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Synopsis  The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the
unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including
secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and eco-
logical processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long
history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history
from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biome-
chanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding
questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when
studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating
mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new in-
terdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight
evolution.

Advance Access publication July 9, 2024
© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com

$20Z 1snBNny 9Q UO Jasn eiegleg ejues ‘elulole) Jo AusieAiun Aq G110 ZL./90L8821/qo1E601 01 /10p/3|0IB-80UBAPE/QOl/W0D dno"dlWapede//:sd)y Wol) papeojumoq


https://orcid.org/0000-0001-9390-8306
https://orcid.org/0000-0002-1539-823X
https://orcid.org/0000-0003-3199-8224
https://orcid.org/0000-0003-1994-6915
https://orcid.org/0000-0001-9161-5200
https://orcid.org/0000-0001-5223-216X
https://orcid.org/0000-0002-6573-9602
https://orcid.org/0000-0003-4942-4894
https://orcid.org/0000-0003-3112-0286
mailto:latreidel@wm.edu
mailto:journals.permissions@oup.com

Introduction

*This manuscript was developed and written collabo-
ratively as a component of the symposium “Evolution,
Physiology, and Biomechanics of Insect Flight" held at
the annual meeting of the Society of Integrative and
Comparative Biology in Seattle Washington (USA) on
Jan 2-6,2024.

Approximately 400 million years ago, an evolution-
ary innovation arose that fundamentally altered the his-
tory of life. A simple set of protowings evolved in a
basal member of the Pterygota (winged insect) lineage
(Misof et al. 2014). The exact origin, morphology, and
use of protowings are still a matter of debate (Hamilton
1971; Kukalova-Peck 1978; Rasnitsyn 1981; Marden et
al. 2000; Dudley et al. 2007; Prokop et al. 2017; Tihelka
et al. 2021; Ross 2022). Nonetheless, wing evolution
undoubtedly set the stage for subsequent adaptations
that further augmented their function, eventually giving
rise to active-powered flight within insects. Active flight
provides adaptive benefits of dispersal with a low cost
of transport (Tucker 1975), including enhanced access
to resources, mating opportunities, and new habitats,
making the evolution of flight arguably the critical adap-
tation central to the astonishing success and diversifica-
tion of insects (Engel et al. 2013; Nicholson et al. 2014).
Unsurprisingly, then, the study of insect flight has at-
tracted the interest of biologists for over two centuries.
However, flight is a complex trait that requires coordi-
nated innovations from many aspects of organismal bi-
ology, including morphology, biomechanics, neurobi-
ology, skeletal muscle form and function, metabolism,
and development to evolve. This complexity, along with
large gaps in the fossil record, has posed a major chal-
lenge, leaving many open questions about how and why
insect flight evolved.

Recent cross-disciplinary work integrating compar-
ative, developmental, physiological, and biomechani-
cal perspectives and novel experimental approaches has
yielded new insights on the mechanisms shaping evolu-
tionary patterns of insect flight. First, advances in evo-
lutionary genetics and developmental biology have al-
lowed us to test long-standing and conflicting hypothe-
ses on the homologous origins of insect wings (e.g.,
Bruce and Patel 2020; Clark-Hachtel and Tomoyasu
2020; Ohde et al. 2022). Second, we are beginning to
explore the roles of developmental, physiological, and
behavioral plasticity in driving the evolutionary diver-
sification of flight among a broad range of taxa (e.g.,
Niitepold 2019; Du et al. 2022; Glass et al. 2024). This
work promises to help explain the influence of envi-
ronmental variation on determining variation in flight
performance among individuals and species, providing
a currency upon which evolution can act. Third, work
investigating how the sensory and neuromuscular sys-
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tems are functionally integrated to control the mechan-
ics of the thorax, wing hinge, and wing internal struc-
tures, is leading to new discoveries explaining how di-
verse and robust flight strategies and maneuvers arise
(e.g., Lindsay et al. 2017; Tsai et al. 2020; Melis et al.
2024).

In complement to the papers that follow in this Sym-
posium issue, the goal of this manuscript is to highlight
recent developments and exciting directions for the field
of insect flight that benefit from an interdisciplinary ap-
proach. We do not provide a comprehensive review of
the literature. Instead, we focus on linking together the
fields, research interests, and expertise of the authors
by highlighting and discussing unresolved debates and
outstanding cross-cutting questions on the evolution,
physiology, biomechanics, and neurobiology of insect
flight. In addition, many questions remain unanswered
due to challenges and technical limitations associated
with studying complex flight behaviors, particularly in
nature and insects, many of which are non-model or-
ganisms. Thus, we also strive to identify, provide rec-
ommendations, and highlight examples of work moving
the field forward in new directions by using novel and
integrative approaches to overcome these challenges.

Evolutionary origins and dynamics of the
flight apparatus

The debate regarding the evolutionary origin of the in-
sect wing has an embroiled history spanning more than
200 years (Latreille 1819; Crampton 1916). Historically,
inferences about evolutionary events were made solely
via morphological comparisons of fossilized and living
members of lineages that arose before or after wings
originated (Crampton 1916). The earliest definitive fos-
sils of winged insects date to the early Carboniferous
(~325 Myr ago) (Prokop et al. 2005; Prokop et al. 2017;
Prokop et al. 2022), but given that these species al-
ready had wings, the morphologies of the earliest in-
sect wings and wing precursor structures remain un-
clear. Molecular clock estimates suggest an Early Devo-
nian (419-393 Myr ago) origin of insect flight (Misof
et al. 2014), making the identification of Devonian and
Lower Carboniferous fossils a priority for paleoento-
mology (Jarzembowski 2021).

Two prominent hypotheses on the anatomical origin
of wings dominated much of the paleontological liter-
ature, positing that wings either evolved from exten-
sions of the lateral terga (paranotal theory; Crampton
1916; Hamilton 1971) or from side lobes (exites, such
as plates and gills) on the base of the ancestral leg that
now forms the lateral body wall (pleura) of insects (exite
theory; Kukalova-Peck 1978). Because both the parano-
tal lobe and the leg exite theories had much evidence in
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their favor, a third theory was proposed: the dual origin
hypothesis (Rasnitsyn 1981) argued that wings evolved
with contributions from both lateral tergal and pleural
tissues.

Advances in molecular techniques in evolutionary
and developmental biology aimed at identifying wing
serial homologs in insects and homologs in crustaceans
have led to new clarity on these alternative wing ori-
gin theories (Averof and Cohen 1997; Niwa et al. 2010;
Clark Hachtel et al. 2013; Ohde et al. 2013; Medved
et al. 2015; Lozano-Fernandez et al. 2019; Ohde et al.
2022). Patterns of gene expression and morphological
responses to gene manipulations, support the view that
the pleura and lateral terga of insects correspond to the
base of the leg in crustaceans (Bruce and Patel 2020;
Clark-Hachtel and Tomoyasu 2020) (Fig. 1). This sug-
gests that the ancestral crustacean leg base broadened
to become the insect lateral body wall, and that this
broadening carried the precoxal exite dorsally, where it
formed first the paranotal lobe and then later the wing
(Kobayashi et al. 2022) (Fig. 2). In this model, both the
exite and paranotal theories are correct—not because
pleura and terga merged as in the dual origin theory—
but rather because the exite and paranotal theories per-
tain to different phylogenetic timepoints, as follows: the
insect wing ultimately evolved from the precoxal exite
(tergal plate) on the ancestral leg base—consistent with
the leg exite theory; then the leg base became the lateral
body wall, and the precoxal exite evolved into the paran-
otal lobe; and finally, the paranotal lobe evolved into the
wing—consistent with the paranotal theory. This para-
notal theory was subsequently broadened into a “pre-
coxal theory” by Kobayashi et al. (2022) to reflect that
the lateral terga on which wings and paranotal lobes
stand is itself derived from the ancestral precoxa.

The recent discovery that wings evolved from body
wall, which originated as the proximal precoxa leg seg-
ment, provides a number of new insights that presage
further scientific inquiry. First, we more fully under-
stand the anatomical origin and roles of several key
functional genes underlying the development of wings.
This information puts to rest any notion that wings
evolved from tissue that had no prior evolutionary his-
tory of having plates, muscles, articulations, nerves, and
movement. Thus, despite this increased clarity on the
anatomical origins of wings themselves, the origin of
other essential components of the flight apparatus re-
mains enigmatic. Insect flight requires an integrated
biomechanical system, including flight musculature, ar-
ticulation at the wing hinge between resilin-laden tho-
rax and wings (and sometimes halteres), and a func-
tioning wing with its hemolymph, nerves, and tracheae
(Ellington 1984; Dudley 2000). Much work remains to
be done to elucidate how a locomotory leg base with
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Fig. | Proposed exites on the precoxa (leg segment 8) in
representatives of pancrustacean lineages near the base of the
hexapod phylogenetic tree. These precoxal exites (labeled as T2
tergal plate (A,B,D,E) or Mx2 carapace (C)) appear to be
non-respiratory tergal plates (A,B,D,E) and similar to rigid
ectodermal plates, like the Daphnia carapace (C). Given that the
insect wing is also a non-respiratory exite on the precoxa (F), this
phylogenetic sequence suggests that insect wings evolved from a
tergal plate rather than a respiratory gill. Phylogeny based on
Lozano-Fernandez et al. (2019). Oncopeltus image credit: Aaron
Pomerantz.
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Fig. 2 Diagram of homologies of crustacean and insect leg
segments based on the expression and function of leg gap genes
and wing/exite genes in Bruce and Patel (2020) and Bruce and
Patel (2022). Colors indicate proposed homologies, checker
pattern indicates exites. Insect leg drawing modified from
Snodgrass (1935). Panel modified from Bruce and Patel (2020).

its exite was further modified into a flight-capable sys-
tem. For example, are flight muscles derived from only
leg muscles of the precoxa, or are there additional mus-
cle contributions from the pleura or the dorsal-medial,
non-leg-derived terga? How did the wing hinge—a re-
gion of flexible, convoluted ectoderm that allows the
wing to flap—originate from an initially smooth cuticle?
How did the stiffening veins of the wings evolve, and
can we find their counterpart in crustacean exites? Fur-
thermore, much of the historical and current debate sur-
rounding insect wing origins focuses on the ectoderm,
but the evolution of powered flight must have involved
complementary evolution in the musculature and neu-
ral circuitry. How were the ancestral locomotory leg
base muscles and neural circuitry modified for flight?
Given that the wing appears to be derived from a leg ex-
ite of a crustacean ancestor, future experiments should
compare the muscles and motor neurons involved in in-
sect flight to those of the crustacean leg base.

The initial function and selective pressures leading
to the evolution of wings and flight also remain an
area of active research, with the two main alterna-
tives being “trees-down” (terrestrial origins of wings)
or “water-up” (aquatic origin of wings). The “trees-
down” model posits that winglets were used to con-
trol aerial descent when falling or jumping from plants
(Dudley and Yanoviak 2011). This model is supported
by experiments showing that abdominal cerci or legs
can modestly deflect the path of falling bristletails and
ants to accomplish directed descent from plants or cliffs
(Yanoviak et al. 2005; Yanoviak et al. 2009). Addition-
ally, recent morphological and phylogenomic studies
have advocated for a terrestrial ancestor for the Ptery-
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gotes (winged insects) (Wipfler et al. 2019), consistent
with the “trees-down” model. However, this phyloge-
nomic analysis excluded the crustacean-like ancestral
state and many uncertainties remain, such that the al-
ternative of an aquatic or semi-aquatic ancestor of fly-
ing insects predicted by the “water-up” model can-
not be ruled out (Averof and Cohen 1997; Simon et
al. 2018; Tihelka et al. 2021; Prokop et al. 2023). The
“water-up” model posits the evolution of wings was se-
lected for in a semiaquatic insect ancestor that initially
used winglets to aid respiration during aquatic larval
stages and were modified to support aerodynamic lo-
comotion. This model is supported by evidence from
live mayflies and stoneflies showing winglets and wings
are used for steering and propulsion on water surfaces
without the need for weight-supported flight (surface-
skimming) (Marden and Kramer 1994; Marden and
Kramer 1995; Marden et al. 2000; Marden and Thomas
2003), and there is a close match of surface-skimming
with behavioral evidence from the earliest trace fossil
of a winged insect (Marden 2013a). The absence of gills
on the prexcoa leg segment that insect wings evolved
from in their most closely related crustacean clades (Fig.
1), encourages a revision of the literal “wings-from-
gills” version of the “water up” model. However, this
evidence does not preclude a scenario where protow-
ings are moveable and have a ventilatory function, as
in the “water-up” model. Future work integrating phy-
logenomic analyses, new fossil evidence, development,
physiology, behavior, and ecology will be necessary to
differentiate these alternative adaptive origin of flight
hypotheses.

Following the origin of insect flight, wings and as-
sociated flight machinery have undergone continued
diversifications, including several major macroevolu-
tionary transitions (Fig. 3). Indeed, the flight mech-
anism is as hyper-diverse as the insects themselves
and likely evolved in close association with the di-
verse ecological functions of flight (Hornschemeyer and
Willkommen 2007; Aiello et al. 2021). Major mod-
ifications include the evolution of wing hinge func-
tion, allowing neopteran lineages to have wings that
fold backwards along their body (Martynov 1925), as
well as reduced and modified wings such as halteres
in Diptera (Deora et al. 2021) and elytra in Coleoptera
(Linz et al. 2016; Sugimoto et al. 2018; Goczal and
Beutel 2023). One important macroevolutionary tran-
sition that we have just begun to resolve is the evo-
lution of an asynchronous neural drive of flight mus-
cles. Ancestral insects generated wing beats through
the synchronous activation of wing muscles with each
wing stroke. However, many clades such as Diptera,
Coleoptera, and Hymenoptera have evolved the abil-
ity to generate wingbeat frequencies above the speed
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Maijor transitions in flight mechanism

@ Origin of the insect wing and palaeopteran hinge
Origin of the neopteran hinge
* Independent complete losses of wings

* Independent gains of asynchronous flight muscle

—

IIIIIII\W\IIIII'IIW\IIIIIIIIEE‘\WIIIIIIIIIWIIIIIII‘

500 400 300 200 100 0
Mya

Diplura
Archaeognatha
Zygentoma

I Odonata
Ephemeroptera

Zoraptera
—L@— Dermaptera
Plecoptera
Orthoptera
Mantophasmatodea
Grylloblattodea
Embioptera

Phasmatodea

@ Mantodea
Blattodea Insecta
Isoptera
Thysanoptera
1 Hemiptera
Psocodea
Hymenoptera
Raphidioptera
Megaloptera
Neuroptera
2 Strepsiptera
3 Coleoptera
Trichoptera
Lepidoptera
Siphonaptera
Mecoptera
) Diptera

Modifications to fore/hindwings

@ Origin of Homopteran mesothoracic hemelytra
@ Origin of Strepsipteran mesothoracic halteres
@ Origin of Coleopteran mesothoracic elytra
@ Origin of Dipteran metathoracic halteres

@ Origin of Dermapteran mesothoracic elytra

Apterygota

Palaeoptera

Polyneoptera

Pterygota

Paraneoptera Neoptera

Endopterygota

1. Misof et al. (2014) “Phylogenomics resolves the timing and pattern of insect evolution. Science. 346(6210): 763-767

2. Martynov, A. V. (1923). "0 aByx 0CHOBHbIX TMNAX KPbINbEB HACEKOMBIX W MX 3HaueHwn fns obei knaccndukaun Hacekombix" [On the two main types of insect wings and their significance for the general
classification of insects]. Proceedings of the | All-Russian Congress of Zoologists, Anatomists and Histologists in Petrograd on 15-21 December 1922: 88-89.

3. Martynov, A. V. (1924). "O apyx TMnax Kpbinbes HACEKOMBIX 1 vx asontoLwmk” [There are two types of drug addicts and evolutionists]. Russian Zoological Journal. 4 (1, 2): 155-185

4. Dudley (2000) The Biomechanics of Insect Flight: Form, Function, and Evolution. Princeton University Press, Princeton, NJ. ISBN 0-691-09491-8

Fig. 3 Phylogeny of insect orders with major macroevolutionary transitions and modifications in the wings and flight machinery,
responsible for the diversification of flight ability and strategies among insects.

limits for typical neuromuscular systems by using asyn-
chronous stretch-activated muscle physiology that de-
couples their wingbeat frequency from their underly-
ing neural drive (Josephson et al. 2000). In these in-
sects, neural activity serves mostly to potentiate muscle
force on multiple-wingbeat timescales, and the stretch
response of antagonistic flight muscles produces each
wing stroke. A recent ancestral state reconstruction of
muscle type across an insect-wide phylogeny revealed a
single origin of asynchrony followed by many reversions
from asynchronous flight back to synchronous flight,
leaving entire clades such as Lepidoptera secondarily
synchronous (Gau et al. 2023). More importantly, the
two modes of muscle actuation can be mixed in a sin-
gle species, and transitions from synchronous to asyn-
chronous wingbeats map to simple transitions in an un-

derlying biophysical model (Gau et al. 2023). This sug-
gests that transitions may be easier and more frequent
than the specialized asynchronous mechanisms suggest
at first glance. At a broad scale, the evolution of flight
muscle asynchrony enabled high contraction rates and
enhanced energetic efficiency in some clades (Cao and
Jin 2020; Mesquita et al. 2021; Hickey et al. 2022).
Additionally, most insect orders contain both flight
polymorphic and completely flightless species, which
have secondarily lost some or all of their wings and
flight machinery (Harrison 1980; Roff 1986). The ques-
tion about why flight is so frequently and repeat-
edly lost has garnered much attention and is of par-
ticular significance because of potential evolutionary
consequences of flight loss for speciation (Roft 1990;
Waters et al. 2020). The first evolutionary hypotheses for
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flightlessness even date back to Darwin, who postu-
lated that high winds drive displacement of insects from
oceanic islands leading to the loss of flight (Darwin
1859). Flight-capable insects incur high energetic costs
when developing and maintaining flight machinery and
actively flying, which result in trade-offs between flight
and other life history traits such as reproduction and so-
matic maintenance (Rankin and Burchsted 1992). Thus,
selection for flightlessness is favored in a variety of eco-
logical contexts where either the costs of flight become
too high, such as in fragmented habitats (e.g., in alpine
Stoneflies (Foster et al. 2021), or benefits of flight are re-
duced, such as in stable habitats (see Leihy and Chown
(2020) for a table of supported ecological hypotheses).
Apparent evolutionary reversals of flight loss are
driving us to further develop evolutionary models for
complex trait evolution. Several phylogenetic recon-
struction analyses suggest that wings have putatively
independently re-emerged in multiple lineages of wa-
ter striders, stick insects, and male aphids following
their complete loss (Andersen 1993; Whiting et al. 2003;
Bank and Bradler 2022; Forni et al. 2022; Saleh Ziabari
et al. 2023). However, these patterns challenge Dollo’s
law of irreversibility, wherein a complex trait, once lost,
will never return to the same state (Dollo 1893), and re-
sults of ancestral trait reconstruction analyses are easily
biased by poor taxonomic resolution and the assump-
tion of parsimony, making these conclusions controver-
sial (Trueman et al. 2004). Nonetheless, the complex-
ity and pleiotropy of the gene regulatory networks un-
derlying wing development may explain these apparent
evolutionary reversals of wing loss. Wing development
pathways are composed of many transcription factors
and signal transduction pathways (Linz et al. 2023), and
any combination of nodes in the network may be en-
vironmentally sensitive and serve as targets for selec-
tion on wing diversification or loss. Thus, flight poly-
morphisms may evolve as environmentally controlled
polyphenisms, single-loci Mendelian traits, or as poly-
genic traits under the control of many genes and the
environment (Roff 1986; Roff and Fairbairn 1991). Fur-
thermore, many members of the wing gene regulatory
network are highly pleiotropic. For instance, the crit-
ical wing gene apterous is also involved in develop-
ment of the terga (Cohen et al. 1992), legs (Pueyo et
al. 2000), central nervous system (Aranha et al. 2017),
flight muscle (Bernard et al. 2003), and juvenile hor-
mone synthesis (Altaratz et al. 1991). In wing polymor-
phic crickets, short or wingless morphs are produced
by the manipulation of hormones involved in meta-
morphosis upstream of the wing gene regulatory net-
work. Specifically, modulation of juvenile hormone and
insulin-like signaling pathways is responsible for induc-
tion of short-wing morphs in crickets, brown planthop-

L. A. Treidel et al.

pers, and soapberry bugs, while the hormone ecdysone
is involved in the pea aphid wing polyphenism (Xu et
al. 2015; Zera 2016; Vellichirammal et al. 2017; Fawcett
et al. 2018; Lin and Lavine 2018). Thus, it is likely that
most modifications to insect wings come from changes
in gene regulation during development, not the loss of
these genes.

Gene duplication and divergence are also likely in-
volved in many of the modifications to, losses of, or
reemergences of the flight apparatus. Following gene
duplication, the redundancy of the resultant paralogs
gives evolution carte blanch to experiment with novel
expression domains and protein functions. For exam-
ple, early ancestral gene duplication events led to mul-
tiple copies and the diversification of the insulin re-
ceptor family, which have been differentially co-opted
to control wing morph determination in planthoppers,
linden bugs, and soapberry beetles (Xu and Zhang
2017; Fawcett et al. 2018; Smykal et al. 2020). In pea
aphids, a duplicated follistatin gene present on the X-
chromosome is responsible for genetically determin-
ing wingless males (Li et al. 2020). This is one of three
follistatin copies resulting from two duplication events
within the last 40 million years. Unfortunately, due to
their recent divergence, the three paralogs have highly
similar coding sequences, causing issues with genome
assembly and the design of QPCR primers and in situ hy-
bridization probes. These technical problems are com-
mon for recently duplicated genes, making them diffi-
cult to identify and functionally analyze. Thus, young
paralogs often go overlooked despite their evolutionary
importance, making them an understudied and exciting
research frontier for the evolution and loss of the flight
machinery (Deem and Brisson 2024).

Diversity in physiological and
biomechanical determinants of flight
performance

Flight performance is powered by the integration of
multiple physiological systems, organs, and tissues, in-
cluding the wings and wing hinge, flight and steering
muscles, metabolism, neuroendocrine control with sen-
sory feedback, oxygen and carbon dioxide transport by
the tracheal system, and fuel delivery by the cardio-
vascular system. Thus, research on the physiology and
biomechanical mechanisms determining insect flight
performance remains central to elucidating the func-
tional constraints and trade-offs shaping widespread
variation in flight performance among individuals, pop-
ulations, and species. Flight performance is an umbrella
term used to describe different components of flight,
including take-off ability, lift production, speed, agility
and maneuverability, stability, and endurance. The most
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relevant aspects of performance to fitness vary widely
according to ecological niche: endurance and speed
are highly relevant to highly mobile and strong-flying
migratory insects; lift is critical for insects that carry
loads such as nectar or pollen; maneuverability is key to
avoiding predation; and stability is critical to hovering
insects such as hawkmoths.

Measuring different aspects of flight performance
among insects remains a major challenge. Current ap-
proaches fall into two categories: use of tethered in-
dividuals or free-flying individuals. Tethered flight ex-
periments performed using flight mills and simulators
measure variation in flight duration of highly mobile
and strong-flying migratory insects, and species with
a strong tarsal reflex promoting flight (Mouritsen and
Frost 2002; Nesbit et al. 2009; Minter et al. 2018; Naranjo
2019). However, attaching insects to tethers requires
stressful manipulation with potential negative conse-
quences for behavior and motivation, does not require
the animal to generate sufficient lift to fly, and often
does not elicit maximal capacities for flight (Heinrich
1971; Rothe and Nachtigal 1989; Wolf et al. 1989;
Dudley 1995; Dickinson et al. 1999; Glass and Harrison
2022). Flight chambers (e.g., wind tunnels, virtual re-
ality landscapes, rapidly shaken containers) and lab-
oratory free flight experiments are frequently used in
biomechanical studies of flight behavior (Henningsson
and Bomphrey 2011) and are also suited for assess-
ment of flight endurance and metabolic rates (Harrison
and Roberts 2000; Suarez 2000; Darveau et al. 2005b;
Niitepold 2010). Broad conclusions about flight perfor-
mance should be avoided if tests measure a narrow as-
pect of flight, and there is a need to better establish con-
nections between multiple aspects of flight performance
in the lab and natural field settings (Ducatez et al. 2012;
Cibotti et al. 2024).

Body size and scaling

The body size range of modern insects can span three
orders of magnitude, and some extinct flying insects
reached even greater sizes, with tremendous conse-
quences on their flight function and ability (Lapina et
al. 2021; Ellers et al. 2024). Required flight forces scale
as L* (where L is the length scale), but mass scales only
as L3 (Deora et al. 2017). This means that to achieve
adequate flight forces, smaller insects must either en-
hance their wing stroke amplitudes or their wing beat
frequencies. Increasing wing length relative to the body
size can increase wing stroke amplitude but this is of-
ten limited by the fact that the wings eventually collide
into each other (Lighthill 1973; WeisFogh 1973). Thus, a
widely observed pattern is that smaller insect taxa have

higher wingbeat frequencies and consequently higher
mass-specific flight metabolic rates (Greenewalt 1962;
Casey 1981; Byrne et al. 1988; Dudley 2000; Darveau
et al. 2005b; Tercel et al. 2018). However, recent work
showed that stingless bee species do not shift wingbeat
frequency over an order of magnitude variation in body
size, instead showing larger wings and reduced mass-
specific flight cost in smaller species (Duell et al. 2022).
Also, at approximately 60 mg body size, the scaling of
flight metabolic rates changes from hypermetric (i.e.,
slope > 1 or above isometry) for smaller (< 60 mg)
insects to hypometric (i.e., slope < 1 or below isom-
etry) for larger (>60mg) insects (Duell et al. 2022).
The causes of scaling relationships between body size
and flight metabolic rate generally remain poorly un-
derstood (Bejan and Marden 2006). However, these data
suggest that changes in Reynold’s numbers with size are
a critical factor determining mechanical and energetic
costs of flight and warrant further consideration.

There is also a great need to investigate how mor-
phological and physiological systems evolve across in-
sects of different sizes to produce and sustain diverse
flight behaviors in a variety of ecological niches. Adap-
tations in musculoskeletal systems and wing morphol-
ogy likely evolve in correlation with body size and life
history to ensure efficient flight and aerodynamic per-
formance. For example, adaptive correlated evolution
of body size, wing morphology, and life history accom-
panied the divergence of the sister hawkmoth (Sph-
ingidae) and silkmoth (Saturniidae) clades (Aiello et al.
2021). Hawk moths evolved smaller wings capable of
supporting high wing beat frequencies and maneuver-
ability at a reduced power requirement, beneficial for
feeding efficiently by hovering flight. In contrast, silk
moths evolved larger wings and longer thoraxes that re-
duce wing loading and enhance their agility, beneficial
for evading predators by erratic flight maneuvers (Aiello
et al. 2021). The intertwined evolutionary histories of
insect body size, wing morphology, and flight maneu-
vers also extend back hundreds of millions of years. For
example, changes in wing morphology and wingbeat
frequency may be required to explain how the largest
flying insects ever (the Carboniferous and Permian grif-
fenflies) generated sufficient lift for steady-state flapping
flight (Ellers et al. 2024).

Well-established scaling relationships on how body
size and wing shape affect flight aerodynamics and
performance across diverse flying animals (Pennycuick
2008; Deakin 2010; Duell et al. 2022) have allowed
for testing of scaling principles connecting insect form
and function. To further examine how these multi-
ple traits interact and evolve, usage and development
of mathematical models and explorations in insect
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morphospaces that incorporate genetic frameworks are
needed. In addition, combining data from molecular
phylogenetics, wing morphology, wing beat frequency,
and metabolic rate can help resolve finer scales of vari-
ation at the single clade and individual levels (Casey et
al. 1985; Darveau et al. 2005b; Billardon and Darveau
2019; Duell et al. 2022).

Energetics, kinematics, and resonance

Variation in flight muscle structure and function is one
of the strongest contributors to variation in flight per-
formance (Marden 2000). Flying insects achieve the
highest mass-specific metabolic rates in the animal
kingdom, and insect flight muscle has extremely high
mitochondrial and tracheolar content (Sacktor 1961;
Beenakkers et al. 1984; Suarez 2000; Iwamoto 2011).
However, we still lack an understanding of the fac-
tors that create variation in flight metabolic rates not
accounted for by body mass and the implications of
metabolic variation for flight performance (Harrison
and Roberts 2000; Suarez 2000). Variation in flight per-
formance across populations and species has been asso-
ciated with flight muscle mitochondrial content in but-
terflies (Rauhamaki et al. 2014; Niitepold et al. 2022)
and hymenopterans (Hedges et al. 2019). However, con-
ditions used (e.g., substrates provided) when measur-
ing muscle oxidative capacity lead to varying estimates
(Teulier et al. 2016; Menail et al. 2022; Wilmsen and
Dzialowski 2023) that are not easy to reconcile with
whole animal flight performance. Similarly, phyloge-
netic comparison using multiple species of bees and sev-
eral indicators of muscle aerobic capacity failed to show
straightforward associations between flight metabolic
rate and tissue aerobic capacity. Instead, glycolytic flux
capacity and membrane composition showed correlated
evolution with species flight metabolic rate (Darveau et
al. 2005a; Rodriguez et al. 2015). Across species, hover-
ing flight metabolic rate and wingbeat frequency have
consequences for flight muscle contraction efficiency
(i.e., the ratio of ATP turnover to mechanical power out-
put of contraction; Askew et al. 2010), further raising
questions regarding energetic and performance con-
sequences of contraction frequency regime. Together,
these findings highlight the importance of studies con-
necting the muscle structural and functional elements
with the diversity and evolution of flight energetics and
performance across insect species.

Another major contributor to variation in flight
metabolism and performance lies in allelic variation
in genes encoding proteins involved in core metabolic
pathways (Marden 2013b). Across populations and
species of butterflies, variation in alleles of metabolic
enzymes and oxygen-signaling systems affects trache-
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ole development in flight muscles, explaining antag-
onistic pleiotropic effects genotype on flight perfor-
mance and other life history traits (Watt et al. 2003;
Wheat et al. 2005; Marden et al. 2013; Mattila 2015;
Pekny et al. 2018; Marden et al. 2021). This variation
has further been linked to organismal dispersal rates,
metapopulation size, and stability in the Glanville frit-
illary butterfly, demonstrating a critical role of flight
evolution in the eco-evolutionary dynamics of insects
(Hanski et al. 2017). Similar to butterflies, honey-
bees and Drosophilids also show associations between
metabolic alleles and flight metabolic rates (Harrison et
al. 1996; Montooth et al. 2003), suggesting widespread
genetic variation in metabolism related to flight perfor-
mance, which could be targets of selection.

The energetic cost and efficiency of flight are also
strongly influenced by the structure and biomechanics
of the flight apparatus. The discovery of elasticity in the
insect thorax in the mid-20th century (Weis-Fogh 1960)
led to the conceptual model of flapping insects as me-
chanical resonators (Sotavalta 1952; Greenewalt 1960;
Weis-Fogh 1973)—spring-mass systems with aerody-
namic dissipation forced by the flight musculature
and resulting in a resonance curve (amplitude vs. fre-
quency). Resonance implies a limited range of ener-
getically favorable frequencies where flapping is most
aerodynamically efficient. As a consequence, modulat-
ing frequency may incur large energetic costs. This ap-
parent tradeoff between efficiency and agility presents
a problem for insects that must balance the two to en-
sure survival, but until recently, few studies have di-
rectly measured resonant properties of insects. Recent
work in the hover-feeding hawkmoth Manduca sexta
shows that this insect flaps significantly above its res-
onance frequency and is able to modulate its wingbeat
frequency by up to 30% from wing stroke to wing stroke
(Gau et al. 2021; Gau et al. 2023). Independent mea-
surements of resonance in the thorax of honeybees sug-
gest that they may be operating close to their resonant
peak (Jankauski 2020). As such, it seems that different
groups of insects may negotiate resonant performance
tradeoffs differently. In some species, the series elas-
ticity in the wing hinge may also be significant, espe-
cially for insects on the scale of Drosophila or smaller
(Pons and Beatus 2022; Casey et al. 2023). Series elas-
ticity can dramatically widen the resonance curve, en-
abling efficient flapping over a range of frequencies. Few
studies of insect resonance have explicitly incorporated
asynchronous muscle. However, a pair of recent studies
show that resonance in tiny, asynchronous insects like
Drosophila appears to be dominated by the characteris-
tic high stiffness of asynchronous muscle as opposed to
exoskeletal elasticity, enabling nonlinear resonant phe-
nomena (Pons 2023; Pons et al. 2023).
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At the organismal level, the distinct energetic, kine-
matic, and aerodynamic requirements of alternative
flight behaviors and strategies give rise to distinct se-
lective pressures with direct evolutionary consequences
for the diversification of insect flight machinery and
physiology. For instance, long-distance migratory flight
requires adaptations to permit extended flight activity.
The transoceanic migration of the dragonfly species,
Pantala flavescens, is associated with an energetics-
based time constraint, suggesting that migrating insects
experience strong energetic limitations on flight times
(Ranjan et al. 2023). How can longer-duration flights be
achieved? An emerging hypothesis is that long-distance
migrators evolve behavioral and physiological adapta-
tions that increase flight efficiency and reduce energetic
costs of prolonged flight. For example, monarch but-
terflies often engage in energetically inexpensive glid-
ing behaviors during migratory flights (Gibo and Pallett
1979), and lower flight metabolic rates exhibited by
monarchs from migratory compared to non-migratory
populations are potentially explained by adaptive selec-
tion on genes regulating flight muscle development and
efficiency (Zhan et al. 2014). Similarly, gregarious lo-
custs, which are long-distance migrators, fly for longer
and generate less reactive oxygen species (ROS) than
their solitary counterparts by flying slower, reducing
their flight metabolism (Du et al. 2022). At the cel-
lular level, gregarious locusts have lower catabolic en-
zyme activities than solitary locusts; supporting the hy-
pothesis that long-duration flight requires lower oxida-
tive metabolic rates to reduce oxidative damage to the
flight muscle (Du et al. 2022). While migrating locusts
depend heavily on lipid metabolism to fuel prolonged
flight (Weis-Fogh and Uvarov 1952), tethered locusts
stop flight despite having a strong supply of body lipids
(Du et al. 2022; Talal et al. 2023). The cause of this ap-
parent exhaustion is not known, but may involve declin-
ing motivation, limits on the capacity to release diglyc-
erides from the fat body, running out of more easily me-
tabolizable unsaturated fatty acids, or oxidative damage.
Future research testing these alternative hypotheses will
provide new insight into the physiological constraints
and mechanisms determining an important component
of flight performance, endurance, and maximum flight
times.

The complexity of the wing hinge

At the wing and thorax junction lies a complex, in-
tricate wing hinge that varies in size and composition
across insects (Boettiger and Furshpan 1952; Pringle
1957; Miyan et al. 1985; Ennos 1987; Wisser 1988).
Extraordinary but experimentally frustrating, the wing
hinge is composed of one continuous sheet, consisting

of tiny hard sclerites embedded within a more flexible
exoskeleton. Since wings themselves contain no mus-
cles, regulation of kinematics must be accomplished by
actions of small control muscles that pull on the scle-
rites at the base of the wing. The mechanical operation
of the hinge remains enigmatic because basal sclerites
are difficult to see and move so rapidly that their mo-
tion during flight has not been accurately captured de-
spite extensive efforts using stroboscopic photography
(Nalbach 1989), high-speed videography (Walker et al.
2012), or X-ray tomography (Walker et al. 2014).

The exact mechanisms by which the hinge trans-
forms power and muscle strain into wing motion re-
mains unclear. However, recent insight comes from
studies on the direct steering muscles regulating hinge
mechanics via their action on the wing sclerites. These
control muscles are roughly stratified into two func-
tional groups: small tonically active muscles that con-
tinuously trim wing motion for stable flight, and large,
phasically active muscles that are recruited during rapid
maneuvers (Lindsay et al. 2017). Muscles inserted on
the wing sclerites are capable of eliciting different
changes in the pattern of wing motion, which collec-
tively forms an actuator system capable of generating a
diverse array of flight maneuvers. Remarkably, in flies
(Diptera), this system achieves dynamic aerial agility
with a small number of control muscles, each inner-
vated by just a single excitatory motor neuron (Cheong
et al. 2023b). These features are expected to be ei-
ther conserved or independently evolved in the diverse
range of insects that have miniaturized.

Furthermore, recent experiments demonstrate a key
coupling controlling wing hinge function of Dipterans.
In flies, the motion of wings and halteres is mechan-
ically coupled by the indirect flight muscles and the
sub-epidermal ridge to ensure that the wings and hal-
teres beat at identical frequencies, functioning as a dual-
coupled oscillator system driven by thoracic linkage el-
ements (Deora et al. 2017; Deora et al. 2021). Cou-
pling ensures a strict phase relationship between the two
structures that is likely essential for proper temporal in-
tegration of afferent mechanoreceptors on the wing and
haltere, and proper phase tuning of flight motor neu-
rons. Moreover, this work solves an important riddle as
to how halteres can precisely oscillate up and down with
a single power muscle.

Driving hemolymph in the wing

An insect wing is made up of thin membranes and flex-
ible, tubular veins, which can allow the wing to bend,
twist, and fold. Within these interconnected veins,
nerves and tracheae branch, while hemolymph circu-
lates, hydrating embedded resilin and other wing tis-
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sues (Arnold 1964; Pass 2018; Salcedo and Socha 2020;
Salcedo etal. 2023). Hemolymph circulation in the adult
wing contributes to functioning immune responses
(e.g., clotting), supplying organs on the wing (i.e., tym-
pana or pheromone-producing), unfolding wings in
some beetles, and unique coloration (Sun et al. 2014;
Tsai et al. 2020; Nishida et al. 2023). Wing expansion,
during ecdysis, is a critical moment in an insect’s meta-
morphosis that requires efficient and productive use of
the hemodynamic system, inflation of the tracheal net-
work, and coordinated muscular pumping (amidst all
the concurrent hormonal and neuronal activation). De-
spite its importance, how wing circulation and active
hemolymph hydraulics contribute towards flight and
unfurling of the wing, are often neglected in studies of
wing properties and flight mechanics. In the last decade,
there has been greater attention to the importance of
circulation and its evolution with respect to the flight
motor system and wing hinge components (Hillyer and
Pass 2020; Rajabi et al. 2020).

Hemolymph within a flapping wing circulates more
quickly than a wing at rest (Wang et al. 2020; Salcedo et
al. 2023) and hydrated wings do positively (and some-
what passively) influence wing damping (Lietz et al.
2021). In dragonflies and other insects, the pterostigma,
a thickened portion of the leading edge of the wing and
a sinus for hemolymph, acts as an inertial regulator, re-
moving instabilities like flutter (Arnold 1963; Norberg
1972). Hemolymph is likely to move when flexion lines
in wings fold, are bent, or twisted. This movement of
hemolymph may cause some shift in mass that is im-
portant for general flight mechanics. When we consider
that desiccation of insect cuticle dramatically changes
its mechanical properties (Dirks and Taylor 2012a), ac-
crued wing damage over the life of a winged insect is
tied to not only to a wing’s venation pattern and resis-
tance to breaking (Dirks and Taylor 2012b; Rajabi et
al. 2017), but also to how active hemolymph circulates
(Rajabi et al. 2020).

To circulate hemolymph throughout the wings, body,
and other high-demand sensory organs (i.e., anten-
nae), insects require accessory pulsatile organs to
push or pull hemolymph, in addition to their main
pumping organ, the dorsal vessel (Pass 1998). These
“thoracic wing hearts*” function as suction pumps,
pulsing asynchronously with the dorsal vessel, often
at higher frequencies (Chintapalli and Hillyer 2016;
Pass 2018; Salcedo et al. 2023). Between hemi- and
holometabolous insects, we see divergence in pump
type correlated with evolution and enlargement of the
power-producing dorsal longitudinal flight muscles in
the thorax (Krenn and Pass 1994). Further compara-
tive work on how these pumps produce flow, function
in active flight, and compensate for damage could re-
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veal important evolutionary modifications of the circu-
latory system with respect to parameters such as varied
venation, flapping frequencies, and body size.

Environmental influences on flight
performance

Insects have evolved to fly in dynamic environments,
requiring the short- or long-term modulation of their
physiology and behavior. On geological timescales (on
the order of tens or hundreds of millions of years),
changing atmospheric oxygen and temperature condi-
tions, as well as competition or predation by coeval ver-
tebrates, may have affected the kinematic landscape of
insect flight in drastic ways (Kaiser et al. 2007; Harrison
et al. 2010; Clapham and Karr 2012; Ellers et al. 2024).
Moreover, on physiological timescales during flight, in-
sects experience variation in abiotic (i.e., temperature,
humidity, wind, rain, and solar radiation) and biotic
(i.e., nutrition, mate availability, and predators) factors
simultaneously. For example, many small insects are
ectothermic during flight and rely on air temperature
and solar radiation to warm their muscles enough to
be able to fly (Watt 1968; Advani et al. 2019). The re-
liance on external sources of heat limits insect activity
to parts of the day that are not too cold or too hot with
potential consequences for geographical range limits
(Kingsolver and Watt 1983; Keena 2018; Sun et al. 2020).
In contrast, many large, flying insects are endothermic
during flight, potentially allowing for flight at air tem-
peratures that could limit their ectothermic counter-
parts (Heinrich 1993). High air temperatures can be-
come a problem for endothermic fliers, as the addition
of metabolic heat to the already significant effects of air
temperature and solar load threatens these animals with
overheating and desiccation (Johnson et al. 2023a; Glass
et al. 2024). While these statements about the value and
cost of endothermy seem obvious, they are actually hy-
potheses that need to be tested. For example, flexibility
in the thermal performance of some ectotherms may al-
low them to fly at similar cool air temperatures as en-
dotherms.

It is clear that only reasonably large insects (>
20 mg) can be endothermic (Duell et al. 2022; Johnson
et al. 2023b), but many other aspects of how size
affects insect thermal biology remain poorly under-
stood. Small-bodied insects have relatively more sur-
face area compared to body volume than larger coun-
terparts, resulting in rapid heat and water flux. There-
fore, in cooler environments, a small insect basking
first thing in the morning will warm up faster than
a larger one with the same physical surface proper-
ties, and the body temperature of a larger insect will
vary less in response to brief environmental changes
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due to its greater thermal mass. However, many ques-
tions remain. Are very small insects less affected by
thermal variation due to their reduced need to gener-
ate lift within relatively more viscous media (Byrne et
al. 1988; Blackmer and Byrne 1993; Duell et al. 2022)?
Are smaller insects generally more water-limited during
flight? Does body size or endothermy affect cuticular re-
flectance or insulation? Are large insects more limited
by heat?

Historically, researchers have independently studied
factors affecting flight performance, most often in lab-
oratory settings, to avoid the confounding effects of in-
teracting variables. Temperature and oxygen limitations
on flight have been two of the most heavily studied vari-
ables, while the effects of humidity, wind speed, and so-
lar radiation have been largely ignored. However, the
natural world is constantly fluctuating, and a change in
one variable is often associated with changes in one or
more other environmental variables. To accurately pre-
dict how insects will fare in a changing world, we must
shift our focus from investigating single-variable effects
to the effects of multiple, dynamic environmental fac-
tors and their potential negative, additive, and/or syner-
gistic effects on insect flight performance. For example,
insects flying in hot, dry environments may be limited
by dehydration, and not by heat (Johnson et al. 2023a;
Glass et al. 2024), suggesting that insects could become
further limited in their flight activity time. The inter-
active effects of air temperature and relative humidity
may be context-dependent. Many flying insects can ac-
tively or passively cool themselves through evaporation
(Nicolson and Louw 1982; Prange 1996; Roberts and
Harrison 1999; Johnson et al. 2022; Glass et al. 2024),
but to date, no study has examined the interactions be-
tween humidity, evaporative cooling, and body temper-
atures for flying insects. We can predict that large, fly-
ing insects reliant on evaporative cooling will likely have
higher body temperatures when flying in a humid en-
vironment compared with a dry one, as high humidi-
ties impede evaporation. But how strong an effect this
might be is unclear. Understanding such interactions
among abiotic factors and among abiotic and biotic fac-
tors will be crucial to better predict consequences of cli-
mate change for insect flight.

Integrating sensory information to
control flight behavior

In the last century, studies of insect flight—particularly
in locusts—played a critical role in the discovery of im-
portant general phenomena in neuroscience. For ex-
ample, Don Wilson’s work on the neuronal basis of
the flight rhythm in locusts provided unambiguous ev-
idence for the existence of central pattern generators

within nervous systems (Wilson 1961), a controversial
topic at the time (Edwards 2006). Experiments in many
laboratories on central and peripheral flight circuitry
identified the critical role of neuromodulators such as
octopamine (the invertebrate analog of noradrenaline)
in modulating and coordinating the activity of neural
circuits during behavior, providing an early mechanis-
tic explanation for behavioral state changes within the
brain (Orchard et al. 1993). Other studies demonstrated
how sensory information from different modalities can
be fused together in descending neurons to provide
appropriate commands to the local circuits that regu-
late motor output (Reichardt and Rowell 1985; Reichert
1989; Burrows 1996). During the same era when lo-
custs served as an important general model for neu-
roscience, studies of in blowflies, dragonflies, and hov-
erflies (Olberg 1981; O’Carroll 1993; Borst et al. 2010;
Nordstrom 2012) provided critical insight into visual
processing, whereas experiments in moths were essen-
tial for understanding olfaction during plume tracking
(Vickers et al. 1998). Thus, at one time, the study of in-
sect flight was a vibrant part of mainstream neurobiol-
ogy, and important discoveries emerged from a variety
of different species.

For a variety of reasons, the landscape of insect flight
neurobiology has changed quite drastically over the last
few decades. With more and more research focused on
the fruit fly, Drosophila melanogaster, a rapidly expand-
ing toolkit of genetic tools for recording from and ma-
nipulating the activity of specific cells makes it possi-
ble to overcome experimental barriers that faced ear-
lier generations of researchers (Venken et al. 2011). This
emphasis on Drosophila is both a blessing and a curse
for the community. On the one hand, new approaches
such as optogenetics and connectomics make it possible
to routinely perform experiments that appeared nearly
impossible just a few years ago. On the other hand, the
over-emphasis on one particular species diminishes the
general insight that can only arise through a compara-
tive analysis or requires the study of animals with dif-
ferent behavioral repertoires than those of fruit flies.
Fortunately, there are signs that the discoveries emerg-
ing from Drosophila may serve a role in fostering and
empowering research in other species by providing a
beachhead of knowledge and an experimental work-
flow that exploits the deep homologies that exist across
species.

There is perhaps no better example of how productive
the synergy between Drosophila research and studies in
other species is than recent advances in our understand-
ing of the central complex, a system of ancient mid-
line brain regions that are essential to many aspects of
flight behavior, including navigation (Strausfeld 2012;
Honkanen et al. 2019). Experiments using genetically
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encoded calcium indicators in flies led to the discovery
of a ring-attractor network in the ellipsoid body that
functions as a compass system, analogous to head di-
rection cells in the mammalian hippocampus (Turner-
Evans and Jayaraman 2016; Green et al. 2017; Kim et
al. 2017). Very recently, elegant evidence has emerged
that another unpaired neuropil within the central com-
plex, the fan-shaped body, contains arrays of cells that
are capable of encoding both the magnitude and direc-
tion of vectors, such as translational velocity or apparent
wind direction (Lyu et al. 2022; Matheson et al. 2022),
and that this information can be used to create steer-
ing information that orients the animal toward a spe-
cific goal (Mussells et al. 2024; Westeinde et al. 2024).
The discovery of a region in the brain that can store
and manipulate vectors is quite profound because it pro-
vides a mechanism by which insects might compute
state variables that are critical for flight-related behav-
iors such as maintaining a constant heading, celestial
navigation, ground speed regulation, anemotaxis, alti-
tude regulation, and path integration (van Breugel et al.
2022; Stupski and Breugel 2023). Whereas the key ex-
perimental studies on the central complex required the
genetic approaches currently restricted to Drosophila,
comparative studies indicate an astonishing homology
of the underlying circuitry across species (Honkanen et
al. 2019; Beetz and El Jundi 2023). This allows for a pro-
ductive synthesis of knowledge—including the genera-
tion of neuronally constrained computational models of
behavior (Stone et al. 2017; Mitchell et al. 2023)—using
anatomical and physiological data from other species
that utilize the circuitry to execute more exotic behav-
iors such as path integration to and from a hive by bees
or time-compensated celestial navigation by migratory
butterflies. What is emerging is a fascinating picture of
how an ancient brain structure—likely dating back to
before the emergence of flight—has been co-opted and
modified by evolution to perform different navigational
tasks.

As indicated above, until recently, the bulk of our
knowledge on the flight control circuitry in insects was
based on work in locusts and other large orthopteran
species that use synchronous flight muscles to power
their wing motion. This is not a coincidence. The fact
that the wingbeat cycle of locusts is based on a central
pattern generator and proprioceptive reflexes makes it
possible to aggressively dissect the thorax to provide ac-
cess to the ventral nerve cord without completely dis-
rupting the underlying flight rhythm (Robertson 2020).
Indeed, even a completely isolated thoracic ganglion
can generate a rudimentary flight rhythm (Stevenson
and Kutsch 1987), an unambiguous demonstration that
the nervous system contains central pattern generators.
However, the critical role of thorax and wing mechan-
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ics in the resonant mechanisms underlying the flight
motor of asynchronous insects (e.g., Coleoptera, Hy-
menoptera, Diptera) has long hindered progress on un-
derstanding the flight circuits of these diverse and eco-
logically important groups. Even minor manipulations
required for electrophysiological access to the ventral
nerve cord usually disrupt the thorax mechanics so as
to render the flight system inoperable. Although it has
been possible to gain much insight by recording from
flight muscles in asynchronous fliers using electromyo-
graphy (EMGs) (Harcombe and Wyman 1977; Hiirkey
et al. 2023), the critical premotor interneurons have
remained almost entirely inaccessible. This is one do-
main in which the genetic tools recently available in
Drosophila are filling a fundamental gap in our knowl-
edge of flight control circuitry (Ehrhardt et al. 2023;
Cheong et al. 2023b).

Perhaps the most compelling example of the utility
of the genetic tools available in Drosophila for studies of
flight motor circuitry concerns the function of descend-
ing neurons, a critical class of several hundred interneu-
rons with cell bodies and dendrites in the brain and ter-
minals in the ventral nerve cord (Hsu and Bhandawat
2016; Namiki et al. 2018). These large cells constitute
a critical information bottleneck linking sensory struc-
tures on the head (e.g., eyes, antennae, and ocelli) to
flight motor neurons and premotor networks in the ven-
tral nerve cord. Access to cell-specific genetic driver
lines for a vast number of descending neurons, along
with data from connectomes on their inputs and out-
puts, is providing novel insight into the function of spe-
cific neurons in many features of flight behavior, includ-
ing takeoff (von Reyn et al. 2014; von Reyn et al. 2017;
Ache et al. 2019), steering (Suver et al. 2016; Namiki et
al. 2022), collision avoidance (Kim et al. 2023), sponta-
neous turns (Ros et al. 2024), and landing (Ache et al.
2019). Among the advantages of the genetic approach
to studying the descending neurons are experimental
access to very small neurons (that would never be ac-
cessible by traditional sharp electrode recording) and
optogenetic techniques for experimental activation and
silencing in intact animals (Simpson 2024). Recent suc-
cesses employing these approaches include the discov-
ery of an elegant and remarkably versatile circuit that
regulates takeoft in flies. It has long been known that
many insects possess a pair of giant descending neurons
(the so-called “giant fiber”) that mediate fast, uncon-
trolled escape responses (Trimarchi and Schneiderman
1995). The nervous system also contains a parallel path-
way that translates visual information into a set of leg
movements prior to takeoff that can allow the fly to
deliberately launch itself away from a looming threat
(Dombrovski et al. 2023)—providing a neurobiological
answer to the question, “why are flies so hard to swat?.”
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Another example concerns the neuronal basis of a
prominent search motif exhibited by flies, in which
they execute very straight flight trajectories interspersed
with rapid turns called body saccades. Studies of the
descending neurons involved in flight control suggest
that, although deceptively simple, straight stable flight
actually requires a large number of descending neurons
operating via a population code (Namiki et al. 2022),
whereas the body saccades are controlled by a relatively
simple system or just four descending neurons orga-
nized into two couplets, each consisting of co-active ex-
citatory and inhibitory cells that function effectively as
one single command unit (Ros et al. 2024). The best ex-
planation for why straight flight requires a much larger
number of descending neurons than the body saccades
is that non-linearities in the aerodynamics of flapping
flight require extraordinary precision in order to per-
fectly trim wing motion and thus balance forces and
zero out torques during straight flight. In addition to
this precision dictated by the underlying physics, the
motor system also requires a large dynamic range in
case the left and right wings must flap differently to ac-
commodate morphological asymmetries due to either
wing damage or developmental abnormalities (Muijres
et al. 2017). Providing this combination of dynamic
range and precision is the most likely explanation for
the relatively large number of descending neurons nec-
essary for straight flight. Although body saccades are
impressive acrobatic maneuvers, their variability from
event to event (Muijres et al. 2015) suggests a lack of
precision that is consistent with the smaller number of
descending neurons that are required for their execu-
tion.

Whereas most research to date on flight control cir-
cuitry using genetic tools has focused on descending
and motor neurons, the same approaches are becom-
ing available to investigate local interneurons and sen-
sory neurons—two cell classes that have been partic-
ularly difficult to record and manipulate in flies and
other insects with an asynchronous flight motor. As was
the case with descending neurons, these investigations
will be facilitated by the availability of sparse genetic
driver lines, which may be screened using both acti-
vation and silencing techniques. In addition, data from
several connectomes suggest much functional structure
within ventral nerve cord circuits, which link together
the activation of specific flight motor neurons that play
synergistic roles in flight control (Ehrhardt et al. 2023;
Lesser et al. 2023; Cheong et al. 2023b). A key challenge
for future studies of flight circuitry will be in determin-
ing how descending information from the eyes, anten-
nae, and ocelli is integrated with local mechanosensory
feedback from the wings (and halteres in flies) to gen-
erate appropriate commands to flight motor neurons
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such that they fire at the correct time in each wing-
beat cycle. In addition, the emerging connectome has
brought attention to the importance of the large pop-
ulations of ascending neurons, which serve as a criti-
cal conduit for providing sensory feedback and effer-
ence copy from the ventral nerve cord to the brain
(Cheong et al. 2023a).

Outlook and potential solutions to
methodological barriers

As discussed above, an enormous and rapid amount
of progress has been made within the last several
decades to address long-standing questions about the
developmental origins of insect wings, the physiolog-
ical and biomechanical determinants of insect flight
performance, and the neurological and sensory pro-
cesses controlling flight. Integrative research on the
physiology and biomechanics of insect has also had
wide-reaching broader impacts, informing policy mak-
ers (e.g., Marden and Allen 2002; Fisher et al. 2023;
Siviter et al. 2023), agricultural practices (e.g., Cease
et al. 2015), and bio-inspired design principles applied
by engineers (e.g., Franceschini et al. 2007; Sato et al.
2009; Ma et al. 2013; Phan and Park 2020). However,
recent progress has raised new questions, and many
pressing gaps remain, particularly in our understanding
of how complex interactions among genetic, morpho-
logical, physiological, and ecological factors shape both
past and present evolutionary dynamics of insect flight.
Many of these gaps in knowledge exist in part because
of barriers posed by technical limitations to studying in-
sect flight. Moving forward will surely require innova-
tive and interdisciplinary solutions to these challenges,
and we briefly discuss potential avenues for method-
ological development, which we think should be prior-
itized.

We are currently constrained in our ability to study
broadscale cross-species or cross-population patterns
and evolutionary trends because much of our current
knowledge base and research is constrained to a few
model insect taxa. For example, the overwhelming ma-
jority of data on the gene regulatory networks governing
wing development (Tripathi and Irvine 2022) and neu-
robiological function of the flight system comes from
Drosophila melanogaster, which exhibits many highly
derived aspects of development and flight behavior. One
key to addressing this shortcoming is to prioritize de-
veloping high-quality genomes and transcriptomes us-
ing long-read sequencing technology, for more non-
model insects. These efforts will help make a suite of
additional cutting-edge molecular genetic tools (e.g.,
in situ hybridization/HCR, antibody staining, single-
cell RNA-seq, RNAi, CRISPR-Cas9 genome editing,
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transgenics for reporter assay, overexpression, lin-
eage tracing, and chromatin profiling methods) more
tractable to employ, and open up new avenues for re-
search on the evolutionary diversification of flight us-
ing functional genomic approaches. Additionally, the
improved resolution of the insect phylogeny (Misof et
al. 2014) should be better leveraged to focus efforts on
studying specific members of major taxa in closely re-
lated clades to act as representatives where major evolu-
tionary transitions in flight machinery took place (Fig.
3). This approach was central to providing the recent
insights into the evolutionary transition in flight mus-
cle from asynchrony to synchrony in Lepidopteran dis-
cussed above (Gau et al. 2023), indicative of the great
value and importance of studying insect flight in a phy-
logenetic context.

Additionally, the large amount of variation among
insects in flight propensity and mode of flight poses a
major challenge to defining and measuring flight per-
formance broadly across taxa. In particular, the rela-
tively small body sizes and high speeds at which in-
sects fly make studying diverse flight behaviors, in-
cluding maximum flight speeds, agility, maneuverabil-
ity, and endurance very challenging. Thus, large tax-
onomic biases in the physiological and biomechanical
literature on insect flight arise simply from our con-
strained ability to measure flight most readily among
larger bodied and relatively slow flying insects. The de-
velopment and use of high-speed 3D video camera tech-
nology and sophisticated analysis tools, which enable
tracking of insect flight at small spatial scales with high
resolution and provide accurate measures of short-term
acceleration, was instrumental in advancing our abil-
ity to study the biomechanical basis of flight perfor-
mance (Fabian et al. 2024). However, a complemen-
tary toolkit for physiologists to monitor, measure, and
manipulate the physiological state of insects in flight
is lacking. Organismal flight metabolic rates are avail-
able for a relatively broad range taxa and have served
as a critical foundation for our understanding of flight
energetics and physiological costs that constrain flight
performance. To move the field forward, there are clear
needs for improved, high-throughput methods for bet-
ter assessing other aspects of the insect physiological
state during flight, including parameters such as mus-
cle activation, force generation, substrate and adeny-
late concentrations, gas concentrations, and oxidative
damage. Development of these tools may require part-
nerships with engineers but would be very useful for
addressing open questions about how insect maximal
flight performance is related to wing morphology and
kinematics, the physiological causes of short- and long-
term fatigue, and environmental effects on performance
limits.
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Finally, to better predict and explain the evolution-
ary consequences of variation in flight performance,
there is a critical need to investigate how flight per-
formance of insects measured in the laboratory setting
translates into the field. In natural settings, most in-
sects only fly intermittently or in specific environmen-
tal conditions or life stages, making complex relation-
ships between lab-based measures of flight performance
and behavior of individuals in natural settings likely. For
example, whereas female Glanville fritillary butterflies
show a positive relationship between flight metabolic
rate and the distance covered in the field (Niitepold et
al. 2009), the relationship appears to be the opposite
in males, probably due to male flight being more ori-
ented towards mate location and within-sex competi-
tion (Niitepold et al. 2011). New advances in GPS mon-
itoring, radio transmitters, and telemetry are excitedly
improving our ability to track free-flying insects over
large spatial scales (Dudley and Srygley 1994; Osborne
et al. 1999; Cant et al. 2005; Dudley and Srygley 2008;
Korosi et al. 2008; Ovaskainen et al. 2008; Chapman et
al. 2011; Knight et al. 2019; Menz et al. 2022). Increased
use and application of these technologies will help to
fill major gaps in our understanding of how far and fre-
quently insects fly in nature. There is also great potential
for combining lab and field datasets on flight to develop
ecological and evolutionary models predicting how in-
sect flight patterns will be affected by changing climatic
conditions.

Conclusions

Understanding the diversity and evolutionary dynam-
ics of flight strategies requires an integrative approach,
focused on linking genes up to organismal flight perfor-
mance and fitness in variable environments. This sym-
posium showcased the diversity in flight strategies that
exists across the insect phylogeny and has illustrated the
ways in which the mechanistic underpinnings of flight
combine with the environmental conditions to deter-
mine the targets of selection. Clearly, many metabolic
properties of the muscles are associated with the flight
performance of species and individuals, but the diver-
sity in performance (e.g., endurance, maneuverability,
load-lifting, and life-history strategies), physiological
properties (e.g., synchronous-asynchronous, endother-
mic capacity, metabolic fuel, and oxygen delivery), and
the aerodynamic regime occupied by species can influ-
ence the specific physiological targets that evolutionary
mechanisms may act on.

Trade-offs are key to understanding the constraints
shaping the evolution of flight, and the study of insect
flight is advancing our understanding of the mecha-
nisms and evolutionary consequences of these trade-
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offs. In this symposium, we have considered that
trade-offs occur due to resource allocation or acqui-
sition constraints (e.g., dispersal-reproduction trade-
offs), functional conflicts in the physiological and
biomechanical mechanisms (e.g., maneuverability vs.
stability, burst performance vs. endurance), and due to
variation in the ecological context (e.g., thermal and
hygric conditions). Sophisticated environmental sens-
ing mechanisms and physiological integration enables
flight strategies to be finely tuned to environmental
variation to match flight performance to environmen-
tal conditions. Further study of the underlying mecha-
nisms of this integration of environmental information
and coupling it to physiological and biomechanical out-
puts promises to provide us with important insights into
how insects will respond to environmental change.
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