resampling scheme to achieve equivalent populations; and Section 3.3 discusses the

general common atoms regression model, a flexible mixture of lognormals for censored

survival outcomes and an easy to use graphical tool for model validation. In Section

4, we discuss two alternative strategies for inference on treatment effects. Section 6

presents simulation studies. Section 7 shows results for the motivating GBM data.

Section 8 concludes with final remarks. Below, in Table 1, we list the many acronyms

4



used in the paper for easy reference.

Table 1: List of acronyms

Acronym Full forms
AUC area under the receiver operat-

ing characteristic curve
BART Bayesian additive regression

tree
BNP Bayesian nonparametric
CAM common atoms mixture
CA-
PPMx

common atoms PPMx

Acronym Full forms
DP Dirichlet process
GBM glioblastoma
IS importance sampling
PPMx product partition model with re-

gression on covariates
PS propensity score
RCT randomized controlled trial
RWD real-world data

2 Motivating Application in Glioblastoma

Our motivating application arises from a GBM data science project at MD Anderson

Cancer Center. GBM is a devastating disease with the average life expectancy of

less than 12 months in the general population (Ostrom et al., 2016). Despite decades

of intensive clinical research, the progress in developing an effective treatment for

GBM lags behind that of other cancers (Aldape et al., 2019). In the last 30 years,

only two drugs (carmustine wafers and temozolomide) have been approved by the

Federal Drug Administration (FDA) for patients with newly diagnosed GBM (Fisher

and Adamson, 2021). These drugs extend median survival by less than three months

and neither offers a potential for cure. One major cause of the high failure rate of

the drug development for GBM is suboptimal design of phase II trials, in particular,

the lack of a control arm in many studies (Grossman et al., 2017). A review of

phase I/II GBM trials from 1980 to 2013 found that only 20 (5%) were randomized

compared to 365 (95%) single-arm trials (Grossman and Ellsworth, 2016). Reasons

for the dominance of single-arm trials include the small number of GBM patients

available for clinical trials and investigator’s desire to speed up drug development

and reduce trial costs. GBM is a rare disease by the definition of the Orphan Drug
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Act (FDA, 2020). Unfortunately, the high heterogeneity of GBM patients makes

single-arm trials highly susceptible to bias, contributing to the fact that almost all

phase II trials showing promising treatment effects failed in phase III RCTs (Mandel

et al., 2017). The objective of the GBM data science project is to address this

pressing issue by leveraging historical data collected at the MD Anderson Cancer

Center. The overarching goal is to develop a platform for future single-arm clinical

trials in GBM, with synthetic controls constructed from the historical database to

enhance the evaluation and screening of new drugs. Working towards this goal, we

describe here a method to create synthetic controls, as the engine of the platform, for

future trials.

We work with a database that comprises records from 339 highly clinically and

molecularly annotated GBM patients treated at MD Anderson over more than 10

years. Once the system is set, the database is expected to be continuously updated

with new patient data collected at MD Anderson Cancer Center and potentially also

be combined with the data from other institutions.

After discarding variables with minimal variability across patients and relying on

clinical judgment, we identified 11 clinically important categorical covariates. These

covariates are commonly considered as prognostic factors in GBM treatments (Nam

and de Groot, 2017; Alexander et al., 2019) and are briefly described in Table 2.

Figure 1 shows the categorical covariates in the historical database and a future

treatment-only study which we elaborate in Section 7. Figure S.1 in the supplemen-

tary materials highlights the lack of randomization in the two populations.
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Table 2: Description of the covariates in the GBM data.
Covariate Description

Age dichotomized at 55 years
KPS Karnofsky performance score, categorized into three classes:

“≤ 60”, “(60, 80]” and “> 80”
RT Dose radiation therapy dose: dichotomized at 50 Gray
SOC received standard-of-care (concurrent radiation therapy and temo-

zolomide): Yes/No
CT participation in a therapeutic trial: Yes/No
MGMT status of MGMT (O6-methylguanine-DNA methyltransferase) gene:

methylated (M), unmethylated (UM) or uninterpretable (UI)
ATRX loss of the ATRX chromatin remodeler gene: Yes/No
Gender gender
EOR extent of tumor resection: “total”, “subtotal” or “laser interstitial

thermal therapy” (LITT, Patel and Kim, 2020)
Histologic grade grade of astrocytoma: IV (GBM) (most cases), or

I-III (low-grade or anaplastic) (few)

Surgery reason “therapeutic” or “other” (relapse)

Figure 1: Glioblastoma dataset of 11 baseline categorical covariates with missing
entries in the two treatment arms. The left block shows the historical patients. The
(smaller) right block shows a hypothetical future trial.

3 Common Atoms Mixture Model

We first introduce a model for matching patients with respect to their covariate

profiles across different treatment arms and then an extension of the model to also

include outcomes. Later we will introduce two alternative methods for inference on

treatment effects that build on this model.
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3.1 Common Atoms Mixture Model on the Covariates

Suppose we have S datasets (Xs,i, Ys,i), s = 1, 2, . . . , S, comprising p-dimensional co-

variate vectors Xs,i = (Xs,i,1, . . . , Xs,i,p)
T and corresponding responses Ys,i associated

with patients i = 1, . . . , ns. In this article, we assume the responses to be univariate.

Let s = 1 refer to the arm for the (new) experimental therapy, and s = 2, . . . , S denote

the RWD datasets. Focusing on the motivating GBM application, we elaborate the

model for S = 2 with a single RWD set. When we have multiple historical datasets,

i.e., when S > 2, we would simply merge them and consider the merged data set

to be a single RWD with increased heterogeneity as illustrated in Section S.9.6 of

the supplementary materials. For a valid evaluation of treatment effects, it is then

important to verify equivalent patient populations, i.e., matching the distributions of

Xs,i under s = 1 versus s = 2, or to otherwise adjust for any detected differences

(Burcu et al., 2020). As the RWD population can be from a variety of sources, such

data are typically more heterogeneous than the patient population in the ongoing

trial. We develop a novel BNP CAM model with this specific feature to model the

two distributions. The proposed CAM model gives rise to a random partition of sim-

ilar X1,i and a matching partition of X2,i. Clusters under the latter partition can be

considered digital clones of the matching clusters of the earlier partition.

We first construct the model for covariates X2,i in the RWD. Let ζ̃ = {ζ̃j}
∞
j=1 and

π2 = {π2,j}
∞
j=1 denote cluster-specific parameters and weights, respectively. We let

X2,i | ζ̃,π2
iid
∼

F2(X2,i|π2,ζ̃)︷ ︸︸ ︷∑∞
j=1 π2,jq(X2,i | ζ̃j), ζ̃j | ξ

iid
∼ G0(ζ̃j | ξ), π2 ∼ GEM(α2). (1)

Here q(· | ζ̃j) is a suitably chosen kernel with parameter ζ̃j, G0(· | ξ) is a prior

distribution for the ζ̃j’s, and GEM(α) is a stick-breaking prior on the mixture weights

corresponding to a DP with mass parameter α > 0 (Sethuraman, 1994). Let G =
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∑∞
j=1 π2,jδζ̃j(·) denote a discrete probability measure with atoms at the ζ̃j’s. An

equivalent hierarchical model representation of (1) is

X2,i | ζi
iid
∼ q(X2,i | ζi), ζi | G

iid
∼ G, G | α2, ξ ∼ DP{α2, G0(· | ξ)}, (2)

where DP(α,G0) is a DP with base measure G0 and concentration parameter α (Fer-

guson, 1973). The discrete nature of the DP random measure G gives rise to possible

ties between the ζi’s, which define the desired clusters. For later reference we define

notations for these ties and clusters. Let ζ⋆ = {ζ⋆
j , j = 1, . . . , k(n2)} denote the

distinct values in {ζi; i = 1, . . . , n2}, let c2,i = j if ζi = ζ⋆
j denote cluster membership

indicators defining clusters Cj = {i : ζi = ζ⋆
j }. We assume the distribution of X1,i

be a mixture with the same kernel q and the same atoms ζ⋆,

X1,i | ζ
⋆ iid
∼

F1(X1,i|π1,ζ⋆)︷ ︸︸ ︷∑k(n2)
j=1 π1,jq(X1,i | ζ

⋆
j ), π1 ∼ Dir

{
α1

k(n2)
, . . . , α1

k(n2)

}
, (3)

where π1 = (π1,1, . . . , π1,k(n2)), Dir(a1, . . . , ar) indicates an r-dimensional Dirichlet

distribution with parameters a1, . . . , ar, and α1 > 0 is a concentration parameter.

Note that model (3) is defined conditionally on (1) and ζ⋆ such that F1 and F2 share

the same set of atoms. Importantly, the construction avoids the imputation of clusters

(strata) with only X1,i’s. There is always a corresponding (non-empty) cluster for

the X2,i’s from the RWD. This is important for the upcoming constructions. The

motivation here is that, owing to the bigger size of the RWD compared to the trial

arm, X2 can be expected to exhibit greater heterogeneity than X1 (see, e.g., the right

panel in Figure 2).

In summary, we define F1(X | π1, ζ
⋆) =

∑k(n2)
j=1 π1,jq(X | ζ⋆

j ) and F2(X | π2, ζ̃) =

∑∞
j=1 π2,jq(X | ζ̃j), with the prior on atoms and weights as discussed. Figure 2

shows a stylized representation of the generative process of the proposed CAM model.

Notice that here atom ζ̃3 is not linked with any X2 observation and hence k(n2) = 3.
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data-types and missing values. Covariates in RCTs often comprise different data-

types including continuous, discrete and categorical variables. Missing values are also

quite common. For example, in Figure 1, there are a large number of missing values

for the ATRX gene which has only recently been identified as a therapeutic target

for glioma (Haase et al., 2018) and was therefore not commonly recorded before.

Many existing methods for handling missing data rely on imputation (Choi et al.,

2019), possibly at the expense of an additional layer of prediction errors. Alterna-

tively, data records with missing variables may be dropped altogether, resulting in a

reduced sample size.

Assuming missingness completely at random, the proposed CAM model avoids

these issues by accommodating variable dimensional covariates in a principled manner

by considering a separate univariate kernel for each covariate. Note that a mixture

with independent kernels can still accommodate marginal dependence between the

covariates (Ghosal and van der Vaart, 2017, Section 7.2.2, pp 175). Specifically, let

Os,i = {j : Xs,i,j is recorded} denotes the set of observed covariates for patient i in

dataset s. We use independent kernels

q(Xs,i | ζ
⋆
j ) =

∏
ℓ∈Os,i

qℓ(Xs,i,ℓ | ζ
⋆
j,ℓ), G0(ζ

⋆
j | ξ) =

∏p
ℓ=1 g0,ℓ(ζ

⋆
j,ℓ | ξ), (4)

where qℓ(· | ζ
⋆
j,ℓ) is a univariate kernel corresponding to the ℓth covariate with param-

eters ζ⋆
j,ℓ and g0,ℓ(ζ

⋆
j,ℓ | ξ) is a prior on ζ⋆

j,ℓ with hyper-parameters ξ. The likelihood

function of Xs,i is then computed on the basis of only the observed values. The kernel

qℓ is chosen to accommodate the data-type of the ℓth covariate. The model allows

co-clustering of Xs,i with some missing variables and another fully observed Xs,i′ ;

see Section S.3 of the supplementary materials for additional details. Missingness

patterns other than completely at random can be handled by introducing additional

hierarchy in the model, see, e.g., Linero and Daniels (2018) for a review.
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3.2 Density-free Importance Resampling of RWD

Building on the fitted CAM for covariates, we propose an importance resampling

method to create a subpopulation of X2 that can be considered to be equivalent to

X1 (see below for a definition of equivalence that is being used here). Under the

assumption of no unmeasured confounders, the X2,i’s in the sampled (or weighted)

subpopulation can be assumed to follow the same distribution as X1,i, and be con-

sidered digital clones of the X1,i. With such equivalent populations, in principle, any

desired method for randomized clinical trials can subsequently be used to carry out

inference on treatment effects. Such focus on equivalent populations follows recent

recommendations by the FDA (FDA, 2021).

Recall that Fs denotes the mixture model for Xs,i, s = 1, 2, under (1) and (3),

respectively. We define equivalent populations as a subset (possibly all) ofX2 together

with a set of weights such that expectation of any function of interest g(X1,i) under

X1,i ∼ F1 can be evaluated as a (weighted) Monte Carlo average using these X2 (and

the weights). Here we assume that all stated expectations exist and that the order of

taking expectations and limits can be switched.

Recall that F2(· | π2, ζ̃) =
∑∞

j=1 π2,jq(· | ζ̃j). Alternatively, the joint model of

(X2, c2) can be expressed as FH
2 (X2,i, c2,i | π2, ζ̃) = q(X2,i | ζ̃c2,i)π2,c2,i . For easier

housekeeping, we assume ζ⋆
j = ζ̃j for j = 1, . . . , k(n2), i.e., the first k(n2) atoms are

linked with the X2,i’s. Accordingly, we let F1(· | π1, ζ̃) =
∑k(n2)

j=1 π1,jq(· | ζ̃j) using

the same first k(n2) atoms observed in the X2 population. This is the exact construc-

tion of (1) and (3). For an equivalent population, we require weights wi attached to

(X2,i, c2,i) (using wi = 0 to drop samples) such that:

EF1(·|π1,ζ̃)
{g(X1,i)} = EFH

2 (·|π2,ζ̃)
{ĝ(X2, c2)} with ĝ(X2, c2) =

n2∑

i=1

wi g(X2,i, c2,i).

The weights wi are functions of c2,i and π1,j as follows. Define n2,j = |C2,j|, the cardi-
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nality of the earlier introduced clusters C2,j. Then
1

n2,j

∑
i∈C2,j

g(X2,i) is an unbiased

estimator of Eq(·|ζ̃j)
g(X) and

ĝ =
∑

j π1,j

{∑
i∈C2,j

1
n2,j

g(X2,i)
}
=

∑n2

i=1

π1,c2,i

n2,c2,i
g(X2,i) (5)

is an unbiased estimator of EF1(·|π1,ζ̃)
g(X). We then recognize π1,c2,i/n2,c2,i as the ideal

weights. Since we only observe Xs but not π1 and c2, we replace π1,c2,i/n2,c2,i in ĝ by

a Monte Carlo average under posterior MCMC simulation to get the desired equality

simulation-exact (i.e., in the limit as n1, n2 and the number of MCMC simulations

increases). Let m = 1, . . . ,M index the posterior sample and use π
(m)
1,j , n

(m)
2,j , etc. to

indicate parameter values in the mth sample. We use

ĝ =
∑

iwig(X2,i), wi ∝
∑M

m=1 π
(m)

1,c
(m)
2,i

/n
(m)

2,c
(m)
2,i

, (6)

with wi being the importance sampling weight for X2,i. The X2,i’s can be resampled

with these weights to obtain the desired subpopulation with distribution F1(x | π1, ζ̃)

(Skare et al., 2003). This resampled subpopulation of X2 can then be regarded as

equivalent in distribution to X1. Algorithm 1 summarizes the procedure.

Algorithm 1: Density-free importance resampling of RWD and validation

1 Input two data sets X1 and X2.

2 Fit the CAM model to the data using MCMC simulation. Let π
(m)
1 and

c
(m)
2 be the mth MCMC sample of π1 and c2, respectively, and n

(m)
2,j be the

size of cluster C2,j in the mth MCMC iteration for m = 1, . . . ,M .
3 Calculate importance sampling weights

wi ∝
∑M

m=1 π
(m)

1,c
(m)
2,i

/n
(m)

2,c
(m)
2,i

, i = 1, . . . , n2.

4 Resample a subpopulation of size n1 from X2 with importance resampling
weights wi with replacement.

5 Test for equivalence of X1 and the resampled subpopulation of X2 using a
supervised classification algorithm (e.g., a BART as described in the text).

To test the equivalence of the two populations, we use a Bayesian additive re-

gression tree (BART, Chipman et al., 2010) in Step 5 of Algorithm 1. In extensive

simulation studies in Section 6, we notice that an AUC (area under the receiver oper-
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ating characteristic curve) less than 0.6 yields excellent empirical performance. Once

equivalence is achieved, in principle any existing approach for inference on treatment

effects can be used (see Section 4 and later).

Note that even if the RWD population is not a heterogeneous superset of the

current trial, one can still fit the CAM model. In case the RWD is not comparable,

Step 5 of Algorithm 1 can discriminate the two populations and the AUC can quantify

the degree of incongruence.

In general, importance sampling schemes need the ratio of the target density (in

our case, F1) and the importance sampling density (in our case, F2). For our problem,

this would require high-dimensional density estimation. Even if the densities were

known, importance sampling would be plagued by unbounded weights (Au and Beck,

2003). Exploiting the common atoms structure, our proposed scheme however avoids

evaluation of the marginal multivariate densities. We therefore refer to this as a

density-free importance resampling scheme, and for brevity often simply as an IS

scheme. In the denominator of wi, the use of n2,j (which by definition are ≥ 1) avoids

complications arising from unbounded weights. Conventional importance sampling

schemes are asymptotically consistent. This is seen to hold in numerical experiments

with our algorithm as well. Additional discussions on Algorithm 1 are in Section S.4

of the supplementary materials.

3.3 Regression with CAM Model on Covariates

Note that up to here we only concerned ourselves with the covariates, without any

reference to the outcomes Y . In preparation for one of the strategies in the upcoming

discussion of treatment comparison (Section 4), we now augment the CAM model to

include a sampling model for the outcomes. That is, we add a response model on top
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of the CAM model on covariates.

The extended model defines a regression of Ys,i on covariates Xs,i by first grouping

patients with similar covariate profiles into clusters and then adding a cluster-specific

sampling model for the outcome Ys,i. That is, the overall model specifies a regres-

sion of Ys,i on Xs,i via a random partition. A major advantage of this approach is

that it allows a variable-dimension covariate vector – a feature that is not straight-

forward to include in a regression otherwise. Similar product partition models with

regression on covariates (PPMx, see also S.2 in the supplementary materials) were

considered by Müller et al. (2011) and Page et al. (2022), albeit without any notion

of common atoms. We will therefore refer to the model proposed below as the com-

mon atoms PPMx (CA-PPMx). Formally, we introduce cluster-specific parameters

θs = {θs,j; j = 1, . . . , k(n2)}, and assume

(Ys,i | θs, cs,i = j)
ind
∼ h(Ys,i | θs,j), (7)

for a suitable choice of h. For example, for an event-time response, h could be a

lognormal, exponential or Weibull model. The response model (7) depends on the

covariates indirectly via cs,i’s, i.e., the partition induced by the covariates. Within

stratum Cj = C1,j∪C2,j, the response models allows for a treatment comparison based

on (θ1,j,θ2,j), which can then be averaged with respect to the assumed distribution

of Xs,j to define an average treatment effect.

For the implementation in the motivating case study, we let Ys,i denote the log

OS (overall survival) times and assume h(Ys,i | θs,j) to be a normal kernel with

θs,j = (µs,j, σ
2
s,j). Such mixtures are highly flexible (Ghosal et al., 1999), making them

an attractive choice for many applications. We complete the model with conjugate

normal-inverse-gamma (NIG) priors on the (µs,j, σ
2
s,j)’s. In summary, we have

Ys,i | cs,i = j,θs
ind
∼ N(µs,j, σ

2
s,j), µs,j | σ

2
s,j

ind
∼ N

(
µ0,

σ2
s,j

κ0

)
, σ−2

s,j
iid
∼ Ga(a0, b0), (8)

15



where Ga(a0, b0) is a gamma distribution with mean a0/b0. We add the hyper-priors

µ0 ∼ N(mµ, s
2
µ) and log b0 ∼ N(mb, s

2
b) on the main location-scale controlling hyper-

parameters µ0 and b0 while fixing the precision hyper-parameters κ0 and a0. Choices

of these hyperparameters are discussed in Section S.7 of the supplementary materials.

Finally, for a goodness-of-fit test under the proposed model, we use the approach of

Johnson (2007) to build a graphical tool based on quantile plots. Such visual tools

are often quite effective for detecting departures from model assumptions (Meloun

and Militký, 2011, Chapter 2). See Section S.5 in the supplement for more details.

4 Inference on Treatment Effects

4.1 Two-step Importance Sampling (IS) Approach

We already described the use of the weights πs,j in the CAM model to achieve equiv-

alent patient populations. This allows a straightforward approach to treatment com-

parison. Using the adjusted (resampled) subpopulation of X2, one can proceed with

inference on the treatment effect using any method relying on equivalent patient pop-

ulations across the two arms. We refer to this approach as the “two-step IS” and

use it in the simulation studies and applications in Sections 6 and 7, respectively.

This approach does not make use of the outcome model of Section 3.3.

4.2 Model-Based Inference for Treatment Effects

Alternatively, we implement inference using the response model of Section 3.3, i.e.,

the full CA-PPMx. We refer to this approach as “model-based inference”. We

assume that the desired inference on treatment effects takes the form of inference for

some notion of difference δ(·, ·) of the marginal distributions under the two treatment
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arms, ∆θ = δ {f1(· | θ1,π1), f2(· | θ2,π2)} . However, since the covariate populations

in the two treatment arms can be substantially different, comparison between the

marginal (with respect to the covariates) outcome models f1(Y1,i | θ1,π1) and f2(Y2,i |

θ2,π2) can be biased. We need to appropriately adjust for the differences in the two

populations. We do this by replacing f2 as follows. Exploiting the common atoms

structure of the proposed CA-PPMx, there is an operationally simple method to

carry out this adjustment and infer treatment effects. Since within each cluster, the

covariate populations can be considered equivalent, the adjustment for the lack of

randomization amounts to adjusting the corresponding cluster weights. We define

f̃2(Y | θ2,π1) =
∑k(n2)

j=1 π1,jh(Y | θ2,j),

where the mixture components h(Y | θ2,j) of the response model in the RWD are

weighted by π1, i.e., the cluster weights associated with X1 (rather than π2). Thus

f̃2 is the distribution of outcomes under control in the treatment population or in other

words, the response of an average individual from the trial arm potentially treated

with the control therapy. With these notions, we define the population adjusted

treatment effect as
∆̃θ = δ{f1(· | θ1,π1), f̃2(· | θ2,π1)}. (9)

For example, when Y is a univariate response variable and δ(f1, f2) = Ef1(Y )− Ef2(Y ),

∆̃θ simplifies to ∆̃θ =
∑k(n2)

j=1 π1,j
{
Eh(Y |θ1,j)(Y )− Eh(Y |θ2,j)(Y )

}
, which further reduces

to ∆̃θ =
∑k(n2)

j=1 π1,j(µ1,j − µ2,j) when µs,j = Eh(Y |θs,j){T (Y )}.

In general, each cluster of covariates in the CAM model can be interpreted as a

homogeneous sub-population of patients. For the jth group, the average treatment

effect is δ{h(Y | θ1,j), h(Y | θ2,j)} and its proportion in the target population is π1,j.

The reported treatment effect (9) includes the adjustment with the sub-population

proportions π1,j. On a related point, the proposed model-based inference on treatment

effects in the CA-PPMx model can be interpreted as a stochastic propensity score
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stratification approach. See Section S.6 in the supplementary materials for the details.

We prefer the Bayesian model-based approach to avoid discarding unmatched

patient records from the RWD from the analysis. The two-step IS can be useful to

validate the results obtained by the model-based approach.

5 Posterior Computation

We develop an efficient Gibbs sampler for posterior inference in the proposed CAM

model for non-conjugate mixture of lognormals on survival outcomes. One poten-

tial complication arises from the varying dimension of π1 depending on the observed

atoms in X2. Posterior simulation with variable dimensional parameters generally

involves complicated trans-dimensional Markov chain Monte Carlo (Green, 1995), of-

ten resulting in poor mixing and computational inefficiencies. Our posterior sampling

algorithm avoids such complications while rigorously maintaining the architecture of

the CAM model. See Section S.8 in the supplementary materials for more details.

6 Simulation Study

We first describe the simulation scenarios.

CAM scenario: We first consider a scenario where the covariates are generated from

a CAM model. In this scenario, we take the first q = p − 3 covariates to be con-

tinuous and the remaining 3 to be binary. For the trial arm s = 1, we gener-

ate X1,i,1:q
iid
∼

∑2
j=1 π1,jNq(µj, σ

2
jIq) and X1,i,ℓ

iid
∼ Bernoulli(̺1) for ℓ = q+1, . . . , p.

For the RWD arm, s = 2, we generate X2,i,1:q
iid
∼

∑3
j=1 π2,jNq(µj, σ

2
jIq) and

X2,i,ℓ
iid
∼

∑2
j=1 ιjBernoulli(̺j) for ℓ = q+1, . . . , p where ι1 = π2,1 + π2,2 and ι2 = π2,3.

We take ι1 ≪ ι2 ensuring that the X2 population is substantially different from X1
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in having more heterogeneity.

MIX scenario: In this scenario, we generate Xs,i
iid
∼

∑k
j=1 πs,jNp(µs,j, 0.05Ip). We take

µ1,j = µ2,j for all j < k but set µ1,k 6= µ2,k so that the atoms in the treatment arm

are not exactly a subset of those in the RWD. Given the typically larger heterogeneity

of the RWD, this is not a realistic scenario. We include it to evaluate the approach

under model misspecification. Different weights attached to the atoms in the two

populations result in significantly different marginal densities.

Interaction scenario: In this scenario, we resample from the historical GBM database

of 339 patients to create a future single-arm trial population. Let F (X) denote

the (unknown) distribution of the covariates in the database, and Z be an indicator

variable such that Z = s if X is selected into arm s. That is, we sample X1,i i.i.d.

from p(X1,i) ∝ F (X1,i) ·e(X1,i) and X2,i from p(X2,i) ∝ F (X2,i) ·{1−e(X2,i)} where

e(X) = Pr(Z = 1 | X) is the PS of assignment to the treatment arm. We set e(X)

to be a logistic regression with pairwise interactions between some covariates. We

can sample Xs,i by simple weighted resampling of the historical database, without

explicitly knowing F (·).

Oracle scenario: In this fourth and final scenario, we proceed as in the Interaction

scenario but now with e(X) defined as a logistic regression with main effects of the

true predictors only, i.e., as if an oracle had revealed the right predictors.

Outcome model: Under the CAM and MIX scenarios, we generate Y1,i = δ+f(X1,i)+

ǫ1,i and Y2,i = f(X2,i) + ǫ2,i where f(·) is a nonlinear function; in the Interaction and

Oracle scenarios we generate Y1,i = δ + XT
1,iβ + ǫ1,i and Y2,i = XT

2,iβ + ǫ2,i, where

ǫs,i
iid
∼ N(0, 1) for i = 1, . . . , ns and s = 1, 2, implying δ as the true treatment effect.

We repeat the experiments for δ = −1, 0, 1, 3.

We repeat the simulations in the CAM and MIX scenarios for p = 10, 20, n1 =
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50, 100, 150 and set n2 = 6×n1 for all setups, keeping the ratio of the population sizes

consistent with the GBM application. For each (n1, p, δ) combination in the CAM

and MIX scenarios, we perform 500 independent replications. Under the Interaction

and Oracle scenarios, there are p = 11 covariates and we use n1 = 49. To avoid

reporting summaries that might just hinge on a lucky choice of the logistic regression

coefficients in e(·) and to remove one source of randomness unrelated to the methods

under comparison, we independently sample different sets of regression coefficients

(from a discrete mixture distribution) for each of the 500 repeat simulations. Further

details are provided in Section S.9.2 of the supplementary materials.

Analyses: We compare the CA-PPMx model with the PS-integrated power prior

and composite likelihood approaches (Wang et al., 2019, 2020; Chen et al., 2020) as

implemented in the psrwe R package, and a two-step population matching approach.

We perform seven different analyses for each of the four scenarios to estimate the treat-

ment effect ∆θ which we define here as the difference in mean outcomes, i.e., δ. The

analyses are (i) CA-PPMx : The proposed CA-PPMx model of Section 4.2; (ii) IS-LM :

The two-step IS approach introduced in Section 3.2. We first sample a subpopulation

of size n1 from X2 following the importance resampling scheme proposed in Section

3.2 and subsequently estimate the treatment effect between the subpopulation and

the treatment arm by fitting a linear model; (iii) and (iv) PP-Logistic and PP-RF :

Two PS-based power prior approaches using logistic regression and random forest

(Breiman, 2001), respectively; (v) and (vi) CL-Logistic and CL-RF : Two composite

likelihood based approaches with logistic and random forest classifier based PSs, re-

spectively; and finally, (vii) Matching : A distance based bipartite matching method

designed to match treatment and control groups in observational studies (Hansen and

Klopfer, 2006) and subsequently using a linear model for detecting treatment effects
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as implemented in the optmatch R package.

Equivalence of populations: In preparation for inference under the two-step IS

approach, we generate equivalent populations using the density-free importance re-

sampling scheme discussed in Section 3.2 based on the fitted CAMmodel. To formally

test for equivalence of the adjusted datasets, we implement Step 5 in Algorithm 1.

We first merge the datasets and then try to classify patients in the merged sample as

originally RWD or single-arm treatment cohort (s = 2 vs. s = 1 in our earlier nota-

tion). For classification, we use BART and report the boxplots of the area under the

receiver operating characteristic curve (AUC) of the classification accuracy across the

independent experiments for all simulation settings in Figure 3. For comparison, we

also subsample randomly (instead of using the IS weights) and report the AUCs in the

same figure. We refer to the two sampling strategies as IS and Random, respectively.

In Figure 3(a), the Random resampling strategy yields high AUC, indicating that

the two populations are substantially different and adjustment in the RWD popula-

tion is necessary before using it as synthetic control. For both, the CAM and MIX

scenarios, the performance of the IS scheme improves with increasing sample size.

This is expected as for small sample sizes X2 is lacking enough data to produce a

subsample equivalent to X1. AUC values close to 1 under the CAM scenario imply

that the true populations are indeed very different in this case. In contrast, the AUC

values close to 0.5 under the IS scheme indicate near equivalence after adjustment.

In both scenarios, AUC is substantially reduced under the IS resampling scheme,

implying that the proposed CAM model indeed adjusts for the lack of randomization.

Results under the last two scenarios are shown in Figure 3(b). Recall that in both

scenarios the simulation truth is not based on the CAM model. Still, the fit under

the proposed CAM model achieves near perfect adjustment as shown in the figure.
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(a) (b)

Figure 3: Boxplots of the area under the receiver operating characteristic curve (AUC)
of the classification accuracy for a merged dataset consisting of X1 and the subsam-
pled X2 using BART, and trying to classify into originally X1 versus X2. Two
subsampling schemes are used - the importance sampling (IS) strategy in Section
3.2 and simple random resampling. Here AUCs close to 0.5 imply near equivalence
between the populations. Panel (a) shows the AUCs in the CAM and MIX scenarios
across different sample sizes and number of covariates; and (b) shows the AUCs under
the Interaction and Oracle scenarios.

Inference on treatment effects: In each simulation setup, we test H0 : δ = 0

versus H1 : δ 6= 0 at 5% level of significance. We elaborate the testing procedure

in Section S.9.1 of the supplementary materials. We report power in Figure 4, with

detailed numerical results appearing in Tables S.1, S.2 and S.3 in the supplementary

materials. Under the PS-based approaches, the power remains below 15% across all

scenarios (not shown in the figure). Fully model-based nonparametric CA-PPMx has

higher power than IS-LM and Matching when the true response models are non-linear.

In contrast, the IS-LM and Matching perform comparably and have higher power than

the CA-PPMx approach in Interaction and Oracle scenarios where the true response

model is linear, but are susceptible to model misspecification as reflected in the CAM
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(a) CAM (top) and MIX (bottom) scenarios.

(b) Interaction (left) and oracle (right) scenarios.

Figure 4: Power of detecting treatment effects in different simulation setups for a
5% level of significance test: Seven methods are used to estimate the effects where
IS-LM and CA-PPMx are based on the proposed CAM model. Panel (a) corresponds
to the CAM (top) and MIX (bottom) scenarios. Panel (b) shows results under the
Interaction (left side) and the Oracle (right side) scenarios.

and MIX scenarios. This is because IS-LM and Matching assume a linear model

for the outcome, which happens to match the simulation truth in the Interaction

and Oracle scenarios. Except under the PS-based approaches, power increases with

increasing sample size, indicating that PS-based methods may require a much larger
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population size in the RWD to adjust for the lack of randomization.

7 Application in Glioblastoma

We return to the motivating case study of creating a synthetic control for a hypothet-

ical upcoming single-arm GBM trial. The sample size of the trial is n1 = 49, similar

to past trials (Vanderbeek et al., 2018). The endpoint of interest is overall survival

(OS). We evaluate the operating characteristics of the proposed design by simulating

L = 100 trial replicates. See Berry et al. (2010, Section 2.5.4) for a discussion of the

role of frequentist operating characteristics in Bayesian inference. To create treat-

ment arm data, we first select covariates X1,i by randomly selecting patients from

the historical database. To generate a realistic non-equivalent patient population, we

select not uniformly but using a logistic regression on the covariates (as described

in the Interaction scenario in Section 6). The treatment effect is quantified by the

hazard ratio (HR) between the treatment arm and the (synthetic) control arm, with

the null and alternative hypotheses H0 : HR = 1 vs. H1 : HR ≤ 0.6 at 50 weeks. The

HR of 0.6 was suggested by clinical collaborators as a meaningful clinical target.

We show results under two alternative scenarios (a) H0: no treatment effect (i.e.,

HR = 1), created by keeping the OS for the patients in the treatment arm as originally

observed in the historical database (since the patients received treatments with similar

efficacy); and (b) H1: there is a clinically meaningful treatment effect. We created

H1 by increasing the OS of patients in the treatment arm with an increment that

would correspond to a HR of 0.6 under an exponential model.

We apply three methods to make inference on the treatment effect: (i) IS-based

two-step procedure: Here we first create equivalent patient populations using Algo-

rithm 1 and then proceed with inference on the treatment effect as if patients were
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randomly assigned to treatment and control; (ii) Matching-based two-step procedure:

Operationally similar to (i) but now the Matching method discussed in Section 6 is

used to create equivalent patient populations; and (iii) Model-based inference: The

extension of the CAM model to include the outcomes Ys,i, as described in Section 4.2.

(i) IS-based two-step procedure: In preparation for inference, we start with

a test for equivalence of the subsampled population in each of the L = 100 repeat

simulations. Figure 5 plots the relative frequencies for each covariate in the treatment

arm (red) and in the synthetic control arm constructed from the RWD using: (a) the

IS sampling following Algorithm 1 (green) and (b) random sampling (blue). Very

different frequencies in the two arms under random resampling indicate significant

differences in the covariate distributions between the treatment and the control arms.

For most covariates, the differences are however greatly reduced by the IS scheme.

Figure 5: Covariate distributions before and afte adjustments. The red bars show the
distributions of the covariates in the treatment arm. The green and blue bars show
the distributions of the covariates in the synthetic control arms formed using the IS
and random resampling schemes, respectively.
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(a) p-values under the Cox
PH model.

(b) Kaplan-Meier curves under H0 (left) and H1 (right) sce-
narios.

Figure 6: Inference under treatment effects under the two-step procedures: Panel (a)
shows histograms of the p-values corresponding to a logrank test under the Cox PH
model comparing the survival curves between the treatment arms; Panel (b) shows
the Kaplan-Meier curves and pointwise confidence intervals for treatment (blue) and
control (red) arms under scenariosH0 (left) andH1, respectively. The top and bottom
panels of (a) and (b) show the results corresponding to the IS and Matching based
approaches, respectively.

Once we establish equivalence of the patient populations, we proceed with infer-

ence for the treatment effect. We use a Cox proportional hazard (PH) model (Cox,

1972) and the logrank test (Peto and Peto, 1972) to compare the survival functions.

The top panel of Figure 6(a) shows inference summaries over the L = 100 repetitions.

The figure shows the histograms of p-values under H0 (blue) and H1 (red). Under

H0, p-values are almost uniformly spread out over [0, 1]. In contrast, under H1, the

histogram of p-values over repeat simulations is peaked close to zero.

Finally, we identify representative simulations from the L repetitions under each

of the two scenarios by finding the instance with p-value closest to the median of the

respective histograms. For these two representatives, we show Kaplan-Meier (KM)

survival curves in the top panels of Figure 6(b), respectively. We observe that the
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survival curves in the two arms are quite alike with wide confidence intervals under the

H0 scenario, whereas significant improvements in the survival times can be observed

for the treatment arm for the first 80 weeks under the H1 scenario.

(ii) Matching-based two-step procedure: We use the Matching procedure to

create a synthetic control and then follow the same routine of (i) for inference on

treatment effects. The results are provided in the bottom panels of Figures 6(a) and

6(b). The distribution of the p-values under the H1 scenario is less peaked around 0

compared to the IS-based procedure. This is also reflected in the representative KM

plot under H1 in having a much wider confidence interval around the survival curve

possibly indicating the IS-based approach is doing better than Matching in creating

equivalent populations.

(iii) Model-based inference: As it is not straightforward to account for the un-

certainty in creating the synthetic control in the aforementioned two-step procedures,

we consider a fully model-based approach. For inference on treatment effects, we first

assess goodness-of-fit of the CA-PPMx model (see Section S.5 in the supplementary

materials for details). Quantile-quantile plots for the two scenarios are shown in Fig-

ure 7(a). Near diagonal lines indicate no evidence for a lack of fit. We then evaluate

the posterior probability pℓ ≡ p(HR < 0.6 | Data) (with ℓ indexing the L = 100

repeat simulations) at t = 50 weeks under the proposed model. The left panel of

Figure 7(b) shows histograms of pℓ under H0 (in blue) and under H1 (in red). As

desired, the posterior probabilities are clustered near 0 under H0, but are peaked near

1 under H1.

Finally, we identify a representative simulation again by selecting the repeat simu-

lation ℓ with posterior probability pℓ closest to the median of the respective histograms
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(a) QQ plots for goodness of fit where the y = x line indicates perfect fit.

(b) p(H1 | Data) (left) and hazard ratio with 95% posterior credible interval (right).

Figure 7: Inference under treatment effects under the model-based approach: Panel
(a) shows quantile-quantile plots to assess model fit from Section S.5 in the supple-
mentary materials; the left plot of panel (b) shows posterior probabilities p(HR <
0.6 | Data) under repeat simulations, and on the right posterior estimated hazard
ratios for OS with pointwise 95% credible regions are shown under H0 and H1.

under each of the two scenarios. For each of the two scenarios, we plot the posterior

estimated hazard ratios (blue and red for simulation under H0 and H1, respectively),

together with pointwise 95% posterior credible intervals in the right panel of Figure

7(b). Under H0 (blue), HR is almost equal to 1 with wide credible intervals, whereas

under H1 (red), HR is significantly below 1 with high posterior probability. The me-

dian (over the L simulations) posterior probabilities pℓ(HR < 0.6 | Data) are 0.08

and 0.98 under H0 and H1, respectively.
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8 Discussion

With a long term goal of setting up a platform for future single-arm early-phase

clinical trials in GBM, where new patients only receive experimental therapies, in

this article we developed a Bayesian nonparametric approach for creating synthetic

controls from RWD. We introduced a Bayesian CAM model that clusters covariates

with similar values across different treatment arms.

The flexibility of the CAM model makes it easily generalizable to other problems,

e.g., to create two synthetic treatment arms to compare two treatments based on

RWD from electronic health records.

Another direction for extensions could build on extracting propensity scores as

inference summaries under the CA-PPMx model. This is briefly discussed in Section

S.6 of the supplementary materials.

A limitation of the current model is scalability to high-dimensional covariates.

In the GBM application, we rely on 11 clinically important categorical covariates

that are commonly considered as prognostic factors in GBM treatments. However,

in many applications candidate covariates can be high-dimensional. Implicit in the

current construction is the assumption that the recorded covariates are clinically

relevant for the disease or condition under consideration, and the approach may not be

appropriate when large numbers of unscreened candidate covariates are used. Recent

advances in Bayesian model-based clustering by Chandra et al. (2021) could be useful

to construct high-dimensional generalizations.

Supplementary Materials

Supplementary materials include additional discussion of the motivating dataset, a
brief review on the PPMx, detailed discussion of the graphical goodness-of-fit test
for the regression model, an alternative interpretation of our model-based inference
approach, choices of hyperparameters, details of the posterior simulation scheme,
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additional simulation studies and associated details, and MCMC convergence diag-
nostics. C++ and R programs implementing the methods developed in this article and
R Markdown files with instructions are provided in a separately attached Codes.zip

folder.
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S.1 Historical Data and Potential Future Trial

Figure S.1 shows summaries for the covariates described in Section 2 in the historical database

and a potential future single-arm trial. Marginal frequencies for each of the covariates are

plotted clearly highlighting the differences between the two populations.

Figure S.1: Relative frequency plots of the covariates in the two treatment arms.

S.2 Product Partition Model with Regression (PPMx)

Let i = 1, . . . , n be the indices of n data points. For the ith unit (patient, in our case),

the data consists of covariates Xi = (Xi,1, . . . , Xi,p)
T and response variables Yi. Let

X = {X1, . . . ,Xn} and Y = {Y1, . . . ,Yn} be the complete set of covariates and responses

respectively. Let ρn = {S1, . . . , Skn} denote a partition of the n units into kn subsets, where

1 ≤ kn ≤ n. An equivalent representation of ρn introduces cluster membership indicators

ci = j if and only if i ∈ Sj. Let X⋆
j be the covariates corresponding to the samples in Sj.

In the PPMx, it is believed that data points with more similar covariate values are more
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likely to a priori be in the same cluster and the corresponding responses are also very sim-

ilar. The prior consists of two functions - (i) a cohesion function denoted by c(Sj | α) ≥ 0

for Sj ⊂ {1, . . . , n} associated with a hyper-parameter α discerning the prior belief of co-

clustering of the elements of Sj, and (ii) a similarity function denoted by g(X⋆
j | ξ) and

parametrized by ξ, formalizing the ‘closeness’ of the Xi’s in the cluster Sj by producing

larger values of g(X⋆
j | ξ) for Xi’s that are more similar. Using the similarity and cohesion

functions, the PPMx assumes

Π (ρn | X, α, ξ) ∝
kn∏

j=1

c(Sj | α)g(X
⋆
j | ξ). (S.1)

A default choice for the first factor is c(Sj | α) = α×(|Sj|−1)!, where α > 0 and |·| being the

cardinality of a set, which is identical to probability function for a random partition under

the Chinese restaurant process (Ferguson, 1973). For the second factor, Müller et al. (2011)

suggested the following default choice for similarity functions

g(X⋆
j | ξ) =

∫ ∏

i∈Sj

q(Xi | ζj)G0(ζj | ξ)dζj. (S.2)

With a conjugate sampling model and prior pair of q and G0, the integral in (S.2) is

analytically available, facilitating easy computation. The pair is used to assess the agreement

of the data points in Sj rather than any notion of statistical modeling.

The model construction is concluded by specifying a sampling model for the response

variable Yi’s. Let ci = j if i ∈ Sj denote cluster membership indicators for all i = 1, . . . , n.

For a given partition ρn, we introduce cluster-specific parameters θ = {θ1, . . . ,θkn} and

assume

Yi | θ, ci = j
ind
∼ h(Yi | θj), θj | ϕ

iid
∼ Π(θj | ϕ), (S.3)

where h is a sampling model and Π(· | ϕ) is a prior on θj with possible hyper-parameters ϕ.

Recognizing that Xi’s may not be random, with slight abuse of notations, under the

similarity function (S.2) the PPMx can be equivalently stated as

Xi | ci = j, ζ
iid
∼ q(Xi | ζj), ζj | ξ

iid
∼ G0(ζj | ξ), p(ρn) ∝

∏
c(Sj | α). (S.4)

S.3 Missing Data in PPMx

Following the thread of the discussion on handling missing data from Section 3.1 of the

main paper, we would like to point out that the model never rules out the possibility of co-

clustering a unit with missing entries with fully observed units. For the following argument

consider (S.4) with

Xi | ci = j, ζj = (ζj,1, . . . , ζj,p)
T ind

∼
∏p

ℓ=1 qℓ(Xi,ℓ | ζj,ℓ),
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that is, with q(Xi | ζj) factoring over covariates. While implementing inference using a

Gibbs sampler, we then update the ci as follows

Π(ci = j | Xi, ζ1:K , c−i) ∝ Π(ci = j | c−i)×
∏p

ℓ=1 qℓ(Xi,ℓ | ζj,ℓ), (S.5)

where c−i is the set of cℓ’s for ℓ = 1, . . . , n excluding ci.

Now consider the case where we have missing observations in some components of Xi

and let Oi = {1 ≤ ℓ ≤ p : Xi,ℓ is observed} be the indices of the observed variables in Xi.

In this case (S.5) changes to

Π(ci = j | Xi, ζ1:K , c−i) ∝ Π(ci = j | c−i)×
∏

ℓ∈Oi
qℓ(Xi,ℓ | ζj,ℓ).

While updating the cluster membership of the units, only the observed variables Xi,ℓ’s in Xi

are matched with the corresponding ζj,ℓ for all ℓ ∈ Oi. A more detailed discussion can be

found in Page et al. (2022).

S.4 Variations of the Importance Resampling Scheme

S.4.1 Number of Patients to Resample from the RWD

Due to various reasons (see, e.g., Hey and Kimmelman, 2014, for a review), in two-arm

designs the allocation of patients in the treatment and control arms are generally considered

to be equal, including in particular early-phase GBM trials (Stupp et al., 2014; Nabors

et al., 2015; Vanderbeek et al., 2018). As a rule of thumb, we thus recommend the size of

the resampled population to be equal to the treatment arm population.

However, if desired any different ratio of sample sizes in treatment and control arm, say

R : 1, could be used. In that case, even if the the distribution of the covariates in the

two arms are same after the importance resampling population adjustment, the AUC of any

classifier used in step 5 of Algorithm 1 would be R/(R + 1), rather than 0.5.

S.4.2 Averaging over Multiple Resamplings

It may be tempting to average over multiple, say R, instances of the random importance-

resampling, to remove one source of variability. But this gives rise to some fundamental

problems. For illustrative purpose, we refer to Section 7 of the main manuscript where we

discuss the application in GBM. There we use the importance resampling strategy to generate

an equivalent subpopulation of the treatment arm and then use the Cox proportional hazard

model to test for treatment effects. In Figure 6(a), we plot the histogram of p-values under the

null scenario which resembles the Unif(0, 1) distribution. Now for R resamplings we would
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have multiple p-values corresponding to each of the R resampled populations. Subsequently

we need a statistic to summarize the p-values, let us denote it by T . Letting p1, . . . , pR be

the p-values thus obtained, the distribution of T (p1, . . . , pR) will not be U(0, 1) anymore

under the null. We therefore recommend against it. As importance resampling schemes are

asymptotically unbiased (Skare et al., 2003), under reasonably large sample sizes, a single

resampled population should be adequate.

S.5 Goodness-of-Fit Test for Continuous Responses

We use the approach of Johnson (2007) to suggest a graphical goodness-of-fit tool to validate

the mixture of lognormals model for the CA-PPMx. The procedure is valid as long as h in (7)

is a univariate continuous density, i.e., as long as the response variables are univariate and

continuous. For the moment, we suppress the additional s subindex on (Xi, Yi), i = 1, . . . , n.

Let m(Y | X) be the marginal distribution after integrating out all model parameters

m(Y | X) =
∑

c

∫ {
n∏

i=1

h(Yi | θci)

}
dp(θ, c1:n | X).

We implement a test of fit based on the following result. Assuming that m(Y | X) is the

true marginal distribution of Y , we have:

Proposition 1. Let ω = (θ, c1:n) be a sample from their posterior, H(y | θ) =
∫ y

−∞
h(z |

θ)dz be the CDF, and Ui = H(Yi | θci), i = 1, . . . , n. Then, Ui
iid
∼ Unif(0, 1).

Proof. Let u1:n = {u1, . . . , un} and define A(u1:n;ω) = ∩n
i=1{y : H(y | θci) ≤ ui}. Then,

Pr(Ui ≤ ui for all i = 1, . . . , n) =

∫ ∫

A(u1:n;ω)

dΠ(ω | X,Y )m(Y | X)dY .

Note that Π(ω | X,Y ) = {
∏n

i=1 h(Yi | θci)}Π(ω | X)/m(Y | X). Substituting this in the

above equation, we get

Pr(Ui ≤ ui for all i = 1, . . . , n) =

∫ {∫

A(u1:n;ω)

n∏

i=1

h(Yi | θci)dY

}
dΠ(ω | X).

Now, the term inside the parenthesis integrates to
∏n

i=1 ui which is independent from Π(ω |

X). Hence the proof.

To understand the implications, consider the distribution (Y ,ω | X) for a hypothetical

data set (X,Y ). First sample ω̃ = (θ̃, c̃1:n) from p(ω | X) = p(c | X) p(θ | c,X)

and then (Y | ω̃,X) from the sampling model (7). Letting Ũi = H(Yi | θ̃c̃i), we then

have Ũi
iid
∼ Unif(0, 1). Assuming that the observed data Y do in fact arise from the assumed

marginal model m(Y | X), Proposition 1 sets up sampling from the alternative factorization

p(Y ,ω | X) = m(Y | X) · p(ω | Y ,X). It follows that Ũ1:n and U1:n are indistinguishable

in distribution. The latter, U1:n, can be readily obtained from the posterior samples of



SUPPLEMENTARY MATERIALS S.6

ω. Letting U
(m)
1:n denote the evaluation under the mth posterior MCMC sample ω(m), a

goodness-of-fit test can then be carried out to validate the uniform distribution.

Note that the U
(m)
1:n ’s vary across different posterior samples ω(m) while also having hi-

erarchical dependence since all of them are sampled conditionally on the same Y (and X).

Although in principle formal prior-predictive-posterior based tests be carried out (Johnson,

2007; Cao et al., 2010), it can be numerically infeasible for complex models like ours. As a

practical alternative, goodness-of-fit can be assessed by inspecting the quantile-quantile plots

of U
(m)
1:n . Such visual tools can be effective for detecting departures from model assumptions

(Meloun and Militký, 2011, Chapter 2). We use it to assess the model fit in Section 7.

To assess the goodness-of-fit in the GBM application, where the outcomes are right-

censored survival data, we extend the result in the following corollary.

Corollary 1. Suppose we have right-censored survival outcomes (Yi, νi) with covariate Xi

where νi = 1 if Yi is an observed failure time, for i = 1, . . . , n. Following the notations of

Theorem 1, define Ui = H(Yi | θci) if νi = 1, else if νi = 0 define Ui = H(Yi | θci) + γi{1−

H(Yi | θci)}, where γi
iid
∼ Unif(0, 1) independent from Yi. If the observed failure times are

independent of the censoring times, then Ui
iid
∼ Unif(0, 1).

Proof of Corollary 1. Let Ỹi be the true failure time of the ith individual, that is Ỹi ≥ Yi with

equality if and only if νi = 1. Letting Ũi = H(Ỹi | θci), Theorem 1 implies Ũ1:n
iid
∼ Unif(0, 1).

Note that

H(Ỹi | θci) = νiH(Ỹi | θci) + (1− νi)
[
H(Yi | θci) + {H(Ỹi | θci)−H(Yi | θci)}

]
.

Since H(Ỹi | θci) ∼ Unif(0, 1) and is independent of Yi, H(Yi | θci) + {H(Ỹi | θci) −H(Yi |

θci)} | Yi,θci ∼ Unif{H(Yi | θci), 1} which follows the same distribution as γi{1−H(Yi | θci)}.

Hence the proof.

S.5.1 Illustrating Example for the Graphical Goodness-of-Fit Test

We illustrate the Bayesian goodness-of fit test in a linear regression problem. We simulate

data (Xi, Yi), i = 1, . . . , n (= 1, 000) from the following mixture distribution

Yi | Xi
ind
∼ π0N(α0 + βT

0 Xi, σ
2
0) + (1− π0)Exp(α0 + βT

0 Xi), (S.6)

where Xi’s are p (= 5)-variate continuous covariates and Exp(a) denotes an exponential dis-

tribution with mean a. However, we fit the following misspecified Bayesian linear regression

model on the data using the MCMCpack R package

likelihood: Yi | Xi
ind
∼ N(α + βTXi, σ

2);

prior: (α,β) ∼ Np+1(0, 10× Ip+1), σ
−2 ∼ Ga(0.1, 0.1). (S.7)

For varying values of π0, we show quantile-quantile plots in Figure S.2 where we see

deviation from the diagonal y = x straight-line aggravates as π0 → 0, i.e., with increasing

model misspecification.
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Figure S.2: Quantile-quantile plots for increasing model misspecification: Data are generated
from model (S.6) for different values of π0 and the Bayesian linear regression model in
Eqn (S.7) is fitted where π0 = 0.0 and 1.0 denote the extreme misspecified model and the
true model, respectively. Deviation from the diagonal y = x straight-line aggravates with
increasing model misspecification.

S.6 Alternate Interpretation of the CA-PPMx

In Section 4.2, we introduced a model-based approach for inference on treatment effects in the

CA-PPMx model. An alternative interpretation of the approach arises from observing the

following connection with methods based on PS stratification (Wang et al., 2019; Chen et al.,

2020; Lu et al., 2022). The CAM model can be interpreted as a stochastic PS stratification.

To see this, first re-index all patients and patient specific variables across s = 1, 2 as i =

1, . . . , N = n1 + n2 and define Zi ∈ {1, 2} if patient i was originally in data set s = 1 or 2,

respectively. Assuming equal sample sizes n1 = n2, we have p(Zi = 1 | ci = j)/p(Zi = 2 |

ci = j) = π1,j/π2,j. That is, the terms in the CAM model correspond to different PS ratios

for the selection of a patient into s = 1 versus s = 2. Grouping patients in clusters Cj is

then interpreted as stratification by PS, with clusters Cj defining the strata. Within each

stratum we report treatment effect δj = δ{h(Y | θ1,j), h(Y | θ2,j)}. Compare the discussion

in Section 4.2.

Whereas fixed consolidated unidimensional PSs may be inadequate in matching multi-

variate covariates (Stuart, 2010; King and Nielsen, 2019) and hence sensitive to the specifi-

cation of the PS model (Zhao, 2004), inference under the proposed CAM model overcomes

limitations by naturally including uncertainty in the stratification.
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S.7 CA-PPMx Specifications and Hyperparameters

Recall the setup from Section 3.1 and the notations from Eqn (4). For categorical co-

variate Xs,ℓ with categories 1, . . . ,mℓ, we choose qℓ(Xs,ℓ | ζℓ) = Mult(1; ζℓ,1, . . . , ζℓ,mℓ
) and

g0,ℓ(ζℓ,1, . . . , ζℓ,mℓ
) = Dir(1, . . . , 1) to choose a uniform distribution over the simplex. For

continuous Xs,ℓ, we choose qℓ(Xs,ℓ | ζℓ) = N(Xs,ℓ;µX,ℓ, σ
2
X,ℓ) with ζℓ = (µX,ℓ, σ

2
X,ℓ) and

g0,ℓ(µX,ℓ, σ
2
X,ℓ) = NIG(µX,ℓ, σ

2
X,ℓ; 0, 1, αX , 1), i.e., µX,ℓ | σ

2
X,ℓ ∼ N(0, σ2

X,ℓ), σ
−2
X,ℓ ∼ Ga(aX , 1).

Following standard practice, we center µX,ℓ around zero. Based on previous experience on

Gaussian mixture models, we set aX = #continuous covariates + 30, as a small prior vari-

ance on σ2
X,ℓ’s favors a larger number of occupied clusters in the mixture model a posteriori,

allowing for a more flexible fit. Recall that we have assumed logαs ∼ N(µα, σ
2
α) for s = 1, 2

on the concentration parameters in models (1) and (3). To specify weakly informative priors,

we set the hyperparameters µα and σ2
α such that E(αs) = 1 and var(αs) = 10 a priori for

s = 1, 2.

Regarding the parameters of the sampling model for survival outcomes in Eqn (8), we

set κ0 = 1 and a0 = 10 to ensure a thin-tailed base-measure. In our experience, with too

heavy tailed prior distributions, small sample performance can easily get dominated by the

prior. Regarding the hyperprior on the mean parameter µ0, we choose mµ using an empirical

Bayes type approach. Letting ñ be the number of observed failures combining the RWD and

the current trial, we set mµ = 1
ñ

∑
s

∑
i:νs,i=1 Ys,i, i.e., the grand mean of the log-observed

failure times across all arms. We further set s2µ = 1. Regarding the hyperprior on the scale

parameter b0, we choose mb and s2b such that E(b0) = 5 and var(b0) = 20 a priori to set a

weakly informative hyperprior.

Regarding the real-valued continuous responses in the simulation studies in Section 6, we

use the model in Eqn (8) on the actual response variables with νs,i = 1 for all i and s.

S.8 Posterior Computation

For computational convenience in the practical implementation, we consider the degree k

weak limit approximation (Ishwaran and Zarepour, 2002a,b) of the GEM(α2) distribution in

(1), i.e., we use a Dir(α2/k, . . . , α2/k) distribution, with fixed but large enough k. We set

k = 15 for all our simulation experiments and applications.

We develop a Gibbs sampler to avoid computational issues with a Gaussian mixture

models on the log transformed survival outcomes with censoring. Without loss of generality

we assume Ys,i’s (log transformed outcomes) are supported on the entire real line and describe

our algorithm for a mixture of Gaussian distributions. Let νs,i’s be the censoring indicators

such that νs,i = 1 implies Ys,i is an observed failure time; else if it is censored in the interval

(Ys,i,l, Ys,i,u) then νs,i = 0. For left and right censoring, we take Ys,i,u = ∞ and Ys,i,l = −∞,

respectively. Let Ỹs,i be the true failure times, that is Ỹs,i = Ys,i if and only if νs,i = 1. Off-

line, before starting MCMC simulation, we initialize Ỹs,i at some admissible value for νs,i = 0
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and cluster membership indicator variables c1 and c2. For the CAM model on covariates,

we consider a conjugate pair qℓ and g0,ℓ for ℓ = 1, . . . , p. This allows us to analytically

marginalize with respect to the atoms ζj’s. This strategy results in substantially improved

mixing of the Markov chain.

The sampler iterates through the following steps. In Step 1, we impute Ỹs,i’s for the

censored observations; in Step 2, we update the cluster membership indicators c1 and c2;

in Step 3, we update hyper-parameters related to the response model that allows sharing

of information via a hierarchical model; in Step 4, we update the parameters required to

implement the strategies outlined in Sections 3.2 and 4.2; finally in Step 5 we update the

Dirichlet hyperparameters for the two mixture models.

Step 1 We define the set Ss,j,−i = {i : cs,i = j} \ {i}, ns,j,−i = |Ss,j,−i|, κs,j,−i = κ0 + ns,j,−i,

Y s,j,−i =
∑

r∈Ss,j,−i
Ỹs,r/ns,j,−i, µs,j,−i = (κ0µ0 + ns,j,−iY s,j,−i)/κs,j,−i, as,j,−i = a0 + ns,j,−i/2,

bs,j,−i = b0 +
∑

r∈Ss,j,−i
(Ỹs,r − Y s,j,−i)

2/2 + ns,j,−iκ0(Y s,j,−i − µ0)
2/κs,j,−i. Then for all i =

1, . . . , ns and s = 1, 2, generate

Ỹs,i ∼




Ys,i with probability 1 if νs,i = 1;

t2as,j,−i

{
µs,j,−i,

bs,j,−i(κs,j,−i+1)

as,j,−iκs,j,−i
| (Ys,i,l, Ys,i,u)

}
,

where tdf{µ, σ
2 | (a, b)} is a central Student’s t-distribution, with degrees of freedom df ,

median µ and scale parameter σ, truncated to the set (a, b).

Step 2 Letting ft{· | df, µ, σ
2} and Ft{· | df, µ, σ

2} denote the pdf and cdf of a central

Student’s t-distribution with degrees of freedom df , median µ and scale parameter σ, respec-

tively, we define

ψY ;s,j(i) =





ft

{
Ys,i | 2as,j,−i, µs,j,−i,

bs,j,−i(κs,j,−i+1)

as,j,−iκs,j,−i

}
if νs,i = 1;

Ft

{
Ys,i,u | 2as,j,−i, µs,j,−i,

bs,j,−i(κs,j,−i+1)

as,j,−iκs,j,−i

}

−Ft

{
Ys,i,l | 2as,j,−i, µs,j,−i,

bs,j,−i(κs,j,−i+1)

as,j,−iκs,j,−i

}
otherwise.

Recall from Section 3.1 (see page 11) that Os,i is the set of indices of the covariates observed

forXs,i, and define the sets Cj,ℓ = ∪2
s=1 {i : i ∈ Sj, ℓ ∈ Os,i} andX∗o

j,ℓ = ∪2
s=1 {Xs,i,j : i ∈ Cj,ℓ}.

Define the functions gℓ(X
∗o
j,ℓ | ξℓ) =

∫ ∏
i∈Cj,ℓ

qℓ(Xs,i,ℓ | ζj,ℓ)g0,ℓ(ζj,ℓ | ξℓ)dζj,ℓ and ψX;s,j(i) =
∏

ℓ∈Os,i

gℓ(X
∗o
j,ℓ

|ξℓ)

gℓ[X∗o
j,ℓ

\{Xs,j,ℓ}|ξℓ]
. Then, c1 can be updated as

Π(c1,i = j | −) ∝ (n1,j,−i + α1/k(n2))× ψY ;1,j(i)× ψX;1,j(i) for j = 1, . . . , k(n2).

Similarly c2 can be updated as

Π(c2,i = j | −) = 1 if n1,j > 0 and n2,j,−i = 0;

else Π(c2,i = j | −) ∝ (n2,j,−i + α2/k)× ψY ;2,j(i)× ψX;2,j(i) for j = 1, . . . , k.

Step 3 Define b̃ = log b0 and let Π(µ0, b̃ | Ỹ1,1:n1 , Ỹ2,1:n2) be the joint posterior density of

µ0 and b̃ given Ỹs,i’s, kn,1 and kn,2 be the number of non-empty clusters in the two cohorts

respectively. Then,
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log Π(µ0, b̃ | Ỹ1,1:n1 , Ỹ2,1:n2) = K −
(µ0 −mµ)

2

2s2µ
−

(̃b−mb)
2

2s2b
+ (kn,1 + kn,2)a0b̃

−

k(n2)∑

j=1

2∑

s=1

(
a0 +

ns,j

2

)
log


eb̃ + 1

2



µ

2
0κ0 +

∑

i∈Ss,j

Ỹ 2
s,i −

(κ0µ0 + ns,jY s,j)
2

κ0 + ns,j






 ,

where K is a constant and Y s,j =
∑

i∈Ss,j
Ỹs,i. We sample µ0 and b̃ using a Hamiltonian

Monte Carlo (HMC) algorithm (Duane et al., 1987).

Step 4 For j = 1, . . . , k, we define the set Ss,j = {i : cs,i = j}, κs,j = κ0+ns,j, µs,j = (κ0µ0+

ns,jY s,j)/κs,j, as,j = a0 + ns,j/2, bs,j = b0 +
∑

r∈Ss,j
(Ỹs,r − Y s,j)

2/2 + ns,jκ0(Y s,j − µ0)
2/κs,j.

Then,

µs,j ∼ t2as,j

{
µs,j,

bs,j(κs,j + 1)

as,jκs,j

}
, σ−2

s,j ∼ Ga(as,j, bs,j), (S.8)

π1 ∼ Dir

(
n1,1 +

α1

k(n2)
, . . . , n1,k(n2) +

α1

k(n2)

)
, π2 ∼ Dir

(
n2,1 +

α2

k
, . . . , n2,k +

α2

k

)
.

For s = 1, we only sample for j = 1, . . . , k(n2) in (S.8). Note that the dimension of π1 can

vary across MCMC samples.

Step 5 With lognormal priors on the Dirichlet mixture hyperparameters α1 and α2, logαs ∼

N(µα, σ
2
α), s = 1, 2, the log-posterior pdfs are given by

log Π(α1 | −) = K1 + log
Γ(α1)

Γ(α1 + n1)
+

∑

j:n1,j>0

log
Γ(α1/k(n2) + n1)

Γ(α1)
− logα1 −

(logα1 − µα)
2

2σ2
α

,

log Π(α2 | −) = K2 + log
Γ(α2)

Γ(α2 + n2)
+

∑

j:n2,j>0

log
Γ(α2/k + n2)

Γ(α2)
− logα2 −

(logα2 − µα)
2

2σ2
α

.

As the respective pdfs are differentiable with respect to α1 and α2, we sample the parameters

using HMC.

Remark 1. Note that in Step 2, Cj,ℓ is the set of data points in Sj with observed covariate

ℓ, X∗o
j,ℓ is the collection of the observed values of the covariate ℓ in Sj and gℓ(X

∗o
j,ℓ | ξℓ) is

the joint marginal density. A conjugate pair qℓ and g0,ℓ ensures the analytical availability

of gℓ and ψX;s,j(i) becomes the conditional distribution of Xs,i given X∗o
j,ℓ. For continuous

real-valued Xs,j,ℓ, we may take qℓ(· | ζj) to be the univariate Gaussian pdf where ζj is the set

of associated mean and variance parameters, and g0,ℓ(ζj | ξℓ) to be a normal-inverse-gamma

density (compare Section S.7). In this case, the ratio
gℓ(X

∗o
j,ℓ

|ξℓ)

gℓ[X∗o
j,ℓ

\{Xs,j,ℓ}|ξℓ]
reduces to a central

t-distribution density; for categorical Xs,j,ℓ, a convenient choice can be the multinomial-

Dirichlet pair which again yields an analytical expression of the ratio.

In the GBM application and simulation studies in Section 6, we have considered conjugate

normal-inverse-gamma and multinomial-Dirichlet conjugate pairs for continuous real-valued
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covariates and categorical covariates, respectively. For all simulation studies and GBM

application, we consider 6,000 MCMC iterations, discarded the first 1,000 as the burn-in

samples, and saved every 5th MCMC sample to reduce autocorrelation.

Finally we note that the complete conditional for π1,j in step 4 could be used to implement

Rao-Blackwellization (Robert and Roberts, 2021) in the evaluation of the weights wi in (6)

by replacing π1,j with the conditional posterior means.

S.9 Additional Details on Simulation Studies

S.9.1 Procedure to Test for Treatment Effects in Section 6

Recall that in Section 6 we test H0 : δ = 0 versus H1 : δ 6= 0 in each simulation setup. To

compute the power, we first estimate the treatment effect, say δ̂ in each setup. Estimated

treatment effects under CA-PPMx are evaluated using the posterior mean of Eqn (9). To

evaluate type-II error rates we use the empirical distribution of δ̂ under simulation truth

δ = 0 for each of the seven methods under consideration across the 500 repeat simulations

to obtain their distributions under H0. We evaluate the empirical 2.5% and 97.5% quantiles,

say δ̂L and δ̂U and define the test function Φ(δ̂) = ✶δ̂ /∈[δ̂L,δ̂U ] controlling the type-I error at

5% level of significance.

S.9.2 Details on Simulation Truths

CAM scenario: We set µ1,1 = µ1,1 = 2 and µ1,j = 0 for all j > 2, and µ2,5 = µ2,6 = 2 and

µ2,j = 0 for all j /∈ {5, 6}, σ2
j = 0.05 for all j = 1, 2, 3. Regarding the mixture weights, we set

π1,1 = π1,2 = 0.5 and π2,1 = π2,2 = 1/6 and π2,3 = 2/3. Regarding the categorical covariates

we set ̺1 = 0.85, ̺2 = 0.65.

MIX scenario: We take k = 4. Recall that µ1,j = µ2,j for all j < k, say µj =

(µj,1, . . . , µj,p)
T. For each j < k, we take µj,2j+1 = µj,2j+2 = 2 and µj,ℓ = 0 for

all ℓ /∈ {2j + 1, 2j + 2}. Finally for µs,k = (µs,k,1, . . . , µs,k,p)
T with s = 1, 2, we set

µ1,k,7 = µ1,k,8 = 2, µ1,k,9 = 1 and µ1,k,ℓ = 0 for all ℓ /∈ {7, 8, 9}; and µ2,k,2k+1 = µ2,k,2k+2 = 2

and µ2,k,ℓ = 0 for all ℓ /∈ {2k + 1, 2k + 2}. In each repeat simulation we generate

w1,1, . . . , w1,k = SRSWRk(1, . . . , 4) where SRSWRr(S) denotes the simple random sampling

scheme with replacement of size r from the set S. Then we set π1,j = w1,j/
∑k

r=1w1,r for all

j = 1, . . . , k. we set π2,j = 1/k for all j = 1, . . . , k.

Interaction scenario: Recall the covariates in the GBM dataset from Table 2 in the

main manuscript. We consider pairwise interactions between (Gender, Age) and (RT Dose,

Age). Following that, we have one-hot-encoded the covariates with more than two categories



SUPPLEMENTARY MATERIALS S.12

(e.g., KPS) so that we are left with all binary covariates (including the interactions). Let

Xi = (Xi,1, . . . , Xi,p)
T be the covariates corresponding to patient record i with p being the

number of covariates.

For each repeat simulation, we then generate b = (b1, . . . , bp)
T = SRSWRp(−1, 0.75). We

then assign the patient record i to the treatment arm with probability
XT

i b+0.8

1+XT
i b+0.8

.

Oracle scenario: We follow the exact same strategy as described in the Interaction sce-

nario but without pairwise interactions.

Outcome model: For x = (x1, . . . , xp)
T, we take f(x) = β1✶(x1≥1.25,x2≥1.25)−β2✶(x3≥1.25,x4≥1.25)+

β3✶(x5≥1.25,x6≥1.25) + β4✶(xp−1≥1,xp≥1). In each repeat simulation we let β1, β2
iid
∼ Unif(40, 60),

β3 ∼ Unif(225, 275) and β4 ∼ Unif(−5,−1).

In the Interaction and Oracle scenarios we simulate the linear regression coefficients

β = (β1, . . . , βp)
T iid
∼ Unif(−10, 10).

S.9.3 Implementation of Matching and PS-Based Approaches

PS-based approaches: We implemented the composite likelihood and power-prior ap-

proaches using the psrwe R package. We set the hyperparameters as recommended in the

vignette. We create 5 strata (suggested in the package vignette) and borrow n1 patients

from the RWD for all simulation studies. For the PS model, we consider both, linear logistic

regression and the random forest classifier.

Matching: We implemented these approaches using the optmatch R package. Following

the recommendations in the vignette, we set one control to be matched to each treatment.

It makes the matched control population to be of the same size as the treatment arm. We

then fit a linear model to estimate the treatment effect δ.
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S.9.4 Bias for the Methods Considered in Section 6
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Method CA−PPMx IS−LM Matching CL−Logistic CL−RF PP−Logistic PP−RF

(a) CAM (top) and MIX (bottom) scenarios.

(b) Interaction (left) and Oracle (right) scenarios.

Figure S.3: The bias in detecting treatment effects across different simulation setups: Seven
methods are used to estimate the effects where IS-LM and CA-PPMx are based on the
proposed CAMmodel. Panel (a) corresponds to the CAM (top) and MIX (bottom) scenarios.
Panel (b) shows results under the Interaction (left side) and the Oracle (right side) scenarios.
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S.9.5 Power for the Methods Considered in Section 6

The PS-based approaches yield very similar results. Therefore, for easier apprehension we

only show the results for CL-RF together with the other types of methods in Tables S.1 and

S.2, and the rest of the PS-based methods in Table S.3.

Table S.1: Power of detecting treatment effects under CAM and MIX scenarios

δ
Scenario: CAM Scenario: MIX Scenario: CAM Scenario: MIX

n1 p Power n1 p Power n1 p Power n1 p Power

-1

M
e
th

o
d
:
C
A
-P

P
M

x

50 10 0.024 50 10 0.056

M
e
th

o
d
:
IS

-L
M

50 10 0.054 50 10 0.042
100 10 0.032 100 10 0.066 100 10 0.080 100 10 0.090
150 10 0.048 150 10 0.118 150 10 0.080 150 10 0.072
50 20 0.206 50 20 0.052 50 20 0.050 50 20 0.056
100 20 0.040 100 20 0.050 100 20 0.068 100 20 0.052
150 20 0.062 150 20 0.030 150 20 0.118 150 20 0.064

0

50 10 0.050 50 10 0.050 50 10 0.050 50 10 0.050
100 10 0.050 100 10 0.050 100 10 0.050 100 10 0.050
150 10 0.050 150 10 0.050 150 10 0.050 150 10 0.050
50 20 0.050 50 20 0.050 50 20 0.050 50 20 0.050
100 20 0.050 100 20 0.050 100 20 0.050 100 20 0.050
150 20 0.050 150 20 0.050 150 20 0.050 150 20 0.050

1

50 10 0.048 50 10 0.056 50 10 0.056 50 10 0.090
100 10 0.890 100 10 0.266 100 10 0.064 100 10 0.080
150 10 0.950 150 10 0.674 150 10 0.112 150 10 0.042
50 20 0.058 50 20 0.142 50 20 0.064 50 20 0.048
100 20 0.806 100 20 0.534 100 20 0.082 100 20 0.074
150 20 0.924 150 20 0.826 150 20 0.096 150 20 0.082

3

50 10 0.866 50 10 0.056 50 10 0.146 50 10 0.132
100 10 0.960 100 10 0.746 100 10 0.358 100 10 0.216
150 10 0.998 150 10 0.754 150 10 0.472 150 10 0.154
50 20 0.966 50 20 0.754 50 20 0.164 50 20 0.078
100 20 0.958 100 20 0.900 100 20 0.312 100 20 0.228
150 20 0.998 150 20 0.900 150 20 0.518 150 20 0.240

-1

M
e
th

o
d
:
C
L
-R

F

50 10 0.056 50 10 0.014

M
e
th

o
d
:
M

a
tc
h
in
g

50 10 0.050 50 10 0.076
100 10 0.056 100 10 0.056 100 10 0.064 100 10 0.044
150 10 0.042 150 10 0.060 150 10 0.096 150 10 0.100
50 20 0.044 50 20 0.046 50 20 0.040 50 20 0.058
100 20 0.076 100 20 0.034 100 20 0.046 100 20 0.076
150 20 0.060 150 20 0.046 150 20 0.038 150 20 0.062

0

50 10 0.050 50 10 0.050 50 10 0.050 50 10 0.050
100 10 0.050 100 10 0.050 100 10 0.050 100 10 0.050
150 10 0.050 150 10 0.050 150 10 0.050 150 10 0.050
50 20 0.050 50 20 0.050 50 20 0.050 50 20 0.050
100 20 0.050 100 20 0.050 100 20 0.050 100 20 0.050
150 20 0.050 150 20 0.050 150 20 0.050 150 20 0.050

1

50 10 0.044 50 10 0.016 50 10 0.078 50 10 0.070
100 10 0.030 100 10 0.062 100 10 0.076 100 10 0.084
150 10 0.040 150 10 0.042 150 10 0.150 150 10 0.106
50 20 0.038 50 20 0.042 50 20 0.068 50 20 0.092
100 20 0.064 100 20 0.040 100 20 0.104 100 20 0.070
150 20 0.074 150 20 0.052 150 20 0.052 150 20 0.070

3

50 10 0.072 50 10 0.020 50 10 0.112 50 10 0.162
100 10 0.056 100 10 0.030 100 10 0.216 100 10 0.278
150 10 0.024 150 10 0.044 150 10 0.414 150 10 0.382
50 20 0.034 50 20 0.066 50 20 0.154 50 20 0.132
100 20 0.064 100 20 0.038 100 20 0.206 100 20 0.230
150 20 0.046 150 20 0.030 150 20 0.236 150 20 0.294
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Table S.2: Power of detecting treatment effects under Interaction and Oracle scenarios

Method Scenario δ Power Method Scenario δ Power

C
A
-P
P
M
x

Interaction

-1 0.079

IS
-L
M

Interaction

-1 0.085
0 0.052 0 0.052
1 0.047 1 0.083
3 0.116 3 0.497

Oracle

-1 0.077

Oracle

-1 0.091
0 0.053 0 0.053
1 0.084 1 0.092
3 0.132 3 0.570

C
L
-R

F

Interaction

-1 0.064

M
at
ch
in
g

Interaction

-1 0.108
0 0.053 0 0.050
1 0.062 1 0.121
3 0.071 3 0.575

Oracle

-1 0.061

Oracle

-1 0.103
0 0.053 0 0.053
1 0.039 1 0.122
3 0.043 3 0.752

Table S.3: Power of the PS-based methods in CAM and MIX scenarios (upper table) and
Interaction and Oracle scenarios (lower table)

δ
Scenario: CAM Scenario: MIX Scenario: CAM Scenario: MIX Scenario: CAM Scenario: MIX

n1 p Power n1 p Power n1 p Power n1 p Power n1 p Power n1 p Power

-1

M
e
th

o
d
:
P
P
-L

o
g
is
ti
c

50 10 0.082 50 10 0.022

M
e
th

o
d
:
P
P
-R

F

50 10 0.062 50 10 0.022

M
e
th

o
d
:
C
L
-L

o
g
is
ti
c

50 10 0.068 50 10 0.016
100 10 0.044 100 10 0.072 100 10 0.050 100 10 0.056 100 10 0.044 100 10 0.064
150 10 0.036 150 10 0.056 150 10 0.048 150 10 0.064 150 10 0.036 150 10 0.070
50 20 0.060 50 20 0.044 50 20 0.036 50 20 0.026 50 20 0.058 50 20 0.040
100 20 0.062 100 20 0.038 100 20 0.074 100 20 0.036 100 20 0.060 100 20 0.034
150 20 0.060 150 20 0.044 150 20 0.066 150 20 0.052 150 20 0.048 150 20 0.048

0

50 10 0.050 50 10 0.050 50 10 0.050 50 10 0.050 50 10 0.050 50 10 0.050
100 10 0.050 100 10 0.050 100 10 0.050 100 10 0.050 100 10 0.050 100 10 0.050
150 10 0.050 150 10 0.050 150 10 0.050 150 10 0.050 150 10 0.050 150 10 0.050
50 20 0.050 50 20 0.050 50 20 0.050 50 20 0.050 50 20 0.050 50 20 0.050
100 20 0.050 100 20 0.050 100 20 0.050 100 20 0.050 100 20 0.050 100 20 0.050
150 20 0.050 150 20 0.050 150 20 0.050 150 20 0.050 150 20 0.050 150 20 0.050

1

50 10 0.058 50 10 0.030 50 10 0.072 50 10 0.018 50 10 0.060 50 10 0.020
100 10 0.040 100 10 0.054 100 10 0.036 100 10 0.054 100 10 0.036 100 10 0.058
150 10 0.028 150 10 0.042 150 10 0.044 150 10 0.034 150 10 0.030 150 10 0.048
50 20 0.034 50 20 0.050 50 20 0.028 50 20 0.024 50 20 0.028 50 20 0.048
100 20 0.040 100 20 0.038 100 20 0.068 100 20 0.032 100 20 0.036 100 20 0.040
150 20 0.062 150 20 0.054 150 20 0.080 150 20 0.060 150 20 0.064 150 20 0.048

3

50 10 0.084 50 10 0.018 50 10 0.072 50 10 0.020 50 10 0.072 50 10 0.026
100 10 0.040 100 10 0.038 100 10 0.062 100 10 0.026 100 10 0.044 100 10 0.028
150 10 0.038 150 10 0.050 150 10 0.028 150 10 0.044 150 10 0.034 150 10 0.056
50 20 0.052 50 20 0.064 50 20 0.038 50 20 0.042 50 20 0.048 50 20 0.064
100 20 0.042 100 20 0.042 100 20 0.060 100 20 0.030 100 20 0.040 100 20 0.038
150 20 0.040 150 20 0.028 150 20 0.058 150 20 0.040 150 20 0.038 150 20 0.038

Method Scenario δ Power Method Scenario δ Power

C
L
-L
og
is
ti
c Interaction

-1 0.060

P
P
-L
og
is
ti
c Interaction

-1 0.058
0 0.052 0 0.052
1 0.058 1 0.058
3 0.062 3 0.058

Oracle

-1 0.065

Oracle

-1 0.063
0 0.053 0 0.053
1 0.036 1 0.036
3 0.043 3 0.045

P
P
-R

F

Oracle

-1 0.061

P
P
-R

F

Interaction

-1 0.066
0 0.053 0 0.053
1 0.039 1 0.057
3 0.043 3 0.064
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S.9.6 Multiple Historical Controls

We consider a setup with historical controls arising from multiple sources, i.e., with S > 2. As

mentioned earlier in Section 3.1, we merge the historical datasets and treat the merged data

set as a single RWD population with increased heterogeneity. We study the performance of

the CA-PPMx model in this scenario via simulation studies. We extend the MIX scenario dis-

cussed in Section 6. We generate the treatment armX1,i
iid
∼

∑k
j=1 π1,jNp(µj, σ

2Ip). We gener-

ate two RWD datasets from X2,i
iid
∼

∑k−1
j=1 π2,jNp(µj, σ

2Ip) and X3,i
iid
∼

∑k
j=2 π3,jNp(µj, σ

2Ip).

In this construction, the historical populations X2 and X3 are substantially different, with

one distinct atom each, as well as varying weights for the common atoms. Letting X2′ denote

the merged X2 and X3 population, we fit the CA-PPMx model on X1 and X2′ . Note that

the current trial population X1 has an extra atom compared to each of the RWD populations

but the merged X2′ and X1 share common atoms.

We generate the response Y1,i
ind
∼ N(δ + XT

1,iβ, 1) and Ys,i
ind
∼ N(XT

s,iβ, 1) for s = 2, 3

implying δ to be the true treatment effect. We let n2, n2 and n3 denote the sample sizes

in the three populations, respectively where we set n2 = n3 = 3 × n2 in coherence with

the simulation studies in Section 6. We set the dimension of the covariates p = 10 and

repeat the the experiments for δ = −1, 0, 1, 3 and n2 = 50, 100, 150. We plot the power

of discovering the treatment effect in Figure S.4 calculated in the exact same manner as

described in Section 6. We observe that the power increases with respect to both sample

size and strength of the treatment effect.

Figure S.4: Multiple historical data in the CA-PPMx model: We combine different historical
datasets and combine them as a more heterogeneous single population and subsequently fit
the CA-PPMx model. We observe that the power increases with respect to both sample size
and strength of the treatment effect.
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S.9.7 Effect of Missing Confounders

In this section we briefly study the effect of missing confounders on inference under the

proposed CA-PPMx model. In particular we consider the case where a confounding factor is

completely unobserved. In such cases causal inference methods are often biased; see Nguyen

et al. (2017) and the references therein for a detailed review. However, in many applications,

multivariate covariates are often correlated among each other. Several imputation methods

for partially observed confounders are based on this assumption (Cole et al., 2006; Moons

et al., 2006). In such cases, observing and using another covariate which is correlated to the

missing confounder as predictor can reduce bias. We study this in a simulated example.

We consider a regression setup in a case-control study (Xs,i, Ys,i), i = 1, . . . , ns,

s = 1, 2 with bivariate covariate Xs,i = (Xs,i,1, Xs,i,2)
T. First, we generate Xs,i,1 ∼∑k

j=1 πs,jN(µj, 0.01) and subsequently generate Xs,i,2 = mXs,i,1 + εs,i where εs,i
iid
∼ N(0, 1)

and m ∈ R. Then, we generate the responses Y1,i = δ + βX1,i,1 + ǫ1,i and Y2,i = βX2,i,1 + ǫ2,i

where ǫs,i
iid
∼ N(0, 1) implying δ to be the true treatment effect. Thus conditionally on the

Xs,i,1’s, the responses Ys,i’s are independent of the Xs,i,2’s. We take n2 = 50, n2 = 300,

k = 3, (µ2, µ2, µ3) = (−3, 0, 3), δ = 3 and β = 1. We repeat the simulation experiment

independently 100 times and randomly generate the πs,j’s in each replicate.

Figure S.5: Effect of missing confounder in the CA-PPMx model: The bias in estimating
the treatment effect decreases as the correlation between the observed covariate and the
unobserved confounder increases.

We consider two analysis scenarios: (1) Unobserved : Xs,i,1 is assumed to be unobserved

and the CA-PPMx model is fitted using (Xs,i,2, Ys,i); (2) Observed : the CA-PPMx model is

fitted using (Xs,i, Ys,i). We compute the bias in estimating the treatment effect δ for varying

values of m in both scenarios. We show boxplots of the biases over the repeat simulations

in Figure S.5.

Note that for m = 0, Xs,i,1 and Xs,i,2 are uncorrelated. Additionally, |corr(Xs,i,1, Xs,i,2)|

is an increasing function of |m|. Coherently, the bias is maximum in the Unobserved scenario
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for m = 0 as the Xs,i,2’s carry no information regarding the confounding factor Xs,i,1’s. The

marginal correlation between the observed covariate and the response increases with m and

accordingly we see a reduction in the bias. This simulation study indicates that the CA-

PPMx method will not yield terribly biased results as long as the data includes observed

covariates that are correlated to the unmeasured confounder.

S.9.8 Computation Times for the CA-PPMx Method

In this section we report computation times of the MCMC sampler proposed in Section S.8

across different sample sizes and covariate dimensions. We consider the CAM and MIX

scenarios and the exact same simulation setups discussed in Section 6 of the main paper.

Since the model implementation times do not depend on the treatment effect size, we report

the computation times for δ = 3 only. Computation times for 6, 000 MCMC iterations in

seconds for a single repeat simulation on an Intel Core i9-13900K CPU with 128GB of RAM

are provided in Figure S.6 where we see that the computational cost increases with the

covariate dimension p as well as the sample size n1.

Scenario: CAM Scenario: MIX
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Figure S.6: Computation times of the MCMC sampler in seconds: n1 and p denotes the
number of patients in the current trial arm and the dimension of the covariates, respectively.

S.10 MCMC Diagnostics

In this section, we provide some convergence diagnostics of the MCMC sampler discussed in

Section S.8 for one trial replicate discussed in Section 7. We show traceplots and Geweke’s

convergence diagnostics (Geweke, 1992) for some selected parameters, using an implementa-

tion in the ggmcmc R package (Fernández-i Maŕın, 2016).

Recall the importance resampling weights wi ∝
π1,c2,i

n2,c2,i
in Eqn (5) attached to the historical

patients. We evaluate MCMC convergence diagnostics for the five wi’s with the largest

posterior means, the lognormal hyperparameters µ0 and b0 mentioned in Step 3 and the
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Dirichlet mixture hyperparameters α1 and α2 in Step 5 of the MCMC sampler in Section

S.8. The results, provided in Figure S.7, do not suggest any convergence or mixing issues.

(a) MCMC analysis of the largest 5 importance resampling weights.

(b) MCMC analysis of the Dirichlet mixture hyperparameters α2 and α2.
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(c) MCMC analysis of the lognormal hyperparameters µ0 and b0.

Figure S.7: MCMC convergences diagnostics for some selected parameters: Panel (a), (b)
and (c) shows results for the top five wi ∝

π1,c2,i

n2,c2,i
with largest posterior means, the lognormal

hyperparameters µ0 and b0 and the Dirichlet mixture hyperparameters α1 and α2 in Step
5, respectively. In each panel, we show the corresponding traceplots across the thinned out
MCMC samples on the left, and Geweke’s diagnostics on the right.
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Fernández-i Maŕın, X. (2016). ggmcmc: Analysis of MCMC samples and Bayesian inference.

Journal of Statistical Software, 70, 1–20.



SUPPLEMENTARY MATERIALS S.21

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculations

of posterior moments. Bayesian Statistics , 4, 641–649.

Hey, S. P. and Kimmelman, J. (2014). The questionable use of unequal allocation in confir-

matory trials. Neurology , 82, 77–79.

Ishwaran, H. and Zarepour, M. (2002a). Dirichlet prior sieves in finite normal mixtures.

Statistica Sinica, 12, 941–963.

Ishwaran, H. and Zarepour, M. (2002b). Exact and approximate sum representations for the

Dirichlet process. Canadian Journal of Statistics , 30, 269–283.

Johnson, V. E. (2007). Bayesian model assessment using pivotal quantities. Bayesian Anal-

ysis , 2, 719–733.

King, G. and Nielsen, R. (2019). Why propensity scores should not be used for matching.

Political Analysis , 27, 435–454.

Lu, N., Wang, C., Chen, W.-C., Li, H., Song, C., Tiwari, R., Xu, Y., and Yue, L. Q. (2022).

Leverage multiple real-world data sources in single-arm medical device clinical studies.

Journal of Biopharmaceutical Statistics , 32, 107–123.
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