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For example, a work commute trajectory generally travels and stays

in the work area and residential area, resulting in locations with

those designated region functionality having a higher likelihood to

appear in the trajectory. To model the simulation process guided

by contextual information, we train a context predictor that shares

a similar model to the RNN followed by MLP architecture used in

the mobility trajectory encoder. The context predictor takes the

past context trajectory 𝜏𝐶 and the moving behavior𝑚 as input and

generates a probability vector 𝑝𝐶 that predicts the likelihood of

the next context type. Then this context-type probability vector is

mapped to a density vector 𝜆𝐶 to guide the location prediction in

the next step.

2.1.3 Spatial Dynamics Enforcer. We also consider spatial conti-

nuity as an important factor in generating realistic trajectories.

For example, the trajectory of movements is usually limited by a

speed threshold; i.e., traveling between two consecutive points in

the trajectory must be physically feasible for the moving object.

To learn the stochastic constraints, MBP-GAIL generates a density

vector 𝜆𝑆 at each step where each element of the vector follows a

parameterized Gaussian distribution N(0, 𝜎𝑆𝑖 ) with a moving dis-

tance. The Gaussian distribution is centered at zero, where closer

proximity of the next location to the current ones gives a higher

value in the spatial density vector of the corresponding location

and, consequently, indicates the higher likelihood of this location

grid being chosen in the next step.

2.1.4 Density Fusion. Density fusion is the final part of the policy

network that combines the three density vectors obtained from the

previous steps. It fuses the three vectors by multiplying them all

together to generate a weighted density 𝜆𝑖 ∈ R
𝐾 𝜆𝑖 = 𝜆𝐿𝑖 ⊙ 𝜆𝐶𝑖 ⊙ 𝜆𝑆𝑖

and get the probability vector for sampling 𝑎 at step 𝑖 as 𝑝𝑖 =

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜇𝜆𝑖 ) where 𝜇 is a scaling factor.

2.2 Discriminator and Moving Behavior
Classifier

GAIL uses a reward function to evaluate the actions by compar-

ing the policy-generated actions with real-world actions. It is first

modeled by a discriminator D, which aims to distinguish between

real and generated samples. The input of the discriminator is the

state action tuple (s, a) of both real-world and policy-generated tra-

jectories. Like the policy network, we leverage an RNN to encode

the state history and replace the MLP layer with a binary classi-

fier. Following [1], we utilize a sigmoid cross entropy to sample

positive samples from observed trajectories and negative samples

from generated trajectories. Optimization is carried out with the

following loss function with gradient descent, where we define

𝑟𝐷 = − log(1 − D𝜓 (𝑠, 𝑎,𝑚))

Moving behavior Classifier Since the current discriminator D

focuses only on estimating how realistic a generated sequence is, it

may lose some of the original moving behavior pattern preserved

in context sequences while generating trajectories. To preserve the

moving behavior content, we leverage a multi-class classifier C,

which has a structure similar to the discriminator D and trains

on the context sequences converted from real-world trajectories

with their associated moving behavior labels. Here for C, unlike the

discriminator, which uses a binary cross-entropy loss, we perform

the prediction of moving behavior by using softmax cross-entropy

loss and incorporate the reward term of moving behavior into the

learning of our policy as follows 𝑟𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝐶 (𝜏𝐿)⊙𝑂𝑛𝑒𝐻𝑜𝑡 (𝑚))

where 𝐶 (𝜏𝐿) is the output of the classifier which is an 𝑀 dimen-

sional vector encoding the classified probability distribution.

The generator will be rewarded with such a design if the gen-

erated trajectory satisfies the moving behavior pattern property.

The final reward for training the policy net 𝜋𝜃 is defined as follows:

𝑟 = (1 − 𝜐) ∗ 𝑟𝐶 + 𝜐 ∗ 𝑟𝐷 where 𝜐 helps balance the objective of

satisfying the constraints of moving behaviors and mimicking the

true trajectories, both of which push the policy learning towards

modeling more realistic transitions.

3 EXPERIMENTS

3.1 Experimental Setting

Dataset. We collect mobility trajectories in Houston and Los

Angeles from Veraset 1 in March 2020. We uniformly sample 15,000

trajectories due to the large data size. We divide the study region

into equal side-length (spatial) grid cells with a given side-length 𝑙 =

200 meters and discretize the time cycle of a trajectory into periods

of one minute for 60 intervals (one hour) to represent temporal

information. POI information of the located regions can be accessed

from the Safegraph open website. 2.

Baselines. We compare MBP-GAIL with the following baseline

methods:Markov Model It defines all visited locations as states

and builds a transition matrix to capture the transition probabilities

between them. LSTM A widely used sequential neural network

that predicts the next location given historically visited locations

TransVAE [13, 16] A variational autoencoder (VAE)-based gen-

erative model where the encoder and decoder are designed with

the Transformer architecture. SeqGAN [17] A sequence generative

adversarial network to generate the next location based on past

states MoveSim [1] A GAN-based generator that incorporates do-

main knowledge, such as the urban structure of the regions and

POI information in the model.

3.2 Performance Comparison

3.2.1 Evaluation Metric. Our goal is to generate activity trajec-

tories similar to real-world activities. We adopt these evaluation

metrics to evaluate the quality of generated data: Distance: the cu-

mulative travel distance per trajectory. Radius: radius of gyration,

which measures the spatial range. Duration: stay duration, which

is calculated as the duration of stay per visit to the location. 𝑷 (𝒓):

the visiting probability of one location 𝑟 . 𝑷 (𝒓1, 𝒓2): the probability

that a trajectory transitions from location 𝑟1 to location 𝑟2
We use the JensenśShannon divergence (JSD) to measure the

similarity between the mobility pattern distributions of the gener-

ated trajectory and the real-world trajectory data, which is defined

as 𝐽𝑆𝐷 (𝑝 | |𝑞) = 𝐻 ((𝑝+𝑞)/2)− 1
2 (𝐻 (𝑝) +𝐻 (𝑞)) where𝐻 is Shannon

information, 𝑝 and 𝑞 are distributions. Lower JSD indicates a better

generation result.

3.2.2 Evaluation Results. In this section, we investigate the per-

formance of MBP-GAIL on dataset-level evaluation of real-world

1https://www.veraset.com/about-veraset
2https://docs.safegraph.com/v4.0/docs/places-schema-section-patterns
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Table 1: Performance comparison on two mobility datasets. Bold denotes the best (lowest). The underscore denotes the second-

best.

Houston Los Angeles

Distance Radius Duration 𝑃 (𝑟 ) 𝑃 (𝑟1, 𝑟2) Distance Radius Duration 𝑃 (𝑟 ) 𝑃 (𝑟1, 𝑟2)

Markov Model 0.5098 0.5032 0.4428 0.0028 0.3280 0.4086 0.4122 0.4332 0.0046 0.3073

LSTM 0.4865 0.4050 0.3748 0.0023 0.0881 0.3855 0.3050 0.3830 0.0032 0.1044

TransVAE 0.4662 0.3942 0.3276 0.0034 0.1537 0.3872 0.3443 0.3539 0.0042 0.1462

SeqGAN 0.3318 0.2908 0.2160 0.0074 0.1055 0.2948 0.1913 0.1490 0.0025 0.0910

MoveSim 0.2413 0.2402 0.1520 0.0025 0.0924 0.0922 0.1274 0.1617 0.0021 0.0932

MBP-GAIL 0.0744 0.1215 0.1311 0.0024 0.0874 0.0667 0.1305 0.1452 0.0023 0.0891

data. Table 1 shows the performance of MBP-GAIL, traditional base-

line methods. As we can observe from Table 1, the Markov Model

performs the worst across all metrics, indicating that simply condi-

tioning on one previous location cannot generate meaningful and

realistic trajectories. Movesim achieves second-best performance

on most of these metrics and consistently performs better than

SeqGAN and TrajGAIL, which validates the importance and neces-

sity of incorporating domain knowledge, such as spatial continuity

and temporal periodicity, in the generation process. Despite this,

MBP-GAIL achieves consistent performance improvements over

state-of-the-art prediction and generation methods, especially in

Houston. For example, MBP-GAIL significantly improves the JSD

metrics evaluation for the distance over the best baseline, Movesim,

by 69%

4 CONCLUSION AND LIMITATIONS

This paper presented a novel generative adversarial framework

dubbed as MBP-GAIL, designed to synthetize human mobility tra-

jectories. MBP-GAIL captures the underlying patterns of movement

behavior, a crucial aspect in generating realistic and representative

mobility data. We emphasize the importance of integrating moving

behavior and spatial constraints in generating massive amounts of

mobility data that closely resemble real-world scenarios. Through

extensive experiments, we have demonstrated the exceptional per-

formance of MBP-GAIL in generating synthetic mobility data.
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