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ABSTRACT

Accessing realistic human movements (aka trajectories) is essential
for many application domains, such as urban planning, transporta-
tion, and public health. However, due to privacy and commercial
concerns, real-world trajectories are not readily available, giving
rise to an important research area of generating synthetic but real-
istic trajectories. Inspired by the success of deep neural networks
(DNN), data-driven methods learn the underlying human decision-
making mechanisms and generate synthetic trajectories by directly
fitting real-world data. However, these DNN-based approaches do
not exploit people’s moving behaviors (e.g., work commute, shop-
ping purpose), significantly influencing human decisions during
the generation process. This paper proposes MBP-GAIL, a novel
framework based on generative adversarial imitation learning that
synthesizes realistic trajectories that preserve moving behavior
patterns in real data. MBP-GAIL models temporal dependencies
by Recurrent Neural Networks (RNN) and combines the stochastic
constraints from moving behavior patterns and spatial constraints
in the learning process. Through comprehensive experiments, we
demonstrate that MBP-GAIL outperforms state-of-the-art methods
and can better support decision making in trajectory simulations.
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1 INTRODUCTION

Recent years have witnessed rapid advancements in location-sensing
technologies, which enable us to collect a large amount of spa-
tiotemporal trajectory data. While these spatiotemporal data are
extremely valuable, only limited sources and small-scale datasets
[20] are available to researchers due to privacy restrictions and com-
mercial concerns [4]. Therefore, creating a generator to efficiently
synthesize a large number of realistic trajectories is an important
research direction.

Traditional rule-based methods assume that predetermined mech-
anisms can describe individual mobility with a few specific mobility
parameters, such as the average time spent staying at each visiting
location [5, 10]. However, real-world trajectories exhibit complex
transition patterns, which cannot be accurately defined by simple
rules [1]. Inspired by the success of deep generative neural net-
works in computer vision [6, 7, 12], graph [2] and natural language
processing[13], there are data-driven generators that leverage real-
world data to generate synthetic trajectories. One line of research
models human movements as state transitions and formulates tra-
jectory generations as a decision-making process [14]. These ap-
proaches apply Generative Adversarial Imitation Learning (GAIL)
[3] to generate movements considering individual sequences of
actions. [1, 9].

However, existing data-driven trajectory generators are limited
in that they assume that the next state is completely decided by
mimicking individual human actions, while in the real world, each
trajectory typically comes with an underlying purpose that could
collectively influence human decisions. For example, knowing that
the purpose of our travel is to commute to work suggests that we
should start from a residential area and end at a business area (per-
haps a stop at a coffee shop on the way). We term such semantic
information as the “moving behavior” of trajectories, i.e., the travel-
ing purpose that describes a user’s movement. Lacking the moving
behavior information in the trajectory generation process not only
limits the applications in developing advanced downstream mod-
eling tasks [18], e.g., precise ads-targeting on locations frequently
passed by specific types of moving behaviors, but also makes the
generation model less realistic.

This paper proposes a new framework that integrates prior mov-
ing behavior patterns into GAIL methods. Incorporating moving
behavior is not a trivial task since the raw trajectory coordinates do
not contain any useful information indicating the moving behavior.
Instead, we generate the “context sequence” for each trajectory
from nearby Points-Of-Interest (POIs) and then extend the notion
of moving behavior (see Def 1.3) to be defined as the transition pat-
terns of context sequences. Subsequently, we consider the action of
a human as a joint decision influenced by past moving histories and



SIGSPATIAL °23, November 13-16, 2023, Hamburg, Germany

context trajectories guided by a specific moving behavior pattern.
We jointly incorporate the dynamics of the transitions between raw
locations and their context in a generator to learn the movement
policy. We also propose a discriminator to differentiate the gener-
ated trajectories from the observed real trajectories and a classifier
to evaluate moving behavior patterns. Moreover, our framework
is flexible to incorporate reasonable inductive bias in trajectory
generation, such as the inherent spatial dependencies between the
consecutive raw locations. We conduct extensive experiments on
real-world data through various evaluation metrics to validate the
effectiveness of our approach.

1.1 Problem Formulation

Definition 1.1 (Mobility Trajectory). A mobility trajectory is a
sequence of spatiotemporal points, i.e., 7- = [T{“, ‘e ,TI[\‘]] where
‘[l-L = (l;, t;), t; is the timestamp, I; is the location, which can be a
region identification (ID), and N is the total length of the trajectory.

We preprocess the mobility trajectories and transform the spa-
tiotemporal trajectories into context sequences. For each location,
we group and count the POIs located inside its corresponding grid
cell, and, without loss of generality, the context type is represented
as the category of the most counted POI type, such as Industry,
Residential Area, Education, or Health Care. We define a conversion
matrix T € {0, 1}9*K where Tyk = 1if the k*h Tocation belongs to

the ¢* h context type to shows the mapping relation between the
locations and the context type.

Definition 1.2 (Context Trajectory). A context trajectory is a chrono-
logically ordered sequence, i.e., € = [rc, Tzc, e ,Tf,] where each
element ric is a context-time tuple (c;, t;), and c; is the location
context type, which can be obtained using the mobility trajectory

and the conversion matrix by ¢; = argmax (I’ X OneHot (I;)).

Definition 1.3 (Moving Behavior). The moving behavior m €
{1, 2,...., M} is the label of grouped trajectories with high proximity
to transition patterns in context sequences. We apply DBSCAN
clustering [8] to the edit distance [11], a common trajectory dis-
tance measurement metric, of the context trajectories to obtain the
moving behavior label from the real trajectories.

PROBLEM 1 (REALISTIC AND REPRESENTATIVE SYNTHETIC TRAJEC-
TORY GENERATION). Given real-world trajectories in a specific area,
where each trajectory is associated with a specific moving behavior
type m € {1,2,.., M}, the goal is to mimic individuals’ decision-
making process and generate synthetic trajectories while retaining
the individual and general properties of moving behavior of each
trajectory.

2 PROPOSED METHOD OF MBP-GAIL

The overview of our MBP-GAIL framework is shown in Fig. 1.
MBP-GAIL has two major components. The policy network
(the yellow component in Figure 1) as the generator, which, when
given the desired moving behavior m, learns to generate an action
a similar to the real-world cases based on the current state. The
second component, the reward network r (the green component in
Figure 1) consists of a discriminator trained to distinguish between
policy-generated and real-world cases and a classifier to detect
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Figure 1: Illustration of the MBP-GAIL framework.

moving behavior patterns. The policy network and the reward
function are jointly optimized through the framework of GAIL to
solve a minimax problem as follows: [21] :

mlzzx mein L(0,9) = E(s,am)e7; 10g Dy (s, a, m)+
1)
E(sam)eTs log(1 - Dw(& a,m)) — BH(rg)
where 7f and 7 are the observed true trajectories and the trajecto-
ries generated by the policy network 7y under the moving behavior
m, respectively. H(7g) is the entropy regularization term, which
controls finding the policy with maximum causal entropy.

2.1 Policy Network

2.1.1  Mobility Trajectory Encoder. The mobility trajectory encoder
encodes historical mobility movements and generates a density
vector representing the likelihood for the next location. At each
timestamp, the mobility trajectory encoder first embeds the location
ID [;, time t;, and moving behavior m via embedding layers and
concatenates them into a dense representation. We then apply RNN
networks to predict sequential actions with spatiotemporal context
[19]. Lastly, a multilayer perceptron (MLP) with a softmax function
is used to transform the latent vector h{.‘ into a density vector
)LIL € RK that represents the likelihood of going to location ; at
time ¢; that is learned from the mobility trajectory.

2.1.2  Context Predictor. As human mobility reveals the functions
and properties of urban regions [15], we consider the context of a
location to be an important factor underlying the decision process.
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For example, a work commute trajectory generally travels and stays
in the work area and residential area, resulting in locations with
those designated region functionality having a higher likelihood to
appear in the trajectory. To model the simulation process guided
by contextual information, we train a context predictor that shares
a similar model to the RNN followed by MLP architecture used in
the mobility trajectory encoder. The context predictor takes the
past context trajectory 7€ and the moving behavior m as input and
generates a probability vector pC that predicts the likelihood of
the next context type. Then this context-type probability vector is
mapped to a density vector A€ to guide the location prediction in
the next step.

2.1.3  Spatial Dynamics Enforcer. We also consider spatial conti-
nuity as an important factor in generating realistic trajectories.
For example, the trajectory of movements is usually limited by a
speed threshold; i.e., traveling between two consecutive points in
the trajectory must be physically feasible for the moving object.
To learn the stochastic constraints, MBP-GAIL generates a density
vector A5 at each step where each element of the vector follows a
parameterized Gaussian distribution N (0, crf) with a moving dis-
tance. The Gaussian distribution is centered at zero, where closer
proximity of the next location to the current ones gives a higher
value in the spatial density vector of the corresponding location
and, consequently, indicates the higher likelihood of this location
grid being chosen in the next step.

2.1.4 Density Fusion. Density fusion is the final part of the policy
network that combines the three density vectors obtained from the
previous steps. It fuses the three vectors by multiplying them all
together to generate a weighted density 1; € RK ; = )LI.L ©) Aic ©) Af
and get the probability vector for sampling a at step i as p; =
softmax(pA;) where p is a scaling factor.

2.2 Discriminator and Moving Behavior
Classifier

GAIL uses a reward function to evaluate the actions by compar-
ing the policy-generated actions with real-world actions. It is first
modeled by a discriminator D, which aims to distinguish between
real and generated samples. The input of the discriminator is the
state action tuple (s, a) of both real-world and policy-generated tra-
jectories. Like the policy network, we leverage an RNN to encode
the state history and replace the MLP layer with a binary classi-
fier. Following [1], we utilize a sigmoid cross entropy to sample
positive samples from observed trajectories and negative samples
from generated trajectories. Optimization is carried out with the
following loss function with gradient descent, where we define
rp = —log(1 — Dy (s, a,m))

Moving behavior Classifier Since the current discriminator D
focuses only on estimating how realistic a generated sequence is, it
may lose some of the original moving behavior pattern preserved
in context sequences while generating trajectories. To preserve the
moving behavior content, we leverage a multi-class classifier C,
which has a structure similar to the discriminator O and trains
on the context sequences converted from real-world trajectories
with their associated moving behavior labels. Here for C, unlike the
discriminator, which uses a binary cross-entropy loss, we perform
the prediction of moving behavior by using softmax cross-entropy
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loss and incorporate the reward term of moving behavior into the
learning of our policy as follows r¢c = argmax(C(tL)0OneHot (m))
where C(rL) is the output of the classifier which is an M dimen-
sional vector encoding the classified probability distribution.

The generator will be rewarded with such a design if the gen-
erated trajectory satisfies the moving behavior pattern property.
The final reward for training the policy net 7y is defined as follows:
r = (1 —v) = rc + v * rp where v helps balance the objective of
satisfying the constraints of moving behaviors and mimicking the
true trajectories, both of which push the policy learning towards
modeling more realistic transitions.

3 EXPERIMENTS
3.1 Experimental Setting

Dataset. We collect mobility trajectories in Houston and Los
Angeles from Veraset ! in March 2020. We uniformly sample 15,000
trajectories due to the large data size. We divide the study region
into equal side-length (spatial) grid cells with a given side-length [ =
200 meters and discretize the time cycle of a trajectory into periods
of one minute for 60 intervals (one hour) to represent temporal
information. POI information of the located regions can be accessed
from the Safegraph open website. 2.

Baselines. We compare MBP-GAIL with the following baseline
methods: Markov Model It defines all visited locations as states
and builds a transition matrix to capture the transition probabilities
between them. LSTM A widely used sequential neural network
that predicts the next location given historically visited locations
TransVAE [13, 16] A variational autoencoder (VAE)-based gen-
erative model where the encoder and decoder are designed with
the Transformer architecture. SeqGAN [17] A sequence generative
adversarial network to generate the next location based on past
states MoveSim [1] A GAN-based generator that incorporates do-
main knowledge, such as the urban structure of the regions and
POI information in the model.

3.2 Performance Comparison

3.2.1 Evaluation Metric. Our goal is to generate activity trajec-
tories similar to real-world activities. We adopt these evaluation
metrics to evaluate the quality of generated data: Distance: the cu-
mulative travel distance per trajectory. Radius: radius of gyration,
which measures the spatial range. Duration: stay duration, which
is calculated as the duration of stay per visit to the location. P(r):
the visiting probability of one location r. P(r1, rz): the probability
that a trajectory transitions from location r; to location rp

We use the Jensen—Shannon divergence (JSD) to measure the
similarity between the mobility pattern distributions of the gener-
ated trajectory and the real-world trajectory data, which is defined
as JSD(p|lq) = H((p+q)/2)— %(H(p) +H(q)) where H is Shannon
information, p and q are distributions. Lower JSD indicates a better
generation result.

3.2.2 Evaluation Results. In this section, we investigate the per-
formance of MBP-GAIL on dataset-level evaluation of real-world

!https://www.veraset.com/about-veraset
Zhttps://docs.safegraph.com/v4.0/docs/places-schema-section-patterns
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Table 1: Performance comparison on two mobility datasets. Bold denotes the best (lowest). The underscore denotes the second-

best.
Houston Los Angeles
Distance Radius Duration  P(r)  P(ry,r2) { Distance Radius Duration  P(r)  P(ri,r2)
Markov Model 0.5098 0.5032 0.4428 0.0028 0.3280 0.4086 0.4122 0.4332 0.0046 0.3073
LSTM 0.4865 0.4050 0.3748 0.0023 0.0881 0.3855 0.3050 0.3830 0.0032 0.1044
TransVAE 0.4662 0.3942 0.3276 0.0034 0.1537 0.3872 0.3443 0.3539 0.0042 0.1462
SeqGAN 0.3318 0.2908 0.2160 0.0074 0.1055 0.2948 0.1913 0.1490 0.0025 0.0910
MoveSim 0.2413 0.2402 0.1520 0.0025 0.0924 0.0922 0.1274 0.1617 0.0021 0.0932
MBP-GAIL 0.0744 0.1215 0.1311 0.0024 0.0874 0.0667 0.1305 0.1452 0.0023 0.0891

data. Table 1 shows the performance of MBP-GAIL, traditional base-
line methods. As we can observe from Table 1, the Markov Model
performs the worst across all metrics, indicating that simply condi-
tioning on one previous location cannot generate meaningful and
realistic trajectories. Movesim achieves second-best performance
on most of these metrics and consistently performs better than
SeqGAN and TrajGAIL, which validates the importance and neces-
sity of incorporating domain knowledge, such as spatial continuity
and temporal periodicity, in the generation process. Despite this,
MBP-GAIL achieves consistent performance improvements over
state-of-the-art prediction and generation methods, especially in
Houston. For example, MBP-GAIL significantly improves the JSD
metrics evaluation for the distance over the best baseline, Movesim,
by 69%

4 CONCLUSION AND LIMITATIONS

This paper presented a novel generative adversarial framework
dubbed as MBP-GAIL, designed to synthetize human mobility tra-
jectories. MBP-GAIL captures the underlying patterns of movement
behavior, a crucial aspect in generating realistic and representative
mobility data. We emphasize the importance of integrating moving
behavior and spatial constraints in generating massive amounts of
mobility data that closely resemble real-world scenarios. Through
extensive experiments, we have demonstrated the exceptional per-
formance of MBP-GAIL in generating synthetic mobility data.
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