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Abstract—We study the statistical behavior of quantum entan-
glement in bipartite systems over fermionic Gaussian states as
measured by von Neumann entropy. The formulas of average von
Neumann entropy with and without particle number constraints
have been recently obtained, whereas the main results of this
work are the exact yet explicit formulas of variances for both
cases. For the latter case of no particle number constraint, the
results resolve a recent conjecture on the corresponding variance.
Different than the existing methods in computing variances over
other generic state models, proving the results of this work relies
on a new simplification framework. The framework consists of
a set of new tools in simplifying finite summations of what we
refer to as dummy summation and re-summation techniques.

I. INTRODUCTION

Quantum entanglement is the most important feature in
quantum mechanics. The understanding of the phenomenon of
entanglement is crucial in realizing the revolutionary advances
of quantum science. In the emerging field of quantum infor-
mation processing, quantum entanglement is also the resource
and medium that enable the underlying quantum technologies.

In this work, we study the statistical behavior of en-
tanglement over the fermionic Gaussian states. In the past
decades, considerable effort has been devoted to investigat-
ing the degree of entanglement as measured by different
entanglement entropies over the well-known Hilbert-Schmidt
ensemble [1]-[13]. In particular, these studies focus on the
statistical behavior of entanglement entropies such as von
Neumann entropy [1]-[8], quantum purity [9]-[11], and Tsal-
lis entropy [12], [13]. Driven by the recent breakthrough
in probability theory on the Bures-Hall ensemble [14]-[17],
considerable progress has been made in understanding the
von Neumann entropy [18]-[20] and quantum purity [21]-[23]
over the Bures-Hall ensemble. Similar investigations are now
being carried out over the fermionic Gaussian ensemble, which
is a generic state model relevant for different quantum infor-
mation processing tasks [24]-[29]. Very recently, the mean
values of von Neumann entropy with and without particle
number constraints over the fermionic Gaussian ensemble are
obtained in [27] and [29], respectively. As an important step
towards characterizing the statistical distribution of von Neu-
mann entropy, we aim to derive the corresponding variances,
which describe the fluctuation of the entropy around their
mean values. The exact variance of von Neumann entropy over
fermionic Gaussian states without particle number constraint
has been conjectured in a prior work [30]. In the current work,

we prove the conjecture as well as derive a variance formula
for the case of fixed particle number.

II. PROBLEM FORMULATIONS

In this section, we introduce the formulation that leads to the
fermionic Gaussian states with and without particle number
constraints. A system of N fermionic degrees of freedom
can be decomposed into two subsystems A and B of the
dimensions m and n, respectively, with m +n = N. Without
loss of generality, we assume m < n . In the present work,
we consider two scenarios of fermionic Gaussian states — the
fermionic Gaussian states with arbitrary number of particles
and the fermionic Gaussian states with a fixed number of
particles.

Case A: Arbitrary number of particles

A system of N fermionic modes can be formulated in terms
of a set of fermionic creation and annihilation operators a;
and &j, i =1,...,N. Since the modes are fermionic, these
operators obey the canonical anti-commutation relation [24],
[29],

Goatl = 5. Aoal—0= a1 At
{ai,aj} = 6,1, {ai,a;} =0={a;,a;}, (1)
where {A, B} = AB + BA denotes the anti-commutation
relation and I is an identity operator. Equivalently, one can
also describe these fermionic modes in terms of the Majorana
operators y;, [ = 1,...,2N, and

o Al +a ﬁ‘_zdj—&-di
2i—1 \/i bl 2% \/§

with 2 = 4/—1 being the imaginary unit. Note that the Majo-
rana operators are Hermitian satisfying the anti-commutation
relation

2)

{34} = ol 3)

By collecting the Majorana operators into a 2N dimen-
sional operator-valued column vector v = (%1,...,92x), a
fermionic Gaussian state is then written as the density operator
of the form [28], [29]

e QY

p(y) = Wa 4

where the coefficient matrix @ is a 2N Xx 2N imagi-
nary anti-symmetric matrix as the consequence of the anti-
communication relation (3). There always exsits an orthogonal
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matrix M that diagnoses the coefficient matrix ) by trans-
forming ~y into another Majorana basis 1 = ({1, ..., fllan) =
M~ [29]. A fermionic Gaussian state is labelled by its anti-
symmetric covariance matrix [29]

J = —tanh(Q) = M* JyM, (5)

where tanh(x) denotes the hyperbolic tangent function [31],
the matrix Jy takes the block diagonal form

tanh(A)A ... 0
Jo = : : 5 (6)
0 ... tanh(An)A

0 1
A_<_1 O). ™)

We consider the von Neumann entropy as the measure of
entanglement between the two subsystems. By restricting the
matrix J to the entries from subsystems A, the restricted
matrix J4 becomes the 2m x 2m left-upper block of J. The
von Neumann entropy of a fermionic Gaussian state of case
A can be represented in terms of the real positive eigenvalues
it =1,...,m of v.J4 as [27], [29], [30]

and

S==) (), (®)
i=1
where
l—-z 1—-2z 142 14z

o) = 5l oy ®
The resulting joint probability density of the eigenvalues

z;,1 =1,...,m is proportional to [27]

2 O n—
[T @G- J[a-27)", €10,1], (10)
1<i<j<m i=1

which is obtained by recursively applying the result in [32,
Proposition A.2].

Case B: Fixed number of particles

For a fermionic Gaussian state |F) with a fixed particle
number p, m < p < n, the corresponding covariance matrix
H can be expressed via the commutator of fermionic creation
and annihilation operators as [25], [26], [29]

Hij = —1(F|ala; — ajal |F). (11)

Recall the canonical anti-commutation relation (1), the entries
of the matrix H are then of the form

Hij = —2ZGij + Z(sijﬂ, (12)

where G;; = (F| d:&j |F) denotes the entries of an N x N
matrix G of a fermionic system of N modes. There exists a
unitary transformation U that diagonalizes GG into the form
UTGU, where the first p diagonal elements are equal to 1 and
the rest are 0. Therefore, one can write

G = UnxpU]

Nxp*

13)

A fermionic Gaussian state of dimension N = m + n with
p particles can be fully characterized by the matrices H and
G. The von Neumann entropy of the fermionic system in the
case B can be represented as [25], [26], [29]

m

S=-> vy 1),

i=1

yi € [0,1], (14)

where y;, ¢ = 1,...,m are the eigenvalues of the restricted
mxm matrix G4 = U, x pU,LX p The eigenvalue distribution
of the random matrix UmXpU,LXp is the well-known Jacobi
unitary ensemble [33], [34]. We denote x;, ¢ = 1,...,m the
eigenvalues of the m x m left-upper block of matrix +H.
Changing the variables x; = 2y; — 1 in (14) leads to the von

Neumann entropy (8) of case B. The resulting joint probability

density of the eigenvalues x;,7 = 1,...,m is proportional
to [35]
[ @-=)’J[a+z)" ™0 —2)" " 2 € [-1,1].
1<i<j<m i=1
(15)

It is important to point out that the joint probability densi-
ties (10) and (15) of the considered two cases can be compactly
represented by a single joint density as

m

[T <) [ +2) (6)

1<i<j<m i=

fra(z) o

—

where for the case A we have

vy=2, a=b=n—-m2>0, x¢€][0,1], 17)
and for the case B we have
vy=1, a=n—-p>0, b=p—-m>0, xe€[-1,1]. (18)

We omit the normalizations of the density (16) as they will
not be made use of in the subsequent calculations. Note that
the variance computation for an arbitrary v in (16) appears
difficult, where one has to consider the case v = 2 in (17)
and the case v = 1 in (18) separately.

III. VARIANCE FORMULAS

We now introduce the exact mean and variance formulas of
von Neumann entropy for both case A and case B. The mean
values have been recently computed [27], [29] as summarized
in Proposition 1 and Proposition 2 for case A in (17) and case
B in (18), respectively. The corresponding variance formulas
are presented in Proposition 3 and Proposition 4 below, which
are the main results of the work!.

Proposition 1 ([27]): For subsystem dimensions m < n,
the mean value of the von Neumann entropy (8) of fermionic

!Proofs to the Proposition 3 and Proposition 4 can be found in the full
version [36].
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Gaussian states with arbitrary number of particles (17) is given
by

E[S] :<m tn— ;)wo@m +om) + (i - m)t/}g(m +n)

+ (; — n) Yo(2n) — %ﬁo(n) —m, (19)
where dInT(
Yo(z) = r;ixx) (20)

is the digamma function.

Proposition 2 ([29]): For subsystem dimensions m < n,
the mean value of the von Neumann entropy (8) of fermionic
Gaussian states with a fixed particle number (18) is given by

X Po(m+n+1)— mmi_fniﬁo(ln‘*‘ 1)

—np(n+1) —m.

Yo(m+n—p)+ (m+n)

ey

Proposition 3: For subsystem dimensions m < n, the vari-
ance of the von Neumann entropy (8) of fermionic Gaussian
states with arbitrary number of particles (17) is given by

VIS] = (1 S n) D1(2m + 2n) + (n _ ;>¢1(2n)

2
e ) CUBIO Rt
— 5 (W2 +20) — yo(2n), @2)
where )
Yi(z) = %;;(x) (23)

is the trigamma function.

Proposition 4: For subsystem dimensions m < n, the vari-
ance of the von Neumann entropy (8) of fermionic Gaussian
states with a fixed particle number (18) is given by

VIS] = cotpi(m +n —p) — (m +n)Pi(m + n) + nyi(n)
+ c1¥1(p) + c2(Yo(m +n — p) — o(p))?
+c3(o(m +n —p) — o(p)) — to(m +n),

+to(n) +cq (24)

where the coefficients ¢; are summarized in Table I below with
(a)n, =T(a+n)/T'(a) denoting the Pochhammer symbol.
The sketch of proof to Proposition 3 and Proposition 4
will be presented in appendices. Note that a special case of
equal subsystem dimensions m = n of Proposition 3 has
been proved very recently in [30] by utilizing an existing
simplification framework developed in [6]-[8], [20], [23], [30],
[37]. However, for the general case of subsystem dimensions
m < n, the existing framework is not sufficient to simplify
some of the summations in the variance calculation. This
difficulty is resolved by developing a new simplification frame-
work, which is the key technical contribution of the work. The
proposed new framework consists of two new tools of dummy

TABLE I
COEFFICIENTS OF VON NEUMANN ENTROPY
VARIANCE IN PROPOSITION 4

m(m +n —p)(m? +2mn +n? —np — 1)

cp =
(m+n—1)3
_ mp(m2+mn+np—1)
“a = (m+n—1)3
. — mnp(m +n — p)
2 (m+n)(m+n—1)3
. m(m + 1)(m +n — 2p)
3 = -
(m+n)(m+n)2
m(2m+n+2)
cqy =

B (m+n)(m+n)2

summation and re-summation techniques. The new framework
gives rise to six lemmas as summarized in Appendix B
that convert the summations involved into simplifiable ones
within the existing simplification framework, leading to the
desired closed-form variance formulas in Proposition 3 and
Proposition 4.

IV. SIMULATIONS AND ASYMPTOTIC RESULTS
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Fig. 1. Variance of von Neumann entropy: analytical results versus sim-

ulations. The black curves represent the obtained analytical result (22) for
the cases n = m, n = 3m, and n = 4m. The red curves are drawn by
the result (24) for the cases p = m,n = 3m; p = 2m,n = 3m; and
p = 2m,n = 4m. The diamond scatters represent numerical simulations.

To illustrate the derived results (22) and (24), we plot
in Figure 1 the exact variance of von Neumann entropy as
compared with numerical simulations?>. We define

m

i = o (25)
_ p

f2 - n+m7 (26)

2The simulations performed in figures 1-3 utilize the Mathematica codes
provided by Santosh Kumar based on the log-gas approach as discussed in [18,
Appendix B].
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it is observed in Figure 1 that the variance in case A ap-
proaches to a constant when system dimensions m and n
increase with a fixed f, while the variance in case B follows
the same behavior when the dimensions m, n, p increase
with both f; and f; kept fixed. This phenomenon can be
analytically established by the asymptotic results of variances
in the literature. For case A, in the asymptotic regime [27]

1
m — 00, M — 00, 0<f1§§, 27

one has [27]

S| = 5+ £+ 1nlt = 7)) + o

1
m+n>, (28)

whereas for case B, in the asymptotic regime [29]

—_

m— 00, p—00, N — 00, O<f1§f2§§) (29)

one has [29]

VS] = fi+ ff +In(1 = fi) + fuf2(1 = f1)(1 = fo)

21_f2 2 _ nl_fQ
7 + fi2f2—1)1 f2

ol )

The above asymptotic variances (28) and (30) can be directly
recovered by the results in Proposition 3 and Proposition 4,
respectively. Moreover, the correction terms of any order can
be simply obtained from our exact variance formulas upon
using the asymptotic behavior of polygamma functions

X In

(30)

o0

1 By
Yo(x) =In(z) — o= = > T — 00, 31
2z — 2lx
1422 = By
() = 9p2 T Z 2241 T — 00, (32)

where Bj is the k-th Bernoulli number [31]. For example,
utilizing the next order of correction, the asymptotic result (30)
is refined to

VIS] =f2 + fi + (1~ fi) + F2(2fs — 1) n ;sz T
21— fo 1
X fa(1—= f1)(1 = f2)In 7 +12(m+n)2
/i /2 1
x 7(]’2—1)2+7§+12f%_12f1+(f1—1)2
h=38ff 3ffi-H . 2h-Df
R TR T T eoon
><(12f2‘°’—18f22+4f2+1)1n1;f2+12(f171)
2
1—f2

x fi(f2 — 1) fo1n* + 0<(m—|—1n)4> (33)

To understand the distribution of the von Neumann entropy,
simple approximations can now be constructed by using the
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Fig. 2. Probability densities of standardized von Neumann entropy for case
A: a comparison of Gaussian density (35) to simulation results. The dash-
dot curve in blue and the dashed curve in red refer to the standardized von
Neumann entropy (34) of subsystem dimensions m = 2, n = 4, and m =
16, n = 32, respectively. The solid black curve represents the Gaussian
density (395).
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Fig. 3. Probability densities of standardized von Neumann entropy for case
B: a comparison of Gaussian density (35) to simulation results. The dash-
dot curve in blue and the dashed curve in red refer to the standardized von
Neumann entropy (34) of dimensions m = 2, p = 4, n = 6, and m = 6,
p = 12, n = 18, respectively. The solid black curve represents the Gaussian
density (35).

obtained mean and variance formulas. We first standardize the
von Neumann entropy as

S - HS]

VST

where the random variable X is of zero mean and unit
variance. We now compare the distribution of X with a
standard Gaussian distribution

(34)

(35)
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In figures 2-3, we plot the simulation results of the standard-
ized von Neumann entropy X as compared with a standard
Gaussian. Specifically, the ratios (25)—(26) are fixed to f; =
1/3 for case A in Figure 2 and f; = 1/4, fo = 1/2 for case B
in Figure 3. It is observed from the figures that the Gaussian
density captures accurately the distribution of the standardized
von Neumann entropy X for moderately large dimensions.
We also observe that the true distribution of X is non-
symmetric and appears to be left-skewed when the subsystem
dimensions are small as seen from the dash-dot blue curves. In
comparison, when the subsystem dimensions become larger,
the distribution of X appears to be closer to the Gaussian
distribution. In fact, the Gaussian density as a limiting behavior
of von Neumann entropy has been conjectured for differ-
ent random matrix models of Hilbert-Schmidt ensemble [7],
Bures-Hall ensemble [20], and fermionic Gaussian ensemble
of an arbitrary number of particles [30]. Here, as motivated by
the simulations in Figure 3, one is also tempted to conjecture
that under the asymptotic regime (29), the standardized von
Neumann entropy (34) of fermionic Gaussian states with
a fixed particle number (18) converges in distribution to a
standard Gaussian.

V. CONCLUSION

In this work, we compute the exact yet explicit variance for-
mulas of von Neumann entanglement entropy over fermionic
Gaussian states with and without particle number constraints.
The obtained formulas provide insights into the fluctuations
of von Neumann entropy. An essential ingredient in obtaining
the results is a new simplification framework of dummy
summation and re-summation techniques. The new framework
may also be useful in computing higher order moments of von
Neumann entropy and other entanglement indicators over the
fermionic Gaussian ensemble.
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