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ABSTRACT

Forecasting the number of visits to Points-of-Interest (POI) in an
urban area is critical for planning and decision making in vari-
ous application domains, from urban planning and transportation
management to public health and social studies. Although this fore-
casting problem can be formulated as a multivariate time-series
forecasting task, current approaches cannot fully exploit the ever-
changing multi-context correlations among POIs. Therefore, we
propose Busyness Graph Neural Network (BysGNN), a temporal
graph neural network designed to learn and uncover the underlying
multi-context correlations between POIs for accurate visit forecast-
ing. Unlike other approaches where only time-series data is used to
learn a dynamic graph, BysGNN utilizes all contextual information
and time-series data to learn an accurate dynamic graph representa-
tion. By incorporating all contextual, temporal, and spatial signals,
we observe a significant improvement in our forecasting accuracy
over state-of-the-art forecasting models in our experiments with
real-world datasets across the United States.

CCS CONCEPTS

« Computing methodologies — Supervised learning by re-
gression; Neural networks; Learning latent representations.

KEYWORDS

graph neural networks, time-series forecasting, POI visiting pat-
terns, multi-context correlations

ACM Reference Format:

Arash Hajisaﬁl, Haowen Lin!, Sina Shaham!, Haoji Hu?, Maria Despoina
Siampou?, Yao-Yi Chiang?, Cyrus Shahabi'. 2023. Learning Dynamic Graphs
from All Contextual Information for Accurate Point-of-Interest Visit Fore-
casting. In The 31st ACM International Conference on Advances in Geographic
Information Systems (SIGSPATIAL °23), November 13-16, 2023, Hamburg, Ger-
many. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3589132.
3625567

1 INTRODUCTION

Point-of-Interest (POI) data is a treasure trove of information, pro-
viding geographical locations, entity names, and types of places of
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interest, such as the Eiffel Tower (landmark) or a Starbucks coffee
shop. Predicting the number of visitors to a POI at a specific time
offers valuable insights into collective social and mobility behav-
ior [19]. It has numerous practical applications, such as traffic flow
analysis, epidemic spread prediction, and travel demand estima-
tion (e.g., for ride-hailing apps). Take the prediction of epidemic
spread as an example: during the COVID-19 pandemic, accurate
predictions of the number of visits to grocery stores in a particular
neighborhood could inform policies on store closures or visitor
restrictions to control the spread of the virus (e.g., [5]).

Forecasting POI visiting patterns is a complex task due to the
ever-changing nature of human mobility behavior. External factors
such as rush hours, seasonal traffic fluctuations, weather, holidays,
and planned or unexpected events, transient, such as a football
game or long-term, such as the COVID-19 pandemic, all contribute
to this unpredictable behavior. One way to improve forecasting
accuracy is to exploit the similarities between POIs, a non-trivial
task. It involves identifying and effectively combining correlations
from different signals such as past visiting patterns, geographical
locations, semantic similarities (e.g., shared POI attributes such as
cuisine types of restaurants), and taxonomic distances (e.g., similar
visitation trends between categories such as “restaurant” and “bar”).
These signals also tend to change over time, making it challeng-
ing to infer similarity between two POIs even when considering
correlations based on past POI visit numbers.

While predicting future POI visit numbers can be formulated
as a time-series forecasting task, there are several limitations to
existing methods. Classical time-series forecasting methods like
ARIMA [22] and VAR [21] rely on assumptions of linearity and
stationarity, which do not hold in complex real-world scenarios
and fail to capture long-term dependencies. Recently, deep learning
has achieved impressive results in various tasks, such as image clas-
sification [17, 18], natural language processing [36], and ensuring
privacy and fairness [32, 33]. However, typical deep learning mod-
els such as RNN-based approaches (e.g., LSTM [14] and GRU [7]),
while capturing intra time-series dependencies, both short-term and
long-term, cannot exploit relationships across time series. One way
to capture these inter time series correlations is to conceptualize
the problem as a graph, where nodes are POIs and edges (and edge
weights) capture their interdependencies, and then apply Graph
Neural Networks (GNNs) on the resulting graph. The challenge
here is how to build a representative graph.

Toward this end, the GNN approaches can be divided into Static
and Dynamic categories. The static GNNs build the graph once
based on input feature vectors using predefined similarity mea-
sures, often derived from specific domain knowledge [16, 31, 41].
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These models emphasize less on graph construction, but focus on
graph convolution techniques and processing methods. For exam-
ple, DCRNN [16] builds a simple static graph of traffic sensors
based on their road-network distances and then passes it to Graph
Diffusion Convolution with a sequence-to-sequence architecture.
The second category learns a dynamic graph representing the time-
varying relationships between variables [4, 37, 38, 43]. For instance,
StemGNN models latent correlations between time-series windows
to generate a time-varying graph on which it applies Spectral Graph
Convolution [15], which uses Graph Fourier and Discrete Fourier
transforms to capture time series correlations.

For POI visit forecasting, visit patterns of a single POI change
over time for various reasons, which makes the dynamic GNNs a
suitable solution. However, in certain time windows, say during
holidays or COVID, the visit patterns of two semantically (and/or
geographically) far POIs may look similar. Conversely, due to some
temporary events, e.g., remodeling, two similar POIs may have
different visit patterns. Therefore, our goal is to build a comprehen-
sive dynamic graph using all contextual information robust to time
variances (dynamic) or predefined node similarities (static).

Consequently, our proposed Busyness Graph Neural Network
(BysGNN) builds a dynamic graph by capturing POIs’ spatial corre-
lations, intra-series dependencies in individual visit patterns, inter-
series dependencies across visit patterns, semantic similarity, and
taxonomic proximity. This is achieved through a robust gated at-
tention mechanism and an effective thresholding strategy. The
gated attention mechanism integrates semantic-based and distance-
based similarity matrices as a gate to determine the extent to which
similarity scores between time series should be considered to gen-
erate the graph’s adjacency matrix. Subsequently, the thresholding
mechanism eliminates noisy relationships to improve the graph
representation’s accuracy. Another challenge is that, while seman-
tic similarities are not dynamic, they are task-dependent and are
unknown a priori. To address this, BysGNN uses a pre-trained lan-
guage model to obtain initial semantic embedding based on the
textual description of POIs and fine-tunes them based on the fore-
casting task to account for accurate semantic similarities as the
network trains.

We conducted extensive experiments with real-world datasets
and compared BysGNN with some naive baselines and state-of-
the-art static and dynamic GNNs. The results demonstrate the
superiority of BysGNN in effectively building dynamic graphs in-
corporating information from various contextual and past visit
signals. The experiments show that previous dynamic GNNs that
rely solely on visit pattern similarity require many similar POIs to
perform well. In contrast, static GNNs perform better with fewer
POIs. Interestingly, a naive baseline outperforms static GNNs but
falls short compared to dynamic GNNs and BysGNN, underscoring
the significance of a dynamic graph structure. Our ablation study
validates the positive impact of simultaneously considering the
inter-time-series, semantics, spatial, and taxonomic similarities on
forecasting accuracy, with semantics showing the most substantial
improvement. Finally, we illustrate example cases where other dy-
namic GNNs consider two POIs to be similar (or different) due to
visit pattern similarities (or dissimilarities) in a recent time window,
resulting in an inaccurate adjacency matrix. In contrast, BysGNN’s
gated adjacency matrix shows a high influence from long-term
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semantic/geographical similarities (or dissimilarities), resulting in
accurate forecasting.

The rest of the paper is organized as follows. We review the
related work for time-series forecasting in Section 2. Section 3 for-
mally defines the problem of forecasting POI visit numbers. We
describe our BysGNN framework in Section 4. Finally, we present
our experimental setup, datasets and results in Section 5 and con-
clude the paper in Section 6.

2 RELATED WORK

Time-series modeling has long been a prominent area of academic
research, leading to the development of a wide variety of fore-
casting methods. These methods can be broadly categorized into
univariate and multivariate time series techniques. Univariate tech-
nologies focus on analyzing single observations recorded sequen-
tially without considering correlations between different time series
variables [20, 27, 29]. For instance, the ARIMA family of methods
assumes a linear relationship, where predictions are weighted linear
sums of past observed values. Salinas et al. propose a forecasting
method based on autoregressive recurrent neural networks, which
models the probability distributions of the variable in the future [29].
In contrast, multivariate time series techniques aim to capture inter-
actions and co-movements among a group of variables [1, 24, 40].
For example, Zerveas et al. present a novel framework based on a
transformer encoder that extracts dense vector representations of
multivariate time series [42].

Graph Neural Networks (GNNs) [13, 30] have emerged as power-
ful machine learning models for modeling non-Euclidean data rep-
resented by graphs. In recent years, the application of GNNs in mul-
tivariate time series forecasting has witnessed significant success
across various domains. One notable application is DCRNN [16],
which models traffic flow as a diffusion process on a directed
graph, effectively capturing spatial dependence between sensors
for traffic forecasting tasks. However, such approaches often rely
on predefined correlations between components to pre-construct a
graph, which remains fixed during training and testing. Another
approach, HAGEN [38], introduces a graph convolutional recur-
rent network that dynamically captures crime correlations between
regions and temporal crime dynamics for crime forecasting. Ad-
ditionally, StemGNN [4] successfully captures inter-series corre-
lations and temporal dependencies jointly for multivariate time
series forecasting.

Dynamic GNNs have been used extensively for epidemic fore-
casting, e.g., COLA-GNN [10] proposes a novel GNN-based frame-
work with a location-aware attention mechanism to capture spa-
tiotemporal dependencies, enabling accurate long-term predictions.
STAN [12] is another prediction framework that utilizes graph
attention networks to incorporate interactions between similar
locations, enhancing its accuracy in the prediction of pandemics.
Moreover, CausalGNN [39] adopts an attention-based approach to
learn a combined spatiotemporal and causal latent embedding from
disease dynamics and epidemiological context, facilitating precise
forecasting of daily new COVID-19 cases.

In contrast to most GNN-based frameworks that rely on recur-
rent neural networks to capture temporal dependencies, Choi et al.
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introduce a novel approach [8] by integrating neural-controlled dif-
ferential equations with graph convolution processing technology
for spatiotemporal forecasting.

Despite the abundance of graph-based modeling approaches in
time series forecasting, these approaches cannot effectively fuse
multiple contextual sources, which is the focus of BysGNN, and
thus can be considered an orthogonal approach to these models.

3 PROBLEM FORMULATION

This section provides the preliminaries and a formal definition of
the problem of forecasting POI visit numbers.

Definition 3.1. (Multi-Context Correlations). Multi-context cor-
relations refer to the latent relationships among POIs influenced
by various contextual factors, such as time of day, day of the week,
distance, and events. In POI visiting number forecasting, these corre-
lations include spatial (closeness of geographic locations), temporal
(the changes in visit patterns over time and the dependencies be-
tween visit patterns of different POIs), semantic (similarity of POI
attributes, such as POI types), and taxonomic (the general semantic
categories of POIs, representing the high-level visiting trend) cor-
relations. Leveraging these multi-context correlations can enhance
the accuracy of forecasting frameworks for POI visits.

Definition 3.2. (Busyness Graph). We define a Busyness Graph
network G = (V, A) where V is a set of |[V| = N nodes, and each
node corresponds to a specific POI (e.g., a restaurant) or a category
of POIs (e.g., all restaurants). We denote the A € RNXN 45 the
adjacency matrix, where a;; > 0 indicates that there exists an edge
connecting nodes v; to v, and a;; indicates the strength of this edge
which shows the amount of influence that v; has on the forecasts
of v;. The adjacency matrix A is dynamically updated based on the
multi-context correlations and captures the most recent knowledge
about the interaction between POI nodes.

Definition 3.3. (POI Visit Forecasting Problem). Given X = (x1, ..., XxN7)

€ RNXT a5 the input time series that represents the hourly visit

numbers to each POI for a time window of T steps, and U =
(u1, .., un) € RV*J as the set of J attributes (e.g., category and
name) of each POI, our goal is to generate and utilize the dynamic
Busyness Graph G to find Y = (y1, .., yn) € RV*H which shows
the future visit numbers for the next H time steps for each POL

4 BUSYNESS GRAPH NEURAL NETWORK

4.1 Overview

This section describes the BysGNN (Busyness Graph Neural Net-
work) framework to tackle the problem of forecasting POI visiting
numbers. For each forecasting horizon, BysGNN first generates a
dynamic graph by exploiting all contextual information. The graph
edges and their strengths represent the multi-context correlations
between POIs. Then BysGNN uses the dynamic graph for accurate
forecasting.

The overall architecture of BysGNN is presented in Figure 1,
which consists of two main blocks. The first block, referred to as
the BysGNN Graph Construction Block (sec 4.2), is responsible
for building the dynamic Busyness Graph, which captures the
multi-context correlations among POIs. The second block called
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the GNN Block (sec 4.3), performs the convolution operation on
the Busyness Graph and generates node embeddings used to make
forecasts.

The BysGNN’s Graph Construction Block starts by feeding the
input time series to the Aggregated Data Generator module (sec
4.2.1), which generates new aggregated time-series data based on a
predefined measure (POI taxonomy in our case) and adds them to
the original input. This step allows the model to learn the taxonomic
correlations in the following steps. The augmented time-series data
are passed through the Intra-Series Correlation Layer (sec 4.2.2),
which learns the temporal dependencies in individual time series
(i.e., intra-series correlations) and generates temporal embeddings
summarizing the time-series information for the given time window.
The temporal embeddings are then passed to the Node Features
Generation Layer (sec 4.2.3), which assigns a node to each indi-
vidual time series and generates feature vectors for each node in
the graph. We call the nodes corresponding to aggregated time se-
ries “meta-nodes” and the nodes corresponding to individual POIs
“POI nodes”” This layer first builds semantic embeddings based on
POI attributes (such as categories and names) that allow the model
to learn semantic similarities between nodes. The next step con-
catenates the semantic embeddings with the previous temporal
embeddings to form the node feature vectors.

The next step involves passing the semantic and temporal embed-
dings into the Multi-Context Correlation Layer (sec 4.2.4). This
layer is crucial as it generates the adjacency matrix of BysGNN’s
dynamic graph, which reflects the dependencies among POI nodes
and meta-nodes across multiple contexts, including inter-series
relationships across time series, the spatial proximity of POIs, and
semantic similarities between POI and meta nodes. To ensure reli-
able inter-series correlation scores, BysGNN incorporates a gating
mechanism that combines pairwise spatial and semantic similarity
scores as a gate to allow the flow of inter-series correlation scores.
This mechanism enables the model to effectively use the inter-
series similarity scores for forecasting by considering the spatial
and semantic context between POIs.

This approach results in a more robust and sparser adjacency
matrix, preventing over-smoothing by retaining strong relation-
ships while reducing the impact of weak and noisy relationships.
The layer also utilizes a case amplification technique to threshold
the adjacency matrix and remove noise.

After generating the node features and adjacency matrix in the
previous layers, BysGNN creates the dynamic Busyness Graph. Busy-
ness Graph is then passed to the GNN Block for further processing,
where a Graph Convolution layer is applied to obtain forecasts
based on the final node embeddings.

4.2 BysGNN Graph Construction Block

4.2.1 Aggregated Data Generator. This layer generates and
adds new aggregated time series based on POI types (categories) to
the original time series data, allowing the model to learn taxonomic
correlations. For example, POIs in the Gas Station category might
follow a similar visit pattern. At the same time, the visit pattern
of POIs in the Restaurant category could also be similar to the
aggregated visiting patterns of POIs in the Gas Station category.
On top of this, the degree to which the POIs in the same category
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Figure 1: BysGNN Overall Framework

follow the same pattern as the aggregated pattern of that category
differs vastly between different POIs. As a result, the taxonomic
correlation that BysGNN defines consists of correlations between
patterns at the same aggregation level and correlations between
visiting patterns from different levels of aggregation. In the POI
visit forecasting problem, BysGNN considers three different aggre-
gation levels corresponding to individual POIs’ visit patterns, POI
categories’ visit patterns, and the Global visits pattern (an addi-
tional time series generated by aggregating the visits to all POIs),
respectively. Adding these aggregated time series allows BysGNN
to learn such taxonomic correlations in the next step.

Specifically, given X € RNXT as the original time-series input
(with N as the number of time series and T as the window size
for each series), and K as the set of all input POI category types,
this module generates |K| new time-series data by aggregating
individual POI time-series based on their categories, and an addi-
tional time series by aggregating all the time series data together
(Global visits time series) and adds them to the original input. As a
result, the module output will be X’ € RINHIK+DXT The aoorega-
tion is defined as a function fa4g such that: fag, : RN'XT" , RT
(summation, in our case).

4.2.2 Intra-Series Correlation Layer. This layer is responsible
for learning the intra-series dependencies in individual time series
and generating embedding vectors summarizing the time-series
data for the given window. The layer receives the augmented time

series data X’ € RIN*IKI*DXT a5 input and generates time-series
embeddings C € RIN*IKI*DXM ' ghere M represents the embed-
ding dimension. The layer consists of separate N + |[K| + 1 GRU
weight matrices to learn the temporal intra-series dependencies for
each time-series data independently. Figure 2 illustrates the process
of generating these embeddings for each series. It is important to
note that even though separate GRU units are used for different
time series, the size of these GRU units is relatively small, and the
number of parameters and training time will not be significantly
different compared to using one big GRU unit.

Each time series x] = (x;;, ..., X/) € R” holds the visiting num-
bers for a sequence of T time steps. First, BysGNN maps each
time-series sequence to the space of higher dimensions by pass-
ing data points in the series through two linear layers and get-
ting Xi = (Ri1, ... &i7) € RT*D_ Then, it feeds the resulting se-
quence (%1, ..., X;7) to the i-th GRU unit and gets the GRU states
H; = (hit, ... hit) € RTM with z; = i being the output of the
GRU unit.

Inspired by [26], instead of using only the GRUSs’ output z; as the
summary of the window sequence for i-th time series in X', which
is prone to be affected by the final observations in the window
more than it should, BysGNN utilizes a self-attention mechanism
to assign weights to GRU states at different timestamps based on
the importance of that state to pay more attention to the more
important timestamps. Therefore, BysGNN passes all hidden states
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Figure 2: Intra-Series Correlation Layer

(hi1, ..., hiT) and the final GRU state z; to a self-attention compo-
nent. This component calculates the attention scores a;; for each
hidden state using the following equation:

air = softmax (tanh(Wq [hir || zi]) 1)

For calculating the attention score vector a;, containing the atten-
tion score values (a1, ..., a;T) corresponding to each hidden state,
BysGNN first concatenates each vector h;;, which contains the hid-
den states for timestamp ¢, with the final GRU state z;. Then, the
concatenated vector passes through a linear layer with W, as the
weights matrix and a tanh activation is applied. Finally, to ensure
that all attention scores remain between 0 and 1 with the attention
score vector summing to 1, BysGNN passes the intermediate results
through a softmax layer.

BysGNN then calculates the weighted average Z; of hidden states
using the attention scores vector g;. Finally, it adds z; with Z; and
passes the result to a layer normalization unit [2] to obtain the
final temporal embedding ¢; € RM for i-th time series. BysGNN

puts together the embeddings for all time-series data to obtain
Ce R(N+|K|+1)><M.

4.2.3 Node Features Generation Layer. This layer is respon-
sible for building the node features for BysGNN’s dynamically
generated graph by combining embeddings for time series and
semantics of POIs.

To achieve this, given u; = (u;1, ..., ujj) € R/ as the vector of J
attributes for i-th time series, BysGNN first generates a sentence
describing the corresponding POI (or POI category if the time series
is an aggregated one). The attributes used include POI names, ad-
dresses, working hours, phone numbers, and top and sub-categories.
Sentence generation involves predefined templates for POIs and
POI categories (for meta-nodes), which are filled automatically
with the corresponding attributes. For example, the following sen-
tence describes a POI node (with italic text indicating the specific
attributes of that node):

“This point of interest is Simon mall located at 5085 Westheimer
Rd, Houston, TX, 77056. 1t is open for business during Monday — Fri-
day: 10:00 - 19:00, Saturday 10:00 — 17:00, and closed on Sunday. It can
be contacted by phone at (213)538-XXXX. The location belongs to
the top-category Lessors of Real Estate, with the sub-category Malls”
Similarly, the following description is generated for a meta-node:
“This is the meta-node representing all the points of interest in
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Houston that belong to the top category Spectator Sports” Addition-
ally, it is worth noting that the generation of sentence descriptions
is not limited to our specific POI dataset. If necessary, sentence
templates can be easily customized and populated with attributes
from alternative POI datasets.

Next, an intermediate embedding u is obtained by tokenizing
and passing the generated sentence through a pre-trained MPNet
language model [35]. Although this language model is optimized to
achieve state-of-the-art performance in semantic similarity tasks, it
is not specifically trained to represent POI semantics accurately in
the POI visit forecasting task. To address this limitation, BysGNN
fine-tunes the intermediate embedding using a linear layer during
training. The resulting final semantic embedding 1; € R” is tailored
to capture time-series semantics and has a dimensionality of P.

The final feature vector v; for the i-th time series is obtained by
concatenating the temporal embedding ¢; € RM from the output of
the Intra-Series Correlation Layer with the semantic embeddings
4; e RP: vy =¢; ||12i€RM+P.

The Node Features Generation Layer block in Figure 1 shows
this process. By combining individual node feature vectors, the
node feature matrix V = (v1, ..., on4|k|+1) € RNHIK|+D)X(M+P) 4
obtained.

4.2.4 Multi-Context Correlation Layer. The Multi-Context Cor-
relations layer plays a crucial role in BysGNN’s dynamic graph
generation process. This layer is responsible for generating the
adjacency matrix for the dynamic graph structure by capturing the
multi-context dependencies among POI nodes and meta-nodes.

To achieve this, the layer takes in the semantic embeddings U €
R(N+IKI+1)XP 214 the time-series embeddings C € R(N+IK[+1)xM
from the previous layer, as well as the pairwise Euclidean distance
Up € RVXN between POI nodes from the input. It then generates
three similarity matrices: semantic similarity matrix Sg, spatial
similarity matrix Sp, and attention matrix St, each with a dimen-
sionality of RIN+IKHD)X(N+[K[+1)

To create the semantic similarity matrix Sg, BysGNN calculates
the pairwise cosine similarity scores between the semantic em-
bedding vectors in U. Cosine similarity is used as the similarity
metric because it is normalized and effectively captures the degree
of alignment between the semantic meanings of embedding vectors.

To generate the spatial similarity matrix Sp, BysGNN first passes
the pairwise Euclidean distance matrix Up through a thresholded
Gaussian kernel [34] to obtain U}, € RNXN,

UZ (i.J)
Ull)(l',j) — {exp(_ p )s

, otherwise

ifUp(i,j) <t @

where Up (i, j) is the Euclidean distance between the i-th and
j-th POI nodes, o is the standard deviation of the distances in Up,
and 7 is a predefined threshold for sparsity. This process provides
distance-similarity scores between POI nodes. As meta-nodes are
not physical locations with geo-coordinates, BysGNN considers
the distance similarity score within meta-nodes and between meta-
nodes and POI nodes to be 1. This ensures that the lack of geo-
coordinates for meta-nodes does not impact the learned relationship
between them and POI nodes. BysGNN builds the distance similarity
matrix Sp € RINHKIFDX(N+IKI+1) gy ch that the first N elements
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for the first N columns are the same as the corresponding elements
in U}, and the rest are set to 1.

To create a similarity matrix for time-series windows of different
nodes, BysGNN utilizes Multi-head Attention, as outlined in [36],
which generates an attention matrix St representing pairwise cor-
relation scores between time-series embeddings. The temporal em-
bedding vectors are passed to the Multi-Head Attention unit and
St is constructed using the following operations:

St = MultiHead(Q,K,V) = (head; || ... || headl)WO (3)
head; = Attention(QW2, KWK, vw) ()
Attention (Q. K. V) = Soft (QKT)V )
ention s B =o0ftmax | ——
VM

Here, the matrix C is used as the matrix of Keys K, Queries Q,
and Values V simultaneously. [ represents the number of attention
heads, while WO, WiQ, WiK ,and WiV are learnable weight matrices.
Moreover, M refers to the dimension of each temporal embedding
c;. Equation 3 yields the attention scores matrix St.

BysGNN then utilizes a gate that combines the weighted average
of semantic similarities (Sg) and spatial similarities (Sp) to control
the flow of information in time series similarities (S7) and create
the un-thresholded adjacency matrix (S). Specifically, the gate is
formulated as follows:

SGate = (1 - a)Sg +aSp (6)

Where a is a learnable parameter between 0 and 1 that adjusts
the balance between the impact of spatial and semantic similarities
based on the specific POI visits forecasting task. The Hadamard
product operator () is then applied to the gate and the time series
similarities matrix, resulting in the un-thresholded adjacency matrix
(S) as follows:

S = SGate O ST (7)

BysGNN’s gating mechanism helps to preserve strong long-term
relationships and penalize noisy relationships between distant or
semantically dissimilar nodes.

Finally, to filter out previous noisy relationships, BysGNN applies
a thresholding step to the adjacency matrix S. This is achieved
by first normalizing each row of the attention matrix and then
transforming the values using a case amplification power function
to make it easier to differentiate between small and large values.
This significantly reduces the impact of small values over those
of larger ones. Next, a predefined threshold value 7 is applied to
the amplified matrix to obtain a binary mask. The resulting binary
mask is then applied to the un-thresholded adjacency matrix S to
obtain the final adjacency matrix $ as follows:

. Sij
g = 15 E Gty >
/ 0, otherwise

®

where max(S;) is the maximum value in the i-th row of S, p is the
exponent of the case amplification function and 7 is the predefined
threshold value. BysGNN utilizes S € RN+IKI+D)X(N+[K|+1) 55 the
adjacency matrix for the generated Busyness Graph. This process is
illustrated in the Multi-Context Correlation Layer block of Figure 1.
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4.3 GNN Block

After completing every step in the BysGNN Graph Construction
Block (as described in section 4.2), BysGNN constructs the Busyness
Graph G(V, S) for the given time window by combining the node
features (V) and the derived adjacency matrix (S). This dynamically
generated graph has already captured the underlying multi-context
correlations between POlIs.

Next, BysGNN incorporates three Graph Convolutional Network
(GCN) layers from [15] for message passing within the Busyness
Graph. Using the selected convolutional layers (Fgnn), the final
node representations V' are generated as follows:

V' = Fonn (G(V, §)) € RINHK+1)xM ©)

Here, M* represents the node embedding’s dimension. BysGNN
then passes the concatenation of V” and the original node features V
through a fully connected linear layer to produce the final forecasts.

5 EXPERIMENTS AND DISCUSSIONS

This section describes our experimental setup and methodology.
Details related to hardware and software setup, evaluation metrics,
and hyper-parameters are available in the appendix A.1.

5.1 Data Description

To evaluate the accuracy of our model in forecasting hourly visitor
numbers, we utilized the POI data and hourly visitation patterns
datasets provided by SafeGraph [25], a commercial data provider
that compiles its datasets using phone GPS locations and open
government data. Our experiments were conducted in five different
cities and involved two data regimes (large and small) that spanned
the period from January 1, 2019, to February 4, 2020. In the large
data regime, we considered hourly visit counts for the top 400 most
visited POIs in each city, while the small data regime focused on
the top 40 most visited POIs. This allowed us to examine the impact
of the number of variables on the performance of our method and
other baselines. For more detailed information about the data used
in each experiment, refer to Table 4 in the appendix.

5.2 Baselines

We compare the performance of BysGNN with three baseline groups:
Naive Baselines, Static Graph Neural Networks, and Dynamic Graph
Neural Networks. The Naive Baselines include two simple statistical
models: Naive Seasonal and Historical Average. The Static GNNs
group consists of ConvGRU [31], ConvLSTM [31], DCRNN [16],
and A3T-GCN [3] models, which operate on a predefined graph
structure based on pairwise Euclidean distances between POIs. The
Dynamic GNNs group includes StemGNN [4], a state-of-the-art
technique for MTS forecasting that uses an attention mechanism to
infer relationships between nodes. Further details on each baseline
model can be found in the appendix A.1.1.

5.3 Experiment Results

We used input windows of 24 hours to train each GNN-based model
to predict the number of visits for each POI for the next 6 hours for
the datasets described in Table 4 of the appendix. The forecasting
results for each dataset for both large (400 POIs in each city) and
small (40 POIs in each city) data regimes are presented in Table 1.
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Table 1: Comparison of Forecasting Results for Different Datasets in Two Data Regimes: Large Data Regime (400 POIs) and
Small Data Regime (40 POIs). The value on the left of the vertical bar at each field represents the error for the large data regime,
while the value on the right represents the error for the small data regime. The lowest error value is highlighted in bold, while
the second-lowest value is denoted in italics with underline. The “Improvement” row displays the percentage improvement in
the relative error of BysGNN compared to the best-performing baseline.

Dataset Houston Los Angeles New York City
Evaluation Metric MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
Naive Seasonal 4746 13.509 0.664] 0.534 18.166 | 48.304 2934|7346 0752|0586  10.005 | 18.507 3.681]9.425 0.699 | 0.540 9.216 | 23.27
Historical Average 8.860 | 35.323 0.783 ] 0.766 26.911|77.0 4.388 | 15.838 0.786 | 0.756 11.729 | 28.589 6.555 | 25.208 0.770 | 0.744 22.018 | 65.272
ConvGRU 6.415 | 17.640 2.53910.920 20.179 | 38.728 3.781 | 8.474 3.139 | 1.311 10.905 | 17.386 4.605 | 11.200 1.851 | 1.102 17.028 | 28.041
ConvLSTM 8.076 | 24.789 4.270 ] 1.695 23.127 | 49.629 4.362 | 10.500 4.397 | 1.755 11.879 | 20.068 5.448 | 14.095 2.697 | 1.751 18.959 | 33.199
DCRNN 5.683 | 16.371 1.990 | 0.778 18.941 | 36.803 3.389 | 7.870 2.693]1.232 9.879 | 16.433 4.13910.395 1.605 | 0.940 15.504 | 26.247
A3T-GCN 8.380 | 30.921 3.377 ] 2.014 23.9]63.144 4.604 | 13.506 4.129 | 1.929 12.601 | 26.354 5.824 | 16.803 2.579 | 1.726 20.171 | 42.065
StemGNN 4.390| 11.840 0.735]0.786 14.604 | 32.745 24851 6.050 0.6710.716 6.951| 10.552 3.261] 8.505 0.652]0.683 8.074| 18.439
BysGNN 4.095|11.095  0.658|0.648  12.904|30.332 | 2.377|5.610  0.676| 0.608 6.091 | 12.453 3.113 | 6.863 0.598 | 0.478 7.351 15.450
Improvement +6.71% | +6.29% +0.90% | -21.34% +11.64% | +7.36% | +4.34% | +7.27% -0.74% | -3.15% +12.37% | -18.01% | +4.53% | +19.30% +8.28% | +11.48% +8.95% | +16.21%

Although our experiments included visitor data from five different
cities, Table 1 presents results for only three cities due to space
limitations. The results for the remaining two cities exhibit the
exact same trend and are reported in Table 5 of the appendix.

The results of the large data regime presented in Table 1 (values
to the left of the vertical line for each field) show that our pro-
posed BysGNN model consistently outperforms all other baselines
across all datasets, except for the MAPE value on the Los Angeles
dataset. This demonstrates the superiority of our architecture for
forecasting seasonal time-series data. Moreover, our Dynamic GNN
models (StemGNN and BysGNN) demonstrate significantly lower
error values compared to Static GNN models. This underscores
the limitation of using a static graph with predefined relationships
between variables, even when incorporating a sophisticated GNN
Block. Although StemGNN performs the best among the baselines,
our BysGNN model outperforms it in almost every instance with an
error reduction of up to 12.3%, despite having a less complex GNN
Block. This result validates our assumption that a well-designed
Graph Construction Block would substantially enhance forecasting
performance. Specifically, while StemGNN improved upon Static
GNNs by constructing a dynamic graph solely based on the time-
series windows, our BysGNN model took it a step further by intro-
ducing multi-context correlations that are more resilient to noise
and yield a more precise depiction of the underlying relationships
between variables.

The values on the right of the vertical line for each field in Table 1
present the results for the small data regime, where there are only
40 POIs in each dataset. BysGNN continues to demonstrate the best
overall performance, outperforming all other GNN-based models,
including StemGNN, by up to 19% error reduction in all cases except
for RMSE for Los Angeles. It is worth noting that all models exhibit
worse RMSE and MAE results in this data regime compared to the
large number of POIs data regime. This is because RMSE and MAE
depend on the scale of the number of visits, and the average number
of visits is significantly higher in the small data regime compared
to the previous large data regime (see Table 4). In contrast, MAPE
is not affected by the scale of the number of visits and provides a
better measure to compare these two regimes. As shown in Table 1,
MAPE in static GNNs improves significantly in the small regime
compared to the large data regime, indicating that strong predefined
assumptions about the relationships between variables work better

when the number of variables is smaller. StemGNN, on the other
hand, is the only model that performs worse in every case in the
small data regime compared to the large data regime. This highlights
a major drawback of previous Dynamic GNNs: since they rely
solely on the similarity of visit patterns to build a dynamic graph
representing relationships, they require a high number of variables
(nodes) to uncover meaningful relationships. Consequently, they
may fail to infer accurate inter-node relationships based on the
limited number of time series, such as in the small data regime. We
even observe that, in the case of Houston, a static GNN like DCRNN
outperforms StemGNN in terms of MAPE. Conversely, BysGNN
shows improved MAPE performance in all cases, underscoring the
importance of accounting for multi-context correlations in graph
construction.

Another interesting observation is the high effectiveness of the
Naive Seasonal model, which outperforms most Static GNN models
in both regimes. This is due to the highly seasonal nature of our
visitation time-series datasets, where the weekly number of visits
to most POIs remains relatively stable. Consequently, the Naive
Seasonal model is a reasonable forecasting model and hard to beat.
GNN-based models only have access to exact visiting numbers
during the last 24 hours in the input sequence, making it more
difficult for them to outperform the Naive Seasonal model. However,
StemGNN and BysGNN are able to beat the Naive Seasonal forecasts
due to the robustness of their dynamic graph, which accounts for the
dynamic intra- and inter-time-series correlations at each window.
This further highlights the significance of a flexible and expressive
graph structure.

5.4 Ablation Study

We created five variations of our proposed BysGNN model to
understand the effectiveness of different BysGNN components: (1)
w.o Semantics: BysGNN without utilizing POI semantics in node
features and semantics similarities in adjacency matrix; (2) w.o
Space: BysGNN without utilizing spatial correlations and distance
between POIs in the Multi-Context Correlations Layer; (3) w.o
Meta-Nodes: BysGNN without the Aggregated Data Generator
module; (4) w.o Self-Attention: BysGNN without the proposed
self-attention mechanism in the Intra-Series Correlation Layer; (5)
w.o Adj-Thresholding: BysGNN without applying thresholding
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Table 2: Ablation Study Results for the Houston Dataset. The percentage of relative error change for each variant compared to
the original BysGNN is listed below the actual error value. The highest percentage of the error change for each evaluation

metric is highlighted in bold.

BysGNN | w/o. Semantics | w/o. Space | w/o. Meta-Nodes | w.o Self-Attention | w.o Adj-Thresholding
MAE 3.916 4.561 4.209 4.341 4.283 4.348
- +16.47% +7.48% +10.85% +9.37% +11.03%
MAPE 0.618 0.710 0.653 0.660 0.620 0.682
- +14.88% +5.66% +6.79% +0.32% +10.35%
RMSE 10.318 13.327 12.108 13.591 12.906 13.334
- +29.16% +17.34% +31.72% +25.08% +29.23%

to the output of the gating mechanism for the construction of the
adjacency matrix.

Table 2 shows the evaluation results for each scenario. It clearly
shows that all studied components contribute to an improvement
in results, thus confirming our hypothesis that incorporating multi-
context correlations to build a more expressive and robust dynamic
graph has a significant impact on forecasting quality. Interestingly,
we observed that removing semantic embeddings has the largest
overall impact on the three combined performance metrics. This
aligns with intuition, as similar types of POIs, such as restaurants
and coffee shops, tend to experience similar visit patterns in real-
world data, and BysGNN can effectively capture and utilize this se-
mantic similarity. Moreover, while considering spatial correlations
improves forecasting accuracy, the impact of considering semantics
is greater than that of spatial correlations. This is again intuitive,
as we would expect similar types of POIs, such as restaurants, to
have similar visits regardless of their location in a city (e.g., high
visits during lunch hours), while the visitation patterns of close-by
POIs might not necessarily be as correlated (e.g., a gas station with
a nearby restaurant).

Although semantics have the highest impact on combined evalu-
ation metrics, meta-nodes seem to have the largest impact on RMSE
alone. This indicates that capturing the multi-context dependen-
cies between POI nodes and meta-nodes (taxonomic correlations)
can significantly enhance the results. This is because, in POI visits
datasets, individual POlIs often follow a higher-level aggregated
visit pattern. For instance, a single school would likely follow the
visitation pattern of all schools at a higher level. Hence, meta-node
patterns guide more precise learning of POI node patterns, and
BysGNN can dynamically learn these relationships during train-
ing. Moreover, our hypothesis that learned attention scores based
on visit patterns might be noisy and require the gated attention
mechanism and a robust thresholding mechanism to diminish the
impact of noisy patterns is supported by the substantial impact of
adjacency thresholding on performance. Additionally, while the
self-attention unit in the Intra-Series Correlation Layer improves
the results, it has the least impact on MAPE values. This can be
attributed to the fact that GRUs already exhibit a strong capability
to capture intra-series dependencies.

5.5 Interpretation of Adjacency Matrix

This section compares BysGNN’s dynamically generated graphs
with 1) static graphs defined using spatial and semantics similarity
and 2) dynamic graphs using attention on time-series windows for

their forecasting performance (Section 5.5.1) and impact on node
embeddings (Section 5.5.2). For dynamic graphs, we use the graphs
created on Wednesday, Jan 22, 2020, at 10:00:00 AM, representing a
typical weekday scenario. To simplify visualization, we show the
results from the top 40 most visited POIs in NYC from 9 POI cate-
gories, resulting in 10 meta-nodes (one for each of the 9 categories
and 1 for all POIs, the global meta-node).

Table 3: Error Results for Different Adjacency Matrices

BysGNN’s Original Temporal Attention Spatial Similarities ~Semantics Similarity

Adjacency Matrix Matrix Matrix Matrix
MAPE 0.455 0.505 0.562 0.560
MAE 6.673 7.033 8.050 7.830
RMSE 13.962 15.677 19.436 17.463

5.5.1 Impact of Graph Types on Forecasting Performance. Table 3
shows that BysGNN’s dynamically generated graphs from multiple
contexts consistently outperformed the other graphs, indicating
its effectiveness in capturing relevant temporal relationships while
preserving static relationships among nodes. The dynamic graphs
derived from temporal attention yielded the second-best perfor-
mance, highlighting the effectiveness of dynamic GNNs in fore-
casting. Using spatial similarity performed worse than semantics
similarity, especially in RMSE, suggesting that POI proximity alone
is not a good indicator for capturing meaningful visiting pattern
relationships. The following section will examine specific examples
to showcase the node embeddings learned from these graphs.

5.5.2  Impact of Graph Types on Node Embeddings. Figure 3 illus-
trates the node embeddings obtained after the GNN Block, projected
onto a 2D space using UMAP [23] dimensionality reduction tech-
nique for each graph type in Table 3. Each data point represents a
node or a meta-node, with two shapes (triangles and dots) repre-
senting the spatial embedding clusters (Figure 3a) and five colors
indicating the semantic embedding clusters (Figure 3b).

The two clusters of spatial embeddings correspond to two bor-
oughs of the 40 POIs: Manhattan and Queens. For instance, POI 7
and 26 in Figure 3a, highlighted with purple arrows, represent “Red
Mango” (yogurt shop) and “42nd Street” (iconic crosstown street), re-
spectively. Despite being in Manhattan within a half-mile distance,
their visit patterns differ significantly, demonstrating geospatial
proximity does not always indicate similar visit patterns between
POls.

The five clusters of semantic embeddings exhibit oversmooth-
ing [6], discard minor variations in visiting patterns between POlIs,
and potentially lead to similar forecasting results for POIs in the
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(a) Spatial Similarities Matrix (b) Semantics Similarity Matrix

(d) Busyness Graph’s Fused Adjacency
Matrix

(c) Temporal Attention Matrix

Figure 3: Visualization of Node Embeddings for Different Graphs Obtained After the GNN Block. The embeddings are projected
to the 2D space using the UMAP dimension reduction technique. Each data point represents a node or meta-node, with semantic
embedding clusters depicted by five distinct colors and spatial embedding clusters indicated by two different shapes (triangles
and circles). The numbers atop the points correspond to the node indices.
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(a) POIs 33 and 38 exhibit a high similarity in time series patterns beyond the
most recent observed window (yellow). These POIs are situated close to each
other in Busyness Graph’s embedding space, while they are far apart when using
the temporal attention matrix.
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(b) POIs 22 and 18 show dissimilar future visit given the highlighted input
window (yellow). These POIs are situated far from each other in the embedding
space using Busyness Graph’s adjacency matrix, while they are close using the
temporal attention matrix.

Figure 4: Visits Time Series for Two Pairs of POIs Within and Beyond the Observed Input Window (Highlighted in Yellow)

same cluster. Consider POIs 12, "Theodore Roosevelt Park", and
31, "Herald Square’", indicated by the purple arrows in Figure 3b.
They are in the same semantic cluster due to their shared POI cate-
gory of "historical sites." However, they have substantially different
visit trends, and relying solely on semantic similarities also fails to
capture the relationship between their visit patterns.

Figures 3c and 3d illustrate the node embeddings from the tem-
poral attention and BysGNN graphs. In both embedding spaces,
neighboring embeddings do not have consistent spatial and seman-
tic similarity (neighbors have different colors and shapes). Also,
BysGNN’s embeddings result in two clusters, while the node em-
beddings from the temporal attention graph do not exhibit clear
cluster boundaries.

Consider nodes 33 and 38 (highlighted with red arrows), which
are nearby in the BysGNN’s embedding space while far away in
the embedding space learned from the temporal attention graph.
The recent visits window to these POIs is highlighted in yellow in
Figure 4a, and the model aims to forecast the visits to the right of
this highlighted area. Although the blue and red sequences in the
highlighted window share a similar trend, the temporal attention
graph assigns distant embeddings for these two nodes. This happens
because the temporal attention mechanism is optimized for the
entire sequence rather than for the subsequence in the highlighted

window. In contrast, BysGNN effectively captures this similarity
by considering additional contextual information. As this pair of
POIs belongs to the same spatial cluster, BysGNN enhances the
similarity score derived from temporal attention for this specific
pair, resulting in close node embeddings.

On the other hand, let us focus on nodes 22 and 18, highlighted
with blue arrows in Figures 3c and 3d. Here, the temporal attention
graph would predict a similar visit pattern for the input visit win-
dows depicted in Figure 4b, due to the same aforementioned reasons.
However, BysGNN considers additional contexts: these POIs belong
to different spatial and semantic clusters. Consequently, BysGNN
accurately determines that their future visit patterns should be
dissimilar and learns distant node embeddings for them.

These findings underscore the shortcomings of relying exclu-
sively on predefined spatial and semantic relationships or only
on dynamic time-series windows to capture accurate visit pattern
correlations. In contrast, BysGNN provides a robust solution by
effectively considering all contexts.

6 CONCLUSION

This work presents BysGNN, a dynamic graph neural network
that is specifically designed to uncover multi-context correlations
among POIs for accurate visit forecasting. Using various sources
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of information, including geographic information, visit numbers,
semantics, and taxonomic information of POIs, BysGNN learns an
accurate dynamic graph representation that is then passed to a
simple GNN block for forecasting. Our experiments on real-world
datasets across the United States demonstrate the superiority of
BysGNN over state-of-the-art forecasting models, including those
using highly sophisticated GNN blocks. In future work, we plan
to apply BysGNN to other datasets with similar underlying multi-
context correlations, such as health data.

ACKNOWLEDGMENTS

Research supported by the National Science Foundation (NSF) un-
der CNS-2125530, the National Institute of Health (NIH) under
grant 5R01LM014026, the Intelligence Advanced Research Projects
Activity (IARPA) via the Department of Interior/Interior Business
Center (DOI/IBC) contract number 140D0423C0033 and NURI con-
tract HM04762210001 (approved for public release under NGA-U-
2023-00192). The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes, notwithstanding
any copyright annotation thereon. Disclaimer: The views and con-
clusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA, DOI/IBC, NSF,
NIH, NGA or the U.S. Government.

REFERENCES

[1] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A
Zuluaga. 2020. Usad: Unsupervised anomaly detection on multivariate time
series. In KDD ’20. 3395-3404.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).

Jiandong Bai, Jiawei Zhu, Yujiao Song, Ling Zhao, Zhixiang Hou, Ronghua Du,

and Haifeng Li. 2021. A3t-gen: Attention temporal graph convolutional network

for traffic forecasting. ISPRS International Journal of Geo-Information (2021), 485.

[4] Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang,

Yunhai Tong, Bixiong Xu, Jing Bai, Jie Tong, et al. 2020. Spectral temporal graph

neural network for multivariate time-series forecasting. NeurIPS 33 (2020).

Serina Chang, Emma Pierson, Pang Wei Koh, Jaline Gerardin, Beth Redbird, David

Grusky, and Jure Leskovec. 2021. Mobility network models of COVID-19 explain

inequities and inform reopening. Nature 589, 7840 (2021), 82-87.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and relieving the over-smoothing problem for graph neural networks from the

topological view. In AAAL

[7] Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[8] Jeongwhan Choi, Hwangyong Choi, Jeehyun Hwang, and Noseong Park. 2022.

Graph neural controlled differential equations for traffic forecasting. In AAAIL

Vol. 36. 6367-6374.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. Advances

in neural information processing systems 29 (2016).

[10] Songgaojun Deng, Shusen Wang, Huzefa Rangwala, Lijing Wang, and Yue Ning.
2020. Cola-GNN: Cross-location attention based graph neural networks for
long-term ILI prediction. In CIKM °20. 245-254.

[11] Matt D’Zmura. 2020. Popular Times, wait times, and visit duration.
//support.google.com/business/answer/6263531

[12] Junyi Gao, Rakshith Sharma, Cheng Qian, Lucas M Glass, Jeffrey Spaeder, Justin
Romberg, Jimeng Sun, and Cao Xiao. 2021. STAN: spatio-temporal attention
network for pandemic prediction using real-world evidence. Journal of the
American Medical Informatics Association 28, 4 (2021), 733-743.

[13] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for
learning in graph domains. In IJCNN 05, Vol. 2. 729-734.

[14] Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural

computation 9, 8 (1997), 1735-1780.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[3

[5

G

=

[9

https:

(15

[16

[17

(18

~
&

~
2

~
=

[28

[29

(30]

(32

[33

[34

@
i

[36

[37

(38]

[39

[42

[43

Hajisafi, et al.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional
Recurrent Neural Network: Data-Driven Traffic Forecasting. In ICLR 2018.
Haowen Lin, Jian Lou, Li Xiong, and Cyrus Shahabi. 2021. Integer-arithmetic-only
certified robustness for quantized neural networks. In ICCV’21. 7828-7837.
Haowen Lin, Jian Lou, Li Xiong, and Cyrus Shahabi. 2021. Semifed: Semi-
supervised federated learning with consistency and pseudo-labeling. arXiv
preprint arXiv:2108.09412 (2021).

Haowen Lin, Shaham Sina, Chiang Yao-Yi, and Cyrus Shahabi. 2023. Generating
Realistic and Representative Trajectories with Mobility Behavior Clustering. In
ACM SIGSPATIAL °23.

Chenghao Liu, Steven CH Hoi, Peilin Zhao, and Jianling Sun. 2016. Online arima
algorithms for time series prediction. In AAAL

Helmut Liitkepohl. 2005. New introduction to multiple time series analysis. Springer
Science & Business Media.

Spyros Makridakis and Michele Hibon. 1997. ARMA models and the Box-Jenkins
methodology. Journal of forecasting 16, 3 (1997), 147-163.

Leland McInnes, John Healy, and James Melville. 2018. Umap: Uniform man-
ifold approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426 (2018).

Hong Nguyen, Arash Hajisafi, Alireza Abdoli, Seon Ho Kim, and Cyrus Shahabi.
2023. An Evaluation of Time-Series Anomaly Detection in Computer Networks.
In ICOIN. IEEE.

SafeGraph Places. 2022. Places data curated for Accurate Geospatial Analytics.
https://www.safegraph.com/

Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison
Cottrell. 2017. A dual-stage attention-based recurrent neural network for time
series prediction. arXiv preprint arXiv:1704.02971 (2017).

Akhter Mohiuddin Rather, Arun Agarwal, and VN Sastry. 2015. Recurrent neural
network and a hybrid model for prediction of stock returns. ESWA 42, 6 (2015),
3234-3241.

Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexan-
der Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzman Lopez, Nicolas
Collignon, and Rik Sarkar. 2021. PyTorch Geometric Temporal: Spatiotemporal
Signal Processing with Neural Machine Learning Models. In CIKM ’21.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2020.
DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Inter-
national Journal of Forecasting 36, 3 (2020), 1181-1191.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61-80.

Youngjoo Seo, Michaél Defferrard, Pierre Vandergheynst, and Xavier Bresson.
2018. Structured sequence modeling with graph convolutional recurrent net-
works. In International conference on neural information processing. Springer.
Sina Shaham, Gabriel Ghinita, and Cyrus Shahabi. 2022. Models and mechanisms
for spatial data fairness. VLDB 16, 2 (2022), 167-179.

Sina Shaham, Arash Hajisafi, Minh K Quan, Dinh C Nguyen, Bhaskar Krishna-
machari, Charith Peris, Gabriel Ghinita, Cyrus Shahabi, and Pubudu N Pathirana.
2023. Holistic Survey of Privacy and Fairness in Machine Learning. arXiv preprint
arXiv:2307.15838 (2023).

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. 2013. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains.
IEEE signal processing magazine 30, 3 (2013), 83-98.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. Mpnet: Masked
and permuted pre-training for language understanding. NeurIPS 33 (2020).
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NeurIPS 30 (2017).

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

Chenyu Wang, Zongyu Lin, Xiaochen Yang, Jiao Sun, Mingxuan Yue, and Cyrus
Shahabi. 2022. Hagen: Homophily-aware graph convolutional recurrent network
for crime forecasting. In AAAL Vol. 36. 4193-4200.

Lijing Wang, Aniruddha Adiga, Jiangzhuo Chen, Adam Sadilek, Srinivasan Venka-
tramanan, and Madhav Marathe. 2022. Causalgnn: Causal-based graph neural
networks for spatio-temporal epidemic forecasting. In AAAIL 12191-12199.
Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chenggqi
Zhang. 2020. Connecting the dots: Multivariate time series forecasting with graph
neural networks. In KDD °20. 753-763.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2017. Spatio-temporal graph con-
volutional networks: A deep learning framework for traffic forecasting. arXiv
preprint arXiv:1709.04875 (2017).

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty,
and Carsten Eickhoff. 2021. A transformer-based framework for multivariate
time series representation learning. In KDD °21. 2114-2124.

Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020. Gman: A
graph multi-attention network for traffic prediction. In AAAI Vol. 34. 1234-1241.


https://support.google.com/business/answer/6263531
https://support.google.com/business/answer/6263531
https://www.safegraph.com/

Learning Dynamic Graphs from All Contextual Information for Accurate Point-of-Interest Visit Forecasting

A APPENDIX

A.1 Experiment Details

A.1.1 Baselines. We compare the performance of BysGNN with
three groups of baselines:

e Naive Baselines: We first compare our model with two
simple statistical baselines that provide relatively accurate
results when the visitation time series is highly seasonal. (1)
Naive Seasonal: We use the number of visits on the same
day/time from the previous week as the prediction values
for the same day/time of the current week. (2) Historical
Average: We take the average of the number of visits for
the same day of the week during the previous month as the
prediction, similar to Google Maps’ popular times graph [11].

o Static Graph Neural Networks: These GNN-based mod-
els operate on a predefined graph structure and, therefore,
require prior knowledge of the graph topology. For our exper-
iments, we construct a static graph based on the pairwise Eu-
clidean distance between different POIs. (1) ConvGRU and
(2) ConvLSTM [31]: these models combine a GRU and an
LSTM, respectively, with ChebNet [9] to make spatiotempo-
ral forecasts. (3) DCRNN [16]: This model adopts an encoder-
decoder framework and proposes a diffusion convolutional
layer to capture the spectral and temporal dependencies.
(4) A3T-GCN [3]: This model captures the global temporal
dynamics and spatial correlations given a graph structure.
Moreover, it introduces an attention mechanism to adjust
the importance of different time points and boost forecasting
accuracy.

e Dynamic Graph Neural Networks: This family of GNN-
based models does not require a predefined graph structure
but instead uses an attention mechanism to infer relation-
ships between nodes. (1) StemGNN: This method [4] com-
bines the Graph Fourier Transform and Discrete Fourier
Transform to learn the correlations among the time series of
different nodes. This is a state-of-the-art (SOTA) technique
for MTS forecasting.

A.1.2  Hardware and Software Setup. Our experiments were per-
formed on a cluster node equipped with an 18-core Intel i9-9980XE
CPU, 125 GB of memory, and two 11 GB NVIDIA GeForce RTX 2080
Ti GPUs. Furthermore, all neural network models are implemented
based on PyTorch version 1.13.0 with CUDA 11.7 using Python ver-
sion 3.10.8. We also implemented the GNN-based baselines (with
the exception of StemGNN) using the Pytorch Geometric Temporal
library [28].

A.1.3  Evaluation Metrics. Since we modeled the problem of fore-
casting the number of visits to POIs as a time-series forecasting
task, we evaluate our prediction performance by comparing the
average of Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and Root Mean Squared Error (RMSE) over the pre-
diction horizon (H timesteps). The smaller values for these metrics
indicate better forecasting performance. Here is the description of
each metric:

e MAE: Average of the difference between the ground truth

and the predicted values.
e MAPE: The percentage equivalent of MAE.
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o RMSE: The square root of the average of the squared differ-
ence between the ground truth and the predicted values.

A.1.4  Hyperparameter Configuration. The hyperparameters used
in our model were carefully chosen using cross-validation to opti-
mize performance. Here is a summary of the key configurations:

e Dataset Split: We divided the dataset into three parts, al-
locating 70% for training, 20% for validation, and 10% for
testing. The respective time periods for each set were 280
days, 80 days, and 40 days.

e Data Normalization: Z-score normalization was applied to
ensure standardized input data.

e Training: The model was trained using the RMSProp op-
timizer with an initial learning rate of 0.001. The learning
rate decayed by a factor of 0.2 every 10 epochs. We trained
the model for 40 epochs with a batch size of 32.

o Adjacency Thresholding: A case amplification factor of 2.5
was employed to enhance the performance of the adjacency
thresholding module. The threshold value 1 was set to 0.15,
determining the cutoff for adjacency values.

¢ Embedding Dimensions: The temporal embedding dimen-

sion M was set to 128, and the semantics embedding dimen-

sion P was set to 168.

Attention Heads: The Inter-Series Correlation Layer used

a Multi-Head Attention mechanism with 8 heads.

¢ GNN Node Embedding: The node embedding dimension
for graph convolution in the GNN block, denoted as M*, was
set to 32.

¢ Gaussian Kernel Threshold: The threshold value 7 for
the Gaussian kernel was determined as twice the standard
deviation of distances between POIs, varying depending on
the specific dataset used in each experiment.

All hyperparameters were kept consistent across all experiments
except for the Gaussian kernel threshold.
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Table 4: Summary of Datasets used in Experiments

City Number of POIs Number of POI Categories Average Number of Hourly Visits
Large Regime | Small Regime | Large Regime | Small Regime | Large Regime Small Regime
Houston 400 40 43 12 11 48
Chicago 400 40 35 14 6 22
Los Angeles 400 40 44 14 6 23
New York City 400 40 32 10 9 36
San Antonio 400 40 42 12 8 28

Table 5: Comparison of Forecasting Results for Chicago and San Antonio Datasets in Two Data Regimes: Large Data Regime
(400 POIs) and Small Data Regime (40 POIs). The value on the left of the vertical bar at each field represents the error for
the large data regime, while the value on the right represents the error for the small data regime. The lowest error value is
highlighted in bold, while the second-lowest value is denoted in italics with underline. The “Improvement” row displays the
percentage improvement in the relative error of BysGNN compared to the best-performing baseline.

Dataset Chicago San Antonio
Evaluation Metric MAE MAPE RMSE MAE MAPE RMSE
Naive Seasonal 3.237 | 8.502 0.754]0.661 9.216|31.17 3.85]9.595 0.689]0.564  10.573 | 21.331
Historical Average 4.624|15.428 0.7910.782 14.011 | 35.517 6.494 | 21.845 0.78 | 0.776 15.776 | 39.095
ConvGRU 4.18]11.558 2.675|1.319 10.753 | 25.919 4.622110.491 2.8380.853 10.218 | 19.909
ConvLSTM 5.019 | 14.811 3.853|1.927 11.972 | 30.275 5.745 | 13.573 5.202 | 1.617 11.608 | 23.695
DCRNN 3.756 | 10.808 2.327|1.149 9.857 | 24.235 4.167 | 10.137 2.26910.827 9.513]19.091
A3TGCN 5.343 | 18.698 3.654 | 2.268 12.821 | 38.289 6.086 | 18.594 4.517 | 2.357 12.73130.877
StemGNN 2.776 | 7.891 0.724| 1.014 9.857 | 18.930 3.371| 9.432 0.686]0.757 8.923| 17.994
BysGNN 2.750 | 6.541 0.718 | 0.733 8.218 | 15.867 3.278 | 7.759 0.629|0.533  8.418 | 16.352
Improvement +0.93% | +17.10% +0.82% | -10.89% +10.82% | +16.18% | +2.75% | +17.73% +8.30% | +5.49% +5.65% | +9.12%
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