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Abstract

Bayesian nonparametric mixtures and random partition models are powerful tools
for probabilistic clustering. However, standard independent mixture models can be
restrictive in some applications such as inference on cell lineage due to the biological
relations of the clusters. The increasing availability of large genomic data requires
new statistical tools to perform model-based clustering and infer the relationship
between homogeneous subgroups of units. Motivated by single-cell RNA data we
develop a novel dependent mixture model to jointly perform cluster analysis and
align the clusters on a graph. Our flexible graph-aligned random partition model
(GARP) exploits Gibbs-type priors as building blocks, allowing us to derive analytical
results for the probability mass function (pmf) on the graph-aligned random partition.
We derive a generalization of the Chinese restaurant process from the pmf and a
related efficient and neat MCMC algorithm to implement Bayesian inference. We
illustrate posterior inference under the GARP using single-cell RNA-seq data from
mice stem cells. We further investigate the performance of the model in recovering the
underlying clustering structure as well as the underlying graph by means of simulation
studies.
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1 Introduction

We introduce a graph-aligned random partition model with one set of clusters being identi-
fied as vertices of a graph and other clusters being interpreted as edges between those. The
model construction is motivated by the increasing availability of genomic data that requires
new statistical tools to perform inference and uncertainty quantification on homogeneous
subgroups of units (e.g., single-cells) and hypothesized relationships between the subgroups
(e.g., transitions between the subgroups). In the present article, we deal with single-cell
RNA sequencing experiments (scRNA-seq) that provide an unprecedented opportunity to
study cellular heterogeneity and the evolution of complex tissues. The interest is to identify
the main homogeneous cell subpopulations (i.e., clusters) in terms of gene expressions and

jointly infer transitions of cells between these.



Dirichlet process (DP) mixtures (Lo, 1984) are well-established Bayesian nonparametric
(BNP) models to infer homogeneous subgroups of observations via probabilistic clustering.
However, the law of the random partition induced by the DP, related to the so-called
Chinese restaurant process (CRP), is controlled by a single parameter. This leaves DP
mixture models too restrictive for many applications and several alternative models were
introduced in the literature to allow more flexible clustering. This includes the symmetric
finite Dirichlet prior (Green and Richardson, 2001), the Pitman-Yor process (PYP) (Pitman
and Yor, 1997), the normalized inverse Gaussian (NIG) (Lijoi et al., 2005), the normalized
generalized gamma process (NGGP) (Lijoi et al., 2007b), mixture of finite mixtures (MFM)
(Nobile, 1994; Richardson and Green, 1997; Nobile and Fearnside, 2007; Miller and Har-
rison, 2018) and the mixture of DP (MDP) models (Antoniak, 1974). All these belong to
the wider family of Gibbs-type priors (Gnedin and Pitman, 2006) that can be seen as a
natural, flexible generalization of the DP (De Blasi et al., 2015).

However, Gibbs-type processes entail independent cluster-specific parameters not al-
lowing us to infer the relationship between clusters as needed in our motivating example.
Recently, repulsive priors that allow for dependent cluster-specific parameters were suc-
cessfully introduced to favor more parsimonious and well-separated clusters (Petralia et al.,
2012; Xu et al., 2016; Beraha et al., 2022). Repulsive mixtures introduce (negative) depen-
dence between cluster-specific values to better separate clusters. However, these models
still stop short of inferring a biological relationship between the clusters, such as aligning
the clusters on a graph, as desired in our framework.

In this article, we propose a graph-aligned random partition model (GARP) that ex-
ploits the flexible, but tractable, building blocks of Gibbs-type priors to build a random
partition aligned on a graph. The desired interpretation of clusters as vertices and edges
in a graph naturally gives rise to dependent priors on cluster-specific parameters. In the
motivating example with single-cell RNA-seq data, vertex-clusters represent homogeneous
cell subpopulations and edge-clusters correspond to cells that are transitioning between
those. See Figure 1 for a scatter plot of single-cell RNA data in a two-dimensional space
that captures most of the recorded genetic expressions of mice stem cell data.

The remainder of the article is as follows. In Section 2 we introduce a model for
graph-aligned probabilistic clustering. In Section 3 we introduce special examples. In
Sections 4, 5 and 6 we study a useful approximation, implied homogeneity assumptions, and
identifiability of vertices versus edges. Section 7 applies the model to single-cell RNA-seq
data of mice stem cells and Section 8 concludes with final comments. Substantive additional
details, including proofs, validations on simulated data, a characterization in terms of
discrete probabilities, a discussion of hyperparameter choices, and details on the strategy
to obtain point estimates from posterior samples are available as an online supplement.
The code is available at https://github.com/GiovanniRebaudo/GARP.
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Figure 1: Two-dimensional representation of genetic expressions of the RNA mice single-
cells data.

2 Graph-Aligned Random Partition Model

We introduce a graph-aligned random partition model (GARP) fory ={y;:i=1,..., N},
y; € R% The two main features of the model are a two-level random partition structure
that assigns observations into vertex-clusters and edge-clusters, and a mixture of normal
sampling models with cluster-specific parameters that reflect this split into vertex and
edge-clusters. That is, the mixture of normal models is set up such that observations in
vertex-clusters form homogeneous subsets in Euclidean space, and observations in edge-
clusters are located between the adjacent vertices. We characterize the model in three
different representations that are minor variations of representations that are traditionally
used for infinitely exchangeable random partition models (Pitman, 1996), including (1) the
probability mass function (pmf) of the graph-aligned random partition via the introduc-
tion of exchangeable partition probability functions (EPPF); (2) a composition of Pélya
urn schemes, i.e., predictive probability functions, using a generalized CRP (gCRP); and
(3) the configuration of ties that is implied by sampling from a composition of discrete ran-
dom probability measures, similar to the construction of species sampling processes (SSP).
See Pitman (1996) and Lee et al. (2013a) for details on these three characterizations for

infinitely exchangeable random partitions (without alignment on a graph).

2.1 A Gaussian Mixture over Vertices and Edges

We start the model construction with a sampling model given the latent graph-aligned
partition. We need some notation. Let V; be an indicator for observation ¢ being placed
into a vertex-cluster and let Z; denote a cluster membership indicator. We write V' =

(Vi,...,Vn) and Z = (Zy,...,Zy) (throughout @ denotes the collection of all previously



defined elements z,). We denote with N, y = le\il V; the number of observations in vertex-
clusters, and with N, y = N — N, n the implied number in edge-clusters. For notational
simplicity, we drop the subscript y when implied by the context. If i belongs to a vertex
(i.e., V; = 1), then Z; € [K,] = {1,...,K,}, where K, is the random number of vertex-
clusters. If i belongs to an edge (i.e., V; = 0), then Z; = (k, k'), with k& < k' indicating
the adjacent vertex-clusters. Let K. denote the number of edge-clusters. Clearly, an edge
must connect two vertices, implying K, < w = M,. Finally, let Z, = (Z; : V; = 1)
and Z, = (Z; : V; = 0) denote the set of cluster membership indicators for vertices and
edges, respectively.
Given a graph-aligned random partition, we assume normal sampling
* x ind * * .
yi|Zi7p’72 NN(yi|uZivzzi)’ (Z:L"'vN)v (1)
keeping in mind that Z; = k for V; = 1 and Z; = (k, k') for V; = 0. The cluster-specific
parameters are defined as follows. For the vertex-parameters 6} = (uj, X5) we assume
(conditionally) conjugate normal-inverse Wishart priors
0; | K, S NIW (o, Mo, k0, 5o),  (k=1,...,K,). (2)
For edge-clusters, cluster-specific parameters 6 ,, = (uj ., 25 ;s) are defined as functions
of the adjacent vertex-clusters,
* I’l’* + u’*’ * * *
Py = %a Ek,k/ = f(ﬂfka kaﬂ“o,?"l)~ (3)
Here f is such that the a%-level contour of the N(uj ./, X /) density is stretched around
the line Ly connecting p; and pj,, the Gaussian component projected onto Ly has
standard deviation ro ||} — pj. ||, and the projection onto the orthogonal complement Lj,,
are d— 1 independent Gaussian distributions with variances 7%. Figure S.1 in Section S.1 of
the supplemental materials shows the contour plot of an edge-cluster in R?. See the same

section and Section S.3 of the supplementary materials for more discussion of X ;,, and

comments on the choice of hyperparameters rg, ry.

2.2 Graph-Aligned Random Partition (GARP)

We introduce a flexible graph-aligned random partition model. In words, we first label
each item as belonging to a vertex or edge cluster (with probability p, and (1 — p,),
respectively), then use a Gibbs-type prior to cluster items associated with vertices, and a
Dirichlet-multinomial prior to place those associated with edges into one of the M, possible

edges, respectively. Let (nq,...,ng,) denote the cardinalities of the vertex-clusters, i.e.,

ng = Zz 1{V; =1} n{Z; = k}), and similarly let Mg = ZZ 1{V; =0} N {Z = (k,k")})
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denote the sizes of the implied edge-clusters, with n, = 0 indicating the lack of an edge

between k, k’. We define a graph-aligned random partition model via the pmf of V', Z

G'(N)(V, Z) x pf)V” EPPF%{}”)(nl, coonk, | a,0)/ K,
(1 — po) VDM (g )k | B/M,) L({Ne = 0} U{M. > 0}), (4)

En

where EPPF(- | a, 0) denotes the EPPF of a Gibbs-type prior, DM is the marginal like-
lihood of an M.-symmetric Dirichlet-multinomial model (for categorical realizations, and
defining DM©(.) = DMS)(~) =1) and 1({N, = 0} U {M, > 0}) is an indicator that repre-
sents the constraint that edges can only be assigned if there are at least 2 vertices (M, > 0,
that is, K, > 1), or no units are assigned to edges (N, = 0). We will use Ey to refer to
this truncation event. In particular, when K, = 1 (and therefore M, = 0) (4) reduces to
GM(V,Z) « pY EPPF™(N | o, 0) with V; = Z; = 1, for all i, and G™M(V, Z) = 0 for
any other configuration (V', Z), e.g., any configuration with N, > 0 (i.e., ES).

An EPPF characterizes the distribution of an exchangeable partition (Pitman, 1996),
with EPPF%\Z”)(nl, ...,nk,) being the probability of observing a particular (unordered)
partition of N, observations into K, subsets of cardinalities {ni,...,ng,}. Since an EPPF
refers to unordered partitions we include the additional denominator K,! for the ordered Z.
See Section 4 for more discussions of the homogeneity assumptions implied by our model.
We specify the EPPF as a Gibbs-type prior,

K,
EPPF X (n,... g, | @,0) = Wi, [[(1 = )1 (5)
k=1

where (x), = z(x+1)...(z+n— 1) represents the ascending factorial, o < 1 is a discount
parameter and the set of non-negative weights {W, ; : 1 < k < n} satisfies the recursive
equation Wy, = (n — 0k)Wyq1k + Wig1k+1. The parameter « in the conditioning set is
used to define W, ;, for some of the upcoming examples. In a second step, the observations

assigned to edges are (ordered) clustered using a DM distribution.

GM((Z;: V;=0)| V,K,) = DM (g p)nes, | B/M.)

_ I'(5) H [(ngw + B/M.)
F(Ne+ /M) L(B/M,)

(6)

k' ):k<k' <K,

Model (4) is a hierarchical constrained composition of a Gibbs-type prior and a symmetric-
DM with hyperparameter 3/M,.. As we shall show, the model preserves most of the ana-
lytical and computational tractability of the simpler building blocks.



2.3 Generalized Chinese Restaurant Process

In an alternative characterization of (4), the model can be defined as a truncated version
of a composition of gCRP. We denote the latter, that is, the model before the truncation,

as G(V) and refer to it as the relazed model.
GV, Z) x GOV, Z)1(Ev). (7)

Recall that Ey = {N, = 0} U {M, > 0} is the truncation. In Section 4 we show that o
assigns high probability to Ey, going to 1 with n — oo for most Gibbs-type priors.
The relaxed model GV)(V', Z) is a hierarchical composition of tractable generalized

Pélya urn schemes, starting with the assignments to vertices or edges
V, X Bern(p,), (i=1,...,N). (8)

Next, we sample cluster membership indicators Z, = (Z; : V; = 1) for the vertex-clusters
from the gCRP associated with Gibbs-type prior, ie., Z, | V ~ gCRP(«, o), with the
gCRP implied by G®V) given as

w

o (= 0) ke K

W

Ny, Ky ' 41 _ ro—i
e k=K1,
Ny—1,K;

GO Zi=k | Z7 V- Vi=1) = 9)

Throughout x* identifies a quantity after removing the element ¢ from x. Moreover, we use
the following notation in the manuscript: given a probability measure P we denote by P{E}
the probability measure evaluated in a set F and by P(a) the corresponding probability
density function (pdf) or pmf evaluated in a point a. See Section 3 for examples of different
gCRP and implied prior assumptions on the number of vertices.

Finally, the cluster membership indicators Z, for the observations in edges follow the

Pélya urn scheme induced by a DM distribution

—_~—

GN{Z; = (k,K') | Vi=0,Z7" Exn} < ni}, + /M., (10)

with ¥/ < k < K,. Here, /M, favors sparsity as the dimension of the graph increases.
Note that (8) might generate N, > 0, even when (9) implies M, = 0. For this case we
define for completeness EUV/){Zl =(1,2) | V; =0,Z7" E5} = 1 (without implications for
GW) | due to the inclusion of the truncation to Ey in (7)).

The aforementioned composition of urn schemes characterizes the GARP (4):

Proposition 1. The random partition structure of the GARP model (4) can be character-
ized as the truncated composition of gCRP defined in (7), (8), (9) and (10).



We rely on this representation to derive an MCMC algorithm that generalizes the
marginal MCMC algorithms for DP mixture models and Gibbs-type priors (Neal, 2000;
De Blasi et al., 2015; Miller and Harrison, 2018). Moreover, as we shall see, the probability

of the truncation event Ey is high and rapidly goes to 1 in most cases.

Composition of Discrete Random Probabilities. Finally, in Section S.2 of the sup-
plementary materials we derive a third characterization of the proposed GARP. We define
af\’/) as a graph-aligned random partition (with unique atoms) implied by the ties under
conditionally i.i.d. sampling of 8;. Such a characterization will be used in a lemma to prove
Theorem 3 and can be used to connect with existing BNP literature to derive a conditional

Gibbs sampler.

3 Specific Model Choices

—~—

Conditioning on the vertex assignments V', under the relaxed model G\V) the distribu-
tion of the clustering indicators Z, is given by the EPPF of a Gibbs-type prior (Gnedin
and Pitman, 2006; De Blasi et al., 2015). We introduce four specific choices, stating the

EPPF%\:’J)(nl, ...,ng,) for partitioning N, observations into K, vertices. Table 1 shows

P

the corresponding expressions for GNM{Z;, = k | V; = 1,Z;*,V '} in the gCRP of (9),
and the weights and atoms for P, = 2%11 Tmdg, in (S.1) of the supplementary materials.

Throughout, the prior for cluster-specific parameters remains the NIW in (2).

Table 1: EJTN/){ZZ = k| ...} in the gCRP (9), and weights (m,,), for P, = 3™ Tm0g,.
in (S.1). See the text for the definition of examples 1 through 4.

CO(Z, =k |V,=1,Z", V) | P(ry,ma,... | M,) | p(M, = m)
Ex. | ke Z* : =K' +1
1 | nitp p(M, — K;) @ | Dir(p, ..., p) fixed M, € N
2 | (g +1) x (K- Ky | Dir(1,...,1) W=thmet
(N,' = K +7)
3 | n’ i a GEM(a) ® M, = oo
4 |n'—o : a+ Ko GEM(a, o) ® M, =

(@ subject to K;* < M,.

®) GEM stands for the distribution of probability weights after Griffiths, Engen, and Mc-
Closkey (Ewens, 1990), using the 1-parameter version defined there and the related 2-
parameters extension.



Example 1 (M,-dimensional symmetric Dirichlet). If prior information on an upper bound
M, on the number of vertices is available we can proceed with a finite-dimensional symmet-
ric Dirichlet prior (Green and Richardson, 2001).

M, T'(p M,

K
EPPFY) (. . — ) r . 11
i) = G T 1 p M LT (Y

Allowing for unknown M, the model becomes a mixture of symmetric Dirichlet model,
that is, a mixture of finite mixtures (MFM). MFMs can be particularly interesting for
allowing consistent estimation of any finite number of clusters (Nobile, 1994; Miller and
Harrison, 2018). MFMs are a special case of Gibbs-type priors. A relevant example is the

Gnedin process.

Example 2 (Gnedin process, with ¢ = —1). Under the Gnedin prior with parameter
v € (0,1) the EPPF%\Z“) in (4) becomes

EPPF (ny,....nx,) = Y EPPFY (... g, | M, = m) p(M, = m),

m=1

where EPPF%NUv)(m, .. yng, | M, =m) is the EPPF of the M,-symmetric Dirichlet prior

m!

The gCRP for the Gnedin process allows tractable analytical results and efficient algo-
rithms. Moreover, the Gnedin process entails a distribution on the number of components
M, that has the mode at 1, a heavy tail, and infinite expectation (Gnedin, 2010). There-
fore, the implied MFM favors a small number of vertices, while also being robust due to
the heavy tail distribution of M,,.

Note that one can use M, = 0o to let the number of vertices (i.e., K,) grow to infinity
with N,. Examples are the DP which entails a logarithmic growth of the number of vertices

and the PYP which entails a polynomial growth of the number of vertices.

Example 3 (DP). Under the DP prior with parameter a > 0 the EPPF%\Z”) in (4) becomes

() o“T(a) T7
EPPFKU (nl,...7n}(”) = mn(nk—l)'
Y k=1

Example 4 (PYP). Under a PYP prior with parameters o € [0,1) and o > 0 the EPPF%\S’)

in (4) becomes

— K
N, T+ D) (o + ko) 15
EPPFY)(ny,. .. nk,) = F(ailN) [0 =0)ns
v k=1

8



With ¢ = 0 the PYP reduces to the DP. Other popular sub-classes of Gibbs-type priors
include the NGPP (Lijoi et al., 2007b), the NIG (Lijoi et al., 2005, 2007a), and the MFM
(Nobile and Fearnside, 2007; Miller and Harrison, 2018). See De Blasi et al. (2015) for a
comprehensive review of Gibbs-type priors.

Finally, we note that here we focus on prior elicitation of the Gibbs-type random parti-
tion that controls the vertex-clusters and the number of vertices (i.e., K, < min(M,, N,) <
min(M,, N)). Given K, the possible number of edges is finite. The only Gibbs-type prior
with a finite fixed number of components M, is the symmetric Dirichlet (see e.g, De Blasi
et al., 2015), that is the DMy, in (4). Although the preceding discussion focuses on the
Gibbs-type partition that controls the vertices assignment, it entails (thanks to the hier-
archical definition e.g., in Section 2.3) similar flexibility in the joint prior elicitation of the

vertices assignments.

4 Goodness of the Approximation

We discuss properties of the approximation of the GARP model in (4) by the relaxed model
G®™) | and why it is a good approximation of G®Y) justifying the prior elicitation of GV via

G®). Importantly, the results allow us to effectively sample from the GARP via rejection

—_~—

sampling, using proposals from GWV).

Proposition 2. The probability of the truncation event En under the relaxed model is

N—-1
— N
GO E) =+ X ()= ) = A= o)W) (12

Nny=2

Here pY = a(\N/){Nv =N}, and (1 — 0),,—1 Wiy, 1 in the second term arises from (5) as
the probability given {N, = n,} of having a single vertex, i.e., EUV/){KU =1|N,=n,} =
EPPFg””)(nU). For the Gibbs-type priors in the following examples, the latter reduces to
simple analytical expressions.

In the upcoming discussion, we introduce several closely related distributions. To avoid

confusion we provide a summary and list of defined distributions in Table S.1 in the sup-

—_—~—

plementary materials. Let GS,];[) denote the law of V;, i = 1,...,N and Z, = (Z; : i €

—_—~—

[N],V; = 1) under the relaxed model. More precisely, G4} is the joint law of the ran-
dom variables (T1,...,Tx), where T; = V; it V; = 0 and T; = (V;, Z;) it V; = 1. Let Gy,

denote the law of the stochastic process with Kolmogorov consistent finite dimensional

—_~—

(G’E,]Z)) NeN- Such a process exists due to the i.i.d. nature of V; and the exchangeable nature
of the Gibbs-type prior that defines Z, given V.. We therefore have by the strong law of

large numbers limy_,o, N,/N = p,, Gy,-a.s. Also, note that the truncation event Ey is a



—_—~—

function of (V', Z,,) (thus T) only, allowing us to evaluate GN){Ey} in (12) as probabilities

under Gy,.

We are now ready to analyze (12). First, note that E§ can be decomposed as ES, =

{K, =1} n{N, # N}) U{N, = 0} and therefore
Gy A By} = Gun{ Ky = 1} = pl Gop{K, = 1| Ny = N} + (1 — p,)", (13)

with the last term corresponding to C/T'\V/Z{Nv = 0} and the sum of the first two terms corre-
sponding to Gy, {{K, =1} n{N, # N}}. Note that (EUV/){KU = 1})nen and (a(\N/){KU =
1| Ny = ny})n,en (well defined for any N = f(n) > n) are non-increasing sequences of
elements in [0, 1]. This is the case since they can be seen as the probability Cf}'\v/Z of non-
increasing sequences of events. The two sequences are thus convergent.

For any p, € (0,1), (C/J\,\/Z{Efv})New in (13) has limit equal to limy_,« a(\N/){KU =1}
(since pY¥ and (1 — p,)" go to 0). Let then ¢ = limy o0 EJFV/){KU =1}, and let ¢° =
lim,,, 00 %{Ky =1| N, =n,}. Since K, depends on Zi, ..., Zy only indirectly through
the NNV, units allocated in Z, and N,/N — p, a.s. (see the proof of Theorem 1 for more
discussion), the two limits are equal, i.e., g® = g2°. We shall show that they equal 0 for
s/e\/veral Gibbs-type priors, implying that the GARP will go to the relaxed model, that is,

GWN{Ex} — 1 as N — co. Table 2 summarizes the results for the earlier four examples.

We use n, < N and for any sequences a,, and b,,, we write a,, < b, if and only lim,, a,,/b,, = 1.

Table 2: @7){}(,, =1| N, =n,}, limit ¢>° and asymptotic rate as n, — oo for Examples
1 (M,-dimensional symmetric DM, with M, > 1), 2 (Gnedin), 3 (DP) and 4 (PYP).

gn, = GWH{K, =1| N, =n,}

EX. | gn, = | Gn, < " go = limy, 00 Gn,
1 (P)nv I T'(pMy) M,y p(1—My) | O

(pM’U)nv v : F(p) v :
J e
R RRRIGRE

(1=0)n, — ' Ta+1) —(ato) !
Lo e oo 0

Theorem 1. Under the relaved model G™) we have g = g = limy_, é(\ﬁ){EfV} with
g™ = 0 under the symmetric Dirichlet, the DP, the PYP, and ¢>° =~ € (0,1) under the

Gnedin process. The asymptotic rates of g,, are given in the second column of Table 2.

Theorem 1 and (7) show that performing prior elicitation and posterior simulation based

—_~—

on the (analytically and computationally) simpler relaxed model GV) becomes practically

10



attractive. Table 2 also provides the rate at which 5(7V/)(Ef\,) (where the two models differ)
converges. For instance, when e (ES) ~ 0 (in Theorem 1), it is immediate to consider p,
as the prior proportion of observations assigned to vertex clusters under 5(\]\[/) for any sam-
ple size N. Another important consequence of Theorem 1 and (7) is that we can effectively
sample from the prior GARP model with an acceptance-rejection method that proposes
a realization from the simple relaxed model 6717) having theoretical guarantees that the
acceptance probability is around 1 in most of the cases. Also with the convergence of
5(\]\’/) (ES) to v > 0 under the Gnedin process, the approximation remains attractive, as re-
jection sampling remains practically feasible with known acceptance probability E(\N/)(E ~N)
going to 1 — v (instead of 1, under the other models), where 7 is a hyperparameter that
we can control. -

Finally, in most examples, the relaxed model G®V) approaches the GARP G™) as the

sample NV increases in an even stronger way.

Theorem 2. Under G with symmetric Dirichlet, DP or PYP (o >0) in (4)
Gy AEn eventually} = 1. (14)
Thus, for any k € N and any possible set of points ay, = (Vi.N+k, Z1:N+k)

Gy {{G'(]\Hk)(alC | Vin, Zyn) = GV (ay, | Vin, Zon) } eventually} =1. (15)

Under G™) with the Gnedin process we have Cf;\v/Z{EN u{M, =1} eventually} =1 and
Gy {{G(NJ”“)(ak | Vin, Zo ) = GV (), | Vin, Zy n) } U{M, =1} eventually} =1.

In words, almost surely either the predictive pmf under the GARP and the relaxed
will eventually coincide or (under 5(\17) with the Gnedin process) there is only one possible
vertex-cluster for any NV € N. The latter has a positive probability C/JVVZ{MU =1} =~¢€
(0,1) for the Gnedin process.

5 Finite Exchangeability and Projectivity

Under the GARP the distribution of the sample is (finitely) exchangeable, that is the
marginal law of (y;)Y, from (1)—(4) is invariant with respect to permutations of the la-
bels 1,..., N. This homogeneity assumption entails that the order in which we look at
the observations does not affect the prior and the inferential results, as it should. The
same homogeneity assumption is true for the graph-aligned random partition induced by
(Vi, Z)X,. We discuss some more details of homogeneity assumptions in the model. We
will write GV) for different distributions implied by the GARP model (1)-(4), with the

specific distribution being clear from the argument of G®)(.).

11



Finite EPPF. Let ¥y denote the random partition of observations [/N] defined by clus-
tering 7 and j together if and only if 8; = 8; (recall that 8; = 87 ). Under the GARP
model Uy is an exchangeable random partition with dependent cluster-specific parame-
ters. We introduce the notion of finite EPPF (fEPPF) to characterize the distribution
of such random partitions: G™N{Uy = {C},...,Cx}} = fEPPF%V)(cl,...,cK), where
(c1,...,¢cx) = (|C1],...,|Ck|) are the cluster sizes (in a given arbitrary order). Note that
{c1,...,cx} is a sufficient statistic for an exchangeable random partition. Here K denotes
the number of clusters, i.e., K = K, + K.. The fEPPF is a symmetric function of a com-
position of N (positive integers that sum up to N). The fEPPF induced by the GARP
can be obtained via marginalization of the probability function (4) of the graph-aligned

random partition. Several expressions can be aggregated via probabilistic invariance.

Proposition 3. Under the GARP

N
N _
EPPEL(Cl - Gl o 30§ (3 )0 = p
Ny=1 v

M.
: M, _
> [(K_K) S EPPFR(ny,...,nk,)DM) N”)((nk,kv,)k@;).]} (16)

Ko=1 (n1o i)
In the last sum, for given (ny,...,ng,) the cardinalities ngx of edge-clusters are implied
by the remaining elements of (|C|,...,|Ck|) that are not matched with the vertex-cluster

cardinalities n,. The exact range of the sums is stated in Section S.6.5 of the supplementary
materials. Essentially, {ni,...,ng,} U{ngw : k < k'} = {c1,...,cx}. Moreover, the
normalization constant in (16) is 1/GM){Ey}, which we studied in detail before.

A common stronger assumption in the literature on random partitions is that the ob-
served data (y;)Y, are a subset of an infinite (thus unobservable) sequence of exchangeable
random variables. This assumption does not apply to the GARP — see below. However, if
the assumption applies then the exchangeable random partition of the sample can be seen
as a projection of an exchangeable random partition of the natural numbers N to the set

[N]. Formally, this is equivalent to assuming:
(a) each random partition Wy is exchangeable over [N];
(b) the sequence of random partitions (¥ y)%_; is Kolmogorov consistent, that is, ¥, is

equal in distribution to the restriction of ¥y to [n] for any 1 <n < N.

Note that, although we stated the properties for the random partition, the same definitions
hold for other sequences of random variables, such as the sample (y;)~,. As done in, e.g.,
Betancourt et al. (2022) we refer to (a) as finite exchangeability, (b) as projectivity, and to

their combination as infinite exchangeability.
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Proposition 4. The graph-aligned random partition induced by (Vi, Z;)X,, the sample
(y:)X, and the random partition Wy are finitely exchangeable but they are not a projection

of infinite exchangeable processes.

From a modeling perspective, infinite exchangeability is a natural requirement only
to address prediction problems in the most general framework, i.e., prediction for an un-
bounded number of future observations. In general, it is a desirable property for mathe-
matical convenience to ease prior elicitation (e.g., via de Finetti’s representation theorem),
to simplify posterior inference, and to study the properties of the model across sample sizes.
While the GARP is not infinitely exchangeable, as stated in the previous result, in some
cases it turns out to be very close to infinite exchangeability, in the sense that the model is
equivalent to an infinitely exchangeable model for large enough N, as discussed next. See
also Diaconis and Freedman (1980) for general results and probabilistic characterizations
of finite exchangeability and approximate projectivity. The next result shows that in some
cases the predictive distribution of the GARP model eventually (i.e., for a large enough
sample size N) can be characterized as a projection of the predictive of a limiting infinitely
exchangeable model, thus where projectivity holds.

We also characterize the limit via the directing measure, i.e., the law of the random
probability in de Finetti’s representation theorem. See Table S.1 for a recap of the notation
for different distributions.

Theorem 3. Under the GARP model with the M,-symmetric Dirichlet (Example 1) in
(4) there exists a finite random sample size N and an infinite dimensional law G, such
that for any N > N the predictive distributions under the GARP model, are é\v/z—almost
surely equal to the predictive distributions under the (Kolmogorov consistent) marginal laws

(c00)
(GN )NelN
That is, for any possible sequence of sets of points (ax)ren, with ax = (Vi.N1k, Z1:N1k)

of the infinite-dimensional law G,

G {{Gﬁk(ak | Vi, Zow) =GN (ay | Vi, Zy ) V) eventually} —1. (17
Here G can be characterized by the following gCRP. Let M} = M,(M, — 1)/2.

gy o 1 v
G(OO){%:U’Zi:Z’“-,VlzN,Zl:N}oc Po N, y if v , 2z €[M,]

B/ME+nt,
( —PU)WWI}IZ ifv=0, z=(kk).
(18)

The directing measure characterizing the infinitely exchangeable random parameters that
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imply G is defined as

M,
iid
(i, Z) [ PRP, P=p,y mabg, +(1=p) Y mwds (19)

m=1 k<k' <M,

where (w1, ... 7)) ~ Dir(p, ..., p), (Tpw )ner ~ Dir(B/MF, ..., /M), and 6,, and Oy 4
follow the same distributions as in (2) and (3).

Let GV, Z) denote the pmf of V', Z implied by (19). It can also be characterized
by the projective pmfs for any N € N (we omit the sub-index x for the finite projections of

G when it is clear from the context):

GV, Z)rw) = pYEPPE (ny, ... ng, | a,0)/ K,
x (1 —Pu)NEDMAZi)((”k,k')k<k; | B/M). (20)

Corollary 1. Conditional on a given M,, Theorem 3 remains true also under the GARP
with a Gnedin process (Ezample 2), with G (M, = m) = G,,(M, = m) = W=Dm-1

m!

See S.6 for the explicit statement of Corollary 1 and the proofs.

Analogous results hold for any MFM. We state it for the special case of the Gnedin
process which we introduced and discussed in Section 3.

Note that even if projectivity is not strictly needed to carry out inference under the
GARP, approximate projectivity is still a useful property. Without any form of approximate
projectivity (i.e., coherence), inference on the partition structure for N observed units would
depend on whether or not an investigator plans to collect more data in the future. This

would greatly complicate the understanding of model assumption and learning mechanisms.

6 Posterior Inference

Building on the earlier results we develop MCMC algorithms for posterior simulation under
the GARP. The algorithms generalize the posterior sampling scheme for the CRP under
a DP mixture (Neal, 2000) and under Gibbs-type mixtures. To derive tractable full con-
ditional distributions that are easy to sample from, we exploit the representation of the
GARP as a truncated composition of Gibbs-type priors derived in Section 2.3.

In this way, we can exploit the product partition form of the pmf under the relaxed
model to simplify the expressions of the conditional probability in the predictive (i.e., the
composition of gCRPs) and full conditional distributions. Expressions reduce to simple
ratios.

In general, without projectivity and composition of product partition EPPF, it is not

possible to generalize a priori (and a posteriori) tractable Pélya urn schemes and thus
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tractable marginal algorithms such as the ones in Neal (2000). Projectivity allows us to
evaluate conditional probabilities (of cluster membership) as ratios of the same EPPF's over
different N. Under the specific product form of the EPPF for Gibbs-type priors, this ratio
reduces to a simple expression (De Blasi et al., 2015).

Specifically, the relaxed model 5(\]7) is a hierarchical composition of Kolmogorov consis-
tent EPPFs with product partition forms (Sections 2.2 and 3) that thus induce a tractable
(a priori) composition of gCRPs (Section 2.3). This allows us to derive the following effi-
cient marginal sampler. See Section S.4.1 in the supplementary materials for details.

For an explicit statement of Gibbs sampling transition probabilities, we introduce the
notation I; = 1({n." = 0} N 1037 (nww + nwx) > 0}) as an indicator for violating the
support of the GARP in (4). That is, I; = 1 if removing ¢ from its current cluster removes
the last unit in a vertex-cluster k (for some k) and it leaves an edge-cluster (k, k") (for some
k' # k) without adjacent vertex-cluster k.

We then have the following full conditional probabilities.

(1) Sample (V;, Z;) form G (V;, Z; | ---). If I; = 1 we do not move. Otherwise sample
from GV, =v,Z; =2 |-}

W ! —1 * * : —i
PUWNN”T;Z_ (ng' —o)N(y; | py, 25) ifvo=1, ze[K)]
w. )
pv%.gnew(yi) ifv= 1, VAR K;l + 1
Ny—1,K;"

B/Me+n", . . .
(1 _pv>5/T+]€—kiN(yi ‘ K g Ek,k’) ifv=0, z=(kK),

where

ko + 1
gnew(y’i> = /N(yz | M, 2) dNIW(IJ’a by ’ Mo, )‘07 Ko, EO) = T/\ofl (yl | Mo, 0—>
Ho()\o — 1)

is the pdf of a generalized Student-T distribution of degree \y — 1.

(2) Sample the vertices parameters (u), 35) from

G (g, T | -+ ) o NIW (e, S5 | o, 0,5, ) x [ Nlwi | g Shpe)
K2k

p°(0%)

where in the last product for &' < k we interpret 05 ,, as 0y ,, = 0y, ,, and U = vy + ny,
Rk = Kotny, fo = SEEI and 33 = 334 S+ 2% (g — o ) (Y, — o), with gy = Ziz= ¥t

KL Nk
and Sy = Zi:ZZ:k(yi —Ye)(Yi — Yi)T-
If a vertex is isolated, that is, no observations are assigned to any of the possible edges

associated with the vertex, then the full conditional in (2) reduces to the conjugate NIW
posterior distribution pY(05). In general, the density of the full conditional is proportional

to p¥ times the likelihood of the observations assigned to corresponding edges. An effective
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transition probability is a Metropolis-Hasting step exploiting p® as a proposal.

In step (1), when we create a new vertex-cluster, i.e., if v = 1 and k = K + 1, we
follow up with a transition probability (2) for the new cluster parameters, that reduces to
the conjugate NIW for 8. Throughout, edge-parameters 65, are always evaluated using
the currently imputed adjacent vertex parameters 6}, 6},.

Note that it is also possible to add an extra transition probability to update Z; as
in (1), but leaving V; unchanged. Such transition probabilities could lead to a better
mixing Markov chain and are analogous to the ones used, for example, in Teh et al. (2006)

exploiting the Chinese restaurant franchise representation of the hierarchical DP.

In principle, all posterior inference is implemented by appropriate summaries of the pos-
terior Monte Carlo sample. However, how to report point estimates for a random partition
or graph is not trivial. There are several proposals in the recent literature, including Wade
and Ghahramani (2018), Dahl et al. (2022), and Franzolini and Rebaudo (2024). They are
based on casting the selection of the reported summary as a decision problem. In Section
S.4.2 of the supplemental materials, we discuss an implementation for the GARP.

Finally, like in any mixture model, posterior inference about specific clusters must
consider label switching. See, for example, Green (2018) for a discussion. An additional
challenge that arises in the proposed model is the distinction between vertex versus edge
clusters. Consider, for example, a configuration (A) with 2 vertices and a connecting edge,
with cluster-specific parameters (07,03,07, = f(07,05)) (as in (3)), versus an alternative
configuration (B) with 3 vertices and (07, 65,0%) and 05 = f(67,05). While the sampling
model (1) remains unchanged under (A) versus (B), we argue that the prior implements a
strong preference for (the more parsimonious) model (A).

For given vertex parameters 7 and 63, the edge parameter 87, in (A) can assume just
one value, i.e., its parameter space is the single point f(67,03) in the parameter space of the
third vertex 05 in the latter model. In other words, when we consider the joint parameter
space ©q of the atoms 67, 85,07, (two vertices and one edge) it is a lower dimensional
sub-space of the parameter space © for the three vertices 07, 05, 05. The NIW prior in (2)
on 07 assigns prior probability 0 to ®, and thus also zero posterior probability. The issue
is similar to identifiability related to the replication of terms in a standard mixture model

with independent priors on cluster-specific parameters Green (2018).

7 Application to Single-Cell RNA Data

We fit the GARP model for the RNA-seq data shown in Figure 1. Single-cell RNA-seq
experiments record cell-specific transcriptional profiles that allow us to infer, for example,
cell differentiation or cancer progression. Inference under the GARP model for the data

shown in Figure 1 reconstructs transitions of stem cells into fully differentiated cells in a

16



scRNA-seq experiment on horizontal basal cells from the adult mouse olfactory epithelium.
The original data is available on GEO in GSE95601.

The transcriptional profiles map differences in gene expressions due to the development
phases of the cells. Stem cells evolve into fully differentiated cells by gradual transcriptional
changes, passing through a small number of homogeneous subpopulations of cells. The
primary inferential goal is to find these homogeneous subpopulations of cells (i.e., vertex-
clusters) and understand the relationships between them aligning such subpopulations on

a biologically interpretable graph.

7.1 ScRNAseq Data and Pre-Processing

The raw data is a count matrix with rows corresponding to cells and columns represent-
ing different genes. Most of the counts in the matrix are zeros, usually about 90% (the
percentage can vary according to the scRNA-seq technology used).

The data set originally contains measurements for 28284 genes in 849 cells with 84%
zeros. To extract a lower dimensional signal we implemented pre-processing following the
pipeline described in Perraudeau et al. (2017) and available in Bioconductor (Gentleman
et al., 2004). We briefly describe the pipeline. We first discard around 100 low-quality cells
and retain the 1000 most variables genes. Next, we normalize the data matrix and extract
50-dimensional biomarkers from the count data, accounting for zero-inflation and over-
dispersion of the scRNA-seq data via “Zero-Inflated Negative Binomial Wanted Variation
Extraction” (ZINB-WaVE) (Risso et al., 2018). Finally, we reduced the dimensionality
to the 2 most relevant markers via multidimensional scaling analysis. The data matrix
obtained after pre-processing is denoted by y = (y;; : ¢ = 1,...,N,j = 1,2), where the
rows represent 747 cells, and the columns record the two final biomarkers. The data is

shown in Figure 1.

7.2 Results

We implement inference under the GARP model using the Gnedin process (Example 2) to
control the vertex-clustering. We choose the Gnedin process because one of the goals is
inference on K,. The Gnedin process is a particularly attractive Gibbs-type prior for clus-
tering from both, a Bayesian modeling perspective as well as for its frequentist properties
of the posterior distribution, as discussed in Section 3.

The posterior estimated GARP places 466 cells into vertex-clusters (main phases) and
281 into ordered edge-clusters (transition phases). Figure 2a summarizes inference. The
heat-map in Figure 2b shows the posterior probabilities of co-clustering of pairs of obser-
vations, suggesting low posterior uncertainty around the estimated main phases, making

the point estimate under the GARP a meaningful posterior summary. The conditional
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uncertainty of the graph-alignment of the vertices given the point estimates of the main
phases is low. Visual inspection of the results suggests that the model is effectively work-

ing as expected. Once we have identified the main phases (vertex-clusters) we find the

i 466 '
407
N o,
b ) 349
1
§ 2914 B
“ i % i
E 1 © 233 | -
& 9 @ 0.50
. 3 2 4751 0.25
-1 . 4 0.00
. (1,2
i 223; 117
* (34)
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D 1 0 1 2 Y59 197 175 233 261 349 407 466
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(a) (b)

Figure 2: Left Panel: Scatter-plot of the scRNA data. Triangular plot symbols indicate
cells assigned to vertices (V; = 1) while the remaining cells are assigned to edges (V; = 0)
and are represented with a circular shape. Cells are colored according to the different
phases (i.e., Z;) in the point estimate. The segments denote the edges of the graph and
the color is darker if the probability of assigning observations to the edge is greater. Right
panel: Posterior probabilities of co-clustering of observations assigned to vertices.

biomarkers that best characterize such clusters, i.e., the most differently expressed genes
(DE genes). We rely on the function findMarkers of the Bioconductor package scran
(Lun et al., 2016). More precisely, we first perform an exact binomial test to identify
DE genes between pairs of groups of cells (vertex-clusters). From that, we identify the 6
most significant biomarkers for each pairwise comparison. For each gene then a combined
p-value is computed using Simes multiplicity adjustment applied to all p-values obtained
by the pairwise comparisons (Simes, 1986). Note that these p-values are not directly used
for ranking and are only used to find the DE genes. Finally, the p-values are consolidated
across all genes using the BH method of Benjamini and Hochberg (1995) to implement
multiple comparisons under a restriction on false discovery rate (FDR) (Benjamini et al.,
2009). The adjusted p-values are reported in Table 3. The reported FDRs are intended
only as a rough measure of significance. Note that properly correcting for multiple testing
is not generally possible when clusters are based on the same data that is used for the DE
testing. Nonetheless, a small FDR remains desirable. Table 3 shows the average within
vertex-cluster gene expressions for the selected top 6 biomarkers and corresponding FDRs.
The log means expression in the different biomarkers and vertices are also shown in Figure

3. On average the main phases obtained (vertex-clusters) have very different expressions of
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the selected biomarkers. Finally, we show the entire distribution of the cells in the different

biomarkers and main phases in Figure 4.

DE Genes Vertex 1 Vertex 2 Vertex 3 Vertex 4 FDR

Slc26a7 408.68 120.96 0.24 0.05 1.30e-23
Pik3c2b 14.15 231.82 105.74 98.38 1.38e-08
Hes6 3.10 21.16 691.19 41.62 4.17e-13
Stmn3 0.43 0.09 23.90 320.38 1.58e-20
Abcal3 10.15 337.45 4.25 0.54 8.29e-08
Ccpl10 5.75 15.19  1008.68 105.50  7.47e-13

Table 3: Average within vertex-cluster gene expressions and FDRs in the selected top 6
biomarkers.

value

5.0
25
0.0
-25

Slc26a7 Pik3c2b  Hes6 Stmn3  Abca13 Ccp110
DE genes

Figure 3: Heatmap of the log mean expressions in top 6 DE genes in the main phases.

7.3 Comparison with Independent Gaussian Mixtures

For comparison, we estimate an independent Gaussian mixture model without edges and
cluster alignment (implemented as the GARP model with p, = 1). The posterior distribu-
tion of the number of clusters (see Table 4) shows more uncertainty since the model fails
to find well-separated clusters, due to the noise that is introduced by the presence of the
cells transitioning between the main phases. In other words, including cells in transition in
the clustering has reduced the statistical power in detecting homogeneous subpopulations.
This is illustrated in Figure 5. Recall that we are using variation of information (VI) loss to
summarize the posterior random partition. As a consequence of the increased uncertainty,
the point estimate of the clustering of the main phases becomes sensitive to the choice of
the loss function. For instance, both the point estimate and the maximum a posteriori
estimate of the number of main phases is 4 under GARP, while the earlier is 5 and the

latter is 6 under the independent Gaussian mixture model. In the figures, we show the
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Figure 4: Left panel: Heat-map log genetic expressions in top 6 DE genes in all cells ordered
by main phases. The cells are sorted by vertex-cluster memberships and the dashed blue
lines separate the cells in the different clusters. Right panel: Boxplot genetic expressions
(after log(- + 1) transformation) in the top 6 DE genes in all cells in the different main
phases (vertex-clusters).

estimated cluster arrangement that minimizes the VI loss for coherency in the comparison.
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Figure 5: Results with independent mixtures. Left Panel: Scatter-plot of the scRNA data.
Cells are colored according to the different phases in the point estimate. Right panel: Co-
clustering posterior probabilities.
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Panel A: GARP
k 4 5 6 7 8
P(K,=k) 0.7801 0.1951 0.0240 0.0004 0.0004
Panel B: Independent Mixture Model
k ) 6 7 8 9 10 11 12 13
P(K =k) 0.0692 0.4362 0.3115 0.114 0.0516 0.0128 0.002 0.0012 0.0016

Table 4: Panel A: Estimated posterior of the number of main phases under GARP.
Panel B: Estimated posterior of the number of main phases under the independent Gaussian
mixture model.

8 Discussion

We proposed a graph-aligned random partition model to infer homogeneous subgroups of
observations aligned on a graph, explicitly allowing for units transitioning between the
clusters. The motivating applications are single-cell RNA experiments where scientists are
interested in understanding fundamental biological processes such as cell differentiation and
tumor evolution. Interesting future applications include inference for cell type transitions
in a tumor microenvironment. Other extensions could include data integration with other
modalities, such as histology data.

Methodological extensions include jointly clustering similar cells and genes, via sepa-
rately exchangeable nested random partition models (Lee et al., 2013b; Lin et al., 2024).
Another interesting extension is to combine the results of partially exchangeable random
partition models that arise from the compositions of Gibbs-type and species sampling pri-
ors (Teh et al., 2006; Camerlenghi et al., 2019; Argiento et al., 2020; Bassetti et al., 2020;
Lijoi et al., 2023) to the GARP model with dependent locations. In the context of the
scRNA-seq experiment, this would allow inference on multiple single-cell RNA-seq data
matrices. In such a way one could borrow information across different measurements while
accounting for relevant heterogeneity. Finally, including unit-specific spatial information,

the model can be used for spatial clustering with transitions between the clusters.

Acknowledgment

Both authors have been partially supported by NSF/DMS 1952679. Most of the paper was
completed while G. R. was a Postdoc at UT Austin. G. R. is also affiliated to “de Castro”
Statistics Initiative, Collegio Carlo Alberto, Torino and acknowledges support of MUR -
Prin 2022 - Grant no. 2022CLTYP4, funded by the European Union — Next Generation
EU.

21



References

Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian
nonparametric problems. Ann. Stat., 2, 1152-1174.

Argiento, R., Cremaschi, A., and Vannucci, M. (2020). Hierarchical normalized completely
random measures to cluster grouped data. J. Am. Stat. Assoc., 115, 318-333.

Bassetti, F., Casarin, R., and Rossini, L. (2020). Hierarchical species sampling models.
Bayesian Anal., 15, 809-838.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol., 57,
289-300.

Benjamini, Y., Heller, R., and Yekutieli, D. (2009). Selective inference in complex research.
Philos. Trans. Royal Soc. A, 367, 4255-4271.

Beraha, M., Argiento, R., Moller, J., and Guglielmi, A. (2022). MCMC computations for
Bayesian mixture models using repulsive point processes. J. Comput. Graph. Stat., 31,
422-435.

Betancourt, B., Zanella, G., and Steorts, R. C. (2022). Random partition models for
microclustering tasks. J. Am. Stat. Assoc., 117, 1215-1227.

Camerlenghi, F., Lijoi, A., Orbanz, P., and Priinster, I. (2019). Distribution theory for
hierarchical processes. Ann. Stat., 47, 67-92.

Dahl, D. B., Johnson, D. J., and Miiller, P. (2022). Search algorithms and loss functions
for Bayesian clustering. J. Comput. Graph. Stat., 31, 1189-1201.

De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Priinster, 1., and Ruggiero, M. (2015). Are
Gibbs-type priors the most natural generalization of the Dirichlet process? IEEE Trans.
Pattern Anal. Mach. Intell., 37, 212-229.

Diaconis, P. and Freedman, D. (1980). Finite exchangeable sequences. Ann. Probab., 8,
745-764.

Ewens, W. J. (1990). Population genetics theory - the past and the future. In S. Lessard,
editor, Mathematical and Statistical Developments of Evolutionary Theory, volume 299,

pages 177-227. Springer.

Franzolini, B. and Rebaudo, G. (2024). Entropy regularization in probabilistic clustering.
Stat. Methods. Appt., in press.

22



Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S.,
Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al. (2004). Bioconductor: open software

development for computational biology and bioinformatics. Genome Biol., 5, 1-16.

Gnedin, A. V. (2010). A species sampling model with finitely many types. FElectron.
Commun. Probab., 15, 79-88.

Gnedin, A. V. and Pitman, J. (2006). Exchangeable Gibbs partitions and Stirling triangles.
J. Math. Sci., 138, 5674-5685.

Green, P. J. (2018). Introduction to finite mixtures. In S. Fruhwirth-Schnatter, G. Celeux,
and C. P. Robert, editors, Handbook of Mixture Analysis, pages 3—20. Chapman and
Hall/CRC.

Green, P. J. and Richardson, S. (2001). Modelling heterogeneity with and without the
Dirichlet process. Scand. J. Stat., 28, 355-375.

Lee, J., Quintana, F. A., Miiller, P., and Trippa, L. (2013a). Defining predictive probability
functions for species sampling models. Stat. Sci., 28, 209-222.

Lee, J., Miiller, P., Zhu, Y., and Ji, Y. (2013b). A nonparametric Bayesian model for local
clustering with application to proteomics. J. Am. Stat. Assoc., 108, 775-788.

Lijoi, A., Mena, R. H., and Priinster, I. (2005). Hierarchical mixture modeling with nor-
malized inverse-Gaussian priors. J. Am. Stat. Assoc., 100, 1278-1291.

Lijoi, A., Mena, R. H., and Priinster, I. (2007a). Bayesian nonparametric estimation of the

probability of discovering new species. Biometrika, 94, 769-786.

Lijoi, A., Mena, R. H., and Priinster, I. (2007b). Controlling the reinforcement in Bayesian
non-parametric mixture models. J. R. Stat. Soc. Series B Stat. Methodol., 69, 715-740.

Lijoi, A., Priinster, 1., and Rebaudo, G. (2023). Flexible clustering via hidden hierarchical
Dirichlet priors. Scand. J. Stat., 50, 213-234.

Lin, Q., Rebaudo, G., and Miiller, P. (2024). Separate exchangeability as modeling principle
in Bayesian nonparametrics. Preprint at arXiv: 2112.07755.

Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates: 1. density estimates.
Ann. Stat., 12, 351-357.

Lun, A. T., McCarthy, D. J., and Marioni, J. C. (2016). A step-by-step workflow for
low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Research, 5,
1-64.

23



Miller, J. W. and Harrison, M. T. (2018). Mixture models with a prior on the number of
components. J. Am. Stat. Assoc., 113, 340-356.

Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models.
J. Comput. Graph. Stat., 9, 249-265.

Nobile, A. (1994). Bayesian Analysis of Finite Mixture Distributions. Ph.D. thesis,

Carnegie Mellon Univ.

Nobile, A. and Fearnside, A. T. (2007). Bayesian finite mixtures with an unknown number

of components: the allocation sampler. Stat. Comput., 17, 147-162.

Perraudeau, F., Risso, D., Street, K., Purdom, E., and Dudoit, S. (2017). Bioconduc-
tor workflow for single-cell RNA sequencing: normalization, dimensionality reduction,

clustering, and lineage inference. F1000Research, 6, 1-28.

Petralia, F., Rao, V., and Dunson, D. B. (2012). Repulsive mixtures. In Adv. Neural Inf.
Process. Syst., volume 25, pages 1889-1897.

Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. Lect.
Notes-Monogr. Series, 30, 245-267.

Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived
from a stable subordinator. Ann. Probab., 25, 855-900.

Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown
number of components (with discussion). J. R. Stat. Soc. Series B Stat. Methodol., 59,
731-792.

Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S., and Vert, J.-P. (2018). A general and
flexible method for signal extraction from single-cell RNA-seq data. Nat. Commun., 9,
1-17.

Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance.
Biometrika, 73, 751-754.

Teh, Y. W., Jordan, M. 1., Beal, M. J., and Blei, D. M. (2006). Hierarchical Dirichlet
processes. J. Am. Stat. Assoc., 101, 1566—1581.

Wade, S. and Ghahramani, Z. (2018). Bayesian cluster analysis: point estimation and
credible balls (with discussion). Bayesian Anal., 13, 559-626.

Xu, Y., Miiller, P., and Telesca, D. (2016). Bayesian inference for latent biologic structure
with determinantal point processes (DPP). Biometrics, 72, 955-964.

24



Supplementary materials of
Graph-Aligned Random Partition Model (GARP)

Giovanni Rebaudo® (giovanni.rebaudo@unito.it)
Peter Miiller’ (pmueller@math.utexas.edu)

%University of Torino, IT

bUniversity of Texas at Austin, USA

S.1 Edge Multivariate Gaussian Mixtures

Figure S.1 shows the contour plot of an edge cluster in R

Dim 2

Dim 1

Figure S.1: Elliptical contour plot for an edge-cluster (with hyperparameters, as described
in Section S.3), connecting two vertex-clusters k and k" (with locations p; = (=2, —2) and
2 = (3,3)). The vertices are shown as black bullets located on the contour (not shown)
line of the bivariate Gaussian such that 99% of the probability is inside such an ellipse.

Without loss of generality consider an edge connecting the two vertex-clusters, k = 1

and k' = 2, with cluster-specific parameters p} and pj. The edge-cluster is centered around

the half-point pj, = MIEE  The following construction defines 37, such that the edge is

2
aligned along the connecting line L 5, as described in Section 2.1 of the main manuscript.

Let e = 0 1:Z é\l’ where ||} — p3]| denotes the Euclidean distance between p} and p. Let
1 2

P = eeT be the perpendicular projection matrix such that for any y; € RP, yi(p ) = Py;
is the perpendicular projection of y; onto the connecting line between pi and pj. Let
P = QDQ7 denote a singular value decomposition (SVD) with D = diag(1,0,...,0).
Thus R = QT is the rotation matrix such that §; = Ry; is the rotation of y; in the new
axes where the first axis is the line connecting p} and p and the others are the orthogonal

directions. Now, we define S = diag(||pt — p3||ro, 71, ..., 1) and 3, = RSRr.
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Under this construction, the term in the mixture of normal sampling model (1) cor-
responding to the edge (k, k') is such that the Gaussian component projected onto the
connecting line L; 5 has a standard deviation rq ||p; — p3]|, implying lower likelihood for
edges between distant vertices’ locations. The standard deviations of the independent

Gaussian distributions on the projection onto Li-, is 7.

S.2 Composition of Discrete Random Probabilities

Let 6; = 07 denote the normal moments in the sampling model (1). As a third character-
ization of the proposed GARP, we define GV) as a graph-aligned random partition (with
unique atoms) implied by the ties under conditional i.i.d. sampling of 6;, with separate
models for vertex and edge-clusters. For vertex-clusters

Oi | ‘/z':l?VaP’Uifi\(}PIM

M, (S.1)
P, = Z Tmdg, ~ Gibbs-Type Process,
m=1

where M, is the number of atoms of the discrete random probability P, that is a Gibbs-

type process and can be finite, as in the finite symmetric DM case, infinite as in the DP,

M,
m=1

and PYP case, or be a random variable on N as in the MFM case. Thus (m,,) are the
random weights (that are sampled independently from the atoms) from the distribution on
the simplex associated with the Gibbs-type process. The unique atoms 0,, of P, are i.i.d.
samples from the NIW distribution in (2). Note that the unique sampled vertex parameters
0y ={67,...,0%, } are a subset of {61,...,0u,}.

The edge-clusters are implied by

iid

07; I V;L:Oav_iavagqfaENNPea

Po= D mday,)

1<k<k/'<Ky,

(.2)

Recall that M, = K,(K, — 1)/2. The random weights follow a symmetric M.-dimensional
Dirichlet with hyper-parameter /M.,

(Tep )1<k<r <k, ~ Dir(8/Me., ..., B/M.). (S.3)

Finally, recall that (8) might generate N, > 0, even when (9) implies M, = 0. For this
case, we define for completeness GM {0, = (0,1,) | V; = 0,Z" E$} = 1, where 0 is a p-
dimensional vector of 0’s and I, is a p X p-dimensional identity matrix (without implications

for G™V)| due to the truncation to Ey in (7)).
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From the characterizations of Gibbs-type and DM processes, it is straightforward to
show that the aforementioned discrete conditional random probability models for the pa-

rameters characterize the GARP as stated in the following proposition.

Proposition S.5. The random partition structure of the GARP model (4) and the vertez-
and edge-parameters distributions can be characterized as the configuration of ties implied
by the truncation sampling model in (7), (8), (S.1), (S.2), and (S.3).

S.3 Hyperparameters Settings

In both the application and the simulation we set v = 0.5 for the Gnedin process controlling
the vertex-clusters and 5 = 0.5 for the symmetric DM with hyperparameter 0.5/M, to favor
the sparsity of the graph. Moreover, for the choice of the hyperparameters of the NIW we
set o = 4, kg = 0.001, vy = 100, Ay = €21 and Xy = A,'. For scenarios in which
the clusters are well separated, we recommend a large value of £? (that we set equal to
150), while we recommend a smaller value of 2 (that we set equal to 15) if the data are
not well separated in the Euclidean space. Moreover, in both the application and the

- - 2 _ 4(v2 -1
simulation we set 75 = 4(X3_,)

and 77 = (2x3,_,)"", where x3,_, is the quantile of
order 1 — a (we set a = 1%) of a Chi-squared distribution with 2 degrees of freedom to
have the desired eccentricity of the elliptical contour plot of the edge as well as the 99%-
level of the contour plot not too spread. To obtain that, recall that c-level counter-plot of
multivariate Gaussian density, such as the edge Gaussian in (1), are points y € R¢ such
that (y — uhk/)TE,;i,(y — Wy ) is constant, that is the contour levels are ellipsoid centered

at py . Finally, note that if y ~ N(peg g, X 1) then,
(Y — o) "5 (Y — M) ~ X7

where x2 denotes the Chi-square distribution with d degrees of freedom.
Visually the contour plots of such edge pdf are shown in Figure S.1 and the data sampled

from such configuration looks like the one in Figure S.2.

S.4 Implementing Posterior Inference

S.4.1 Use of the Relaxed Model C/}ZN ) in Posterior Simulation

We discuss in more detail the use of the projectivity property of GIV) to define a Pdlya
urn scheme for a tractable marginal posterior simulation algorithm. First, recall that the

relaxed model G(V) can be seen as a hierarchical composition of a Kolmogorov consis-

tent EPPFs with product partition forms (Sections 2.2 and 3), which implies tractable
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Figure S.2: Scatter-plot of the simulated data. The red segments represent the edges that
connect the truth vertices.

—
—_~—

expressions for GV}, Z; | v, Z’i) = % under the relaxed model GV,

To derive then the desired full conditional distributions under G we note, e.g., that
if I, =0 for (V, Z) (recall the definition of I; in Section 6), then

—_~—

G(N){VZ- =v,Z;i=2] -} x /E(N)(Va Z) Hje[N]N(yj | 92)

GOV, Z ) e Ny, | 63,)

for any v € {0,1} and z € Z . Moreover, when I; = 0 for (V', Z), the marginal probability

in the denominator is equal to the one in a Kolmogorov consistent model (i.e., if I; = 0,

—_~—

GV, Z7") = GWN-D(V ', Z "), up to a normalization constant) and this allows us
to generalize then tractable marginal samplers such as in Neal (2000) or Teh et al. (2006)
relying on the characterization of the GARP via a composition of gCRP in Section 2.3.

S.4.2 Point Estimates for the GARP Random Partition

How to choose good summaries (i.e., point estimates) for reporting posterior inference on
functionals of interest can be a fundamental and nontrivial question in Bayesian analysis.
It is especially challenging if the object of interest is a partition or a graph. To define a
posterior point estimate and perform uncertainty quantification we build on the existing
literature of posterior point estimates of random partition based on a decision-theoretic
approach (Wade and Ghahramani, 2018; Dahl et al., 2022b) generalizing the results for the
more challenging case of GARP. We propose a point estimate for the GARP as follows.
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(1) Assign observations to vertices versus edges using the posterior mode,

(1)
L > (0.5
T )

Vi=1if V=) Y
t
where T is the Monte Carlo sample size, and Vi(t) is the imputed value in iteration t of
the MCMC simulations. The uncertainty around the point estimate is quantified using
(1= Vi)Vi+ Vi(1 = V).

(2) Given V we find a point estimate Z, for the partition of vertex units by minimizing
the variation of information loss (VI) (Meila, 2007) as suggested by Wade and Ghahramani
(2018) and implemented in the R package salso (Dahl et al., 2022a). Alternative loss
functions can be used as needed for different applications (See e.g., Binder, 1978; Franzolini
and Rebaudo, 2023). For uncertainty quantification, we report the heat-map with the

posterior probabilities of co-clustering.

(3) Given V and Z, we find a point estimate Z, and conditional uncertainty quantifi-
cation for Z, using the posterior probability of observations being assigned to the different
edges. We evaluate conditional posterior probabilities of assigning the remaining observa-

tions to the possible edges,

G(Ze | ) x H F(nk,k’ + 6/Me> H N(yi | IJ’z,k’v Ez,k’)' (S4>

k<k' Ck,k’

Here the first product goes over all (k, k') with 1 < k < k' < K, and the second over
the y; such that z; = (k, k), i.e., the set Cy . Probabilities (S.4) are evaluated by Rao-
Blackwellization (Robert and Roberts, 2021), using the full conditionals

G{Z;=(k,k')|Vi=0,--} x (nﬁ;/ + B/M.)Norm(y; | py, g, 35 1)-

We visualize p(Z, | Zy, ¥, 3*) by adding edges between vertices with color intensity
proportional to the sum over observations assigned to edges (i.e., Vi = 0) of the probability

that such observations will be assigned to the different edges (k, k’)’s.

S.5 Simulation Studies

We carried out a simulation study under a well-specified and a miss-specified data generat-
ing truth to assess inference under finite sample size scenarios. We set up simulation truths
close to the mouse data. The data are simulated from a 5 vertex mixture with n; = 200
observations in each vertex and an additional nj = 100 observations around 5 assumed

edges.
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S.5.1 Well Specified Scenario

In the first simulation scenario, we assume a simulation truth with K, = 5 vertex clus-
ters with cluster-specific Gaussians with mean vectors (=5, —4), (—4,2), (0,7), (5,3) and
(6,—3), and a common covariance matrix diag(0.25,0.25). Observations assigned to edge
components are sampled from a Gaussian mixture with cluster-specific kernels as in (3).
The simulated N = 1500 observations are shown in Figure S.3a.

Figure S.3 shows that the GARP was able to recover the simulated truth in the point

estimate. Moreover, the uncertainty around the point estimate is low.
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Figure S.3: Well-specified simulation scenario. Left Panel: Scatter plot of the simulated
data. Observations are colored according to the estimated cluster membership. Line seg-
ments show edges of the estimated graph, with the clusters at the end of line segments
being vertex clusters, and clusters along the line segments being edge clusters. The grey
level of the line segments shows the estimated probability of assigning observations to the
respective edge (barely varying in this case). Right panel: Posterior co-clustering proba-
bilities for all observations assigned to vertices.

S.5.2 Misspecified Scenario

Here we consider a misspecified data-generating truth, using the same true mean vectors
for five vertex clusters with cluster-specific Gaussian kernels as in the previous scenario,
but inflated vertex-specific covariance matrices diag(0.5,0.5). For the edge components, we
introduce two sources of misspecification. First, we center the edge components not at the
midpoint of the two adjacent vertices but introduce a bias term. Instead, the edge-specific
kernels are centered at @ plus a shift of 40.25 in the direction of the line connecting
the adjacent vertices, as well as in the perpendicular direction. Second, the observations

for the edge components are generated from a uniform distribution on a rectangle centered
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at the described py,;, and with the length of the side in the direction of the connecting
line equal to half the length of the Euclidean distance between the adjacent vertices and
the length of the other side equals 2. Under this simulation truth, the scatter plot of the
simulated data still allows a meaningful definition of vertex and edge clusters, but the
additional misspecification and variability with respect to the well-specified scenario make
the inference with our model more challenging. The simulated N = 1500 observations are
shown in Figure S.4a.

Figure S.4 shows that the GARP was able to recover well the simulated truth in the
point estimate in this misspecified scenario. The uncertainty around the point estimate is

low.

1 c
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Figure S.4: Mis-specified simulation scenario. Left Panel: Scatter plot of the simulated
data. Observations are colored according to estimated cluster membership. The line seg-
ments denote estimated edges, with clusters at the end of the line segments being vertex
clusters, and clusters along the line segments being edge clusters. The gray shade of the
line segments indicates the probability of assigning observations to the respective edge.
Right panel: Posterior co-clustering probabilities for observations assigned to vertices.

S.5.3 Non-Connected Graph Scenario

Here we investigate how the model works in a scenario with no meaningful notion of the
connected graph in the data. More precisely, we simulate from a mixture of five vertex
clusters, exactly as in Section S.5.1, but without any edge components.

The simulated N = 1000 observations and inference under the GARP are shown in
Figure S.5a.

Figure S.5 shows that the GARP was able to recover well the simulated truth in the

point estimate also under this not-connected graph simulation truth.
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Figure S.5: Non-connected graph simulated data. Left Panel: Scatter plot of the simulated
data. Observations are colored according to estimated cluster membership. Correctly
recovering the simulation truth there are no estimated edge clusters. Right panel: Posterior
co-clustering probabilities.

S.6 Proof of the Main Results

For easy reference, we provide in Table S.1 a brief statement of the various probability
models used in the discussion and the results, and in the following list a brief summary of

the main results. Here, Ex. 1 — 4 refer to the four examples for the EPPF from Section 3.

G™N) GARP model (4)

—_~— —_~—

GM) relaxed model (7), G®) is proportional to G, but w/o 1(Ey)

— o v £V =0
G law under GO on (T;,i=1,...,N), T; = 1
Vi, Z;) ifVi=1

—~—

Gy Kolmogorov-consistent extension of GE,]Z) to N eéN
G inf exch. law that eventually matches the predictives under Ex 1 or 2 (or any MFM)
GE@O) marginal law under G(>)

Table S.1: Probability models used in the discussion and main results

For notational simplicity, we refer with (/J\\; also to the marginal laws of the stochastic

M,

process (T;);en as well as the law of M, and (7,,),,%,

in (S.1) since they do not depend on the
dimension N. Finally, we refer with G®)(-) to the probability density and mass functions
of random variables under the GARP model (1)—(4). More generally, given a probability

measure P we denote by P{E} the probability measure evaluated in a measurable set E
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and by P(a) the corresponding (when it exists) with respect to Lebesgue (i.e., pdf) or

counting measure (i.e., pmf) evaluated in a point a.

Propositions 1 and S.5: Characterizations of the GARP G as truncation of GV,
which in turn is characterized as (i) a gCRP or, (ii) a composition of random discrete

prob measures, respectively.

Proposition 2: Analytical statement of GIN){Ey} for a general Gibbs-type prior.

—_—~— —_~—

Theorem 1: Let ¢ = limy_ .. GM{K, =1} and ¢ = lim,, ... GM{K, =1]| N, =
n,}. Then

0 Fx 1,3 4

v€(0,1) Ex2

Ex1,3,4

Theorem 2: C/;’:,/Z{EN eventually} = .
1 — Gy {M, =1} Ex?2

Proposition 3: fEPPF%V) under the GARP model in (4).

Proposition 4: The data y, the graph-aligned random partition induced by (V;, Z;) and
the random partition Wy are finitely exchangeable, but not a projection of an in-

finitely exchangeable process under our proposal (1)—(4).

Theorem 3 and Corollary 1: Under Ex 1, the predictive probabilities for V;, Z; under
the GARP are eventually equal to the same under a Kolmogorov-consistent sequence

(GE@O)); statement of a Pdlya urn and directing measure for (Gs\o,o)).

The same remains true for any MFM.

S.6.1 Proof of Proposition 1

Proof. We assume the GARP definition via the relazed model in (7), (8), (9), and (10) and
show that is equivalent to the definition in (4).

First, we note that in (4) the constraint 1(Ey) can be rewritten as 1({N, = N}U{K, >
1}). Note also that under N, = 0 the second line in (4) does not arise. For notational
simplicity, we naturally extend the definition of K, and M, by defining K, = M, = 0 if
N, = 0 and defining DM (-) = DM{(-) = 1.

Note also that (9) is equivalent to sample Z, = (Z; : i € [N], V; = 1) from

—_~—

G (Z, | V) = EPPFR (ny,... ng, | o, 0) /K, (S.5)
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The clustering indicators Z; are a 1-to-1 mapping of the induced exchangeable random
partition up to possible relabelings. By (conditional) exchangeability of the partition, any
possible relabeling of Z, has the same probability that is equal to the EPPF divided by
the number of relabelings, i.e., K,!.

Similarly, sampling from (10) is equivalent to sample Z, = (Z; : i € [N], V; = 0) from
GM(Ze | Zy) = DMy (nieaeJicr, | B/Me),

where DMg\Ze)((nhk/)M%) denotes the marginal likelihood of the DM distribution for the
categorical random variables, which is a function of the sufficient statistics (ngu )i, i-e.,
the ordered cardinalities of the different edges. In contrast to the EPPF and fEPPF, here
some ng i can be 0, implying that there is no edge connecting the vertices k and &'

Finally, we obtain (4) via the multiplication rule of probability, i.e.,

—_~—

GOV, 2) = GO(V)GN(Z, | V) - GV(2. | V. Z,)

where é?N/)(V) = pNe(1 — p,)Me by (8). O

S.6.2 Proof of Proposition 2

Proof. First, recall Exy = {N, = N} U{K, > 1}. That is, Ey occurs if and only if
there are at least two vertex-clusters (i.e., K, > 1) unless no observations are allocated to
edge-clusters (i.e., N, = N). Thus, by additivity of probability,

GO{Ey} = GM{{N, = NYU{K, > 1}}
— G™{N, = N} + GM{{N, # N} n {K, > 1}},

—_—~—

where GIV){N, = N} = pY. In words, we decompose Ey into the union of the (disjoint)

events “all clusters are vertices” and “not all observations are in vertices and there are at
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least 2 vertex-clusters”. The second term is further expanded by conditioning on N, as:

GMN, £ NYn{K, > 1}} =
GM{{N, ¢ {0,1, N}} n{K, > 1}} =

T GOUN, = n )G K, £1| N, =n,} =
ny=2
5 (Yot ol BRI -
ny=2 - ¢
S (Mo - - o)
ny=2 - ¢
where the last equality follows from the definition of the Gibbs-type priors. O

S.6.3 Proof of Theorem 1

Proof. First, note that the finite sample behavior of
9n, = E(TV/){KU,N =1 | Nv,N = nv} = C/TYV\/Z{KU,N =1 | Nv,N = nv} = EPPanv)<nv)

is derived as a special case of the EPPF in the different examples in Section 3 of the main
manuscript. From it, we can derive the large sample behavior g,, and the limit go° reported
in Table 2. Let (z), = '(z +n)/I'(x) =xz(z +1)---(x + n — 1). To compute the rate of
Jn, We note that by the Stirling approximation

(@) _T(x+n) _n"!

= = — .
nl T T "7

Note also that (N, y)nen is a (C:’sz—almost surely) Markovian non-decreasing sequence

of random integers such that
Nv,N

N

—p as N — o0

Cf;\\,/z—a.s. by the strong law of large numbers. Therefore, N, y diverges é\v/z—almost surely
and ¢° = lim,, o0 é\/vz{Kv =1|Nyny =n,} =limy_, Gf’:,/Z{KU =1} =g~

We note, as a remark, that to have ¢o° well defined we consider a sequence (N =
f(ny))n,en such that f: N — N and f(n) > n for any n € N. Moreover, the hierarchical
definitions of V and Z, imply that K, = K,(Z,) é\\,/z—almost surely, where K, = K,(Z,)
indicates a function of the N units (V;, Z;) that depends on Z only indirectly through the
N, n units allocated to vertices, i.e., Z,,.

Finally, as derived in Section 4 of the main manuscript, ¢;° = ¢*° = limy_,o C/JVVZ{EJCV}
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S.6.4 Proof of Theorem 2

Recall the definition of eventually. Let (En)yen be a sequence of events in the measurable
space (€, ),
{EN eventually} = limNinf Eny =US_oNy_x En-

In words, it is the set of w € 2 such that there exists an integer N(w) such that for any
integer N > N(w), w € Ey.

Proof. Case with a M,-dimensional symmetric Dirichlet (where M, > 1) or with
a DP or with a PYP in (4).
First, since K, y, N, y are functions of T}y (that is of (Vi.n, Z, n)) only, 5(\]7)([(1,7]\/, Nyn) =
C/}\\;(KMN, N, n) for any N € N.

Note that under C/}'\\;, (K, n)n is an a.s. non-decreasing Markovian sequence of positive
integers such that for any natural N > 1, Cj\;{KU,N > 1} > 0 and it can be computed
from (8)-(9).

Moreover, by Kingman’s representation theorem (see Kingman, 1978 and Theorem
14.7 in Ghosal and van der Vaart, 2017) the random partition can be characterized as
arising from the ties obtained by sampling from a unique discrete probability measure
P, = Z%;l Tm0g (we know that is M,-symmetric Dirichlet or a DP or a PYP distributed)
and the frequency of the kth largest partition block converges almost surely to kth largest
random weight in (m,, )2 for any k € 1,..., M,,. Therefore, together with the assumption
M, > 2, it implies that

CfJVvZ{{KUVN > 1} eventually w.r.t. N} = 1.
To conclude the proof of (14), note that
Eyx = {Nv,N = N} U {KU,N > 1} D) {Kv,N > 1}

Thus, we have shown that Gy, {Ey eventually} = 1.

To prove (15), first recall that for any N € N, G and 5(\]7) denote the probability
mass function of (V;, Z;)Y¥, under the GARP and the relaxed model, respectively. Next,
for any N,k € N and any set of possible points ax = (Vi.n1k,Z1.n+k), by definition of

conditional probability we have

G/(N+E) (ak)

G(N+k) {VI:N = V1:N, Z’U,N = ZUvN}

G(N+k)(ak: | Viny = Vin, ZU,N = ZU,N) =

, (S.6)
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where, by additivity of probability,

G(N+k){V1:N = Vi1.N, Z'U7N — ZU,N} - Z G(N+k)((vl Z/)’fi—"l_k)

[REad

1 \N+Ek. s _ / —
{(vi’zi)izl 'V1:N_V1:N’ZU,N—Zv,N}

Moreover, for any k, N € N and any possible points ay = Vi.nx1k, Z1.x+k sSuch that {Vi.y =
ViN+k, Z1:§ = Z1.n } entails that {K, y > 1} holds (and thus 1(Ey) = 1) we have

G(N+k) (ak)

G(NJrk) {Vl:N = V1i:N, ZU,N = ZUvN}

G(N-I—k) (ak | VI:N e Vl:N’ Z'u,N — ZU7N) —

by (7) and definition of conditional probability.

To conclude the proof of (15) we note that, by (14), there exists a set I of sequences
(t;)22, that are possible realizations of (7;)3°, such that C/J:,/Z{ST } = 1 and such that for any
sequence t = (t;,)%, € J there exists a N(t) € N such that {K, y(¢) > 1} holds for any
N > N(t). Therefore, for any N > N(t)

G(N+k) (ak | Vin = Vi, ZU,N = Zv,N) = G(NJrk)(ak | Vin = Vi, ZU,N = Zv,N)a
where t; = v; if v; = 0 and ¢; = (v;, %) if v; = 1. Thus we proved (15).

Case with a Gnedin process in (4).

Similarly to the previous case, note that under C/}*V\JZ, (K, N)n is an a.s. non-decreasing
Markovian sequence of positive integers. Moreover, by Kingman representation theorem
and the fact that G/’\VJZ{MU < 00} =1 we have that

G/':,/Z{{K%N = M,} eventually w.rt. N} = 1.

Indeed, the random partition can be thought of as arising from the ties obtained by sampling
from a unique discrete probability measure P, = 2%11 Tm0g (here distributed as a Gnedin
process) and the frequency of the kth largest partition block converges almost surely to
kth largest random weight in ()", for any k € 1,..., M,.

Note that {K, xn = M,} C {K, y > 1} U{M, =1} C Exy U{M, = 1}, thus

CG:,/Z{{K%N > 1} U{M, = 1} eventually w.rt. N} =1

and
C/JV\/Z{EN U{M, =1} eventually w.r.t. N} = 1. (S.7)

To conclude the proof we need to show that, for any £ € N and any possible set of points
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ap = (Vl:N—f—ka Z1;N+k)

Cvz {{GY ) ay | Vi, Zu) = GO (g | Vi, Zon) } U {M, = 1} eventually b = 1.

(S.8)

To prove (S.8) we note that, by (S.7), there exists a set T of sequences (¢;):°, that

are possible realizations of (7;)3°, such that C/??,/Z{? } = 1 and such that for any sequence

t = (t:)2, € T there exists a N(t) € N such that {K, y(t) > 1} U {M,(t) = 1} (and thus

Ex) holds for any N > N(t). Therefore, by (7) and definition of conditional probability,
for any N > N(t)

G(NJrk) (ak ‘ Vl:N = VI:N, ZU,N = Zv,N) = GIN+F) (&k ‘ Vl:N = VI:N, ZU,N = Zv,N)7

where t; = v; if v; = 0 and t; = (v;, ) if v; = 1. O

S.6.5 Proof of Proposition 3

The fEPPF in Proposition 3 is computed via marginalization of the pmf of the GARP in
(4) over all the quantities that are compatible with the cardinalities {cy,...,cx,} of ¥y.
We state a more complete version of Proposition 3, now including a statement of the

range of the three sums that appear in

FEPPEL)(|C], - ., [Crey]) o
N N, N—N, Me
vl_ v
R {ERIEEAb o PR

Z EPPF%J)(WU . ;nKU) DMS\JZ_NU)((nk,kU/)k<k{,>

The first sum runs over N, € [N] with the restriction that N, = N if Ky < 2. The second

sum runs over K, € [Ky| with the restrictions that

1. K, >2if Ky > 2;
2. K, < Kif N, # N;
3. K, =K if N, = N;

4. Ky < Np+ min{M,, N — N, }, keeping in mind that M, = w

Finally, the last sum runs over (nq,...,ng,) where Zfzvl ng = N, and nq,...,ng, are
distinct elements of {cy,...ck, } ordered, e.g., by cardinalities. And the non-zero edge-
cluster sizes ny j are the remaining (ordered) elements of (cy, ... ck, ) that are not matched

with vertex-cluster sizes ny.
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S.6.6 Proof of Proposition 4

Proof. Finite exchangeability.

First note that Z, = (Z,;)~, = (Z; : i € [N], V; = 1) identifies arbitrarily labeled vertex-
clusters (e.g., in order of appearance). Hence, formally the vector Z, and its relabeling are
regarded as distinct objects, even though they identify the same vertex-partition.

Moreover, if the edge-clusters are relabelled according to the relabeling of the vertex-
clusters this identifies the exact same graph-aligned random partition.

For instance, (7, =1, Zy = 2,Z3 = 5, Z4 = (1,2)) entails the same graph-aligned parti-
tion as (Z) = 3,2y = 2,73 = 1,7, = (2,3)), but a different one than (7, = 3,7, = 2,73 =
3,7, = (1,2)). A relabeling of Z; which preserves the same graph-aligned random partition
does not modify the likelihood distribution G™)(y | V', Z) in (1), which is invariant under
such a relabeling.

By construction, the graph-aligned random partition (4) induced by (V;, Z;) is exchange-
able, i.e., the joint law is invariant to permutation of the labels i. Note that we cannot
state the same argument directly in terms of the pmf of (V;, Z;) since we have an arbitrary
order of Z,, i.e., the order of arrival (irrelevant for the graph-aligned random partition)
that gives probability zero to permutations of ¢’s that entails a non-increasing sequence of
Z,.

Since the likelihood of the sample (1) can be defined as a function of the graph-aligned
random partition, we immediately obtain the exchangeability of the sample (y)Y ;.

Finally, since the random partition ¥y can be seen as the marginalization of the graph-
aligned random partition, we also have finite exchangeability of Uy as also shown via the
fEPPF (3).

Lack of projectivity.

To prove that wnfinity exchangeability does not hold we show a simple counterexample
where projectivity does not hold.

We first show the lack of projectivity for the graph-aligned random partition G™V)(V', Z).
It suffices to note that for a sample of size N = 1 the probability of assigning an observation

to a vertex is 1, i.e., GW{V; = 1} = 1, while it is strictly smaller than 1 for N = 3, since,
by (4),

GOV =0=GO{V1=0,2,=(1,2),Va=1,Z,=1,Vs3 =1,Z3 =2} > 0.

Next, we show the lack of projectivity for y. The last argument also implies that in a

sample of size N = 1 the marginal density of the observations y; can be rewritten as

/ N(y | 1%, S)ANIW (1", £ | 10, Mo Ko, o) (5.9)
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while under N = 3 it is a mixture of (S.9) and an additional term corresponding to an

allocation as an edge:
[ N1 5025046 i, 1),

with G®)(pj,, 31 ,) characterized by pj, = (u} + p3)/2 and 37, = f(p], p2), where p}
and p} are independent draws of a generalized Student-T distribution. This shows that y;
is not infinitely exchangeable.

Finally, we consider the random partition Wy. Note that the probability of observations
i = 1,2 being clustered together in a sample of size 2 (i.e., of a partition with a single

cluster), is equal to

GO{w, = {1,2}} = fEPPF?(2) = EPPF(2) >
> GOy : 7, = Z,} = EPPFY(2) GOV, = V, = 1},

Thus, in the last expression, the first factor is the probability of having the observations
with labels © = 1,2 in the same cluster given that they are in vertex-clusters, and the
second factor is the probability of those two observations being assigned to vertex clusters.
Note that, in the case of N = 2 the probability of the two observations to be assigned in

vertex-cluster is 1. O

S.6.7 Proof of Theorem 3 and Corollary 1

Theorem 3 in the main manuscript shows that in some cases the predictive distributions of
the GARP model eventually (i.e., for a large enough sample size N) can be characterized
as a projection of the predictive distributions of a limiting infinitely exchangeable model,

thus where projectivity holds.

Proof. Proof of Theorem 3 (M,-dimensional symmetric Dirichlet)

(Case 1: M, =1)

For any N € N our proposal degenerates to a single Gaussian model because G™-a.s. all
the observations are clustered together in a single vertex. In such a case it is immediate to
check that we have projectivity and (18), (19) and (20) hold. However, this is clearly an
uninteresting case from a modeling perspective.

(Case 2: M, >1)

First, recall that

N—oo

. N,
sz{ lim TN —>pU} =1

by the strong law of large numbers.
Recall also that under G,, (K, y)n is an a.s. non-decreasing Markovian sequence of
positive integers such that for any N € N, K, y < M, and sz{Kv,N = min(N, Mv)} >0
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and it can be computed from (8)-(9).

Moreover, by Kingman’s representation theorem (see Kingman, 1978 and Theorem
14.7 in Ghosal and van der Vaart, 2017) the random partition can be thought of as
arising from the ties obtained by sampling from a unique discrete probability measure
P, = Z Tm0g (We know that is M,-symmetric Dirichlet distributed) and the frequency
of the kth largest partition block converges almost surely to kth largest random weight
in (7rm) , for any k € {1,..., M,}. Therefore, together with the assumption that M, is

finite GVZ{th—>oo K,n = Mv} = 1. Thus, since K, y are random integers,

Gy {{K,n = M,} eventually w.r.t. N} = 1. (S.10)

Note also that
{KU’N = M,} C Ey.
Thus, for any N,k € N and a;, = (vi,zi)f\jk such that {Vi.xn = vi.y,Z, Ny = 2, n} entails
that {K, vy = M,} holds (and so 1(Ex) = 1) we have
G(N+k)((vzazz>z 1 | VlN — VlNazvN - ZUN) -
GN+R) ((Uu Zz)iwl—k)

G(N+k){V1-N = VN, Ly N = Zy N}

GONHR) (v, 2) 14" | Vin = Vin, Zon = Zon ),

by definition of conditional probability and (7).

Note that, for any N € N, K, v = M, entails that K, y1r = M and M, i =
M} = M“M—“l for any £ = 0,1,.... Therefore, by definition of G(N and the fact that
{Viy = V1:N,ZV7N = 7z, n} entails that {K, vy = M,} and {M.x = M} hold, for any
k € N we have

G(NM)((U@', Zz)f\g{k | Vin=vin,Zyn = ZU,N) =
Gg\?j-)k((vlﬂ Zl)zNTk)
GE\?C_;_)k{VlzN = Vi:N, Zv,N = ZU,N}

Gﬁé’i)k((vi, Z) i | Viy = Vin, Zoy = Zon),

where Gg\ﬁ)k refers to the pmf of Vi.ni, Z1.ny4k defined in (20). We now explicitly call
such law GSf;i)k (i.e., with the subscript) to stress the dimension to show that (GE&O)) NeN
are indeed Kolmogorov consistent and can be seen as the projection of the law of a stochastic
process G().

To conclude the proof of (17) recall that by (S.10), there exists a set 7 of sequences
(t;)22, that are possible realizations of (7;)3°, such that C:':,/Z{ST } =1 and such that for any
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sequence t = (t;)%°, € T there exists a N(t) € N such that {K, x(t) = M,} (and thus also
{M.n(t) = M}}) holds for any N > N(t). Therefore, for any N > N(t)

G(N+k) (ak ’ VI:N = V1i:N, ZU,N = ZU,N) = Gg\c;j_)k(ak ‘ Vl:N = Vi:N, Zv,N = ZU,N)>

where t; = v; if v; = 0 and t; = (v;, 2;) if v; = 1.
To check the projectivity of (GS\?O)) ~ we note that for any N € N and possible values

(Uia zi)iE[N]

GE\?O)((UZ, Zz)ze[N]) Dy UEPPF(NU)(nl, ey K, ‘ a, O')/Kvl
(1 - pv)NeDMgL)()Mv_l)/Q((nk,k’)k<k’ | B/Me)
= Z GN+1 Vs, Zi)ie[N]) = G(OO)((V, Z)iE[N})-

UN+1:2N+1

The second and third equalities hold by projectivity of the EPPF and DM (where the
sum is over all possible values of vn 1, 2y41). We denote by G the infinite-dimensional
GARP defined via such Kolmogorov consistent finite-dimensional distributions.

From G(*) (and its Kolmogorov consistent finite-dimensional) we derive the urn schemes
in (18) via the definition of conditional probability. The ratio boils down to (18) thanks to
the product form of the EPPF and of the DM.

Finally, note that via the characterization of the EPPF and DM in terms of discrete
random probabilities (see e.g., Sectlon S.2), the induced law on (0-)N , can thus be char-
acterized by first sampling V; ~ Bern(p,) and 0; | P,,V; = 1 ' p, =M Tmdg, and
0,|P.,V;=0 X p, = = hew<m Thw0g - Thus we derive (19) margmahzing with respect

to V and by the uniqueness of the dlrectlng measure.

Proof of corollary 1

First, we write explicitly the statement of Corollary 1.

Corollary S.2 (Corollary 1 of the main manuscript). Under the GARP with a Gnedin
process (Example 2) in (4) there exists a finite random sample size N such that for any
N > N the predictive distributions under the proposed GARP model given M, are C/}’\V/Z—a.s.
equal to the predictive distributions given M, under a Kolmogorov consistent G\, i.e., for

any possible sequence of sets of points (ax)ren, With ax = Vi.N1k, Z1:N+k)
Gy, {{GN+k ar | Vin, Zin, M) = G (ay | Vi, Zy.y, M) vk} eventuallg/} =1

Moreover, G (- | Vi.n,Zi.n, M,) can be characterized by the wrn scheme in (18) and
G (- | M) by the pmf (20) and by an exchangeable sequence with directing measure being
the law of P | M, as in (19). Finally, G®)(M, = m) = G,,(M, = m) = 210m=1

m!
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Note that C/J\V/Z—a.s. M, € N and that for any realization of M, = m € N we are back to
the finite symmetric Dirichlet GARP and thus the result follows from Theorem 3. O

S.7 Software, Runtime, etc.

The results reported in this article are based on 10,000 MCMC iterations with the initial
5,000 iterations discarded as burn-in. The remaining samples were further thinned by an
interval 2. We programmed everything in R. The analyses are performed with a Lenovo
ThinkStation P330 with 16Gb RAM (Windows 10), using a R version 4.2.3. The MCMC
algorithm takes 29.8 minutes.
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