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ABSTRACT
Diversity optimization seeks to discover a set of solutions that elicit

diverse features. Prior work has proposed Novelty Search (NS),

which, given a current set of solutions, seeks to expand the set by

finding points in areas of low density in the feature space. How-

ever, to estimate density, NS relies on a heuristic that considers

the 𝑘-nearest neighbors of the search point in the feature space,

which yields a weaker stability guarantee. We propose Density

Descent Search (DDS), an algorithm that explores the feature space

via CMA-ES on a continuous density estimate of the feature space

that also provides a stronger stability guarantee. We experiment

with DDS and two density estimation methods: kernel density esti-

mation (KDE) and continuous normalizing flow (CNF). On several

standard diversity optimization benchmarks, DDS outperforms NS,

the recently proposed MAP-Annealing algorithm, and other state-

of-the-art baselines. Additionally, we prove that DDS with KDE

provides stronger stability guarantees than NS, making it more

suitable for adaptive optimizers. Furthermore, we prove that NS is

a special case of DDS that descends a KDE of the feature space.

CCS CONCEPTS
•Computingmethodologies→ Searchmethodologies; •Math-
ematics of computing→ Density estimation.
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1 INTRODUCTION
We study how stable, continuous approximations of density can

accelerate the search for diverse solutions to optimization problems.
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Figure 1: We propose density descent search (DDS) for solv-
ing diversity optimization (DO) problems. DDS first draws
solutions from a GaussianN(𝝁, 𝚺). After computing the solu-
tion features (in this case, the final position of the robot in a
maze), DDS ranks solutions by density. This density ranking
is passed to CMA-ES, which updates the search distribution
to sample solutions with lower density on the next iteration.
Concurrently, solutions are stored in a buffer that forms
the basis for density estimates, and in a passive archive that
tracks all discovered solutions.

There is a range of applications where searching directly for

behavioral diversity results in finding suboptimal solutions that act

as “stepping stones,” mitigating convergence to local optima [16].

A classic example is the problem of training an agent to reach a

target position in a deceptive maze [29]. There, directly minimizing

the distance between the agent’s final position and a target goal

causes the agent to get stuck. On the other hand, the problem can

be solved by ignoring the objective of directly reaching the target

and instead attempting to find a diverse range of agents, each of

which reaches a different region of the maze.

We refer to the problem of finding a range of solutions that are di-

verse with respect to prespecified features as diversity optimization

(DO). We characterize DO as a special instance of quality diversity

optimization (QD) [37]. Like DO, QD seeks a diverse set of solutions,

but QD also considers an objective function that the solutions must

optimize. For instance, in deceptive maze, one could add an energy

consumption objective so that the goal is to find a set of agents that

minimize energy consumption while moving to diverse regions in
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the maze. Thus, DO is an instance of QD where the objective value

of all solutions is constant.

In DO and QD, discovering solutions with new features is chal-

lenging because the mapping from solutions to features is complex

and non-invertible [5]. For example, in maze exploration, it is not

known a priori how to produce an agent that travels to a given

(𝑥,𝑦) position.
A classic method applied to DO is Novelty Search (NS) [29].

NS retains an archive of previously found individual solutions. It

aims to expand the archive by finding solutions that are far in the

feature space from existing solutions in the archive. Specifically,

NS optimizes for solutions with a high novelty score, where novelty
score is the average distance in feature space from a solution to its

𝑘-nearest neighbors in the archive.

While the novelty score is framed in terms of distance, we study

its interpretation as an approximation of density [5], where density

is directly proportional to the number of solutions in a region

of feature space. A high novelty score indicates that a solution’s

features are far from those of its 𝑘-nearest neighbors in the archive,

i.e., it is located in an area of the feature space with low density.

An alternative approach to DO is to apply general-purpose QD

algorithms and assume that all solutions in the search space have

identical quality, i.e., equal to some constant. Covariance Matrix

Adaptation MAP-Annealing (CMA-MAE) [12] is a state-of-the-art

QD algorithm that optimizes for archive improvement with the

CMA-ES [23] optimizer. CMA-MAE retains a discrete archive of

solutions in feature space. When applied to solve a DO problem

by ignoring the solution quality, this archive naturally becomes a

histogram that represents the distribution of solutions in feature

space, with lower values of the histogram indicating lower density.

CMA-MAE then performs density descent on this histogram, where

it continually seeks to fill the areas of low density.

We emphasize that, to efficiently explore feature space, both NS

and CMA-MAE leverage density estimates of solutions in feature

space — NS is guided by novelty score, while CMA-MAE reads

from its histogram. However, both of these density estimates have

drawbacks. On one hand, the novelty score in NS is continuous
but provides a weaker stability guarantee, meaning that its value

can change arbitrarily when new features are discovered. On the

other hand, the histogram in CMA-MAE provides a stronger stabil-
ity guarantee but utilizes a discrete approximation that gives flat

gradient signals on its bins.

Our key insight is to overcome the drawbacks of current density
estimation methods in DO by introducing continuous, stable approxi-
mations of the solution density in feature space. This insight results in
the following contributions: (1) We propose density descent search

(DDS; Fig. 1), an algorithm that queries continuous density esti-

mates to guide an optimizer, in our case CMA-ES, to search for

solutions that are diverse in the feature space (Sec. 4). We propose

two variants of DDS: DDS-KDE leverages non-parametric Kernel

Density Estimation (KDE) [4], while DDS-CNF learns the under-

lying density function with continuous normalizing flow [31]. (2)

We show that, when combined with a ranking-based optimizer like

CMA-ES, NS reduces to a special case of DDS-KDE (Sec. 5). (3) We

prove that KDE provides stronger algorithmic stability guarantees

than novelty score (Sec. 5). (4) We demonstrate that our DDS algo-

rithms outperform prior work on 3 out of 4 domains (Sec. 6). (5)

We show that our algorithms perform well on multi-dimensional

feature spaces, which currently present significant challenges to

QD and DO algorithms.

2 PROBLEM DEFINITION
Quality Diversity Optimization (QD). For solution 𝜽 ∈ R𝑛 , QD
assumes an objective function 𝑓 : R𝑛 → R and𝑚 feature functions,
jointly represented as a vector-valued function 𝝓 : R𝑛 → R𝑚 . We

refer to the image of 𝝓 as the feature space 𝑆 . The goal of QD is

to find, for each 𝒔 ∈ 𝑆 , a solution 𝜽 where 𝑓 (𝜽 ) is maximized and

𝝓 (𝜽 ) = 𝒔.
Diversity Optimization (DO). DO is a special case of QD where

the objective is constant, i.e., 𝑓 (𝜽 ) = 𝐶 . The goal of DO is to find,

for each 𝒔 ∈ 𝑆 , a solution 𝜽 where 𝝓 (𝜽 ) = 𝒔.

3 BACKGROUND
3.1 QD and DO Algorithms
Various methods address the QD and DO problems by relaxing them

to the problem of finding an archive (i.e., a set) A of representative

solutions. The structure of the archive defines two major families

of algorithms: those based on Novelty Search and those based on

MAP-Elites.

Novelty Search (NS). The key insight of NS [29] is to discover

diverse solutions in feature space by optimizing for solutions that

are “novel” with respect to a current set of solutions. Given a set of

features X ⊆ R𝑚 , the novelty of a solution 𝜽 ∈ R𝑛 and its features

𝒚 = 𝝓 (𝜽 ) relative to X is encapsulated in its novelty score, denoted
𝜌 (𝒚;X):

𝜌 (𝒚;X) = 1

𝑘

∑︁
𝒚′∈𝑁𝑘 (𝒚;X)

dist(𝒚,𝒚′) (1)

where 𝑁𝑘 (𝒚;X) is the set of 𝑘-nearest neighbors to𝒚 in X, and dist
is a distance function — henceforth, we consider dist to be some

norm ∥·∥.
NS maintains an archive A of unbounded size and generates

solutions with an underlying optimizer, traditionally a genetic algo-

rithm. For each solution 𝜽 produced by the optimizer, NS computes

the novelty score with respect to the current archive, i.e., 𝜌 (𝒚;A).
If 𝜌 (𝒚;A) exceeds an acceptance threshold, then (𝜽 ,𝒚) is added to

the archive. In this manner, NS gradually adds novel solutions to

the archive and explores the feature space.

Importantly, the novelty score is non-stationary in that the nov-

elty of a solution 𝜽 changes as the archive A is updated. We prove

in Sec. 5 that the degree of non-stationarity in novelty score is

unbounded for general feature spaces, resulting in significant opti-

mization challenges for adaptive optimizers such as CMA-ES.

While we consider general optimization domains in this work,

we note that prior works [6] have specialized NS for reinforcement

learning domains, particularly the case when no feature function is

assumed [8, 36].

Multi-dimensionalArchive of Phenotypic Elites (MAP-Elites).
While NS was developed for DO, MAP-Elites [33] was developed

for the general QD setting. Compared to the unstructured archive

of NS, MAP-Elites divides the feature space into a predefined tes-

sellation 𝑇 : R𝑚 → {1, . . . , 𝑙}, where 𝑒 ∈ {1, . . . , 𝑙} is a cell in the

tessellation and 𝑙 is the total number of cells. Given a cell 𝑒 , the
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MAP-Elites archive associates a solution 𝜽 with cell 𝑒 if and only if

the solution’s features are contained in 𝑒 , i.e., 𝑇 (𝝓 (𝜽 )) = 𝑒 . More-

over, MAP-Elites stores at most one solution for every cell in the

tessellation.

During a QD search, MAP-Elites first draws solutions from a

predefined distribution, e.g., a Gaussian, and inserts the solutions

into the archive. Subsequently, MAP-Elites generates and inserts

new solutions by mutating existing archive solutions with a genetic

operator, such as the Iso+LineDD operator [47]. Importantly, when

solutions inserted into the archive land in the same tessellation cell,

MAP-Elites only retains the solution with the greatest objective

value. Thus, MAP-Elites gradually collects high-performing solu-

tions that have diverse features. We apply MAP-Elites to DO by

setting a constant objective 𝑓 (·) = 𝐶 over the solution space.

The choice of tessellation in MAP-Elites can significantly impact

scalability. The most common tessellation is a grid tessellation [33],

which divides the feature space into equally-sized hyperrectan-

gles. In high-dimensional feature spaces, grid tessellations require

exponentially more memory due to the curse of dimensionality.

Thus, a common alternative is the centroidal Voronoi tessellation

(CVT) [46], which divides the feature space into 𝑙 evenly-sized

polytopes.

Covariance Matrix Adaptation Evolution Strategy (CMA-ES).
One recent line of QD algorithms has combined CMA-ES [23] with

MAP-Elites. CMA-ES is a state-of-the-art single-objective optimizer

that represents a population of solutions with a multivariate Gauss-

ian N(𝝁, 𝚺). Each iteration, CMA-ES draws 𝜆 solutions from the

Gaussian. Based on the rankings (rather than the raw objectives) of

the solutions, CMA-ES adapts the covariance matrix 𝚺 to regions

of higher-performing solutions. While CMA-ES is a derivative-free

optimizer, it has been shown to approximate a natural gradient [1].

Covariance Matrix Adaptation MAP-Elites (CMA-ME). The
first work to integrate CMA-ES with MAP-Elites was CMA-ME [14].

The key idea of CMA-ME is to optimize for archive improvement

with CMA-ES. Namely, in addition to a MAP-Elites-style archive,

CMA-ME maintains an instance of CMA-ES. The CMA-ES instance

samples solutions from a Gaussian, and the solutions are ranked

based on how much they improve the archive, e.g., solutions that

found new cells in the archive are ranked high, while those that

were not added at all are ranked low.With this improvement ranking,
CMA-ES adapts the Gaussian to sample solutions that will further

improve the archive. Note that in DO settings, since the objective

is a constant value, the improvement ranking places solutions that

filled a new cell ahead of solutions that did not add a new cell.

Covariance Matrix Adaptation MAP-Annealing (CMA-MAE).
One limitation of CMA-ME is that it focuses too much on exploring

for new cells in feature space rather than optimizing the objec-

tive [45]. CMA-MAE [12] addresses this problem by introducing

an archive learning rate 𝛼 . When 𝛼 = 1, CMA-MAE maintains the

same exploration behavior as CMA-ME, but when 𝛼 = 0, CMA-

MAE focuses solely on optimizing the objective, like CMA-ES. For

0 < 𝛼 < 1, CMA-MAE blends between these two extremes, enabling

it to both explore feature space and optimize the objective.

In DO settings, where the objective is constant (𝑓 (·) = 𝐶), CMA-

MAE naturally performs density descent [12]. Intuitively, the archive
becomes a histogram that represents howmany solutions have been

found in each region of feature space. Lower values of the histogram

indicate lower density of solutions, i.e., if a histogram bin has a low

value, few solutions have been discovered in that region of feature

space. CMA-MAE then seeks to descend the histogram by searching

for solutions that fill the low-valued histogram bins.

3.2 Density Estimation
We consider two density estimation methods: Kernel Density Esti-

mation and Continuous Normalizing Flows.

Kernel Density Estimation (KDE). KDE is a non-parametric den-

sity estimation method that does not make any assumptions on the

underlying probability density distribution from which samples are

drawn [4]. Given a set of features X ⊆ R𝑚 , bandwidth parameter

ℎ, and kernel function 𝐾 (·), KDE computes the density function

𝐷̂ : R𝑚 → R for a given feature 𝒚 ∈ R𝑚 as:

𝐷̂ℎ (𝒚;X) =
1

|X|ℎ
∑︁
𝒚′∈X

𝐾

(
∥𝒚 −𝒚′∥

ℎ

)
(2)

Prior work has thoroughly studied the problem of selecting band-

width that accurately estimate the underlying density function [3,

40, 42]. While accurate density estimation is important for KDE, we

show in Theorem 5.2 that larger bandwidth results in more stable

density estimates (albeit at the cost of accuracy), which is beneficial

to the proposed algorithms in Sec. 4.

When optimizing a density estimate (e.g., with gradient descent),

KDEs have several advantages over histograms. First, the shape

of a histogram depends on its bin size [48]. Second, the binning

procedure leads to a discontinuous optimization landscape and flat

gradient signals inside each bin [48]. In contrast, KDEs produce a

smooth, continuous density function based on the location of the

samples in the underlying distribution [4].

Continuous Normalizing Flow (CNF). CNF [31] is a generative
modeling method that constructs a diffusion path between a simple

distribution (e.g., a Gaussian distribution) and an unknown distri-

bution. The diffusion path describes a mapping from a point on

the simple distribution to a corresponding point on the unknown

distribution such that their probability densities are roughly equal.

CNFs enable sampling from probability distributions where direct

sampling is difficult (e.g., distributions of images). This is accom-

plished by sampling from the simple distribution and transforming

the sample via the learned diffusion path of the CNF. However, we

utilize CNF to estimate the density of feature space for our proposed

algorithms in Sec. 4.

4 DENSITY DESCENT SEARCH
We present Density Descent Search (DDS), a DO algorithm that

efficiently explores the feature space by leveraging continuous den-

sity estimates. DDS maintains a buffer of features B that represents

the distribution of features discovered so far. Based on this buffer,

DDS models a density estimation of the feature distribution, and

by querying this density estimate, DDS guides an adaptive opti-

mizer to discover solutions in less-dense areas of feature space. As

it searches for such solutions, DDS expands the discovered set of

features. We provide an overview of DDS in Fig. 1 and describe the

components of DDS below.

Density Estimation. The core of DDS is its representation of

feature space density. We propose two variants of DDS that differ in
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their density representation. The first variant, DDS-KDE, represents

density with KDE. With the KDE, we compute density via Eq. 2,

with X set to the buffer of features B.
The second variant, DDS-CNF, estimates the density in feature

space by learning a CNF between the standard normal distribution

N(0, 𝑰 ) and the observed feature space distribution. Similar to DDS-

KDE, the feature space distribution is represented by the buffer B.
We compute a density estimate at any location in the feature space

by integrating an ordinary differential equation [31]. Applying

techniques from prior work [31], we represent the CNF with a

neural network, and on each iteration, we finetune the network on

the new distribution of features contained in the buffer.

KDE and CNF differ in how easily their smoothness can be

controlled. On one hand, the shape of the KDE can be controlled

with the bandwidth hyperparameter. Higher bandwidth leads to

a smoother density estimate but conceals modes of the true den-

sity function, as illustrated in Fig. 2a. On the other hand, while

CNF does not require selecting a bandwidth hyperparameter, the

smoothness of the density estimation cannot be easily controlled,

which undermines the performance of the algorithm (Sec. 6.3). We

discuss the impacts that the smoothness of the density estimate has

on DDS in Sec. 5.

Feature Buffer. To provide the basis for density estimates in fea-

ture space, DDS maintains a buffer B that stores the features of

sampled solutions (line 4). This buffer represents the observed distri-

bution of the feature space and is updated every time new solutions

and features are discovered. In theory, the buffer can have infinite

capacity, storing every feature ever encountered. In practice, the

buffer can only retain a finite number of features due to computa-

tion and memory limitations. To decide which features to retain in

the buffer, we manage the buffer with an optimal reservoir sampling

algorithm [30]. This algorithm updates the buffer with online sam-

ples that accurately represent the distribution of features discovered

so far by DDS (line 6).

Optimizer. DDS guides an adaptive optimizer to discover solu-

tions in low-density regions of the feature space. Examples of such

optimizers include xNES [17] and Adam [26]. We select CMA-ES

as the underlying optimizer due to its reputation as a state-of-

the-art optimizer [23] and its high performance in existing QD

algorithms [11, 12, 14].

Passive Archive. Following prior work [38], to track how much of

the feature space has been explored, DDS inserts all discovered solu-

tions and features into a passive MAP-Elites-style (Sec. 3) archiveA.

While DDS itself only uses the archive to record solutions and fea-

tures, the archive is useful when computing metrics in experiments

(Sec. 6.1).

Summary. Algorithm 1 shows how the components of DDS come

together. DDS begins by initializing its various components (line 2-

4). During the main loop (line 5), DDS samples solutions with the

underlying optimizer (line 8). Since our optimizer is CMA-ES, sam-

pling consists of drawing from a multivariate Gaussian N(𝝁, 𝚺).
Subsequently, DDS computes the features of the solutions (line 9)

and estimates their feature space density (line 10). After sampling

solutions, DDS updates its various components. For instance, in

DDS-KDE, the density update (line 12) consists of replacing the

feature buffer, and in DDS-CNF, the update involves fine-tuning

the neural network on the feature buffer. Furthermore, solutions

Algorithm 1: Density Descent Search (DDS)

1 DDS (𝝓 (·), 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑏, 𝑁 , 𝜆, 𝝁0, 𝜎)
Input: Feature function 𝝓 (·), density estimator object

𝑑𝑒𝑛𝑠𝑖𝑡𝑦, buffer size 𝑏, number of iterations 𝑁 ,

batch size 𝜆, initial solution 𝝁0, and initial step

size 𝜎

Result: Generates 𝑁 · 𝜆 solutions, storing a
representative subset of them in a passive

archive A.

2 Initialize CMA-ES search point 𝝁 := 𝝁0, search direction

𝚺 = 𝜎𝑰 , and internal parameters 𝒑
3 Initialize empty archive A
4 Initialize empty buffer B of size 𝑏

5 for 𝑖𝑡𝑒𝑟 ← 1 to 𝑁 do
6 Update buffer B with 𝝓

1..𝜆 via reservoir sampling

7 for 𝑖 ← 1 to 𝜆 do
8 𝜽𝑖 ∼ N(𝝁, 𝚺)
9 𝝓𝑖 ← 𝝓 (𝜽𝑖 )

10 𝐷𝑖 ← 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝝓𝑖 )
11 Add (𝜽𝑖 , 𝝓𝑖 ) to archive A
12 Update 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 with the new buffer B
13 Rank 𝜽𝑖 in ascending order by 𝐷𝑖

14 Adapt CMA-ES parameters 𝝁, 𝚺,𝒑 based on density

ranking 𝐷𝑖

with lower density are ranked first on line 13, causing CMA-ES to

adapt (line 14) towards less-dense regions of the feature space.

5 CONNECTION BETWEEN NOVELTY
SEARCH AND KERNEL DENSITY
ESTIMATES

We provide theoretical insight into the connection between NS

and DDS-KDE and delineate the advantage of KDE over novelty

score. KDE and novelty score are non-stationary since they change

as more solutions are discovered by their respective optimizers.

However, the magnitude of non-stationarity is potentially different

in KDE and novelty score (Theorem 5.2, 5.3). Furthermore, when𝑘 ≥
|B| in the 𝑘-nearest neighbor calculation for novelty score, novelty

search becomes a special case of DDS-KDE (Theorem 5.4). Finally,

we conjecture that any meaningful density estimator utilizing a

point’s distance to its 𝑘-nearest neighbors will incur similar weak

stability guarantees as novelty score (Conjecture 5.5). We include

all proofs in Appendix E.

Stability Under Non-stationarity. DO algorithms such as NS,

DDS, and CMA-MAE gradually learn a non-stationary density rep-

resentation (e.g., KDE or histogram) as they explore the feature

space. However, drastic changes in the representation present sig-

nificant challenges for adaptive optimizers, such as Adam [26] and

CMA-ES. If the density representation changes drastically every

iteration, it would be impossible for adaptive optimizers to properly

adapt its parameters to optimize the density function.

To characterize the extent of change in the density estimate, we

appeal to the notion of uniform stability [24], defined as follows:
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Definition 5.1. Let a function 𝐹 (𝒙 ;B) : R𝑑 → R be parameter-
ized by a set B ⊆ R𝑑 . We say that 𝐹 is 𝜖-uniformly stable if for all
B,B′ ⊆ R𝑑 , where B and B′ differ by at most one element, we have

sup

𝒙∈R𝑑

��𝐹 (𝒙 ;B) − 𝐹 (𝒙 ;B′)�� ≤ 𝜖 (3)

We note that uniform stability has close connections to influ-

ence functions in statistics, which measure how much an estimator

deviates from the ground truth when given a subset of the data [7].

In this interpretation, uniform stability is an upper-bound of the

(empirical) influence function.

We prove that, for KDE, the higher the size of its feature buffer

and bandwidth, the stronger the uniform stability guarantee.

Theorem 5.2. A kernel density estimate 𝐷̂ℎ (𝒙 ;B) managed with
reservoir sampling, such that features in the buffer are exchanged one
at a time, is 1

| B |ℎ -uniformly stable, where ℎ is the bandwidth.

Higher bandwidth makes the function more stationary and thus

more suited for adaptive optimizers. However, higher bandwidth

also leads to over-smoothing of the density estimate, which conceals

modes of the true density function [4] (Fig. 2a). Thus, selecting an

optimal bandwidth for DDS requires a fine balance between the

accuracy and uniform stability of the KDE.

In contrast, novelty score becomes less uniformly stable as the

diameter of the feature space𝑊 increases:

Theorem 5.3. Novelty score 𝜌 (𝒙 ;B) is 𝑊
𝑘
-uniformly stable, where

𝑘 is the nearest neighbors parameter in novelty score and 𝑊 =

max𝒔1,𝒔2∈𝑆 ∥𝒔1 − 𝒔2∥ is the diameter of the feature space 𝑆 .

Therefore, for unbounded feature spaces, the uniform stability

of novelty score is also unbounded, and for bounded feature spaces,

novelty score has stronger uniform stability guarantees when 𝑘 is

larger.

When the feature space is bounded, as in our experiments, KDE

has a stronger stability guarantee than novelty score for bandwidth

ℎ ≥ 𝑘
| B | . Following this insight, we select a bandwidth satisfying

this inequality with the empirical experiments in Appendix B. Our

theoretical results are corroborated by our experiments in Sec. 6,

which demonstrate that DDS-KDE outperforms NS in all domains

on all metrics.

Equivalence of NS and DDS-KDE. We observe that, when ℎ = 1

and as 𝑘 → |B|, the uniform stability upper-bound of novelty score

approaches that of KDE. We prove in Theorem 5.4 that when all

points are considered in the novelty score computation (i.e., let

𝑘 = ∞), NS is a special case of DDS-KDE under ranking-based opti-

mizers such as CMA-ES. Specifically, we demonstrate that under

these conditions, the ranking of solutions based on their novelty

score is identical to the ranking based on their kernel density esti-

mate.

Theorem 5.4. Let B ⊆ R𝑚 be a set of features. Consider the
rankings 𝜋NS and 𝜋KDE on another set of features {𝝓1, . . . , 𝝓𝑚} ⊆ R𝑚
where 𝝓𝑖 = 𝝓 (𝜽𝑖 ). We define the rankings as follows: 𝜋NS (𝑖) ≥
𝜋NS ( 𝑗) ⇐⇒ 𝜌 (𝝓𝑖 ;B) ≥ 𝜌 (𝝓 𝑗 ;X) and 𝜋KDE (𝑖) ≥ 𝜋KDE ( 𝑗) ⇐⇒
𝐷̂ (𝝓𝑖 ;B) ≤ 𝐷̂ (𝝓 𝑗 ;B). We show that 𝜋𝑁𝑆 = 𝜋𝐾𝐷𝐸 , when NS has
𝑘 = ∞ (or, equivalently, 𝑘 = |B|) and KDE has triangular kernel
𝐾 (𝑢) = 1 − |𝑢 | with support over the entire feature space 𝑆 .

Stability of 𝒌-NN. We conjecture that only considering 𝑘-nearest

neighbors in the density representation, for 𝑘 < |B|, will inevitably
result in poor uniform stability bounds. Notice that the maximum

distance between any two features is the diameter of the feature

space,𝑊 . Thus, when a new feature replaces a former 𝑘-nearest

neighbors of 𝒙 , the total distance between a feature 𝒙 to its𝑘-nearest

neighbors can change by𝑊 in the worst case.

Conjecture 5.5. Let X ⊆ R𝑚 and 𝐷 : R𝑚 → R be a density
estimator. If 𝐷 (𝒙 ;X) for 𝒙 ∈ R𝑚 is computed based on the distance to
its 𝑘-nearest neighbors of 𝒙 , then 𝐷 (𝒙 ;X) is 𝑂 (𝑊 )-uniformly stable
for 𝑘 < |B|.

A proof of this conjecture would imply that density estimators

based on 𝑘-nearest neighbor metric have unbounded uniform stabil-

ity in unbounded feature spaces, for 𝑘 < |B|. Thus, the potential for
rapid changes in the optimization landscape makes such estimators

incompatible with adaptive optimizers.

6 EXPERIMENTS
We compare the performance of DDS-KDE and DDS-CNF with

the QD algorithms MAP-Elites (line), CMA-ME, and CMA-MAE,

and with NS using CMA-ES as the underlying optimizer. MAP-

Elites (line) refers to the implementation of MAP-Elites with the

Iso+LineDD operator [47]. All algorithms are implemented with

pyribs [44].

Our experiments include canonical benchmark domains fromQD

and DO: Linear Projection [14], Arm Repertoire [47], and Deceptive

Maze [29]. As discussed in Sec. 2, we convert QD domains into DO

domains by setting the objective to be constant, effectively remov-

ing the importance of solution quality. For Deceptive Maze, we use

the implementation in Kheperax [21]. Furthermore, to address the

challenges posed by high-dimensional feature spaces, we introduce

a new domain, Multi-feature Linear Projection, that generalizes

Linear Projection to high-dimensional feature spaces.

All experiments run on a 128-core workstation with an NVIDIA

RTX A6000 GPU. While all algorithms are single-threaded, we use

the GPU for training the CNF in DDS-CNF and for evaluating the

Deceptive Maze domain.

6.1 Experimental Design
Independent Variable. In each domain, we conduct a between-

groups study with the algorithm as the independent variable.

Dependent Variables.We compute the archive coverage as the

number of occupied cells in the archive divided by the total num-

ber of cells. To compare the coverage of tessellation-based algo-

rithms (CMA-MAE, CMA-ME, and MAP-Elites) with that of non-

tessellation-based algorithms (DDS-KDE, DDS-CNF, and NS), we

track the coverage of all algorithms on a passive archive A tessel-

lated by a 100 × 100 grid. For the high-dimensional feature space

experiment, we track coverage with a centroidal Voronoi tessella-

tion with 10,000 cells [46].

Following prior work [18], we also assess the ability of each algo-

rithm to uniformly explore the feature space. Thus, we measure the

cross-entropy between a uniform distribution and the distribution

of sampled features. Let 𝑁𝑒 be the total times throughout the entire

search that solutions were discovered in cell 𝑒 ∈ {1, . . . , 𝑙} in the
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passive archive, and 𝑁
total

=
∑𝑙
𝑒=1 𝑁𝑒 . The cross-entropy score is

defined as:

CE = −
𝑙∑︁
𝑒=1

1

𝑙
log

(
𝑁𝑒

𝑁
total

)
(4)

CE achieves its minimum value when 𝑁𝑒 is uniformly distributed

across all cells 𝑒 ∈ {1, . . . , 𝑙}. For all passive archives in our experi-

ments, this minimum is 9.21 for 𝑙 = 10,000 cells.

6.2 Domain Details
Linear Projection (LP). LP is a QD domain where 𝝓 induces high

distortion by mapping an 𝑛-dimensional solution space to a 2D

feature space [14]. A harsh penalty is applied outside the bounds

of the feature space to hinder exploration near the bounds. The

feature function 𝝓 : R𝑛 →
[
−5.12 · 𝑛

2
, 5.12 · 𝑛

2

]
2

is defined as:

𝝓 (𝜽 ) = ©­«
𝑛
2∑︁
𝑖=1

clip(𝜃𝑖 ),
𝑛∑︁

𝑖=𝑛
2
+1

clip(𝜃𝑖 )
ª®¬ (5)

clip(𝜃𝑖 ) =
{
𝜃𝑖 if |𝜃𝑖 | ≤ 5.12

5.12/𝜃𝑖 otherwise

(6)

where 𝜃𝑖 is the 𝑖th component of 𝜽 , and we assume that𝑛 is divisible

by 2. 𝝓 (𝜽 ) applies clip(·) to each 𝜃𝑖 and sums the two halves of

𝜽 . Since clip(𝜃𝑖 ) restricts 𝜃𝑖 to the interval [−5.12, 5.12], 𝝓 (𝜽 ) is
bounded by the closed interval

[
−5.12 · 𝑛

2
, 5.12 · 𝑛

2

]
2

.

For DO experiments, we set the objective function 𝑓 (𝜽 ) = 1.

Following prior work [11, 12], we let the solution dimension be

𝑛 = 100.

Arm Repertoire. The goal of Arm Repertoire [10, 47] is to search

for a diverse collection of arm positions for a planar robotic arm

with 𝑛 revolving joints. In this domain, 𝜽 ∈ [−𝜋, 𝜋]𝑛 represents

the angles of the 𝑛 joints, and 𝝓 (𝜽 ) computes the (𝑥,𝑦) position of

the arm’s end-effector using forward kinematics. While all other

domains in this paper have a maximum of 100% coverage, Arm

Repertoire has a maximum coverage of 80.24% when using a 100 ×
100 grid archive [12], since the arm can only move in a circle of

radius 𝑛. Similar to LP, we set 𝑓 (𝜽 ) = 1 and 𝑛 = 100.

Deceptive Maze. Deceptive Maze is a DO domain that challenges

the algorithm to discover a diverse set of final positions for robots

navigating a maze (Fig. 2b) [29]. In this domain, 𝜽 parameterizes

the robot’s neural network controller. 𝝓 (𝜽 ) is the final position of

the robot after evaluating its path in the maze. As a DO domain, this

has no objective function. In our experiments, the neural network

is a MLP with 𝑛 = 66 parameters.

Multi-feature Linear Projection (Multi-feature LP). We in-

troduce a generalized version of LP that scales to𝑚-dimensional

feature spaces. Assuming that 𝑛 is divisible by𝑚, let 𝑟 = 𝑛
𝑚 . The

feature function 𝝓 : R𝑛 → [−5.12 · 𝑟, 5.12 · 𝑟 ]𝑚 is defined as

𝝓 (𝜽 ) = ©­«
( 𝑗+1)𝑟∑︁
𝑖=𝑗𝑟+1

clip(𝜃𝑖 ) : 𝑗 ∈ {0, . . . ,𝑚 − 1}ª®¬ (7)

When𝑚 = 2, this is equivalent to LP definition in Eq. 5. Our exper-

iments use 𝑛 = 100 and𝑚 = 10.

(a) The effect of the bandwidth
ℎ on a one-dimensional KDE.
Red dots represent the data,
and black lines depict the KDE.
When ℎ is too small, the KDE
reveals many misleading local
maxima. When ℎ is too large, the
KDE conceals modes from the
underlying distribution.

(b) The layout in the deceptive
maze domain. The red dot in-
dicates the start, and the green
dot indicates the goal. While
there is a goal, DO seeks to find
agents that reach every position
in the maze. Adapted from prior
work [29].

Figure 2

6.3 Analysis
Fig. 3 shows the mean coverage and cross-entropy over 10 trials.

In each domain, we conducted a one-way ANOVA to check if the

algorithms differed in their coverage and cross-entropy. Since all

ANOVAs were significant (𝑝 < 0.001), we followed up with pair-

wise comparisons via Tukey’s HSD test. We include full statistical

analysis in Appendix F.

Coverage.DDS-KDE and DDS-CNF outperform all baselines on LP,

Arm Repertoire, and Multi-feature LP. They exhibit no statistical

difference in performance with the best-performing algorithm on

DeceptiveMaze (CMA-MAE). Notably, DDS-KDE solves Arm Reper-

toire nearly perfectly, as the maximum coverage in the domain is

80.24%.

We attribute the high coverage of DDS-KDE and DDS-CNF on

these domains to the continuity of their density estimate, which

prevents DDS-KDE from converging prematurely. For example, on

LP, our algorithms discover more solutions near the edges of the

feature space than CMA-MAE (Appendix G). The passive archive

maintained by CMA-MAE converges as all the solutions fall into

previously discovered cells [14]. In contrast, the continuity of our

density estimate and the online buffer updates facilitate DDS al-

gorithms to achieve slow but continual progress in exploring the

feature space (Fig. 3, LP and Arm Repertoire). This is because the

shape of the continuous density estimate always changes slightly

after each iteration of the algorithm.

For multi-feature LP, we observe that algorithms leveraging

continuous representations of the feature space, i.e., DDS and NS,

explore the feature space much faster than other algorithms driven

by discrete feature space representations, e.g., CMA-MAE (Fig. 3).

This is because CMA-MAE is optimizing on a centroidal Voronoi

tessellation with 10,000 cells, where each cell has significantly more

volume compared to that of a 100 × 100 grid due to the increased

dimensionality of the feature space. Hence, more solutions map to

the same cells, making it more difficult to find solutions outside of

previously explored cells.
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DDS-KDE DDS-CNF NS CMA-MAE CMA-ME MAP-Elites (line)

LP Arm Repertoire Deceptive Maze Multi-feature LP

Coverage Cross-Entropy Coverage Cross-Entropy Coverage Cross-Entropy Coverage Cross-Entropy

DDS-KDE 67.67 ±2.13% 17.57 ±0.41 80.22 ±0.01% 14.14 ±0.02 94.93 ±0.84% 11.84 ±0.21 50.22 ±0.45% 22.20 ±0.09
DDS-CNF 63.65 ±1.38% 18.50 ±0.29 79.82 ±0.19% 13.48 ±0.12 85.17 ±2.28% 14.01 ±0.38 16.57 ±0.22% 28.07 ±0.03

NS 22.96 ±1.59% 24.78 ±0.06 78.67 ±0.23% 15.32 ±0.07 77.70 ±2.47% 15.78 ±0.50 10.36 ±0.16% 28.39 ±0.03

CMA-MAE 56.47 ±1.06% 19.09 ±0.23 77.77 ±0.10% 13.14 ±0.01 98.83 ±0.18% 10.55 ±0.06 11.68 ±0.37% 29.06 ±0.06

CMA-ME 42.90 ±0.25% 22.45 ±0.05 39.29 ±0.24% 20.13 ±0.09 79.97 ±2.17% 15.33 ±0.39 0.56 ±0.14% 28.10 ±0.28

MAP-Elites (line) 42.30 ±0.31% 22.43 ±0.07 74.62 ±0.07% 13.60 ±0.01 90.32 ±0.87% 13.28 ±0.16 6.28 ±0.34% 29.61 ±0.02

Figure 3: Coverage and cross-entropy (CE) after 5,000 iterations of each algorithm in all domains. We report the mean over 10
trials, with error bars showing the standard error of the mean. Higher coverage and lower cross-entropy are better.

A similar phenomenon was observed in prior work when increas-

ing the dimensionality of the solution space in the LP domain [12].

Increased solution dimensionality more heavily distorts the feature

mapping and, similarly, causes most solutions to fall in the same

cells of the feature space. Consequently, the LP domain becomes

exceptionally challenging for QD algorithms working with a tessel-

lation (like CMA-MAE), as there is insufficient signal to drive the

algorithm towards the boundaries of the feature space.

DDS-KDE circumvents this limitation of tessellations with its

continuous density estimation of the feature space.While in tesselation-

based algorithms, solutions will fall into the same cell, DDS-KDE

will retain the solutions in its buffer, which generates signal to drive

the search towards the feature space boundaries. Thus, DDS-KDE

is more resilient to the distortions of the feature mapping and can

better scale with the dimensionality of the feature space.

Cross-Entropy.DDS-KDE andDDS-CNF outperform1
all baselines

in LP, with the exception of DDS-CNF, whose performance is not

significantly different from CMA-MAE. On Arm Repertoire and

Deceptive Maze, DDS-KDE and DDS-CNF outperform NS. However,

while DDS-KDE is on par with CMA-MAE on Arm Repertoire ,

CMA-MAE outperforms DDS-KDE on Deceptive Maze and DDS-

CNF on both Arm Repertoire and Deceptive Maze. Finally, DDS-

KDE outperforms all algorithms on Multi-feature LP, while DDS-

CNF outperforms CMA-MAE and MAP-Elites (line).

We attribute the improved performance of CMA-MAE to the

nature of the cross-entropy metric. Cross-entropy is intended to

approximate the distributional similarity between the exploration of

1
Recall that lower CE is better as it indicates a more uniform exploration of the feature

space (Sec. 6.1)

the feature space and the uniform distribution. CMA-MAE directly

optimizes a passive archive with uniform tessellation, unlike DDS

andNS, which are agnostic to the passive archive. This experimental

setup naturally favors CMA-MAE with respect to the cross-entropy

metric.

DDS-KDE performs as well as DDS-CNF in terms of coverage

and cross-entropy across most domains. However, on Multi-feature

LP, DDS-KDE outperforms DDS-CNF on both metrics; on LP and

DeceptiveMaze, DDS-KDE outperforms DDS-CNF in terms of cross-

entropy.

We attribute the difference between the performance of DDS-

KDE and DDS-CNF to the bandwidth parameter in KDE, which

allows us to adjust the smoothness of the KDE (Fig. 2a). On the

other hand, CNF lacks explicit control over its smoothness. Thus,

while we adjust the smoothness of the KDE to improve performance

for DDS-KDE (Sec. 5), we can not apply the same techniques to

boost the performance of DDS-CNF.

7 LIMITATIONS AND FUTUREWORK
We introduce a new diversity optimization algorithm with two vari-

ants, DDS-KDE and DDS-CNF. We provide theoretical insight into

the connection between DDS-KDE and novelty search and show

that both DDS algorithms excel at discovering diverse solutions.

We envision several extensions to DDS. While we proposed

two DDS variants, DDS is a general method that can integrate

with a wide variety of distribution fitting techniques. DDS can be

combined with parametric estimators like mixture models [32] and

moment matching [22], as well as with non-parametric estimators

like vector quantization [27] and generative models [19]. In general,
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we believe that DDS will interface with any method that learns a

continuous density representation of the feature space.

For DDS-KDE, while we assumed a constant bandwidth, prior

work has adapted the bandwidth online [28] and varied the band-

width based on query location [43]. These methods could be applied

to secure tighter uniform stability bounds for the KDE, making fea-

ture space exploration more efficient.

A key limitation of our algorithms is their significant computa-

tional cost. Querying the KDE incurs a runtime of 𝑂 ( |B|), where
|B| is the buffer size, and fine-tuning the CNF is computationally

expensive due to backpropagation, even when accelerated on a

GPU. These issues could be mitigated by accelerating KDE compu-

tation [34, 49] and improving CNF training efficiency [25, 35].

We proposed a generalization of the standard linear projection

domain to higher dimensional feature spaces, and demonstrate

that DDS exhibits superior performance to existing algorithms.

Our results could be further strengthened by evaluating DDS’s

performance on more complex domains. For example, we could

evaluate the performance of DDS on locomotion tasks, where the

solutions are neural network controllers and the task is to control

a multi-pedal walker to move efficiently [39, 41].

Finally, we are excited to see how the underlying insight of DDS—

leveraging continuous density representations of the feature space—

can improve the exploration power of QD algorithms, especially in

high-dimensional feature spaces. Applying DDS to QDwill improve

its performance on applications such as scenario generation for

complex systems [13], generative design [15], damage recovery in

robotics [9], reinforcement learning [2], and procedural content

generation [20].

ACKNOWLEDGMENTS
The authors would like to thank the anonymous referees for their

valuable comments and helpful suggestions. This work was sup-

ported by the NSF NRI (#2024949), NSF GRFP (#DGE-1842487), NSF

CAREER (#2145077), and the NVIDIA Academic Hardware Grant.

REFERENCES
[1] Youhei Akimoto, Yuichi Nagata, Isao Ono, and Shigenobu Kobayashi. 2010. Bidi-

rectional relation between CMA evolution strategies and natural evolution strate-

gies. In International Conference on Parallel Problem Solving from Nature. Springer,
154–163.

[2] Sumeet Batra, Bryon Tjanaka, Matthew C Fontaine, Aleksei Petrenko, Stefanos

Nikolaidis, and Gaurav Sukhatme. 2023. Proximal Policy Gradient Arborescence

for Quality Diversity Reinforcement Learning. arXiv preprint arXiv:2305.13795
(2023).

[3] Adrian W. Bowman. 1984. An Alternative Method of Cross-Validation for the

Smoothing of Density Estimates. Biometrika 71, 2 (1984), 353–360. http://www.

jstor.org/stable/2336252

[4] Yen-Chi Chen. 2017. A tutorial on kernel density estimation and recent advances.

Biostatistics & Epidemiology 1, 1 (2017), 161–187.

[5] Alexandre Chenu, Nicolas Perrin-Gilbert, Stephane Doncieux, and Olivier

Sigaud. 2021. Selection-Expansion: A Unifying Framework for Motion-Planning

and Diversity Search Algorithms. In Artificial Neural Networks and Machine
Learning–ICANN 2021: 30th International Conference on Artificial Neural Net-
works, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part IV 30. Springer,
568–579.

[6] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth

Stanley, and Jeff Clune. 2018. Improving Exploration in Evolution Strategies

for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents.

In Advances in Neural Information Processing Systems, S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. Cur-

ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2018/file/

b1301141feffabac455e1f90a7de2054-Paper.pdf

[7] R Dennis Cook and Sanford Weisberg. 1980. Characterizations of an empirical

influence function for detecting influential cases in regression. Technometrics 22,
4 (1980), 495–508.

[8] Antoine Cully. 2019. Autonomous skill discovery with quality-diversity and unsu-

pervised descriptors. In Proceedings of the Genetic and Evolutionary Computation
Conference. 81–89.

[9] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. 2015.

Robots that can adapt like animals. Nature 521, 7553 (2015), 503–507.
[10] Antoine Cully and Yiannis Demiris. 2017. Quality and diversity optimization: A

unifying modular framework. IEEE Transactions on Evolutionary Computation 22,

2 (2017), 245–259.

[11] Matthew Fontaine and Stefanos Nikolaidis. 2021. Differentiable Quality Diversity.

Advances in Neural Information Processing Systems 34 (2021).
[12] Matthew Fontaine and Stefanos Nikolaidis. 2023. Covariance matrix adapta-

tion map-annealing. In Proceedings of the Genetic and Evolutionary Computation
Conference. 456–465.

[13] Matthew C Fontaine, Ya-Chuan Hsu, Yulun Zhang, Bryon Tjanaka, and Ste-

fanos Nikolaidis. 2021. On the importance of environments in human-robot

coordination. Proceedings of Robotics: Science and Systems 17 (2021).

[14] Matthew C Fontaine, Julian Togelius, Stefanos Nikolaidis, and Amy K Hoover.

2020. Covariance matrix adaptation for the rapid illumination of behavior space.

In Proceedings of the 2020 genetic and evolutionary computation conference. 94–102.
[15] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. 2018. Data-efficient

design exploration through surrogate-assisted illumination. Evolutionary compu-
tation 26, 3 (2018), 381–410.

[16] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. 2019. Are Quality

Diversity Algorithms Better at Generating Stepping Stones than Objective-Based

Search?. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion (Prague, Czech Republic) (GECCO ’19). Association for Comput-

ing Machinery, New York, NY, USA, 115–116. https://doi.org/10.1145/3319619.

3321897

[17] Tobias Glasmachers, Tom Schaul, Sun Yi, DaanWierstra, and Jürgen Schmidhuber.

2010. Exponential natural evolution strategies. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation. 393–400.

[18] Jorge Gomes, Pedro Mariano, and Anders Lyhne Christensen. 2015. Devising

Effective Novelty Search Algorithms: A Comprehensive Empirical Study. In Pro-
ceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
(Madrid, Spain) (GECCO ’15). Association for Computing Machinery, New York,

NY, USA, 943–950. https://doi.org/10.1145/2739480.2754736

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial

networks. Commun. ACM 63, 11 (2020), 139–144.

[20] Daniele Gravina, Ahmed Khalifa, Antonios Liapis, Julian Togelius, and Georgios N

Yannakakis. 2019. Procedural content generation through quality diversity. In

2019 IEEE Conference on Games (CoG). IEEE, 1–8.
[21] Luca Grillotti and Antoine Cully. 2023. Kheperax: A Lightweight JAX-Based

Robot Control Environment for Benchmarking Quality-Diversity Algorithms. In

Proceedings of the Companion Conference on Genetic and Evolutionary Computation
(Lisbon, Portugal) (GECCO ’23 Companion). Association for Computing Machin-

ery, New York, NY, USA, 2163–2165. https://doi.org/10.1145/3583133.3596387

[22] Yanjun Han, Jiantao Jiao, and Tsachy Weissman. 2018. Local moment matching:

A unified methodology for symmetric functional estimation and distribution

estimation under wasserstein distance. In Conference On Learning Theory. PMLR,

3189–3221.

[23] Nikolaus Hansen. 2016. The CMA Evolution Strategy: A Tutorial. arXiv preprint
arXiv:1604.00772 (2016).

[24] Moritz Hardt, Ben Recht, and Yoram Singer. 2016. Train faster, generalize better:

Stability of stochastic gradient descent. In International conference on machine
learning. PMLR, 1225–1234.

[25] Han-Hsien Huang and Mi-Yen Yeh. 2021. Accelerating continuous normaliz-

ing flow with trajectory polynomial regularization. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35. 7832–7839.

[26] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Op-

timization. In 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Yoshua Bengio and Yann LeCun (Eds.).

http://arxiv.org/abs/1412.6980

[27] Teuvo Kohonen. 1990. Improved versions of learning vector quantization. In

1990 ijcnn international joint conference on Neural networks. IEEE, 545–550.
[28] Matej Kristan, Aleš Leonardis, and Danijel Skočaj. 2011. Multivariate online

kernel density estimation with Gaussian kernels. Pattern Recognition 44, 10

(2011), 2630–2642. https://doi.org/10.1016/j.patcog.2011.03.019 Semi-Supervised

Learning for Visual Content Analysis and Understanding.

[29] Joel Lehman and Kenneth O Stanley. 2011. Abandoning objectives: Evolution

through the search for novelty alone. Evolutionary computation 19, 2 (2011),

189–223.

[30] Kim-Hung Li. 1994. Reservoir-Sampling Algorithms of Time Complexity O(n(1 +

Log(N/n))). ACM Trans. Math. Softw. 20, 4 (dec 1994), 481–493. https://doi.org/

10.1145/198429.198435

681

http://www.jstor.org/stable/2336252
http://www.jstor.org/stable/2336252
https://proceedings.neurips.cc/paper_files/paper/2018/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://doi.org/10.1145/3319619.3321897
https://doi.org/10.1145/3319619.3321897
https://doi.org/10.1145/2739480.2754736
https://doi.org/10.1145/3583133.3596387
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/j.patcog.2011.03.019
https://doi.org/10.1145/198429.198435
https://doi.org/10.1145/198429.198435


Density Descent for Diversity Optimization GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

[31] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and

Matthew Le. 2023. Flow Matching for Generative Modeling. In The Eleventh
International Conference on Learning Representations. https://openreview.net/

forum?id=PqvMRDCJT9t

[32] Geoffrey J McLachlan, Sharon X Lee, and Suren I Rathnayake. 2019. Finite mixture

models. Annual review of statistics and its application 6 (2019), 355–378.

[33] Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping

elites. arXiv preprint arXiv:1504.04909 (2015).
[34] Travis A. O’Brien, Karthik Kashinath, Nicholas R. Cavanaugh, William D. Collins,

and John P. O’Brien. 2016. A Fast and Objective Multidimensional Kernel Density

Estimation Method: fastKDE. Computational Statistics & Data Analysis 101 (2016),
148–160. https://doi.org/10.1016/j.csda.2016.02.014

[35] Derek Onken, SamyWu Fung, Xingjian Li, and Lars Ruthotto. 2021. Ot-flow: Fast

and accurate continuous normalizing flows via optimal transport. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 35. 9223–9232.

[36] Giuseppe Paolo, Alban Laflaquiere, Alexandre Coninx, and Stephane Doncieux.

2020. Unsupervised learning and exploration of reachable outcome space. In

2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2379–2385.

[37] Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. 2016. Quality Diversity:

A New Frontier for Evolutionary Computation. Frontiers in Robotics and AI 3
(2016), 40. https://doi.org/10.3389/frobt.2016.00040

[38] Justin K. Pugh, L. B. Soros, Paul A. Szerlip, and Kenneth O. Stanley. 2015.

Confronting the Challenge of Quality Diversity. In Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation (Madrid, Spain)

(GECCO ’15). Association for ComputingMachinery, New York, NY, USA, 967–974.

https://doi.org/10.1145/2739480.2754664

[39] Nemanja Rakicevic, Antoine Cully, and Petar Kormushev. 2021. Policy manifold

search: Exploring the manifold hypothesis for diversity-based neuroevolution.

In Proceedings of the Genetic and Evolutionary Computation Conference. 901–909.
[40] Mats Rudemo. 1982. Empirical Choice of Histograms and Kernel Density Estima-

tors. Scandinavian Journal of Statistics 9, 2 (1982), 65–78. http://www.jstor.org/

stable/4615859

[41] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman.

2020. Dynamics-Aware Unsupervised Discovery of Skills. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=HJgLZR4KvH

[42] Bernard W Silverman. 1986. Density estimation for statistics and data analysis.
Vol. 26. CRC press.

[43] George R. Terrell and David W. Scott. 1992. Variable Kernel Density Estimation.

The Annals of Statistics 20, 3 (1992), 1236 – 1265. https://doi.org/10.1214/aos/

1176348768

[44] Bryon Tjanaka, Matthew C Fontaine, David H Lee, Yulun Zhang, Nivedit Reddy

Balam, Nathaniel Dennler, Sujay S Garlanka, Nikitas Dimitri Klapsis, and Stefanos

Nikolaidis. 2023. Pyribs: A Bare-Bones Python Library for Quality Diversity

Optimization. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO ’23). Association for Computing Machinery, New York, NY, USA,

220–229. https://doi.org/10.1145/3583131.3590374

[45] Bryon Tjanaka, Matthew C Fontaine, Julian Togelius, and Stefanos Nikolaidis.

2022. Approximating gradients for differentiable quality diversity in reinforce-

ment learning. In Proceedings of the Genetic and Evolutionary Computation Con-
ference. 1102–1111.

[46] Vassilis Vassiliades, Konstantinos Chatzilygeroudis, and Jean-Baptiste Mouret.

2018. Using Centroidal Voronoi Tessellations to Scale Up the Multidimensional

Archive of Phenotypic Elites Algorithm. IEEE Transactions on Evolutionary
Computation 22, 4 (2018), 623–630. https://doi.org/10.1109/TEVC.2017.2735550

[47] Vassilis Vassiliades and Jean-Baptiste Mouret. 2018. Discovering the elite hyper-

volume by leveraging interspecies correlation. In Proceedings of the Genetic and
Evolutionary Computation Conference. 149–156.

[48] Stanislaw Weglarczyk. 2018. Kernel density estimation and its application. ITM
Web Conf. 23 (2018), 00037. https://doi.org/10.1051/itmconf/20182300037

[49] Yang, Duraiswami, and Gumerov. 2003. Improved fast gauss transform and effi-

cient kernel density estimation. In Proceedings ninth IEEE international conference
on computer vision. IEEE, 664–671.

682

https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=PqvMRDCJT9t
https://doi.org/10.1016/j.csda.2016.02.014
https://doi.org/10.3389/frobt.2016.00040
https://doi.org/10.1145/2739480.2754664
http://www.jstor.org/stable/4615859
http://www.jstor.org/stable/4615859
https://openreview.net/forum?id=HJgLZR4KvH
https://doi.org/10.1214/aos/1176348768
https://doi.org/10.1214/aos/1176348768
https://doi.org/10.1145/3583131.3590374
https://doi.org/10.1109/TEVC.2017.2735550
https://doi.org/10.1051/itmconf/20182300037

