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Abstract

Bayesian nonparametric mixtures and random partition models are powerful tools
for probabilistic clustering. However, standard independent mixture models can be
restrictive in some applications such as inference on cell lineage due to the biological
relations of the clusters. The increasing availability of large genomic data requires
new statistical tools to perform model-based clustering and infer the relationship
between homogeneous subgroups of units. Motivated by single-cell RNA data we
develop a novel dependent mixture model to jointly perform cluster analysis and
align the clusters on a graph. Our flexible graph-aligned random partition model
(GARP) exploits Gibbs-type priors as building blocks, allowing us to derive analytical
results for the probability mass function (pmf) on the graph-aligned random partition.
We derive a generalization of the Chinese restaurant process from the pmf and a
related efficient and neat MCMC algorithm to implement Bayesian inference. We
illustrate posterior inference under the GARP using single-cell RNA-seq data from
mice stem cells. We further investigate the performance of the model in recovering the
underlying clustering structure as well as the underlying graph by means of simulation
studies.

Keywords: Bayesian Nonparametrics, Random Partition Model, Gibbs-Type Prior,
Dependent Mixture Model, Exchangeability, Single-Cell RNA

1 Introduction

We introduce a graph-aligned random partition model with one set of clusters being identi-

fied as vertices of a graph and other clusters being interpreted as edges between those. The

model construction is motivated by the increasing availability of genomic data that requires

new statistical tools to perform inference and uncertainty quantification on homogeneous

subgroups of units (e.g., single-cells) and hypothesized relationships between the subgroups

(e.g., transitions between the subgroups). In the present article, we deal with single-cell

RNA sequencing experiments (scRNA-seq) that provide an unprecedented opportunity to

study cellular heterogeneity and the evolution of complex tissues. The interest is to identify

the main homogeneous cell subpopulations (i.e., clusters) in terms of gene expressions and

jointly infer transitions of cells between these.
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Dirichlet process (DP) mixtures (Lo, 1984) are well-established Bayesian nonparametric

(BNP) models to infer homogeneous subgroups of observations via probabilistic clustering.

However, the law of the random partition induced by the DP, related to the so-called

Chinese restaurant process (CRP), is controlled by a single parameter. This leaves DP

mixture models too restrictive for many applications and several alternative models were

introduced in the literature to allow more flexible clustering. This includes the symmetric

finite Dirichlet prior (Green and Richardson, 2001), the Pitman-Yor process (PYP) (Pitman

and Yor, 1997), the normalized inverse Gaussian (NIG) (Lijoi et al., 2005), the normalized

generalized gamma process (NGGP) (Lijoi et al., 2007b), mixture of finite mixtures (MFM)

(Nobile, 1994; Richardson and Green, 1997; Nobile and Fearnside, 2007; Miller and Har-

rison, 2018) and the mixture of DP (MDP) models (Antoniak, 1974). All these belong to

the wider family of Gibbs-type priors (Gnedin and Pitman, 2006) that can be seen as a

natural, flexible generalization of the DP (De Blasi et al., 2015).

However, Gibbs-type processes entail independent cluster-specific parameters not al-

lowing us to infer the relationship between clusters as needed in our motivating example.

Recently, repulsive priors that allow for dependent cluster-specific parameters were suc-

cessfully introduced to favor more parsimonious and well-separated clusters (Petralia et al.,

2012; Xu et al., 2016; Beraha et al., 2022). Repulsive mixtures introduce (negative) depen-

dence between cluster-specific values to better separate clusters. However, these models

still stop short of inferring a biological relationship between the clusters, such as aligning

the clusters on a graph, as desired in our framework.

In this article, we propose a graph-aligned random partition model (GARP) that ex-

ploits the flexible, but tractable, building blocks of Gibbs-type priors to build a random

partition aligned on a graph. The desired interpretation of clusters as vertices and edges

in a graph naturally gives rise to dependent priors on cluster-specific parameters. In the

motivating example with single-cell RNA-seq data, vertex-clusters represent homogeneous

cell subpopulations and edge-clusters correspond to cells that are transitioning between

those. See Figure 1 for a scatter plot of single-cell RNA data in a two-dimensional space

that captures most of the recorded genetic expressions of mice stem cell data.

The remainder of the article is as follows. In Section 2 we introduce a model for

graph-aligned probabilistic clustering. In Section 3 we introduce special examples. In

Sections 4, 5 and 6 we study a useful approximation, implied homogeneity assumptions, and

identifiability of vertices versus edges. Section 7 applies the model to single-cell RNA-seq

data of mice stem cells and Section 8 concludes with final comments. Substantive additional

details, including proofs, validations on simulated data, a characterization in terms of

discrete probabilities, a discussion of hyperparameter choices, and details on the strategy

to obtain point estimates from posterior samples are available as an online supplement.

The code is available at https://github.com/GiovanniRebaudo/GARP.
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Figure 1: Two-dimensional representation of genetic expressions of the RNA mice single-
cells data.

2 Graph-Aligned Random Partition Model

We introduce a graph-aligned random partition model (GARP) for y = {yi : i = 1, . . . , N},

yi ∈ ❘
d. The two main features of the model are a two-level random partition structure

that assigns observations into vertex-clusters and edge-clusters, and a mixture of normal

sampling models with cluster-specific parameters that reflect this split into vertex and

edge-clusters. That is, the mixture of normal models is set up such that observations in

vertex-clusters form homogeneous subsets in Euclidean space, and observations in edge-

clusters are located between the adjacent vertices. We characterize the model in three

different representations that are minor variations of representations that are traditionally

used for infinitely exchangeable random partition models (Pitman, 1996), including (1) the

probability mass function (pmf) of the graph-aligned random partition via the introduc-

tion of exchangeable partition probability functions (EPPF); (2) a composition of Pólya

urn schemes, i.e., predictive probability functions, using a generalized CRP (gCRP); and

(3) the configuration of ties that is implied by sampling from a composition of discrete ran-

dom probability measures, similar to the construction of species sampling processes (SSP).

See Pitman (1996) and Lee et al. (2013a) for details on these three characterizations for

infinitely exchangeable random partitions (without alignment on a graph).

2.1 A Gaussian Mixture over Vertices and Edges

We start the model construction with a sampling model given the latent graph-aligned

partition. We need some notation. Let Vi be an indicator for observation i being placed

into a vertex-cluster and let Zi denote a cluster membership indicator. We write V =

(V1, . . . , VN) and Z = (Z1, . . . , ZN) (throughout x denotes the collection of all previously

3



defined elements xa). We denote with Nv,N =
∑N

i=1 Vi the number of observations in vertex-

clusters, and with Ne,N = N − Nv,N the implied number in edge-clusters. For notational

simplicity, we drop the subscript N when implied by the context. If i belongs to a vertex

(i.e., Vi = 1), then Zi ∈ [Kv] ≡ {1, . . . , Kv}, where Kv is the random number of vertex-

clusters. If i belongs to an edge (i.e., Vi = 0), then Zi = (k, k′), with k < k′ indicating

the adjacent vertex-clusters. Let Ke denote the number of edge-clusters. Clearly, an edge

must connect two vertices, implying Ke ≤
Kv(Kv−1)

2
≡ Me. Finally, let Zv = (Zi : Vi = 1)

and Ze = (Zi : Vi = 0) denote the set of cluster membership indicators for vertices and

edges, respectively.

Given a graph-aligned random partition, we assume normal sampling

yi | Zi,µ
∗,Σ∗ ind

∼ N(yi | µ
∗

Zi
,Σ∗

Zi
), (i = 1, . . . , N), (1)

keeping in mind that Zi = k for Vi = 1 and Zi = (k, k′) for Vi = 0. The cluster-specific

parameters are defined as follows. For the vertex-parameters θ∗

k = (µ∗

k,Σ
∗

k) we assume

(conditionally) conjugate normal-inverse Wishart priors

θ∗
k | Kv

iid
∼ NIW(µ0, λ0, κ0,Σ0), (k = 1, . . . , Kv). (2)

For edge-clusters, cluster-specific parameters θ∗

k,k′ = (µ∗

k,k′ ,Σ
∗

k,k′) are defined as functions

of the adjacent vertex-clusters,

µ∗

k,k′ =
µ∗

k + µ∗

k′

2
, Σ∗

k,k′ = f(µ∗

k ,µ
∗

k′ , r0, r1). (3)

Here f is such that the α%-level contour of the N(µ∗

k,k′ ,Σ
∗

k,k′) density is stretched around

the line Lk,k′ connecting µ∗

k and µ∗

k′ , the Gaussian component projected onto Lk,k′ has

standard deviation r0 ||µ
∗

k−µ∗
k′ ||, and the projection onto the orthogonal complement L⊥

k,k′

are d−1 independent Gaussian distributions with variances r21. Figure S.1 in Section S.1 of

the supplemental materials shows the contour plot of an edge-cluster in ❘2. See the same

section and Section S.3 of the supplementary materials for more discussion of Σ∗

k,k′ , and

comments on the choice of hyperparameters r0, r1.

2.2 Graph-Aligned Random Partition (GARP)

We introduce a flexible graph-aligned random partition model. In words, we first label

each item as belonging to a vertex or edge cluster (with probability pv and (1 − pv),

respectively), then use a Gibbs-type prior to cluster items associated with vertices, and a

Dirichlet-multinomial prior to place those associated with edges into one of the Me possible

edges, respectively. Let (n1, . . . , nKv
) denote the cardinalities of the vertex-clusters, i.e.,

nk =
∑

i ✶({Vi = 1} ∩ {Zi = k}), and similarly let nk,k′ =
∑

i ✶({Vi = 0} ∩ {Zi = (k, k′)})

4



denote the sizes of the implied edge-clusters, with nk,k′ = 0 indicating the lack of an edge

between k, k′. We define a graph-aligned random partition model via the pmf of V ,Z

G(N)(V ,Z) ∝ pNv

v EPPF
(Nv)
Kv

(n1, . . . , nKv
| α, σ)/Kv!

(1− pv)
NeDM

(Ne)
Me

((nk,k′)k<k′ | β/Me)✶({Ne = 0} ∪ {Me > 0}︸ ︷︷ ︸
EN

), (4)

where EPPF(· | α, σ) denotes the EPPF of a Gibbs-type prior, DM is the marginal like-

lihood of an Me-symmetric Dirichlet-multinomial model (for categorical realizations, and

defining DM(0)
· (·) = DM

(·)
0 (·) ≡ 1) and ✶({Ne = 0} ∪ {Me > 0}) is an indicator that repre-

sents the constraint that edges can only be assigned if there are at least 2 vertices (Me > 0,

that is, Kv > 1), or no units are assigned to edges (Ne = 0). We will use EN to refer to

this truncation event. In particular, when Kv = 1 (and therefore Me = 0) (4) reduces to

G(N)(V ,Z) ∝ pNv EPPF
(N)
1 (N | α, σ) with Vi = Zi = 1, for all i, and G(N)(V ,Z) = 0 for

any other configuration (V ,Z), e.g., any configuration with Ne > 0 (i.e., Ec
N).

An EPPF characterizes the distribution of an exchangeable partition (Pitman, 1996),

with EPPF
(Nv)
Kv

(n1, . . . , nKv
) being the probability of observing a particular (unordered)

partition of Nv observations into Kv subsets of cardinalities {n1, . . . , nKv
}. Since an EPPF

refers to unordered partitions we include the additional denominator Kv! for the ordered Z.

See Section 4 for more discussions of the homogeneity assumptions implied by our model.

We specify the EPPF as a Gibbs-type prior,

EPPF
(Nv)
Kv

(n1, . . . , nKv
| α, σ) = WNv ,Kv

Kv∏

k=1

(1− σ)nk−1, (5)

where (x)n = x(x+1) . . . (x+n− 1) represents the ascending factorial, σ < 1 is a discount

parameter and the set of non-negative weights {Wn,k : 1 ≤ k ≤ n} satisfies the recursive

equation Wn,k = (n − σk)Wn+1,k +Wn+1,k+1. The parameter α in the conditioning set is

used to define Wn,k for some of the upcoming examples. In a second step, the observations

assigned to edges are (ordered) clustered using a DM distribution.

G(N)((Zi : Vi = 0) | V , Kv) = DM
(Ne)
Me

((nk,k′)k<k′v | β/Me)

=
Γ(β)

Γ(Ne + β/Me)

∏

(k,k′):k<k′≤Kv

Γ(nk,k′ + β/Me)

Γ(β/Me)
. (6)

Model (4) is a hierarchical constrained composition of a Gibbs-type prior and a symmetric-

DM with hyperparameter β/Me. As we shall show, the model preserves most of the ana-

lytical and computational tractability of the simpler building blocks.
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2.3 Generalized Chinese Restaurant Process

In an alternative characterization of (4), the model can be defined as a truncated version

of a composition of gCRP. We denote the latter, that is, the model before the truncation,

as G̃(N) and refer to it as the relaxed model.

G(N)(V ,Z) ∝ G̃(N)(V ,Z)✶(EN). (7)

Recall that EN = {Ne = 0} ∪ {Me > 0} is the truncation. In Section 4 we show that G̃(N)

assigns high probability to EN , going to 1 with n → ∞ for most Gibbs-type priors.

The relaxed model G̃(N)(V ,Z) is a hierarchical composition of tractable generalized

Pólya urn schemes, starting with the assignments to vertices or edges

Vi
iid
∼ Bern(pv), (i = 1, . . . , N). (8)

Next, we sample cluster membership indicators Zv = (Zi : Vi = 1) for the vertex-clusters

from the gCRP associated with Gibbs-type prior, i.e., Zv | V ∼ gCRP(α, σ), with the

gCRP implied by G̃(N) given as

G̃(N){Zi = k | Z−i,V −i, Vi = 1} =





W
Nv,K

−i
v

W
Nv−1,K−i

v

(n−i
k − σ) k ∈ [K−i

v ]

W
Nv,K

−i
v +1

W
Nv−1,K−i

v

k = K−i
v + 1.

(9)

Throughout x−i identifies a quantity after removing the element i from x. Moreover, we use

the following notation in the manuscript: given a probability measure P we denote by P{E}

the probability measure evaluated in a set E and by P (a) the corresponding probability

density function (pdf) or pmf evaluated in a point a. See Section 3 for examples of different

gCRP and implied prior assumptions on the number of vertices.

Finally, the cluster membership indicators Ze for the observations in edges follow the

Pólya urn scheme induced by a DM distribution

G̃(N){Zi = (k, k′) | Vi = 0,Z−i, EN} ∝ n−i
k,k′ + β/Me, (10)

with k′ < k ≤ Kv. Here, β/Me favors sparsity as the dimension of the graph increases.

Note that (8) might generate Ne > 0, even when (9) implies Me = 0. For this case we

define for completeness G̃(N){Zi = (1, 2) | Vi = 0,Z−i, Ec
N} ≡ 1 (without implications for

G(N), due to the inclusion of the truncation to EN in (7)).

The aforementioned composition of urn schemes characterizes the GARP (4):

Proposition 1. The random partition structure of the GARP model (4) can be character-

ized as the truncated composition of gCRP defined in (7), (8), (9) and (10).
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We rely on this representation to derive an MCMC algorithm that generalizes the

marginal MCMC algorithms for DP mixture models and Gibbs-type priors (Neal, 2000;

De Blasi et al., 2015; Miller and Harrison, 2018). Moreover, as we shall see, the probability

of the truncation event EN is high and rapidly goes to 1 in most cases.

Composition of Discrete Random Probabilities. Finally, in Section S.2 of the sup-

plementary materials we derive a third characterization of the proposed GARP. We define

G̃(N) as a graph-aligned random partition (with unique atoms) implied by the ties under

conditionally i.i.d. sampling of θi. Such a characterization will be used in a lemma to prove

Theorem 3 and can be used to connect with existing BNP literature to derive a conditional

Gibbs sampler.

3 Specific Model Choices

Conditioning on the vertex assignments V , under the relaxed model G̃(N) the distribu-

tion of the clustering indicators Zv is given by the EPPF of a Gibbs-type prior (Gnedin

and Pitman, 2006; De Blasi et al., 2015). We introduce four specific choices, stating the

EPPF
(Nv)
Kv

(n1, . . . , nKv
) for partitioning Nv observations into Kv vertices. Table 1 shows

the corresponding expressions for G̃(N){Zi = k | Vi = 1,Z−i
v ,V −i} in the gCRP of (9),

and the weights and atoms for Pv =
∑Mv

m=1 πmδθ̃m in (S.1) of the supplementary materials.

Throughout, the prior for cluster-specific parameters remains the NIW in (2).

Table 1: G̃(N){Zi = k | . . .} in the gCRP (9), and weights (πm)
Mv

m=1 for Pv =
∑Mv

m=1 πmδθ̃m
in (S.1). See the text for the definition of examples 1 through 4.

G̃(N){Zi = k | Vi = 1,Z−i
v ,V −i} ∝ P (π1, π2, . . . | Mv) p(Mv = m)

Ex. k ∈ Z−i
v k = K−i

v + 1

1 n−i
k + ρ ρ(Mv −K−i

v ) (a) Dir(ρ, . . . , ρ) fixed Mv ∈ N

2 (n−i
k + 1) × (K−i

v )2 −K−i
v γ Dir(1, . . . , 1) γ(1−γ)m−1

m!

(N−i
v −K−i

v + γ)

3 n−i
k α GEM(α) (b) Mv = ∞

4 n−i
k − σ α +K−i

v σ GEM(α, σ) (b) Mv = ∞

(a) subject to K−i
v < Mv.

(b) GEM stands for the distribution of probability weights after Griffiths, Engen, and Mc-
Closkey (Ewens, 1990), using the 1-parameter version defined there and the related 2-
parameters extension.
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Example 1 (Mv-dimensional symmetric Dirichlet). If prior information on an upper bound

Mv on the number of vertices is available we can proceed with a finite-dimensional symmet-

ric Dirichlet prior (Green and Richardson, 2001).

EPPF
(Nv)
Kv

(n1, . . . , nKv
) =

Mv!

(Mv −Kv)!

Γ(ρMv)

Γ(Nv + ρMv)Γ(ρ)Kv

Kv∏

k=1

Γ(nk + ρ). (11)

Allowing for unknown Mv the model becomes a mixture of symmetric Dirichlet model,

that is, a mixture of finite mixtures (MFM). MFMs can be particularly interesting for

allowing consistent estimation of any finite number of clusters (Nobile, 1994; Miller and

Harrison, 2018). MFMs are a special case of Gibbs-type priors. A relevant example is the

Gnedin process.

Example 2 (Gnedin process, with σ = −1). Under the Gnedin prior with parameter

γ ∈ (0, 1) the EPPF
(Nv)
Kv

in (4) becomes

EPPF
(Nv)
Kv

(n1, . . . , nKv
) =

∞∑

m=1

EPPF
(Nv)
Kv

(n1, . . . , nKv
| Mv = m) p(Mv = m),

where EPPF
(Nv)
Kv

(n1, . . . , nKv
| Mv = m) is the EPPF of the Mv-symmetric Dirichlet prior

in (11), with ρ = 1 and p(Mv = m) = γ(1−γ)m−1

m!
.

The gCRP for the Gnedin process allows tractable analytical results and efficient algo-

rithms. Moreover, the Gnedin process entails a distribution on the number of components

Mv that has the mode at 1, a heavy tail, and infinite expectation (Gnedin, 2010). There-

fore, the implied MFM favors a small number of vertices, while also being robust due to

the heavy tail distribution of Mv.

Note that one can use Mv = ∞ to let the number of vertices (i.e., Kv) grow to infinity

with Nv. Examples are the DP which entails a logarithmic growth of the number of vertices

and the PYP which entails a polynomial growth of the number of vertices.

Example 3 (DP). Under the DP prior with parameter α > 0 the EPPF
(Nv)
Kv

in (4) becomes

EPPF
(Nv)
Kv

(n1, . . . , nKv
) =

αKvΓ(α)

Γ(α +Nv)

Kv∏

k=1

(nk − 1)!

Example 4 (PYP). Under a PYP prior with parameters σ ∈ [0, 1) and α > 0 the EPPF
(Nv)
Kv

in (4) becomes

EPPF
(Nv)
Kv

(n1, . . . , nKv
) =

Γ(α + 1)
∏Kv−1

k=1 (α + kσ)

Γ(α +Nv)

Kv∏

k=1

(1− σ)nk−1.
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With σ = 0 the PYP reduces to the DP. Other popular sub-classes of Gibbs-type priors

include the NGPP (Lijoi et al., 2007b), the NIG (Lijoi et al., 2005, 2007a), and the MFM

(Nobile and Fearnside, 2007; Miller and Harrison, 2018). See De Blasi et al. (2015) for a

comprehensive review of Gibbs-type priors.

Finally, we note that here we focus on prior elicitation of the Gibbs-type random parti-

tion that controls the vertex-clusters and the number of vertices (i.e., Kv ≤ min(Mv, Nv) ≤

min(Mv, N)). Given Kv the possible number of edges is finite. The only Gibbs-type prior

with a finite fixed number of components Me is the symmetric Dirichlet (see e.g, De Blasi

et al., 2015), that is the DMMe
in (4). Although the preceding discussion focuses on the

Gibbs-type partition that controls the vertices assignment, it entails (thanks to the hier-

archical definition e.g., in Section 2.3) similar flexibility in the joint prior elicitation of the

vertices assignments.

4 Goodness of the Approximation

We discuss properties of the approximation of the GARP model in (4) by the relaxed model

G̃(N), and why it is a good approximation of G(N), justifying the prior elicitation of G(N) via

G̃(N). Importantly, the results allow us to effectively sample from the GARP via rejection

sampling, using proposals from G̃(N).

Proposition 2. The probability of the truncation event EN under the relaxed model is

G̃(N){EN} = pNv +
N−1∑

nv=2

(
N

nv

)
pnv

v (1− pv)
(N−nv)

[
1− (1− σ)nv−1Wnv ,1

]
. (12)

Here pNv = G̃(N){Nv = N}, and (1− σ)nv−1Wnv ,1 in the second term arises from (5) as

the probability given {Nv = nv} of having a single vertex, i.e., G̃(N){Kv = 1 | Nv = nv} =

EPPF
(nv)
1 (nv). For the Gibbs-type priors in the following examples, the latter reduces to

simple analytical expressions.

In the upcoming discussion, we introduce several closely related distributions. To avoid

confusion we provide a summary and list of defined distributions in Table S.1 in the sup-

plementary materials. Let
˜
G

(N)
VZ denote the law of Vi, i = 1, . . . , N and Zv = (Zi : i ∈

[N ], Vi = 1) under the relaxed model. More precisely,
˜
G

(N)
VZ is the joint law of the ran-

dom variables (T1, . . . , TN), where Ti = Vi if Vi = 0 and Ti = (Vi, Zi) if Vi = 1. Let G̃VZ

denote the law of the stochastic process with Kolmogorov consistent finite dimensional

(
˜
G

(N)
VZ )N∈◆. Such a process exists due to the i.i.d. nature of Vi and the exchangeable nature

of the Gibbs-type prior that defines Zv given V . We therefore have by the strong law of

large numbers limN→∞ Nv/N = pv, G̃VZ-a.s. Also, note that the truncation event EN is a

9



function of (V ,Zv) (thus T) only, allowing us to evaluate G̃(N){EN} in (12) as probabilities

under G̃VZ.

We are now ready to analyze (12). First, note that Ec
N can be decomposed as Ec

N =

({Kv = 1} ∩ {Nv 6= N}) ∪ {Nv = 0} and therefore

G̃VZ{E
c
N} = G̃VZ{Kv = 1} − pNv G̃VZ{Kv = 1 | Nv = N}+ (1− pv)

N , (13)

with the last term corresponding to G̃VZ{Nv = 0} and the sum of the first two terms corre-

sponding to G̃VZ {{Kv = 1} ∩ {Nv 6= N}}. Note that (G̃(N){Kv = 1})N∈N and (G̃(N){Kv =

1 | Nv = nv})nv∈◆ (well defined for any N = f(n) ≥ n) are non-increasing sequences of

elements in [0, 1]. This is the case since they can be seen as the probability G̃VZ of non-

increasing sequences of events. The two sequences are thus convergent.

For any pv ∈ (0, 1), (G̃VZ{E
c
N})N∈◆ in (13) has limit equal to limN→∞ G̃(N){Kv = 1}

(since pNV and (1 − pv)
N go to 0). Let then g∞ = limN→∞ G̃(N){Kv = 1}, and let g∞v =

limnv→∞ G̃(N){Kv = 1 | Nv = nv}. Since Kv depends on Z1, . . . , ZN only indirectly through

the Nv units allocated in Zv and Nv/N → pv a.s. (see the proof of Theorem 1 for more

discussion), the two limits are equal, i.e., g∞ = g∞v . We shall show that they equal 0 for

several Gibbs-type priors, implying that the GARP will go to the relaxed model, that is,

G̃(N){EN} → 1 as N → ∞. Table 2 summarizes the results for the earlier four examples.

We use nv ≤ N and for any sequences an and bn, we write an ≍ bn if and only limn an/bn = 1.

Table 2: G̃(N){Kv = 1 | Nv = nv}, limit g∞v and asymptotic rate as nv → ∞ for Examples
1 (Mv-dimensional symmetric DM, with Mv > 1), 2 (Gnedin), 3 (DP) and 4 (PYP).

gnv
≡ G̃(N){Kv = 1 | Nv = nv}

Ex. gnv
= gnv

≍ g∞v ≡ limnv→∞ gnv

1 (ρ)nv

(ρMv)nv
Mv

Γ(ρMv)Mv

Γ(ρ)
n
ρ(1−Mv)
v 0

2 γnv

γ+nv−1
γ γ ∈ (0, 1)

3 Γ(α+1)(nv−1)!
Γ(α+nv)

Γ(α + 1)n−α
v 0

4 (1−σ)nv−1

(α+1)nv−1

Γ(α+1)
Γ(1−σ)

n
−(α+σ)
v 0

Theorem 1. Under the relaxed model G̃(N) we have g∞ = g∞v = limN→∞ G̃(N){Ec
N} with

g∞ = 0 under the symmetric Dirichlet, the DP, the PYP, and g∞ = γ ∈ (0, 1) under the

Gnedin process. The asymptotic rates of gnv
are given in the second column of Table 2.

Theorem 1 and (7) show that performing prior elicitation and posterior simulation based

on the (analytically and computationally) simpler relaxed model G̃(N) becomes practically
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attractive. Table 2 also provides the rate at which G̃(N)(Ec
N) (where the two models differ)

converges. For instance, when G̃(N)(Ec
N) ≈ 0 (in Theorem 1), it is immediate to consider pv

as the prior proportion of observations assigned to vertex clusters under G̃(N) for any sam-

ple size N . Another important consequence of Theorem 1 and (7) is that we can effectively

sample from the prior GARP model with an acceptance-rejection method that proposes

a realization from the simple relaxed model G̃(N) having theoretical guarantees that the

acceptance probability is around 1 in most of the cases. Also with the convergence of

G̃(N)(Ec
N) to γ > 0 under the Gnedin process, the approximation remains attractive, as re-

jection sampling remains practically feasible with known acceptance probability G̃(N)(EN)

going to 1 − γ (instead of 1, under the other models), where γ is a hyperparameter that

we can control.

Finally, in most examples, the relaxed model G̃(N) approaches the GARP G(N) as the

sample N increases in an even stronger way.

Theorem 2. Under G̃(N) with symmetric Dirichlet, DP or PYP (σ ≥ 0) in (4)

G̃VZ{EN eventually} = 1. (14)

Thus, for any k ∈ ◆ and any possible set of points ak = (v1:N+k, z1:N+k)

G̃V Z

{{
G(N+k)(ak | V1:N ,Zv,N) = G̃(N+k)(ak | V1:N ,Zv,N)

}
eventually

}
= 1. (15)

Under G̃(N) with the Gnedin process we have G̃VZ

{
EN ∪ {Mv = 1} eventually

}
= 1 and

G̃V Z

{{
G(N+k)(ak | V1:N ,Zv,N) = G̃(N+k)(ak | V1:N ,Zv,N)

}
∪ {Mv = 1} eventually

}
= 1.

In words, almost surely either the predictive pmf under the GARP and the relaxed

will eventually coincide or (under G̃(N) with the Gnedin process) there is only one possible

vertex-cluster for any N ∈ N. The latter has a positive probability G̃VZ{Mv = 1} = γ ∈

(0, 1) for the Gnedin process.

5 Finite Exchangeability and Projectivity

Under the GARP the distribution of the sample is (finitely) exchangeable, that is the

marginal law of (yi)
N
i=1 from (1)–(4) is invariant with respect to permutations of the la-

bels 1, . . . , N . This homogeneity assumption entails that the order in which we look at

the observations does not affect the prior and the inferential results, as it should. The

same homogeneity assumption is true for the graph-aligned random partition induced by

(Vi, Zi)
N
i=1. We discuss some more details of homogeneity assumptions in the model. We

will write G(N) for different distributions implied by the GARP model (1)–(4), with the

specific distribution being clear from the argument of G(N)(·).

11



Finite EPPF. Let ΨN denote the random partition of observations [N ] defined by clus-

tering i and j together if and only if θi = θj (recall that θi = θ∗

Zi
). Under the GARP

model ΨN is an exchangeable random partition with dependent cluster-specific parame-

ters. We introduce the notion of finite EPPF (fEPPF) to characterize the distribution

of such random partitions: G(N){ΨN = {C1, . . . , CK}} = fEPPF
(N)
K (c1, . . . , cK), where

(c1, . . . , cK) = (|C1|, . . . , |CK |) are the cluster sizes (in a given arbitrary order). Note that

{c1, . . . , cK} is a sufficient statistic for an exchangeable random partition. Here K denotes

the number of clusters, i.e., K = Kv +Ke. The fEPPF is a symmetric function of a com-

position of N (positive integers that sum up to N). The fEPPF induced by the GARP

can be obtained via marginalization of the probability function (4) of the graph-aligned

random partition. Several expressions can be aggregated via probabilistic invariance.

Proposition 3. Under the GARP

fEPPF
(N)
K (|C1|, . . . , |CK |) ∝

N∑

Nv=1

{(
N

Nv

)
pNv

v (1− pv)
N−Nv

Mv∑

Kv=1

[(
Me

K −Kv

) ∑

(n1,...,nKv )

EPPF
(Nv)
Kv

(n1, . . . , nKv
)DM

(N−Nv)
Me

((nk,kv′
)k<k′v).

]}
(16)

In the last sum, for given (n1, . . . , nKv
) the cardinalities nk,k′ of edge-clusters are implied

by the remaining elements of (|C1|, . . . , |CK |) that are not matched with the vertex-cluster

cardinalities nk. The exact range of the sums is stated in Section S.6.5 of the supplementary

materials. Essentially, {n1, . . . , nKv
} ∪ {nk,k′ : k < k′} = {c1, . . . , cK}. Moreover, the

normalization constant in (16) is 1/G̃(N){EN}, which we studied in detail before.

A common stronger assumption in the literature on random partitions is that the ob-

served data (yi)
N
i=1 are a subset of an infinite (thus unobservable) sequence of exchangeable

random variables. This assumption does not apply to the GARP – see below. However, if

the assumption applies then the exchangeable random partition of the sample can be seen

as a projection of an exchangeable random partition of the natural numbers N to the set

[N ]. Formally, this is equivalent to assuming:

(a) each random partition ΨN is exchangeable over [N ];

(b) the sequence of random partitions (ΨN)
∞
N=1 is Kolmogorov consistent, that is, Ψn is

equal in distribution to the restriction of ΨN to [n] for any 1 ≤ n ≤ N .

Note that, although we stated the properties for the random partition, the same definitions

hold for other sequences of random variables, such as the sample (yi)
N
i=1. As done in, e.g.,

Betancourt et al. (2022) we refer to (a) as finite exchangeability, (b) as projectivity, and to

their combination as infinite exchangeability.
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Proposition 4. The graph-aligned random partition induced by (Vi, Zi)
N
i=1, the sample

(yi)
N
i=1 and the random partition ΨN are finitely exchangeable but they are not a projection

of infinite exchangeable processes.

From a modeling perspective, infinite exchangeability is a natural requirement only

to address prediction problems in the most general framework, i.e., prediction for an un-

bounded number of future observations. In general, it is a desirable property for mathe-

matical convenience to ease prior elicitation (e.g., via de Finetti’s representation theorem),

to simplify posterior inference, and to study the properties of the model across sample sizes.

While the GARP is not infinitely exchangeable, as stated in the previous result, in some

cases it turns out to be very close to infinite exchangeability, in the sense that the model is

equivalent to an infinitely exchangeable model for large enough N , as discussed next. See

also Diaconis and Freedman (1980) for general results and probabilistic characterizations

of finite exchangeability and approximate projectivity. The next result shows that in some

cases the predictive distribution of the GARP model eventually (i.e., for a large enough

sample size N) can be characterized as a projection of the predictive of a limiting infinitely

exchangeable model, thus where projectivity holds.

We also characterize the limit via the directing measure, i.e., the law of the random

probability in de Finetti’s representation theorem. See Table S.1 for a recap of the notation

for different distributions.

Theorem 3. Under the GARP model with the Mv-symmetric Dirichlet (Example 1) in

(4) there exists a finite random sample size N̄ and an infinite dimensional law G(∞), such

that for any N > N̄ the predictive distributions under the GARP model, are G̃VZ-almost

surely equal to the predictive distributions under the (Kolmogorov consistent) marginal laws(
G

(∞)
N

)
N∈◆

of the infinite-dimensional law G(∞).

That is, for any possible sequence of sets of points (ak)k∈◆, with ak = (v1:N+k, z1:N+k)

G̃VZ

{{
G

(∞)
N+k(ak | V1:N ,Zv,N) = G(N+k)(ak | V1:N ,Zv,N) ∀ k

}
eventually

}
= 1. (17)

Here G(∞) can be characterized by the following gCRP. Let M+
e = Mv(Mv − 1)/2.

G(∞){Vi = v, Zi = z | · · · ,V1:N ,Z1:N} ∝




pv

n−i
k

+γ

N−i
v +γMv

if v = 1, z ∈ [Mv]

(1− pv)
β/M+

e +n−i

k,k′

β/M+
e +N−i

v
if v = 0, z = (k, k′).

(18)

The directing measure characterizing the infinitely exchangeable random parameters that
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imply G(∞) is defined as

(µi,Σi) | P
iid
∼ P, P = pv

Mv∑

m=1

πmδθ̃m + (1− pv)
∑

k<k′≤Mv

πk,k′δθ̃k,k′ (19)

where (π1, . . . , πMv
) ∼ Dir(ρ, . . . , ρ), (πk,k′)k<k′ ∼ Dir(β/M+

e , . . . , β/M
+
e ), and θ̃m and θ̃k,k′

follow the same distributions as in (2) and (3).

Let G(∞)(V ,Z) denote the pmf of V ,Z implied by (19). It can also be characterized

by the projective pmfs for any N ∈ N (we omit the sub-index N for the finite projections of

G(∞) when it is clear from the context):

G(∞)((Vi, Zi)1:N) = pNv

v EPPF
(Nv)
Mv

(n1, . . . , nKv
| α, σ)/Kv!

× (1− pv)
NeDM

(Ne)

M+
e
((nk,k′)k<k′v | β/M+

e ). (20)

Corollary 1. Conditional on a given Mv, Theorem 3 remains true also under the GARP

with a Gnedin process (Example 2), with G(∞)(Mv = m) = G̃VZ(Mv = m) = γ(1−γ)m−1

m!
.

See S.6 for the explicit statement of Corollary 1 and the proofs.

Analogous results hold for any MFM. We state it for the special case of the Gnedin

process which we introduced and discussed in Section 3.

Note that even if projectivity is not strictly needed to carry out inference under the

GARP, approximate projectivity is still a useful property. Without any form of approximate

projectivity (i.e., coherence), inference on the partition structure forN observed units would

depend on whether or not an investigator plans to collect more data in the future. This

would greatly complicate the understanding of model assumption and learning mechanisms.

6 Posterior Inference

Building on the earlier results we develop MCMC algorithms for posterior simulation under

the GARP. The algorithms generalize the posterior sampling scheme for the CRP under

a DP mixture (Neal, 2000) and under Gibbs-type mixtures. To derive tractable full con-

ditional distributions that are easy to sample from, we exploit the representation of the

GARP as a truncated composition of Gibbs-type priors derived in Section 2.3.

In this way, we can exploit the product partition form of the pmf under the relaxed

model to simplify the expressions of the conditional probability in the predictive (i.e., the

composition of gCRPs) and full conditional distributions. Expressions reduce to simple

ratios.

In general, without projectivity and composition of product partition EPPF, it is not

possible to generalize a priori (and a posteriori) tractable Pólya urn schemes and thus
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tractable marginal algorithms such as the ones in Neal (2000). Projectivity allows us to

evaluate conditional probabilities (of cluster membership) as ratios of the same EPPFs over

different N . Under the specific product form of the EPPF for Gibbs-type priors, this ratio

reduces to a simple expression (De Blasi et al., 2015).

Specifically, the relaxed model G̃(N) is a hierarchical composition of Kolmogorov consis-

tent EPPFs with product partition forms (Sections 2.2 and 3) that thus induce a tractable

(a priori) composition of gCRPs (Section 2.3). This allows us to derive the following effi-

cient marginal sampler. See Section S.4.1 in the supplementary materials for details.

For an explicit statement of Gibbs sampling transition probabilities, we introduce the

notation Ii = ✶({n−i
k = 0} ∩ {

∑
k′ 6=k

(
nk,k′ + nk′,k

)
> 0}) as an indicator for violating the

support of the GARP in (4). That is, Ii = 1 if removing i from its current cluster removes

the last unit in a vertex-cluster k (for some k) and it leaves an edge-cluster (k, k′) (for some

k′ 6= k) without adjacent vertex-cluster k.

We then have the following full conditional probabilities.

(1) Sample (Vi, Zi) form G(N)(Vi, Zi | · · · ). If Ii = 1 we do not move. Otherwise sample

from G(N){Vi = v, Zi = z | · · · } ∝





pv
W

Nv,K
−i
v

W
Nv−1,K−i

v

(n−i
k − σ)N(yi | µ

∗

k ,Σ
∗
k) if v = 1, z ∈ [K−i

v ]

pv
W

Nv,K
−i
v +1

W
Nv−1,K−i

v

gnew(yi) if v = 1, z = K−i
v + 1

(1− pv)
β/Me+n−i

k,k′

β/Me+N−i
v

N(yi | µ
∗
k,k′ ,Σ

∗
k,k′) if v = 0, z = (k, k′),

where

gnew(yi) =

∫
N(yi | µ,Σ) dNIW(µ,Σ | µ0, λ0, κ0,Σ0) = Tλ0−1

(
yi | µ0,

κ0 + 1

κ0(λ0 − 1)

)

is the pdf of a generalized Student-T distribution of degree λ0 − 1.

(2) Sample the vertices parameters (µ∗

k ,Σ
∗
k) from

G(N)(µk,Σk | · · · ) ∝ NIW
(
µ∗

k ,Σ
∗

k | µ̂, ν̂, κ̂, Σ̂
)

︸ ︷︷ ︸
p0(θ∗

k
)

×
∏

k′ 6=k

N(yi | µ
∗

k,k′ ,Σ
∗

k,k′)

where in the last product for k′ < k we interpret θ∗

k,k′ as θ∗

k,k′ ≡ θ∗

k′,k, and ν̂ = ν0 + nk,

κ̂k = κ0+nk, µ̂ = κ0µ0+nkȳk

κ̂k
and Σ̂ = Σ0+Sk+

κ0nk

κ̂k
(ȳk−µ0)(ȳk−µ0)

⊺, with ȳk =
∑

i:Zi=k yi

nk

and Sk =
∑

i:Zi=k(yi − ȳk)(yi − ȳk)
⊺.

If a vertex is isolated, that is, no observations are assigned to any of the possible edges

associated with the vertex, then the full conditional in (2) reduces to the conjugate NIW

posterior distribution p0(θ∗

k). In general, the density of the full conditional is proportional

to p0 times the likelihood of the observations assigned to corresponding edges. An effective
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transition probability is a Metropolis-Hasting step exploiting p0 as a proposal.

In step (1), when we create a new vertex-cluster, i.e., if v = 1 and k = K−i
v + 1, we

follow up with a transition probability (2) for the new cluster parameters, that reduces to

the conjugate NIW for θ∗

k . Throughout, edge-parameters θ∗

k,k′ are always evaluated using

the currently imputed adjacent vertex parameters θ∗

k ,θ
∗

k′ .

Note that it is also possible to add an extra transition probability to update Zi as

in (1), but leaving Vi unchanged. Such transition probabilities could lead to a better

mixing Markov chain and are analogous to the ones used, for example, in Teh et al. (2006)

exploiting the Chinese restaurant franchise representation of the hierarchical DP.

In principle, all posterior inference is implemented by appropriate summaries of the pos-

terior Monte Carlo sample. However, how to report point estimates for a random partition

or graph is not trivial. There are several proposals in the recent literature, including Wade

and Ghahramani (2018), Dahl et al. (2022), and Franzolini and Rebaudo (2024). They are

based on casting the selection of the reported summary as a decision problem. In Section

S.4.2 of the supplemental materials, we discuss an implementation for the GARP.

Finally, like in any mixture model, posterior inference about specific clusters must

consider label switching. See, for example, Green (2018) for a discussion. An additional

challenge that arises in the proposed model is the distinction between vertex versus edge

clusters. Consider, for example, a configuration (A) with 2 vertices and a connecting edge,

with cluster-specific parameters (θ∗

1 ,θ
∗

2 ,θ
∗

1,2 = f(θ∗

1 ,θ
∗

2 )) (as in (3)), versus an alternative

configuration (B) with 3 vertices and (θ∗

1 ,θ
∗

2 ,θ
∗

3 ) and θ∗

3 = f(θ∗

1 ,θ
∗

2 ). While the sampling

model (1) remains unchanged under (A) versus (B), we argue that the prior implements a

strong preference for (the more parsimonious) model (A).

For given vertex parameters θ∗

1 and θ∗

2 , the edge parameter θ∗

1,2 in (A) can assume just

one value, i.e., its parameter space is the single point f(θ∗

1 ,θ
∗

2 ) in the parameter space of the

third vertex θ∗

3 in the latter model. In other words, when we consider the joint parameter

space Θ0 of the atoms θ∗

1 ,θ
∗

2 ,θ
∗

1,2 (two vertices and one edge) it is a lower dimensional

sub-space of the parameter space Θ for the three vertices θ∗

1 ,θ
∗

2 ,θ
∗

3 . The NIW prior in (2)

on θ∗

j assigns prior probability 0 to Θ0, and thus also zero posterior probability. The issue

is similar to identifiability related to the replication of terms in a standard mixture model

with independent priors on cluster-specific parameters Green (2018).

7 Application to Single-Cell RNA Data

We fit the GARP model for the RNA-seq data shown in Figure 1. Single-cell RNA-seq

experiments record cell-specific transcriptional profiles that allow us to infer, for example,

cell differentiation or cancer progression. Inference under the GARP model for the data

shown in Figure 1 reconstructs transitions of stem cells into fully differentiated cells in a
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scRNA-seq experiment on horizontal basal cells from the adult mouse olfactory epithelium.

The original data is available on GEO in GSE95601.

The transcriptional profiles map differences in gene expressions due to the development

phases of the cells. Stem cells evolve into fully differentiated cells by gradual transcriptional

changes, passing through a small number of homogeneous subpopulations of cells. The

primary inferential goal is to find these homogeneous subpopulations of cells (i.e., vertex-

clusters) and understand the relationships between them aligning such subpopulations on

a biologically interpretable graph.

7.1 ScRNAseq Data and Pre-Processing

The raw data is a count matrix with rows corresponding to cells and columns represent-

ing different genes. Most of the counts in the matrix are zeros, usually about 90% (the

percentage can vary according to the scRNA-seq technology used).

The data set originally contains measurements for 28284 genes in 849 cells with 84%

zeros. To extract a lower dimensional signal we implemented pre-processing following the

pipeline described in Perraudeau et al. (2017) and available in Bioconductor (Gentleman

et al., 2004). We briefly describe the pipeline. We first discard around 100 low-quality cells

and retain the 1000 most variables genes. Next, we normalize the data matrix and extract

50-dimensional biomarkers from the count data, accounting for zero-inflation and over-

dispersion of the scRNA-seq data via “Zero-Inflated Negative Binomial Wanted Variation

Extraction” (ZINB-WaVE) (Risso et al., 2018). Finally, we reduced the dimensionality

to the 2 most relevant markers via multidimensional scaling analysis. The data matrix

obtained after pre-processing is denoted by y = (yi,j : i = 1, . . . , N, j = 1, 2), where the

rows represent 747 cells, and the columns record the two final biomarkers. The data is

shown in Figure 1.

7.2 Results

We implement inference under the GARP model using the Gnedin process (Example 2) to

control the vertex-clustering. We choose the Gnedin process because one of the goals is

inference on Kv. The Gnedin process is a particularly attractive Gibbs-type prior for clus-

tering from both, a Bayesian modeling perspective as well as for its frequentist properties

of the posterior distribution, as discussed in Section 3.

The posterior estimated GARP places 466 cells into vertex-clusters (main phases) and

281 into ordered edge-clusters (transition phases). Figure 2a summarizes inference. The

heat-map in Figure 2b shows the posterior probabilities of co-clustering of pairs of obser-

vations, suggesting low posterior uncertainty around the estimated main phases, making

the point estimate under the GARP a meaningful posterior summary. The conditional

17



uncertainty of the graph-alignment of the vertices given the point estimates of the main

phases is low. Visual inspection of the results suggests that the model is effectively work-

ing as expected. Once we have identified the main phases (vertex-clusters) we find the

(a) (b)

Figure 2: Left Panel: Scatter-plot of the scRNA data. Triangular plot symbols indicate
cells assigned to vertices (Vi = 1) while the remaining cells are assigned to edges (Vi = 0)
and are represented with a circular shape. Cells are colored according to the different
phases (i.e., Zi) in the point estimate. The segments denote the edges of the graph and
the color is darker if the probability of assigning observations to the edge is greater. Right
panel: Posterior probabilities of co-clustering of observations assigned to vertices.

biomarkers that best characterize such clusters, i.e., the most differently expressed genes

(DE genes). We rely on the function findMarkers of the Bioconductor package scran

(Lun et al., 2016). More precisely, we first perform an exact binomial test to identify

DE genes between pairs of groups of cells (vertex-clusters). From that, we identify the 6

most significant biomarkers for each pairwise comparison. For each gene then a combined

p-value is computed using Simes multiplicity adjustment applied to all p-values obtained

by the pairwise comparisons (Simes, 1986). Note that these p-values are not directly used

for ranking and are only used to find the DE genes. Finally, the p-values are consolidated

across all genes using the BH method of Benjamini and Hochberg (1995) to implement

multiple comparisons under a restriction on false discovery rate (FDR) (Benjamini et al.,

2009). The adjusted p-values are reported in Table 3. The reported FDRs are intended

only as a rough measure of significance. Note that properly correcting for multiple testing

is not generally possible when clusters are based on the same data that is used for the DE

testing. Nonetheless, a small FDR remains desirable. Table 3 shows the average within

vertex-cluster gene expressions for the selected top 6 biomarkers and corresponding FDRs.

The log means expression in the different biomarkers and vertices are also shown in Figure

3. On average the main phases obtained (vertex-clusters) have very different expressions of
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the selected biomarkers. Finally, we show the entire distribution of the cells in the different

biomarkers and main phases in Figure 4.

DE Genes Vertex 1 Vertex 2 Vertex 3 Vertex 4 FDR
Slc26a7 408.68 120.96 0.24 0.05 1.30e-23
Pik3c2b 14.15 231.82 105.74 98.38 1.38e-08

Hes6 3.10 21.16 691.19 41.62 4.17e-13
Stmn3 0.43 0.09 23.90 320.38 1.58e-20
Abca13 10.15 337.45 4.25 0.54 8.29e-08
Ccp110 5.75 15.19 1008.68 105.50 7.47e-13

Table 3: Average within vertex-cluster gene expressions and FDRs in the selected top 6
biomarkers.

Figure 3: Heatmap of the log mean expressions in top 6 DE genes in the main phases.

7.3 Comparison with Independent Gaussian Mixtures

For comparison, we estimate an independent Gaussian mixture model without edges and

cluster alignment (implemented as the GARP model with pv = 1). The posterior distribu-

tion of the number of clusters (see Table 4) shows more uncertainty since the model fails

to find well-separated clusters, due to the noise that is introduced by the presence of the

cells transitioning between the main phases. In other words, including cells in transition in

the clustering has reduced the statistical power in detecting homogeneous subpopulations.

This is illustrated in Figure 5. Recall that we are using variation of information (VI) loss to

summarize the posterior random partition. As a consequence of the increased uncertainty,

the point estimate of the clustering of the main phases becomes sensitive to the choice of

the loss function. For instance, both the point estimate and the maximum a posteriori

estimate of the number of main phases is 4 under GARP, while the earlier is 5 and the

latter is 6 under the independent Gaussian mixture model. In the figures, we show the
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Figure 4: Left panel: Heat-map log genetic expressions in top 6 DE genes in all cells ordered
by main phases. The cells are sorted by vertex-cluster memberships and the dashed blue
lines separate the cells in the different clusters. Right panel: Boxplot genetic expressions
(after log(· + 1) transformation) in the top 6 DE genes in all cells in the different main
phases (vertex-clusters).

estimated cluster arrangement that minimizes the VI loss for coherency in the comparison.

(a) (b)

Figure 5: Results with independent mixtures. Left Panel: Scatter-plot of the scRNA data.
Cells are colored according to the different phases in the point estimate. Right panel: Co-
clustering posterior probabilities.
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Panel A: GARP
k 4 5 6 7 8

P̂ (Kv = k) 0.7801 0.1951 0.0240 0.0004 0.0004

Panel B: Independent Mixture Model
k 5 6 7 8 9 10 11 12 13

P̂ (K = k) 0.0692 0.4362 0.3115 0.114 0.0516 0.0128 0.002 0.0012 0.0016

Table 4: Panel A: Estimated posterior of the number of main phases under GARP.
Panel B: Estimated posterior of the number of main phases under the independent Gaussian
mixture model.

8 Discussion

We proposed a graph-aligned random partition model to infer homogeneous subgroups of

observations aligned on a graph, explicitly allowing for units transitioning between the

clusters. The motivating applications are single-cell RNA experiments where scientists are

interested in understanding fundamental biological processes such as cell differentiation and

tumor evolution. Interesting future applications include inference for cell type transitions

in a tumor microenvironment. Other extensions could include data integration with other

modalities, such as histology data.

Methodological extensions include jointly clustering similar cells and genes, via sepa-

rately exchangeable nested random partition models (Lee et al., 2013b; Lin et al., 2024).

Another interesting extension is to combine the results of partially exchangeable random

partition models that arise from the compositions of Gibbs-type and species sampling pri-

ors (Teh et al., 2006; Camerlenghi et al., 2019; Argiento et al., 2020; Bassetti et al., 2020;

Lijoi et al., 2023) to the GARP model with dependent locations. In the context of the

scRNA-seq experiment, this would allow inference on multiple single-cell RNA-seq data

matrices. In such a way one could borrow information across different measurements while

accounting for relevant heterogeneity. Finally, including unit-specific spatial information,

the model can be used for spatial clustering with transitions between the clusters.
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S.1 Edge Multivariate Gaussian Mixtures

Figure S.1 shows the contour plot of an edge cluster in ❘2.

Figure S.1: Elliptical contour plot for an edge-cluster (with hyperparameters, as described
in Section S.3), connecting two vertex-clusters k and k′ (with locations µ1 = (−2,−2) and
µ2 = (3, 3)). The vertices are shown as black bullets located on the contour (not shown)
line of the bivariate Gaussian such that 99% of the probability is inside such an ellipse.

Without loss of generality consider an edge connecting the two vertex-clusters, k = 1

and k′ = 2, with cluster-specific parameters µ∗
1 and µ∗

2. The edge-cluster is centered around

the half-point µ∗
1,2 =

µ∗

1+µ∗

2

2
. The following construction defines Σ∗

1,2 such that the edge is

aligned along the connecting line L1,2, as described in Section 2.1 of the main manuscript.

Let e =
µ∗

1−µ∗

2

||µ∗

1−µ∗

2||
, where ||µ∗

1−µ∗
2|| denotes the Euclidean distance between µ∗

1 and µ∗
2. Let

P = ee⊺ be the perpendicular projection matrix such that for any yi ∈ Rp, y
(p)
i = Pyi

is the perpendicular projection of yi onto the connecting line between µ∗
1 and µ∗

2. Let

P = QDQ⊺ denote a singular value decomposition (SVD) with D = diag(1, 0, . . . , 0).

Thus R̃ = Q⊺ is the rotation matrix such that ỹi = R̃yi is the rotation of yi in the new

axes where the first axis is the line connecting µ∗
1 and µ∗

2 and the others are the orthogonal

directions. Now, we define S̃ = diag(||µ∗
1 − µ∗

2||r0, r1, . . . , r1) and Σ∗

1,2 = R̃S̃R̃⊺.
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Under this construction, the term in the mixture of normal sampling model (1) cor-

responding to the edge (k, k′) is such that the Gaussian component projected onto the

connecting line L1,2 has a standard deviation r0 ||µ
∗
1 − µ∗

2||, implying lower likelihood for

edges between distant vertices’ locations. The standard deviations of the independent

Gaussian distributions on the projection onto L⊥
1,2 is r1.

S.2 Composition of Discrete Random Probabilities

Let θi = θ∗

Zi
denote the normal moments in the sampling model (1). As a third character-

ization of the proposed GARP, we define G̃(N) as a graph-aligned random partition (with

unique atoms) implied by the ties under conditional i.i.d. sampling of θi, with separate

models for vertex and edge-clusters. For vertex-clusters

θi | Vi = 1,V , Pv
iid
∼ Pv,

Pv =
Mv∑

m=1

πmδθ̃m ∼ Gibbs-Type Process,
(S.1)

where Mv is the number of atoms of the discrete random probability Pv that is a Gibbs-

type process and can be finite, as in the finite symmetric DM case, infinite as in the DP,

and PYP case, or be a random variable on N as in the MFM case. Thus (πm)
Mv

m=1 are the

random weights (that are sampled independently from the atoms) from the distribution on

the simplex associated with the Gibbs-type process. The unique atoms θ̃m of Pv are i.i.d.

samples from the NIW distribution in (2). Note that the unique sampled vertex parameters

θ∗

v = {θ∗

1 , . . . ,θ
∗

Kv
} are a subset of {θ̃1, . . . , θ̃Mv

}.

The edge-clusters are implied by

θi | Vi = 0,V −i, Kv,θ
∗

v , EN
iid
∼ Pe,

Pe =
∑

1≤k<k′≤Kv

πk,k′δ(θ∗

k,k′
).

(S.2)

Recall that Me = Kv(Kv − 1)/2. The random weights follow a symmetric Me-dimensional

Dirichlet with hyper-parameter β/Me,

(πk,k′)1≤k<k′≤Kv
∼ Dir(β/Me, . . . , β/Me). (S.3)

Finally, recall that (8) might generate Ne > 0, even when (9) implies Me = 0. For this

case, we define for completeness G̃(N){θi = (0, Ip) | Vi = 0,Z−i, Ec
N} ≡ 1, where 0 is a p-

dimensional vector of 0’s and Ip is a p×p-dimensional identity matrix (without implications

for G(N), due to the truncation to EN in (7)).
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From the characterizations of Gibbs-type and DM processes, it is straightforward to

show that the aforementioned discrete conditional random probability models for the pa-

rameters characterize the GARP as stated in the following proposition.

Proposition S.5. The random partition structure of the GARP model (4) and the vertex-

and edge-parameters distributions can be characterized as the configuration of ties implied

by the truncation sampling model in (7), (8), (S.1), (S.2), and (S.3).

S.3 Hyperparameters Settings

In both the application and the simulation we set γ = 0.5 for the Gnedin process controlling

the vertex-clusters and β = 0.5 for the symmetric DM with hyperparameter 0.5/Mv to favor

the sparsity of the graph. Moreover, for the choice of the hyperparameters of the NIW we

set µ0 = ȳ, κ0 = 0.001, ν0 = 100, Λ0 = ξ2 I and Σ0 = Λ−1
0 . For scenarios in which

the clusters are well separated, we recommend a large value of ξ2 (that we set equal to

150), while we recommend a smaller value of ξ2 (that we set equal to 15) if the data are

not well separated in the Euclidean space. Moreover, in both the application and the

simulation we set r20 = 4(χ2
2,1−α)

−1 and r21 = (2χ2
2,1−α)

−1, where χ2
2,1−α is the quantile of

order 1 − α (we set α = 1%) of a Chi-squared distribution with 2 degrees of freedom to

have the desired eccentricity of the elliptical contour plot of the edge as well as the 99%-

level of the contour plot not too spread. To obtain that, recall that c-level counter-plot of

multivariate Gaussian density, such as the edge Gaussian in (1), are points y ∈ ❘d such

that (y−µk,k′)
⊺Σ−1

k,k′(y−µk,k′) is constant, that is the contour levels are ellipsoid centered

at µk,k′ . Finally, note that if y ∼ N(µk,k′ ,Σk,k′) then,

(y − µk,k′)
⊺Σ−1

k,k′(y − µk,k′) ∼ χ2
d ,

where χ2
d denotes the Chi-square distribution with d degrees of freedom.

Visually the contour plots of such edge pdf are shown in Figure S.1 and the data sampled

from such configuration looks like the one in Figure S.2.

S.4 Implementing Posterior Inference

S.4.1 Use of the Relaxed Model G̃(N) in Posterior Simulation

We discuss in more detail the use of the projectivity property of G̃(N) to define a Pólya

urn scheme for a tractable marginal posterior simulation algorithm. First, recall that the

relaxed model G̃(N) can be seen as a hierarchical composition of a Kolmogorov consis-

tent EPPFs with product partition forms (Sections 2.2 and 3), which implies tractable
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Figure S.2: Scatter-plot of the simulated data. The red segments represent the edges that
connect the truth vertices.

expressions for G̃(N)(Vi, Zi | V
−i

,Z
−i

) = G̃(N)(V ,Z)

G̃(N)(V
−i

,Z
−i

)
under the relaxed model G̃(N).

To derive then the desired full conditional distributions under G(N) we note, e.g., that

if Ii = 0 for (V ,Z) (recall the definition of Ii in Section 6), then

G(N){Vi = v, Zi = z | · · · } ∝
G̃(N)(V ,Z)

∏
j∈[N ] N(yj | θ

∗

Zj
)

G̃(N)(V −i ,Z−i)
∏

j∈[N ]
−i N(yj | θ∗

Zj
)
,

for any v ∈ {0, 1} and z ∈ Z
−i

. Moreover, when Ii = 0 for (V ,Z), the marginal probability

in the denominator is equal to the one in a Kolmogorov consistent model (i.e., if Ii = 0,

G̃(N)(V
−i

,Z
−i

) = G̃(N−1)(V
−i

,Z
−i

), up to a normalization constant) and this allows us

to generalize then tractable marginal samplers such as in Neal (2000) or Teh et al. (2006)

relying on the characterization of the GARP via a composition of gCRP in Section 2.3.

S.4.2 Point Estimates for the GARP Random Partition

How to choose good summaries (i.e., point estimates) for reporting posterior inference on

functionals of interest can be a fundamental and nontrivial question in Bayesian analysis.

It is especially challenging if the object of interest is a partition or a graph. To define a

posterior point estimate and perform uncertainty quantification we build on the existing

literature of posterior point estimates of random partition based on a decision-theoretic

approach (Wade and Ghahramani, 2018; Dahl et al., 2022b) generalizing the results for the

more challenging case of GARP. We propose a point estimate for the GARP as follows.
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(1) Assign observations to vertices versus edges using the posterior mode,

V̂i = 1 if V̄i ≡
∑

t

V
(t)
i

T
> 0.5,

where T is the Monte Carlo sample size, and V
(t)
i is the imputed value in iteration t of

the MCMC simulations. The uncertainty around the point estimate is quantified using

(1− V̂i)V̄i + V̂i(1− V̄i).

(2) Given V̂ we find a point estimate Ẑv for the partition of vertex units by minimizing

the variation of information loss (VI) (Meilă, 2007) as suggested by Wade and Ghahramani

(2018) and implemented in the R package salso (Dahl et al., 2022a). Alternative loss

functions can be used as needed for different applications (See e.g., Binder, 1978; Franzolini

and Rebaudo, 2023). For uncertainty quantification, we report the heat-map with the

posterior probabilities of co-clustering.

(3) Given V̂ and Ẑv we find a point estimate Ẑe and conditional uncertainty quantifi-

cation for Ze using the posterior probability of observations being assigned to the different

edges. We evaluate conditional posterior probabilities of assigning the remaining observa-

tions to the possible edges,

G(Ze | · · · ) ∝
∏

k<k′

Γ(nk,k′ + β/Me)
∏

Ck,k′

N(yi | µ
∗
k,k′ ,Σ

∗
k,k′). (S.4)

Here the first product goes over all (k, k′) with 1 ≤ k < k′ ≤ Kv and the second over

the yi such that zi = (k, k′), i.e., the set Ck,k′ . Probabilities (S.4) are evaluated by Rao-

Blackwellization (Robert and Roberts, 2021), using the full conditionals

G{Zi = (k, k′) | Vi = 0, · · · } ∝ (n−i
k,k′ + β/Me)Norm(yi | µ

∗
k,k′ ,Σ

∗
k,k′).

We visualize p(Ze | Ẑv, µ
∗, Σ∗) by adding edges between vertices with color intensity

proportional to the sum over observations assigned to edges (i.e., V̂i = 0) of the probability

that such observations will be assigned to the different edges (k, k′)’s.

S.5 Simulation Studies

We carried out a simulation study under a well-specified and a miss-specified data generat-

ing truth to assess inference under finite sample size scenarios. We set up simulation truths

close to the mouse data. The data are simulated from a 5 vertex mixture with nk = 200

observations in each vertex and an additional nk,k′ = 100 observations around 5 assumed

edges.
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S.5.1 Well Specified Scenario

In the first simulation scenario, we assume a simulation truth with Kv = 5 vertex clus-

ters with cluster-specific Gaussians with mean vectors (−5,−4), (−4, 2), (0, 7), (5, 3) and

(6,−3), and a common covariance matrix diag(0.25, 0.25). Observations assigned to edge

components are sampled from a Gaussian mixture with cluster-specific kernels as in (3).

The simulated N = 1500 observations are shown in Figure S.3a.

Figure S.3 shows that the GARP was able to recover the simulated truth in the point

estimate. Moreover, the uncertainty around the point estimate is low.

(a) (b)

Figure S.3: Well-specified simulation scenario. Left Panel: Scatter plot of the simulated
data. Observations are colored according to the estimated cluster membership. Line seg-
ments show edges of the estimated graph, with the clusters at the end of line segments
being vertex clusters, and clusters along the line segments being edge clusters. The grey
level of the line segments shows the estimated probability of assigning observations to the
respective edge (barely varying in this case). Right panel: Posterior co-clustering proba-
bilities for all observations assigned to vertices.

S.5.2 Misspecified Scenario

Here we consider a misspecified data-generating truth, using the same true mean vectors

for five vertex clusters with cluster-specific Gaussian kernels as in the previous scenario,

but inflated vertex-specific covariance matrices diag(0.5, 0.5). For the edge components, we

introduce two sources of misspecification. First, we center the edge components not at the

midpoint of the two adjacent vertices but introduce a bias term. Instead, the edge-specific

kernels are centered at
µ∗

k
+µ∗

k′

2
plus a shift of +0.25 in the direction of the line connecting

the adjacent vertices, as well as in the perpendicular direction. Second, the observations

for the edge components are generated from a uniform distribution on a rectangle centered
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at the described µ∗

k,k′ and with the length of the side in the direction of the connecting

line equal to half the length of the Euclidean distance between the adjacent vertices and

the length of the other side equals 2. Under this simulation truth, the scatter plot of the

simulated data still allows a meaningful definition of vertex and edge clusters, but the

additional misspecification and variability with respect to the well-specified scenario make

the inference with our model more challenging. The simulated N = 1500 observations are

shown in Figure S.4a.

Figure S.4 shows that the GARP was able to recover well the simulated truth in the

point estimate in this misspecified scenario. The uncertainty around the point estimate is

low.

(a) (b)

Figure S.4: Mis-specified simulation scenario. Left Panel: Scatter plot of the simulated
data. Observations are colored according to estimated cluster membership. The line seg-
ments denote estimated edges, with clusters at the end of the line segments being vertex
clusters, and clusters along the line segments being edge clusters. The gray shade of the
line segments indicates the probability of assigning observations to the respective edge.
Right panel: Posterior co-clustering probabilities for observations assigned to vertices.

S.5.3 Non-Connected Graph Scenario

Here we investigate how the model works in a scenario with no meaningful notion of the

connected graph in the data. More precisely, we simulate from a mixture of five vertex

clusters, exactly as in Section S.5.1, but without any edge components.

The simulated N = 1000 observations and inference under the GARP are shown in

Figure S.5a.

Figure S.5 shows that the GARP was able to recover well the simulated truth in the

point estimate also under this not-connected graph simulation truth.
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(a) (b)

Figure S.5: Non-connected graph simulated data. Left Panel: Scatter plot of the simulated
data. Observations are colored according to estimated cluster membership. Correctly
recovering the simulation truth there are no estimated edge clusters. Right panel: Posterior
co-clustering probabilities.

S.6 Proof of the Main Results

For easy reference, we provide in Table S.1 a brief statement of the various probability

models used in the discussion and the results, and in the following list a brief summary of

the main results. Here, Ex. 1 – 4 refer to the four examples for the EPPF from Section 3.

G(N) GARP model (4)

G̃(N) relaxed model (7), G̃(N) is proportional to G(N), but w/o ✶(EN)

˜
G

(N)
VZ law under G̃(N) on (Ti, i = 1, . . . , N), Ti =

{
Vi if Vi = 0

(Vi, Zi) if Vi = 1

G̃VZ Kolmogorov-consistent extension of
˜
G

(N)
VZ to N ∈ ◆

G(∞) inf exch. law that eventually matches the predictives under Ex 1 or 2 (or any MFM)

G
(∞)
N marginal law under G(∞)

Table S.1: Probability models used in the discussion and main results

For notational simplicity, we refer with G̃VZ also to the marginal laws of the stochastic

process (Ti)i∈N as well as the law ofMv and (πm)
Mv

m=1 in (S.1) since they do not depend on the

dimension N . Finally, we refer with G(N)(·) to the probability density and mass functions

of random variables under the GARP model (1)–(4). More generally, given a probability

measure P we denote by P{E} the probability measure evaluated in a measurable set E
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and by P (a) the corresponding (when it exists) with respect to Lebesgue (i.e., pdf) or

counting measure (i.e., pmf) evaluated in a point a.

Propositions 1 and S.5: Characterizations of the GARP G(N) as truncation of G̃(N),

which in turn is characterized as (i) a gCRP or, (ii) a composition of random discrete

prob measures, respectively.

Proposition 2: Analytical statement of G̃(N){EN} for a general Gibbs-type prior.

Theorem 1: Let g∞ = limN→∞ G̃(N){Kv = 1} and g∞v = limnv→∞ G̃(N){Kv = 1 | Nv =

nv}. Then

g∞ = g∞v =




0 Ex 1 , 3, 4

γ ∈ (0, 1) Ex 2

Theorem 2: G̃VZ{EN eventually} =




1 Ex 1 , 3, 4

1− G̃VZ{Mv = 1} Ex 2
.

Proposition 3: fEPPF
(N)
K under the GARP model in (4).

Proposition 4: The data y, the graph-aligned random partition induced by (Vi, Zi) and

the random partition ΨN are finitely exchangeable, but not a projection of an in-

finitely exchangeable process under our proposal (1)–(4).

Theorem 3 and Corollary 1: Under Ex 1, the predictive probabilities for Vi, Zi under

the GARP are eventually equal to the same under a Kolmogorov-consistent sequence(
G

(∞)
N

)
; statement of a Pólya urn and directing measure for

(
G

(∞)
N

)
.

The same remains true for any MFM.

S.6.1 Proof of Proposition 1

Proof. We assume the GARP definition via the relaxed model in (7), (8), (9), and (10) and

show that is equivalent to the definition in (4).

First, we note that in (4) the constraint ✶(EN) can be rewritten as ✶({Nv = N}∪{Kv >

1}). Note also that under Ne = 0 the second line in (4) does not arise. For notational

simplicity, we naturally extend the definition of Kv and Me by defining Kv = Me = 0 if

Nv = 0 and defining DM(0)
· (·) = DM

(·)
0 (·) ≡ 1.

Note also that (9) is equivalent to sample Zv = (Zi : i ∈ [N ], Vi = 1) from

G̃(N)(Zv | V ) = EPPF
(Nv)
Kv

(n1, . . . , nKv
| α, σ)/Kv! (S.5)
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The clustering indicators Zi are a 1-to-1 mapping of the induced exchangeable random

partition up to possible relabelings. By (conditional) exchangeability of the partition, any

possible relabeling of Zv has the same probability that is equal to the EPPF divided by

the number of relabelings, i.e., Kv!.

Similarly, sampling from (10) is equivalent to sample Ze = (Zi : i ∈ [N ], Vi = 0) from

G̃(N)(Ze | Zv) = DM
(Ne)
Me

((nk,k′)k<k′v | β/Me),

where DM
(Ne)
Me

((nk,k′)k<k′v) denotes the marginal likelihood of the DM distribution for the

categorical random variables, which is a function of the sufficient statistics (nk,k′)k<k′v , i.e.,

the ordered cardinalities of the different edges. In contrast to the EPPF and fEPPF, here

some nk,k′ can be 0, implying that there is no edge connecting the vertices k and k′.

Finally, we obtain (4) via the multiplication rule of probability, i.e.,

G̃(N)(V ,Z) = G̃(N)(V ) G̃(N)(Zv | V ) · G̃(N)(Ze | V ,Zv)

where G̃(N)(V ) = pNv
v (1− pv)

Ne by (8).

S.6.2 Proof of Proposition 2

Proof. First, recall EN = {Nv = N} ∪ {Kv > 1}. That is, EN occurs if and only if

there are at least two vertex-clusters (i.e., Kv > 1) unless no observations are allocated to

edge-clusters (i.e., Nv = N). Thus, by additivity of probability,

G̃(N){EN} = G̃(N){{Nv = N} ∪ {Kv > 1}}

= G̃(N){Nv = N}+ G̃(N){{Nv 6= N} ∩ {Kv > 1}},

where G̃(N){Nv = N} = pNv . In words, we decompose EN into the union of the (disjoint)

events “all clusters are vertices” and “not all observations are in vertices and there are at
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least 2 vertex-clusters”. The second term is further expanded by conditioning on Nv as:

G̃(N){{Nv 6= N} ∩ {Kv > 1}} =

G̃(N){{Nv /∈ {0, 1, N}} ∩ {Kv > 1}} =

N−1∑

nv=2

G̃(N){Nv = nv}G̃(N){Kv 6= 1 | Nv = nv} =

N−1∑

nv=2

(
N

nv

)
pnv

v (1− pv)
nv−1

[
1− EPPF

(nv)
1 (nv)

]
=

N−1∑

nv=2

(
N

nv

)
pnv

v (1− pv)
nv−1

[
1− (1− σ)nv−1Wnv ,1

]
,

where the last equality follows from the definition of the Gibbs-type priors.

S.6.3 Proof of Theorem 1

Proof. First, note that the finite sample behavior of

gnv
= G̃(N){Kv,N = 1 | Nv,N = nv} = G̃VZ{Kv,N = 1 | Nv,N = nv} = EPPF

(nv)
1 (nv)

is derived as a special case of the EPPF in the different examples in Section 3 of the main

manuscript. From it, we can derive the large sample behavior gnv
and the limit g∞v reported

in Table 2. Let (x)n = Γ(x + n)/Γ(x) = x(x + 1) · · · (x + n − 1). To compute the rate of

gnv
we note that by the Stirling approximation

(x)n
n!

=
Γ(x+ n)

Γ(x)n!
≍

nx−1

Γ(x)
as n → ∞.

Note also that (Nv,N)N∈N is a (G̃VZ-almost surely) Markovian non-decreasing sequence

of random integers such that
Nv,N

N
→ p as N → ∞

G̃VZ-a.s. by the strong law of large numbers. Therefore, Nv,N diverges G̃VZ-almost surely

and g∞v ≡ limnv→∞ G̃VZ{Kv = 1 | Nv,N = nv} = limN→∞ G̃VZ{Kv = 1} = g∞.

We note, as a remark, that to have g∞v well defined we consider a sequence (N =

f(nv))nv∈◆ such that f : N → N and f(n) ≥ n for any n ∈ N. Moreover, the hierarchical

definitions of V and Zv imply that Kv = Kv(Zv) G̃VZ-almost surely, where Kv = Kv(Zv)

indicates a function of the N units (Vi, Zi) that depends on Z only indirectly through the

Nv,N units allocated to vertices, i.e., Zv.

Finally, as derived in Section 4 of the main manuscript, g∞v = g∞ = limN→∞ G̃VZ{E
c
N}.
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S.6.4 Proof of Theorem 2

Recall the definition of eventually. Let (EN)N∈N be a sequence of events in the measurable

space (Ω,F),

{EN eventually} = lim inf
N

EN = ∪∞
N̄=0 ∩

∞
N=N̄ EN .

In words, it is the set of ω ∈ Ω such that there exists an integer N̄(ω) such that for any

integer N ≥ N̄(ω), ω ∈ EN .

Proof. Case with a Mv-dimensional symmetric Dirichlet (where Mv > 1) or with

a DP or with a PYP in (4).

First, sinceKv,N , Nv,N are functions of T1:N (that is of (V1:N ,Zv,N)) only, G̃(N)(Kv,N , Nv,N) =

G̃VZ(Kv,N , Nv,N) for any N ∈ N.

Note that under G̃VZ, (Kv,N)N is an a.s. non-decreasing Markovian sequence of positive

integers such that for any natural N > 1, G̃VZ{Kv,N > 1} > 0 and it can be computed

from (8)-(9).

Moreover, by Kingman’s representation theorem (see Kingman, 1978 and Theorem

14.7 in Ghosal and van der Vaart, 2017) the random partition can be characterized as

arising from the ties obtained by sampling from a unique discrete probability measure

Pv =
∑Mv

m=1 πmδθ̃ (we know that is Mv-symmetric Dirichlet or a DP or a PYP distributed)

and the frequency of the kth largest partition block converges almost surely to kth largest

random weight in (πm)
Mv

m=1 for any k ∈ 1, . . . ,Mv. Therefore, together with the assumption

Mv ≥ 2, it implies that

G̃VZ{{Kv,N > 1} eventually w.r.t. N} = 1.

To conclude the proof of (14), note that

EN = {Nv,N = N} ∪ {Kv,N > 1} ⊃ {Kv,N > 1}.

Thus, we have shown that G̃VZ{EN eventually} = 1.

To prove (15), first recall that for any N ∈ N, G(N) and G̃(N) denote the probability

mass function of (Vi, Zi)
N
i=1 under the GARP and the relaxed model, respectively. Next,

for any N, k ∈ N and any set of possible points ak = (v1:N+k, z1:N+k), by definition of

conditional probability we have

G̃(N+k)(ak | V1:N = v1:N ,Zv,N = zv,N) =
G̃(N+k)

(
ak
)

G̃(N+k){V1:N = v1:N ,Zv,N = zv,N}
, (S.6)
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where, by additivity of probability,

G̃(N+k){V1:N = v1:N ,Zv,N = zv,N} =
∑

{
(v′i,z

′

i)
N+k
i=1 :v′

1:N=v1:N , z′
v,N

=zv,N

}
G̃(N+k)((v′i, z

′
i)
N+k
i=1 ).

Moreover, for any k,N ∈ ◆ and any possible points ak = v1:N+k, z1:N+k such that {V1:N =

v1:N+k,Z1:N = z1:N} entails that {Kv,N > 1} holds (and thus ✶(EN) = 1) we have

G(N+k)
(
ak | V1:N = v1:N ,Zv,N = zv,N

)
=

G̃(N+k)
(
ak
)

G̃(N+k){V1:N = v1:N ,Zv,N = zv,N}
,

by (7) and definition of conditional probability.

To conclude the proof of (15) we note that, by (14), there exists a set T of sequences

(ti)
∞
i=1 that are possible realizations of (Ti)

∞
i=1 such that G̃VZ{T} = 1 and such that for any

sequence t = (ti)
∞
i=1 ∈ T there exists a N̄(t) ∈ ◆ such that {Kv,N(t) > 1} holds for any

N ≥ N̄(t). Therefore, for any N ≥ N̄(t)

G(N+k)
(
ak | V1:N = v1:N ,Zv,N = zv,N

)
= G̃(N+k)(ak | V1:N = v1:N ,Zv,N = zv,N),

where ti = vi if vi = 0 and ti = (vi, zi) if vi = 1. Thus we proved (15).

Case with a Gnedin process in (4).

Similarly to the previous case, note that under G̃VZ, (Kv,N)N is an a.s. non-decreasing

Markovian sequence of positive integers. Moreover, by Kingman representation theorem

and the fact that G̃VZ{Mv < ∞} = 1 we have that

G̃VZ{{Kv,N = Mv} eventually w.r.t. N} = 1.

Indeed, the random partition can be thought of as arising from the ties obtained by sampling

from a unique discrete probability measure Pv =
∑Mv

m=1 πmδθ̃ (here distributed as a Gnedin

process) and the frequency of the kth largest partition block converges almost surely to

kth largest random weight in (πm)
Mv

m=1 for any k ∈ 1, . . . ,Mv.

Note that {Kv,N = Mv} ⊂ {Kv,N > 1} ∪ {Mv = 1} ⊂ EN ∪ {Mv = 1}, thus

G̃VZ{{Kv,N > 1} ∪ {Mv = 1} eventually w.r.t. N} = 1

and

G̃VZ

{
EN ∪ {Mv = 1} eventually w.r.t. N

}
= 1. (S.7)

To conclude the proof we need to show that, for any k ∈ ◆ and any possible set of points
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ak = (v1:N+k, z1:N+k)

G̃V Z

{{
G(N+k)(ak | V1:N ,Zv,N) = G̃(N+k)(ak | V1:N ,Zv,N)

}
∪ {Mv = 1} eventually

}
= 1.

(S.8)

To prove (S.8) we note that, by (S.7), there exists a set T of sequences (ti)
∞
i=1 that

are possible realizations of (Ti)
∞
i=1 such that G̃VZ{T} = 1 and such that for any sequence

t = (ti)
∞
i=1 ∈ T there exists a N̄(t) ∈ ◆ such that {Kv,N(t) > 1} ∪ {Mv(t) = 1} (and thus

EN) holds for any N ≥ N̄(t). Therefore, by (7) and definition of conditional probability,

for any N ≥ N̄(t)

G(N+k)
(
ak | V1:N = v1:N ,Zv,N = zv,N

)
= G̃(N+k)(ak | V1:N = v1:N ,Zv,N = zv,N),

where ti = vi if vi = 0 and ti = (vi, zi) if vi = 1.

S.6.5 Proof of Proposition 3

The fEPPF in Proposition 3 is computed via marginalization of the pmf of the GARP in

(4) over all the quantities that are compatible with the cardinalities {c1, . . . , cKv
} of ΨN .

We state a more complete version of Proposition 3, now including a statement of the

range of the three sums that appear in

fEPPF
(N)
KN

(|C1|, . . . , |CKN
|) ∝

∑

Nv

{(
N

Nv

)
pNv

v (1− pv)
N−Nv

∑

Kv

[(
Me

KN −Kv

)

∑

(nk1
,...,nKv )

EPPF
(Nv)
Kv

(nk1 , . . . , nKv
)DM

(N−Nv)
Me

((nk,kv′
)k<k′v)







The first sum runs over Nv ∈ [N ] with the restriction that Nv = N if KN ≤ 2. The second

sum runs over Kv ∈ [KN ] with the restrictions that

1. Kv ≥ 2 if KN ≥ 2;

2. Kv < K if Nv 6= N ;

3. Kv = K if Nv = N ;

4. KN ≤ Nv+ min{Me, N −Nv}, keeping in mind that Me :=
Kv(Kv−1)

2
.

Finally, the last sum runs over (n1, . . . , nKv
) where

∑Kv

k=1 nk = Nv and n1, . . . , nKv
are

distinct elements of {c1, . . . cKN
} ordered, e.g., by cardinalities. And the non-zero edge-

cluster sizes nk,k′ are the remaining (ordered) elements of (c1, . . . cKN
) that are not matched

with vertex-cluster sizes nk.
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S.6.6 Proof of Proposition 4

Proof. Finite exchangeability.

First note that Zv = (Zv,i)
Nv

i=1 := (Zi : i ∈ [N ], Vi = 1) identifies arbitrarily labeled vertex-

clusters (e.g., in order of appearance). Hence, formally the vector Zv and its relabeling are

regarded as distinct objects, even though they identify the same vertex-partition.

Moreover, if the edge-clusters are relabelled according to the relabeling of the vertex-

clusters this identifies the exact same graph-aligned random partition.

For instance, (Z1 = 1, Z2 = 2, Z3 = 5, Z4 = (1, 2)) entails the same graph-aligned parti-

tion as (Z1 = 3, Z2 = 2, Z3 = 1, Z4 = (2, 3)), but a different one than (Z1 = 3, Z2 = 2, Z3 =

3, Z4 = (1, 2)). A relabeling of Zi which preserves the same graph-aligned random partition

does not modify the likelihood distribution G(N)(y | V ,Z) in (1), which is invariant under

such a relabeling.

By construction, the graph-aligned random partition (4) induced by (Vi, Zi) is exchange-

able, i.e., the joint law is invariant to permutation of the labels i. Note that we cannot

state the same argument directly in terms of the pmf of (Vi, Zi) since we have an arbitrary

order of Zv, i.e., the order of arrival (irrelevant for the graph-aligned random partition)

that gives probability zero to permutations of i’s that entails a non-increasing sequence of

Zv.

Since the likelihood of the sample (1) can be defined as a function of the graph-aligned

random partition, we immediately obtain the exchangeability of the sample (y)Ni=1.

Finally, since the random partition ΨN can be seen as the marginalization of the graph-

aligned random partition, we also have finite exchangeability of ΨN as also shown via the

fEPPF (3).

Lack of projectivity.

To prove that infinity exchangeability does not hold we show a simple counterexample

where projectivity does not hold.

We first show the lack of projectivity for the graph-aligned random partitionG(N)(V ,Z).

It suffices to note that for a sample of size N = 1 the probability of assigning an observation

to a vertex is 1, i.e., G(1){V1 = 1} = 1, while it is strictly smaller than 1 for N = 3, since,

by (4),

G(3){V1 = 0} = G(3){V1 = 0, Z1 = (1, 2), V2 = 1, Z2 = 1, V3 = 1, Z3 = 2} > 0.

Next, we show the lack of projectivity for y. The last argument also implies that in a

sample of size N = 1 the marginal density of the observations y1 can be rewritten as

∫
N(y | µ∗,Σ∗)dNIW(µ∗,Σ∗ | µ0, λ0, κ0,Σ0) (S.9)

S.15



while under N = 3 it is a mixture of (S.9) and an additional term corresponding to an

allocation as an edge: ∫
N(y | µ∗

1,2,Σ
∗
1,2)dG

(3)(µ∗
1,2,Σ

∗
1,2),

with G(3)(µ∗
1,2,Σ

∗
1,2) characterized by µ∗

1,2 = (µ∗
1 + µ∗

2)/2 and Σ∗
1,2 = f(µ∗

1,µ2), where µ∗
1

and µ∗
2 are independent draws of a generalized Student-T distribution. This shows that yi

is not infinitely exchangeable.

Finally, we consider the random partition ΨN . Note that the probability of observations

i = 1, 2 being clustered together in a sample of size 2 (i.e., of a partition with a single

cluster), is equal to

G(2){Ψ2 = {1, 2}} = fEPPF
(2)
1 (2) = EPPF

(2)
1 (2) >

> G(3){Ψ3 : Z1 = Z2} = EPPF
(2)
1 (2)G(3){V1 = V2 = 1}.

Thus, in the last expression, the first factor is the probability of having the observations

with labels i = 1, 2 in the same cluster given that they are in vertex-clusters, and the

second factor is the probability of those two observations being assigned to vertex clusters.

Note that, in the case of N = 2 the probability of the two observations to be assigned in

vertex-cluster is 1.

S.6.7 Proof of Theorem 3 and Corollary 1

Theorem 3 in the main manuscript shows that in some cases the predictive distributions of

the GARP model eventually (i.e., for a large enough sample size N) can be characterized

as a projection of the predictive distributions of a limiting infinitely exchangeable model,

thus where projectivity holds.

Proof. Proof of Theorem 3 (Mv-dimensional symmetric Dirichlet)

(Case 1: Mv = 1)

For any N ∈ N our proposal degenerates to a single Gaussian model because G(N)-a.s. all

the observations are clustered together in a single vertex. In such a case it is immediate to

check that we have projectivity and (18), (19) and (20) hold. However, this is clearly an

uninteresting case from a modeling perspective.

(Case 2: Mv > 1)

First, recall that

G̃VZ

{
lim

N→∞

Nv,N

N
→ pv

}
= 1

by the strong law of large numbers.

Recall also that under G̃VZ, (Kv,N)N is an a.s. non-decreasing Markovian sequence of

positive integers such that for any N ∈ N, Kv,N ≤ Mv and G̃VZ

{
Kv,N = min(N,Mv)

}
> 0
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and it can be computed from (8)-(9).

Moreover, by Kingman’s representation theorem (see Kingman, 1978 and Theorem

14.7 in Ghosal and van der Vaart, 2017) the random partition can be thought of as

arising from the ties obtained by sampling from a unique discrete probability measure

Pv =
∑Mv

m=1 πmδθ̃ (we know that is Mv-symmetric Dirichlet distributed) and the frequency

of the kth largest partition block converges almost surely to kth largest random weight

in (πm)
Mv

m=1 for any k ∈ {1, . . . ,Mv}. Therefore, together with the assumption that Mv is

finite G̃VZ{limN→∞ Kv,N = Mv} = 1. Thus, since Kv,N are random integers,

G̃VZ {{Kv,N = Mv} eventually w.r.t. N} = 1. (S.10)

Note also that

{Kv,N = Mv} ⊂ EN .

Thus, for any N, k ∈ N and ak = (vi, zi)
N+k
i=1 such that {V1:N = v1:N ,Zv,N = zv,N} entails

that {Kv,N = Mv} holds (and so ✶(EN) = 1) we have

G(N+k)
(
(vi, zi)

N+k
i=1 | V1:N = v1:N ,Zv,N = zv,N

)
=

G̃(N+k)
(
(vi, zi)

N+k
i=1

)

G̃(N+k){V1:N = v1:N ,Zv,N = zv,N}
=

G̃(N+k)
(
(vi, zi)

N+k
i=1 | V1:N = v1:N ,Zv,N = zv,N

)
,

by definition of conditional probability and (7).

Note that, for any N ∈ ◆, Kv,N = Mv entails that Kv,N+k = Mv and Me,N+k =

M+
e := Mv(Mv−1)

2
for any k = 0, 1, . . .. Therefore, by definition of G̃(N) and the fact that

{V1:N = v1:N ,Zv,N = zv,N} entails that {Kv,N = Mv} and {Me,N = M+
e } hold, for any

k ∈ ◆ we have

G̃(N+k)
(
(vi, zi)

N+k
i=1 | V1:N = v1:N ,Zv,N = zv,N

)
=

G
(∞)
N+k

(
(vi, zi)

N+k
i=1

)

G
(∞)
N+k{V1:N = v1:N ,Zv,N = zv,N}

=

G
(∞)
N+k

(
(vi, zi)

N+k
i=1 | V1:N = v1:N ,Zv,N = zv,N

)
,

where G
(∞)
N+k refers to the pmf of V1:N+k,Z1:N+k defined in (20). We now explicitly call

such law G
(∞)
N+k (i.e., with the subscript) to stress the dimension to show that (G

(∞)
N )N∈N

are indeed Kolmogorov consistent and can be seen as the projection of the law of a stochastic

process G(∞).

To conclude the proof of (17) recall that by (S.10), there exists a set T of sequences

(ti)
∞
i=1 that are possible realizations of (Ti)

∞
i=1 such that G̃VZ{T} = 1 and such that for any
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sequence t = (ti)
∞
i=1 ∈ T there exists a N̄(t) ∈ ◆ such that {Kv,N(t) = Mv} (and thus also

{Me,N(t) = M+
e }) holds for any N ≥ N̄(t). Therefore, for any N ≥ N̄(t)

G(N+k)
(
ak | V1:N = v1:N ,Zv,N = zv,N

)
= G

(∞)
N+k(ak | V1:N = v1:N ,Zv,N = zv,N),

where ti = vi if vi = 0 and ti = (vi, zi) if vi = 1.

To check the projectivity of (G
(∞)
N )N we note that for any N ∈ N and possible values

(vi, zi)i∈[N ]

G
(∞)
N ((vi, zi)i∈[N ]) = pNv

v EPPF
(Nv)
Mv

(n1, . . . , nKv
| α, σ)/Kv!

(1− pv)
NeDM

(Ne)
Mv(Mv−1)/2((nk,k′)k<k′ | β/Me)

=
∑

vN+1,zN+1

G
(∞)
N+1((vi, zi)i∈[N ]) = G(∞)((V, Z)i∈[N ]).

The second and third equalities hold by projectivity of the EPPF and DM (where the

sum is over all possible values of vN+1, zN+1). We denote by G(∞) the infinite-dimensional

GARP defined via such Kolmogorov consistent finite-dimensional distributions.

FromG(∞) (and its Kolmogorov consistent finite-dimensional) we derive the urn schemes

in (18) via the definition of conditional probability. The ratio boils down to (18) thanks to

the product form of the EPPF and of the DM.

Finally, note that via the characterization of the EPPF and DM in terms of discrete

random probabilities (see e.g., Section S.2), the induced law on (θi)
N
i=1 can thus be char-

acterized by first sampling Vi
iid
∼ Bern(pv) and θi | Pv, Vi = 1

ind
∼ Pv :=

∑M
m=1 πmδθ̃m and

θi | Pe, Vi = 0
ind
∼ Pe :=

∑
k<k′<M πk,k′δθ̃k,k′ . Thus we derive (19) marginalizing with respect

to V and by the uniqueness of the directing measure.

Proof of corollary 1

First, we write explicitly the statement of Corollary 1.

Corollary S.2 (Corollary 1 of the main manuscript). Under the GARP with a Gnedin

process (Example 2) in (4) there exists a finite random sample size N̄ such that for any

N > N̄ the predictive distributions under the proposed GARP model given Mv are G̃VZ-a.s.

equal to the predictive distributions given Mv under a Kolmogorov consistent G(∞), i.e., for

any possible sequence of sets of points (ak)k∈◆, with ak = v1:N+k, z1:N+k)

G̃VZ

{{
G

(∞)
N+k(ak | V1:N ,Z1:N ,Mv) = G(N+k)(ak | V1:N ,Z1:N ,Mv) ∀ k

}
eventually

}
= 1.

Moreover, G(∞)(· | V1:N ,Z1:N ,Mv) can be characterized by the urn scheme in (18) and

G(∞)(· | Mv) by the pmf (20) and by an exchangeable sequence with directing measure being

the law of P | Mv as in (19). Finally, G(∞)(Mv = m) = G̃VZ(Mv = m) = γ(1−γ)m−1

m!
.
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Note that G̃VZ-a.s. Mv ∈ N and that for any realization of Mv = m ∈ N we are back to

the finite symmetric Dirichlet GARP and thus the result follows from Theorem 3.

S.7 Software, Runtime, etc.

The results reported in this article are based on 10,000 MCMC iterations with the initial

5,000 iterations discarded as burn-in. The remaining samples were further thinned by an

interval 2. We programmed everything in R. The analyses are performed with a Lenovo

ThinkStation P330 with 16Gb RAM (Windows 10), using a R version 4.2.3. The MCMC

algorithm takes 29.8 minutes.
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