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Abstract

We define a class of problems whose input is an n-sized set of d-dimensional vectors,
and where the problem is first-order definable using comparisons between coordinates.
This class captures a wide variety of tasks, such as complex types of orthogonal range
search, model-checking first-order properties on geometric intersection graphs, and
elementary questions on multidimensional data like verifying Pareto optimality of a
choice of data points. Focusing on constant dimension d, we show that any such k-
quantifier, d-dimensional problem is solvable in O (n*~!1og?~! n) time. Furthermore,
this algorithm is conditionally tight up to subpolynomial factors: we show that assum-
ing the 3-uniform hyperclique hypothesis, there is a k-quantifier, (3k — 3)-dimensional
problem in this class that requires time €2 (n*~!~°(). Towards identifying a single rep-
resentative problem for this class, we study the existence of complete problems for the
3-quantifier setting (since 2-quantifier problems can already be solved in near-linear
time O (nlog?~! n), and k-quantifier problems with k > 3 reduce to the 3-quantifier
case). We define a problem Vector Concatenated Non-Domination VCND, (Given
three sets of vectors X, Y and Z of dimension d, d and 2d, respectively, is there an
x € X and ay € Y so that their concatenation x o y is not dominated by any z € Z,
where vector u is dominated by vector v if u; < v; for each coordinate 1 <i < d), and
determine it as the “unique” candidate to be complete for this class (under fine-grained
assumptions).
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1 Introduction

Algorithmic problems based on comparing elements according to a total ordering
relation are as fundamental as they are useful. Any introductory algorithms textbook
starts with sorting and other comparison-based problems. For higher dimensional data,
problems involving comparisons for multiple components, such as range queries, are
equally fundamental in computational geometry. In databases, queries need to handle
data with many fields that can be compared (beyond other relations on the data), such
as listing all employees who are not managers of another employee, with seniority in
one range and salary in another.

In this paper, we give a general, systematic study of the complexity of multi-
dimensional comparison problems. We define complexity classes capturing the notion
of “multi-dimensional comparison problems”, as appropriate in geometry and in
databases, with the classes PT O, representing geometric problems in d dimensional
data, and T O, representing problems that combine ordering and other relations for
such data, as would be found in databases. We then identify the maximum complexity
of problems in these classes under standard assumptions in fine-grained complexity,
and relate the classes to each other and other studied complexity classes. For many
subclasses, we find natural complete or hard problems where progress on better algo-
rithms for these problems would result in better algorithms for the entire subclass.

While our results are varied, with upper bounds, conditional lower bounds and com-
pleteness results, a consistent theme emerges. Our classes are intermediate between
two previously studied classes of logically defined problems, first-order in the sparse
representation (e.g., graph problems in adjacency list format) and first-order in the
dense representation (e.g, graph problems in adjacency matrix format). While order-
ings are dense relations, with quadratically many pairs for which they hold, they are
a special case that can be represented succinctly, by giving an array of ranks for each
element. What emerges in our results is that multi-dimensional ordering problems
are very tightly connected to first-order in the sparse representation, and not directly
connected to the dense representation. Thus, while they give substantially different
settings, we give many senses in which sparse relations can be coded in terms of
orders, and where orderings can be reduced to sparse relations.

1.1 A Class of Geometric Ordering Problems: PTO; 4
As an example for multi-dimensional comparison problems, consider 2D orthogonal

range searching: given a set of 2-dimensional data points D, answer Boolean queries
of the form

Ax € D : x € [€1,u1] x [£2, usl,
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where [€1, u1] x [£2, ua] is a given orthogonal range. Note that here, we may without
loss of generality replace each point’s coordinate in dimension d by its rank among
the coordinates in dimension d of all points in D. Typical variants include to report,
count or optimize over all elements in the query range. A long line of research starting
in the 70s, including [11, 19, 23, 41, 44, 46], gives fast algorithms for such tasks, e.g.,
an algorithm to preprocess D such as to answer queries in time O (loglogn) using
space O (nloglogn), see [19]. Many more complex algorithmic tasks can be solved
using orthogonal range techniques, see [8, 26] for an overview.

Also more complex tasks than mere orthogonal range searching arise naturally: In a
set of d-dimensional data points D, consider a feature (or property) F of the data points
that can be described as being contained in an orthogonal range [£1, u1]x - - - X [€q4, ug].
Given a family F of such features, there are several natural questions to ask:

e decide if all features are present in the dataset:
VF =1, u1]l X ---x[lg,ugle F IxeD: xeF
e decide if some data point displays all features:
dxeD VF=[l1,u1] x---x[lg,uql e F: xeF
e decide if two different features are equivalent on D:
AFieF AR e FVxeD: Fil# R A(xeFl < xe k).

Some of these questions can be quickly answered using orthogonal range reporting
queries, for others it seems that already the output size of single such query might pose
a possibly unnecessary bottleneck. Furthermore, some features might be comparison-
based, but more complex than a simple orthogonal range, e.g.,!

xe Fl,ut,..., 05, ug)
= (x1 € [L1,u1] = (xp € [, u2])) A (x1 ¢ [€1, u1]
— (x3,...,xq9) € 3, u3] x --- X [£g,uql)).

In such cases, it would not be immediate whether orthogonal range search techniques
can be used at all.

We formalize a notion of “multi-dimensional comparison problems” by introducing
aclass of problems PT Oy 4 (for “purely total ordering property”’) of model-checking a
k-quantifier first-order property on a relational structure with d total ordering relations
(each succinctly represented as a sorted list of objects) as well as unary relations (to
enable comparison of coordinates with constants). In particular, this class contains any
property ¥ of the form

v =01xP0x® .. 0x® i px ™, .. x®),

where Q; € {3, V},x® ranges over d-dimensional vectors (which we also call objects),
and ¢ is an arbitrary Boolean formula involving only comparisons of the form xl.(“) <
xl.(b) with 1 < a,b < k (here, xi(a), xl.(b) denotes the i-th dimension of x@, x®,

respectively), as well as comparisons with constants. We will refer to d as the dimension

! The given expression could model the following feature: if a person is of working age (x1 € [£1, u1]),
use criterion xp € [€2, us], otherwise use (x3, ..., xq) € [£3,u3] x -+ X [£g4, ugl.
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of a formula ¢ € PT Oy 4. For this paper throughout, we think of ¢ as fixed formula,
and thus k, d are constants. See Sect. 2.1 for further details.

The class PT Oy 4 includes all problems as mentioned above, but also tasks such
as verifying Pareto optimality of a given set of d-dimensional data points?, or given
a set of d-dimensional geometric objects, determine whether there are k distinct such
objects whose bounding boxes intersect.

We furthermore extend this class to 7' Ok 4, where we allow, beyond d total ordering
relations, also arbitrary additional relations (represented explicitly). These two classes
encompass in particular the following types of problems:

e Model-checking first-order properties of geometric intersection graphs: Pres-
ence of an edge in an intersection graph of axis-parallel boxes can be decided
using comparisons of coordinates. Thus, any k-quantifier first-order property on
such geometric intersection graphs in R¢ can be formulated as a problem in
PT Oy 4, such as finding k pair-wise non-intersecting d-dimensional axis-parallel
unit-cubes [42].3

e temporallogic: using a single total ordering relation, we may represent precedence
in a time domain. Thus, we may express temporal logical statements involving
expressions over future or past events in 7 Oy 1.

e relational databases with ordered types: in relational databases, we may use totally
ordered data types (salaries of employees, time events, rank in a sorted list, etc.)
as succinct representation to enable comparisons. In this context, studying the
complexity of a problem in 7" Oy 4 corresponds to studying the data complexity of
a fixed query.

1.2 Our Results

Let k > 2. We show that any problem in PT Oy 4 involving n objects can be solved
in time O (n*~! logd 1 1) whichis O (nF~1) for any constant dimension d. We extend
this algorithm to run in time O(mk_l logd_1 m) for sentences in T Oy 4, where m
denotes the sum of the number of objects and the size of the additional relations, i.e.,
the number of tuples contained in the relation. We show the matching conditional lower
bound that there is some sentence in P T Oy 3x—3 thatrequires time 2 (nk’ 1=o()y ynder
the 3-uniform hyperclique hypothesis [2, 15, 37, 40] — this hypothesis postulates that
n**°(D) running time is essentially best possible for finding cliques in hypergraphs.
(See Sect. 2.2 for further details.)

Beyond these general upper and lower bounds, we also seek to identify hard or even
complete problems for this class. Such problems capture the full generality of these
classes, in the sense that finding a significantly improved algorithm for this problem
would give an improved algorithm for all problems in the class. We use the following
fine-grained notion of hardness/completeness: Formally, let P be a problem whose
best known algorithm runs in time 7p(n) and let C be a class of problems whose best

2 Recall that a set X is Pareto optimal if there are no distinct points x, x” € X such that x is coordinate-wise
at least as large as x'.

3 For even more involved types of algorithmic tasks beyond k-quantifier first-order properties, see, e.g., [20]
(All-Pairs Shortest Paths) or [25] (NP-hard problems).
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known algorithms runs in time T¢ (n). We say P is hard for a class of problems C, if
any Tp(n)'~¢-time algorithm for P with € > 0 gives a T¢ (n)lfe/—time algorithm for
all problems in C for some €’ > 0. We say that P is complete for C, if it is hard for
C and contained in C. In particular, if P is complete for C, then P admits substantial
improvements over time 7p(n) if and only if all problems in C admit substantial
improvements over T¢ (n). We use fine grained reductions to show such results. Refer
to Sect. 2 for its formal definition.

We identify such problems for specific quantifier structures. In particular, we focus
on the 3-quantifier case, since all 2-quantifier O (1)-dimensional total order properties
can be solved in near-linear time é(n) (Theorem 3), and all k-quantifier properties
with k > 3 can be reduced to the 3-quantifier case via brute forcing (Corollary 5).
Focusing on PT O 4, we obtain the following results (see Table 1):

1. For existentially quantified pure total ordering properties (denoted by PT O333 4),
we give an O (n2»/(@+Dy = O (n'407) time algorithm and identify the well-studied
triangle detection in sparse graphs as a complete problem?.

2. For the quantifier structure V33, we also give an O (n*>/@+Dy = O ((n'47) time
algorithm by showing that the problem of counting, for each edge in a sparse graph,
the number of triangles containing this edge is hard for the class PT Ovya3 4. Since
we reduce to a counting problem rather than a member of this class, we do not
obtain a completeness result, however.

3. For the quantifier structure 3V3, we were unable to find a complete or hard problem.
Nevertheless, we give evidence that this quantifier structure does not contain a
complete problem for PT Oy 4 by showing that all PT Ogy3 4 problems have a
6(n)-time nondeterministic and co-nondeterministic algorithm. Since we also
show a n2~°() SETH?-based lower bound for PT O3 4 when d — o0, this rules
out existence of such a complete problem using deterministic reductions under
NSETH, a nondeterministic variant of SETH [17]. We also give a conditional
lower bound of n>~°1) under the Hitting Set conjecture.

4. Finally, for the seemingly most difficult quantifier structure of 33V, we show
n?~°(M_time conditional lower bounds under SETH and the 3-uniform hyperclique
hypothesis, and identify the following complete problem for P7T O33v 4, which
we call Vector Concatenated Non-Domination VCND,: Given three sets of vectors
X, Y and Z of dimension d, d and 2d, respectively, is thereanx € X anday € Y
so that their concatenation x o y is not dominated by any z € Z, where vector u is
dominated by vector v if u; < v; for each coordinate 1 <i <d.

Note that this covers all quantifier structures for k = 3, as deciding Q10> Q03¢
with Q; € {3, V} is equivalent to deciding Q1 Q> 03 ¢ where V = 3,3 =V and ¢ is
the negation of ¢.

These results identify the VCND, problem as the essentially only candidate (up
to fine-grained equivalence) to be complete for PT O3 4 under NSETH: It is com-
plete for 33V, and all problems with a different 3-quantifier structure have either

4 Strictly speaking, we identify the following 3-dimensional problem (which is linear-time equivalent to
triangle detection in sparse graphs) as complete for PT 0333 4: 3x,y,2: X1 =21 AX2 = Y2 A y3 = Z3.

5 Strong Exponential Time Hypothesis (SETH) for CNF-SAT: For all € > 0, there exists a k so that k-CNF-
SAT cannot be solved in time O (2"(1=€)) [34].
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improved deterministic or (co-)nondeterministic algorithms, and thus cannot be com-
plete without major consequences in fine-grained complexity. It remains a challenge
to prove or disprove completeness of VCND, for PT O3 4 (beyond its completeness
for PT Ozav q)-

Since the above results motivate VCND, as a central problem for PT Oy 4, we
work towards algorithmic improvements for this problem. In particular, we obtain an

0 (nz_ Zid )-time algorithm for VCND whenever vectors in X have dimension 2 and vec-
tors in Y have dimension d (or vice versa). Note that obtaining such an O (n?=€@) time
algorithm with €(d) > 0 for general VCND,; would refute the 3-uniform hyperclique
hypothesis by our conditional lower bound and completeness result.

Finally, we show that our algorithmic results extend to the class 7 Oy 4 (see Sect. 3
for details), while all hardness results trivially apply, since they are already proven for
the subclass PT Oy 4. Generally speaking, this shows that the database setting (with
additional sparse relations) does not increase the fine-grained complexity compared
to the geometric setting of purely total ordering properties.

1.3 Previous Work

This work continues a relatively new direction, fine-grained complexity of complexity
classes. Fine-grained complexity aims to not only qualitatively classify problems as
“easy” or “hard”, but (to the extent possible) pin-point their exact complexities. We
now have a wide collection of standard algorithmic problems where any significant
improvements in algorithmic running time would refute one or more conjectures about
well-studied problems, such as the k-SUM problem [27], All Pairs Shortest Paths
[3, 40, 49], SAT [34, 45], or Orthogonal Vectors [1, 2, 6, 9, 12-14, 16, 38, 43].
Recent work in fine-grained complexity has gone from considering problems one at
a time to following traditional complexity in considering classes of problems. Fine-
grained reductions often cut across the usual complexity classes (with reductions from
N P-complete problems to first-order properties, for example), but on the other hand,
fine-grained complexity distinguishes between problems with the same traditional
complexities (e.g., two different N P-complete problems might have very different
properties in fine-grained complexity). Nevertheless, there are now a number of classes
of problems, grouped by logical structure or common format, whose fine-grained
complexity is at least partially understood: dense first-order properties [48]; sparse
first-order properties [15, 17, 30]; several extensions of first-order [29]; and certain
formats of dynamic programming problems [28, 38].

The most closely related previous work to our results are [30, 48]. Both of these
papers consider the class of first-order definable properties, the first for the dense
case (where each relation is given as a matrix, aka adjacency matrix format), and the
second for the sparse case (where the input is given as a list of tuples in the relations,
e.g., for graphs, adjacency list format). This class is natural both in terms of compu-
tational complexity, where it is the uniform version of ACq ([31]), and in database
theory, because these are the queries expressible in basic SQL [7]. First-order logic
can also express many polynomial time computable problems: Orthogonal Vectors,
k-Orthogonal Vectors, k-Clique, k-Independent Set, k-Dominating Set, etc. Not only
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were the likely complexities of the hardest problems (as a function of number of quan-
tifiers) given, but in the second paper, a natural complete problem was identified, the
Orthogonal Vectors problem (OV). The conclusion was that there were substantial
improvements possible in the worst-case complexity of model checking for first-order
properties if and only if the known algorithms for Orthogonal Vectors can be substan-
tially improved. Using a recent sub-polynomial improvement in OV algorithms by
[4, 21], they obtained a similar improvement in model checking for every first-order
property. [29] extends this work to related logics such as transitive closure logics, first-
order logic on totally ordered sets, and first-order logic with function symbols. They
show that model checking for first-order logic with a single total ordering is actually
equivalent to that for unordered structures under fine-grained reductions. In contrast,
we show that for even two orderings, the model checking problem becomes substan-
tially harder, meaning we require new techniques to characterize the complexity of
problems on multi-dimensional data.

There is also work on classes of problems that are related in spirit, but do not
form a well-studied complexity class. V.-Williams and Williams [49] study problems
related to shortest paths in graphs, and shows that many are subcubic-time equivalent.
Kiinnemann et al. [38] study dynamic programming problems with a similar structure
and give a unified treatment of their fine-grained complexities. Gao [28] extends this
class of dynamic programming problems from lines to tree-like structures such as
bounded treewidth graphs.

2 Preliminaries

The following notion of fine-grained reductions was introduced in [49].

Definition 1 (Fine-grained reduction) Let (I11, Ty (m)) <ggr (I12, T>(m)) denote that
for every € > O thereisad > 0 and a Turing reduction from IT; to I, so that the time
for the reduction (not counting oracle calls) is O (T (m)' %) and Zq (Tr(lg)'—€ =
O(T1 (m)'—?%), where the sum is over all oracle calls g made by the reduction on an
instance of size m.

In other words, if there is some € > 0 such that problem I1; is in TIME((7> (m)) I=ey,
then problem IT; is in TIME((T; (m))'=?) for some § > 0, i.e., if [T can be solved
substantially faster than 7> then IT; can be solved substantially faster than 7. If both
T; and T, are @(mz), the reduction is called a subquadratic reduction. We say that I
and I, are fine-grained equivalent if there is a fine-grained reduction from IT; to I
and vice versa.

We use this notation not only on single problems but also on classes of problems. Let
C1 and C3 be classes of problems. (Cy, T1(m)) <pgr (C2, T»(m)) if for all problems
I1; € Cy thereisaIl, € C; sothat (ITy, T} (m)) fine-grained reduces to (ITa, 75(m)).
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2.1 Details on PTO; 4 and TO; 4

In this paper, we consider the fine-grained complexity of model checking problems
definable in first-order logic on structures with d binary relations x <; y, 1 <i <d,
where each binary relation is a total pre-order of the universe (i.e., transitive, reflexive,
total, but not necessarily anti-symmetric.)

Total orders. We use x <; y to represent the i’th relation in our family holding
between x and y. Such a relation is dense, holding for ®(n?) pairs of elements.
However, we can represent such a representation succinctly, by giving an array which
for each element specifies its rank in a list sorted by the ordering relation (with some
elements having the same rank, if inequality holds in both directions). It is in this
succinct format that ordering relations are described for our problems.

Equivalently, we may represent all ordering relations by representing each object
x as a d-dimensional vector (x, ..., x4), where x; denotes the rank of x in the i’th
ordering relation. Thus, it is equivalent to write x <; y or x; < y;, and we will switch
between these two based on which seems clearer for the given circumstance.

The vectors we get in this way are very special, in that the coordinates are always
positive integers from 1 to n. However, also problems defined about d dimensional
vectors over any totally ordered domain (such as R) fall into our setting. This is because
we will still have only n vectors in our setting from that domain and in O (nlogn)
time we can replace each x; with its rank in the set of i’th coordinates of vectors.

Unary relations. We also allow unary relations, or, equivalently, comparisons to con-
stants. More precisely, any unary relation U is represented as a list of objects for
which U holds. Apart from allowing us to put objects into categories (sometimes
called colored properties), this enables us to express comparisons of coordinates with
constants: To express whether x <; y for some constant y, we introduce a unary
relation symbol Ufy that holds for all x with x; < y. Thus from now on, it suffices to
declare constants y explicitly, and afterwards we may express arbitrary comparisons
like x; # y or x; > y. Note that since we always consider fixed formulas v, each
considered property will use O (1) constants for comparisons.

Definition of PT Oy 4. We denote the class of purely total ordering model-checking
problems for first-order formulas in pre-orderings and unary relations specified as
above where the formula has d distinct ordering relations and k total occurrences
of quantifiers by PT Oy 4. PT Oy is the union of PT Oy 4 over all constants d. We
can further divide PT Oy, into 2¥ sub-classes based on the quantifier structure, so for
example PT O333 is the sub-class of PT O3 where the model-checking problems are
for formulas of the form Ix3IyIz P (x, y, z) where P is quantifier-free. We let n be
the size of the universe of the structure, which is also, up to constant factors, the size
in terms of O (log n)-bit words required to specify all total pre-orderings and unary
relations. Algorithm time for problems in P7 O is thus measured in terms of 7. In this
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format, it is a constant time operation to evaluate whether any relation is true or false
for specified elements.

Definition of T Oy 4. We generalize PT Oy 4 to the class T Oy 4 by also allowing the
formula and models to have any constant number of sparse relations of any constant
arity. These are specified as lists of tuples where the relation holds. Let the problem
size be denoted by m, which is equal to the sum of the number of elements n and the
number of tuples.

We assume all algorithms start with quasi-linear time preprocessing steps to create
data structures such as hash tables or binary search trees that allow fast determination
(constant time or logarithmic time) of whether a relation holds for given elements,
and allows one to list the tuples in a relation that contain a given element in at most
poly-log time + poly-log time times the number of such tuples.

On the difference. PT Oy 4 is a more “geometric” class of problems, and so it is
interesting when we can reduce combinatorial problems to this class. Therefore, we
will focus on these classes when giving conditional hardness results. T Ok 4 is closer
to the type of problems that might arise in applications such as database queries.
Therefore, we will focus on T Ok 4 when giving algorithms or other upper bounds on
complexity. Since PT Oy g4 € T Ok 4, lower bounds for PT Oy 4 are stronger results,
and upper bounds for T Oy 4 are stronger results.

Further examples of problems in P7 Oy 4 To define further well-studied problems
in PT Oy 4, we say that a vector u dominates a vector v if u; > v; forall 1 <i <d,
and denote this by u >4,,, v. Furthermore, given a set of d-dimensional real vectors
A, we say that A is Pareto optimal if there are no distinct @, a’ € A so that a is
coordinate-wise at least as large as a’.

e Vector Domination Problem (see, e.g. [18, 32]): Given two sets of d-dimensional
real vectors A and B, are there two vectors u € A and v € B such that u >4,,, v?
In small dimensions, this problems turns out to be equivalent to the low-
dimensional Orthogonal Vectors problem by a recent result of Chan [18].

e Pareto Optimality Verification (see, e.g. [33]): Given a set A of vectors, determine
if A is Pareto optimal.

From the definition, both problems are in PT O3 4. As we will see, they can be solved
in time O (nlog? ™! n). For superconstant dimension d, [18, 32] give further improve-
ments.

2.2 Conjectures From Fine-Grained Complexity

We list the fine-grained hardness assumptions used in this paper. While some of these
assumptions imply others (or are implied by them), they might turn out to be very
different: It is conceivable, e.g., that SETH turns out to be false, while the Orthogonal
Vectors Conjecture might indeed hold. Hence, we aim to classify our conditional
hardness results by the weakest hypothesis that suffices.

Specifically, we use the following hypotheses:
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SAT hypotheses

e Strong Exponential Time Hypothesis (SETH) [34]: For all € > 0, there exists a k
such that k-CNF-SAT cannot be solved in time O (2"(1=9)),

e Nondeterministic Strong Exponential Time Hypothesis (NSETH) [17]: For every
e > 0, there exists a k so that k-TAUT is not in NTIME(2"'=9"), where k-TAUT
is the language of all k-DNF which are tautologies, i.e., always true.

OV hypotheses

The Orthogonal Vectors problem (OV) is defined as follows: Given sets A, B of
vectors in {0, l}d , the task is to determine whether there exists an orthogonal pair
a € A, b € B, i.e., the inner product Zzzl alk] - b[k] is equal to 0. While this prob-
lem is clearly solvable in time O(nzpoly(d )), it conjectured that we cannot achieve
strongly quadratic running time:

e Low-dimension OV conjecture (LDOVC), or Strong OV conjecture: Forall € > 0,
there is a C so that there is no O (n2~€) time algorithm for OV with dimension
d = Clogn. This is implied by SETH by [34] and [47].

e Moderate-dimension OV conjecture (MDOVC): For all € > 0, there is no
o’ poly(d)) time algorithm that solves OV with dimension d. This is triv-
ially implied by LDOVC.

e Sparse OV conjecture (SOVC): For all € > 0, there is no O (m2~€) time algorithm
for OV where m is the total Hamming weight of all the input vectors [30]. This is
equivalent to MDOVC [30].

Relevant for our work is also the correspondence of OV to model-checking first-order
properties:

e First-order property conjecture (FOPC) [30]: There exists an integer k > 2 so
that there is a (k 4+ 1)-quantifier first-order property that cannot be decided in
time O (m*—¢) for any € > 0 (here structures are over universe size n and a list of
constant arity relations over these structures is given. The total number of relations
given is m). This is equivalent to MDOVC [30].

Finally, we also use the following generalization of OV to a problem with conjectured
complexity n**°(): The k-Orthogonal Vectors (k-OV) problem asks to determine,
given a set A of vectors in {0, 1}d whether there are ai,...,a;r € A such that

Z?=1a1[j]~-~ak[j] =0.

e Moderate-dimension k-OV conjecture: For all € > 0, there is no O (n*—€poly(d))
time algorithm that solves k-OV with dimension d. This is implied by SETH [47].

Hitting Set hypothesis

The Hitting Set problem is defined as follows: Given two families of subsets over the
same universe U, is there a set in the first family that has non-empty intersection with
each set in the second family? Equivalently, given two sets A, B of vectors in {0, l}d,
determine whether there is an element @ € A such that for all » € B there is some
k € [d] such that alk] = b[k] = 1.

e Hitting set conjecture: For all € > 0, there is a C so that there is no O (n>~€) time
algorithm for Hitting Set with dimension d = C log n. The Hitting Set conjecture
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implies the Low-Dimension OV conjecture [5], but there are reasons to believe it
is not implied by SETH ([17]).

Hyperclique hypothesis

e h-uniform k-HyperClique Hypothesis: Let k > h > 2 be integers. The /#-uniform
k-HyperClique Hypothesis states that for no € > 0, we can detect a k-clique in a h-
uniform hypergraph on n nodes in time O (n*—¢), see [40] for a detailed discussion
of its plausibility and [2, 15, 37, 40] for recent applications.

For all of these conjectures, complexity is measured in the word RAM model with
O (log n) bit words.

2.3 The VCND Problem

We formally define the perhaps most important problem for PT O 4.

Definition 2 (Vector Concatenated Non-Domination) Given a set X of d;-dimensional
vectors, aset Y of dy-dimensional vectors, and a set Z of (d; +d5)-dimensional vectors,

all with entries in Z, we define the language (dy, d»)-Vector Concatenated Non-Domination
to be the decision problem asking if

x € X3y € YVz € Z(x 0y %dom 2),

where x o y € Z417% denotes the concatenation of x and y. We denote by VCND, the
special case of d| = dr = d.

We can view VCND as first constructing the set X oY = {xoy | x € X,y € Y} and
then asking whether there is some z € Z that dominates some element of X o Y. There
are other operations which could replace concatenation, such as the coordinate-wise
max operation Max(X, Y).

2.4 Relationships to Other Classes

For fine-grained complexity, the representation of the input is significant. In consid-
ering the complexity of dense first-order properties, we view the input as a matrix or
tensor representing each relation; for binary relations, this is the familiar adjacency
matrix representation for graphs. While the relations are not necessarily dense, the
algorithms cannot assume or utilize sparsity. The “sparse” version of the same proper-
ties represents the input relations as lists of tuples where the relation holds, generalizing
the adjacency list representation for graphs. The input is not necessarily sparse, but the
algorithm is allowed more time for denser instances, so sparse instances are the most
difficult ones. Total order relations are intermediate between “dense” and “‘sparse”
relations, because while they are actually dense, containing a quadratic number of
pairs, they can be succinctly represented by the sorted list. In particular, total orders
can be obtained as the transitive closure operation performed on the sparse “successor”
relation. So our hardness results also imply hardness for sparse first-order augmented
by transitive closures, a class considered in [29].
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3 Technical Overview

In this section, we give the main ideas for all of our results, see Table 1 for an
overview. One of our main results is an upper bound on model-checking sentences in
PTOk,qand T Oy 4.

Theorem 3 There is an algorithm running in time O (nlog?='(n)) for model-checking
a two-quantifier formula Q1x Q2yp(x, y) with d ordering relations and unary predi-
cates.

Specifically, we obtain this result using the following lemma, which we obtain by
areduction to orthogonal range counting.

Lemma 4 Given a formula ¢(x,y) with d ordering relations and unary predicates
and two sets X, Y of vectors in RY, there is an O(n logd_1 (n)) time algorithm that
returns an array A indexed by each x € X so that Alx] is the number of y € Y such
that ¢(x, y) is true.

Combining the above theorem with exhaustive search over the first k — 2 quantifiers
yields

Corollary 5 Model-checking formulas in PT Ok 4 is in TIME(n*~110g?= 1 (n)).

If we have additional explicitly represented relations, more work is required. For
such cases, throughout the paper, we will always assume that these relations are sparse,
i.e., the total input size is m = O(n). In this case, we obtain the same asymptotic
running time.

Theorem 6 Model-checking formulas in T O 4 is in TIME(m*—! logd’1 (m)).

The idea is to reduce the problem to the purely totally ordered case by assuming that
all sparse relations are empty; using Lemma 4 for the 2-quantifier case, we can obtain
for each x the number of y satisfying the condition. We then repair these counts to
the true values by iterating over the additional sparse relations, similar to the baseline
algorithm in [30].

We prove our baseline algorithms in Sect. 4. Note that in Sect. 3.4, we discuss
a lower bound proving these baseline algorithms to be conditionally optimal under
fine-grained hardness assumptions.

In the remainder of the section, we distinguish our results based on the quantifier
structure. Since any k-quantifier formula with £ > 3 reduces to the 3-quantifier setting
via brute force over the first k — 3 quantifiers, we only regard 3-quantifier structures.

3.1 Quantifier Structures Ending in 333

Recall that informally, we call a problem complete for a class if it is contained in
the class and model-checking any sentence in the class reduces to our problem. For
sentences in PT O 4 ending in 333, we show that detecting triangles in a sparse graph
is complete for this class. By current running time bounds for the problem [10], we
obtain a running time of O (n2*/(@+Dy = O (n1407--),
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Theorem 7 The triangle detection problem in sparse graphs is fine-grained equivalent
to a problem that is complete for model-checking 333 formulas with only ordering
relations and unary relations.

More precisely, the following ordering property is shown to be complete: Ix3y3z :
X1 = z1 A X2 = y2 A y3 = z3 which is easy to be seen equivalent to triangle detection
in sparse graphs.

Intuitively, we reduce to this problem as follows: Given a formula Ix3y3dze¢ (x, y, 2),
we can determine whether ¢ (x, y, z) holds once we know all comparisons between
X, ¥, z in each dimension i. A challenge here is to reduce comparisons like x; < y; to
an equality check: Similar to a trick used in [50], we do this by guessing the highest-
order bit of divergence between x; and y; to obtain a “proof” only involving equalities;
since we may assume that 1 < x;, y; < n (by working in rank space), there are only
O (logn) choices for a single comparison. The key observation is that the quantifier
structure is sufficiently well behaved to make this reduction work: we only need to
guess these bits of divergence for O (d) many comparisons and can express correctness
of all proofs for comparisons between x and z using equality on the first dimension,
between x and y using the second dimension, and between y and z using the third
dimension. In total, this results in an admissible blow-up of log?@ n. We prove the
result in Sect. 5.1.1.

We turn to the setting with additional sparse relations, i.e., formulas in 7 O333 4.
Here we establish the triangle counting problem in sparse graphs as hard for the class.
Since the approach of [10] also gives a counting algorithm in the same running time
as detection, we establish the same algorithmic upper bound.

Theorem 8 Every problem in T O333 4 reduces to the problem of counting the number
of triangles in a sparse graph via reductions that preserve time up to polylog factors.

Handling the additional sparse relations is highly non-trivial. In particular, to obtain
our result, we first show that the triangle counting problem is hard for model-counting
333 formulas in the sparse setting of [30], which is interesting in its own right. For
the proof, we refer to Sect. 5.1.2.

Since triangle detection is a classical problem, improving the bound of O (n!4°7) for
333 structures already in the purely total ordering case would be a major algorithmic
result.

3.2 Quantifier Structures Ending in V33

For quantifier structures ending in V33, we obtain a hard problem: We show that
every problem in 7 Ova3 4 (and thus also PT Ovaz,q) reduces to that of determining,
for each edge in a sparse graph, how many triangles contain this edge; we call this
problem Edgewise Triangle Counting (ETC). Again, currently the best algorithm for
this problem is essentially the same as that for triangle detection and counting [10].

Theorem 9 Edgewise Triangle Counting is hard for model-checking T Ovaa q4 formu-
las.
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Since the high-level arguments for this result substantially build on the completeness
result for 7 O333 4 given in the previous section, we defer a discussion of the techniques
to Sect. 5.1.3, where we give the proof.

3.3 Quantifier Structures Ending in 3¥3

For the quantifier structure of 3V3, we are unable to establish a complete problem.
However, this quantifier structure admits (co-)nondeterministic algorithms that are
faster than the baseline algorithm.

Theorem 10 Model-checking formulas in PT Ok q ending in 3¥3 can be done in non-
deterministic and co-nondeterministic time O (n*=2 logd_1 (n)).

The main idea is as follows: Consider any IxVyQz¢ (x, y, z) property. For the
nondeterministic algorithm, we simply (nondeterministically) guess x and solve the
remaining 2-quantifier problem YyQz¢(x, y,z) in time O(nlog?~!n) using the
baseline algorithm. For the co-nondeterministic algorithm, we need to verify that
Vx3yQzp(x, v, z). Here, for every x, we (nondeterministically) guess a witness y,
and solve the remaining Qz¢(x, y,, z) formula using the approach of Theorem 3.

For the case of total ordering properties with additional sparse relations, this
approach is not directly applicable: If, e.g., all guessed witnesses y, happen to par-
ticipate in many tuples of the sparse relations, we have to repeatedly solve problems
with a large input size. We remedy this problem by taking care of such large degree
witness y, explicitly; while this incurs a certain slow-down, we can limit it to a factor

of 0(J/n).

Theorem 11 Model-checking formulas in T Oy q ending in 3V3 can be done in non-
deterministic and co-nondeterministic time O (m*=3/2 log‘]l_1 (m)).

We prove the above (co-)nondeterministic algorithms in Sect. 5.2.

As aconsequence of the above nondeterministic algorithms, assuming NSETH [17],
we cannot establish hardness beyond nk=2=o) for pT Oa3va,q using deterministic
SETH-based reductions. However, by reducing from a problem with low (co-
)nondeterministic complexity, specifically, the Hitting Set conjecture [5], we can give a
conditional lower bound already for PT Ogv3,4 (as d — oo) that matches our baseline
algorithm.

Theorem 12 Assuming the Hitting Set conjecture, for all € > 0, there exists some d
such that model checking formulas in PT O3v3,q4 requires time (n2_€).

The proof of this result is reminiscent to some reductions in [24] and is given
in Sect. 6. We reduce from Hitting Set (given sets of vectors A, B C {0, I}Clog” for
arbitrary c, determine whether some a € A is non-orthogonal toallb € B)to aformula
AxVy3Izy (x, y, 2) as follows: We think of x ranging over vectors a € A, y ranging
over b € B, and think of z as a “proof” of the fact that a, b are non-orthogonal, given
by a prover Merlin. There is a trade-off between size of the proofs and the required
dimension to represent the vectors, which we set in a way that bounds the number of
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possible proofs to O (n), resulting in a dimension d growing only with ¢ (independently
of n).

We also give a conditional lower bound from SETH for k£ > 3 that matches the
NSETH barrier following from the (co-)nondeterministic algorithms. Notably, this
lower bound already applies to dimension d = 2.

Theorem 13 Assuming SETH, model checking formulas in PT Oy > ending in 3V3
requires time Q (n*=27€) for any € > 0.

We reduce the k-Orthogonal Vectors problem into an 3V3-quantified 2-dimensional
formula. Intuitively, the first k existential quantifiers choose k vectors, the V-quantifier
ranges over all vector-dimensions to test, and crucially, the final 3-quantifier enables
to guess which of the k vectors has a O-coordinate in this vector-dimension. Here, the
final 3-quantifier is instrumental in making the formula’s dimension independent of
the vector dimensions. We give the full proof in Sect. 6.

3.4 Quantifier Structures Ending in 33V

For sentences in PT Oy 4 ending in 33V, we obtain the complete problem VCND,:
Given three sets of vectors X, Y and Z of dimension d, d and 2d, respectively, deter-
mine if there an x € X and a y € Y so that their concatenation x o y is not dominated
by any z € Z.

Theorem 14 For all d, there exists a d' such that VCNDy is complete for model-
checking 33V formulas in PT Oy 4.

This is one of our most interesting results, proven in Sect. 5.3. We reduce a formula
dx e X3y e YVz € Z : ¥ (x, y, z) to VCNDy as follows: We carefully divide all pairs
in X x Y into instances (X1, Y1), ..., (X1, Y1) such that for each instance (X, Yy),
all comparisons x; < y;, x; = y;, x; > y; for all dimensions i have the same outcome
among pairs x € Xy, y € Yy. Thus, for each ¢, we may simplify i to a formula v,
not involving comparisons between x and y. In particular, we may express ¥, in CNF,
where each clause is a disjunction of {<, <, >, >}-comparisons between x; and z; or
between y; and z; (in some dimension 7). Since all such clauses need to be fulfilled
simultaneously, for each z € Z and clause C, we introduce some z¢ chosen such that
the clause C is falsified if and only if x o y are dominated by zc.

We show a matching conditional lower bound of n¥=°!) for PT Ogty 4 under the
3-uniform hyperclique hypothesis.

Theorem 15 For k > 2 and h > 3, under the h-uniform hk-HyperClique hypothesis,
model checking formulas in PT Oyy1 nk ending in 33V requires time Q (nk—o),

We use the first k quantifiers to represent a choice of clique nodes, each represented
in its own dimension, and use the V quantifier to check that no forbidden configuration
is used (a non-edge in the given hypergraph). Naively, this would create © (n") rather
than O (n) objects, which we remedy by reducing from finding hypercliques of size
hk (rather than k). The proof is given in Sect. 6.
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We also establish a SETH-based lower bound directly for VCND,. The reduction
(given in Sect. 6) is very similar to our Hitting-Set-based lower bound for Iv3-
structures.

Theorem 16 Assuming SETH, for every € > 0, there is a d such that VCND,; requires
time Q2 (n%°).

Specialized algorithm for VCND, Since our completeness results establish VCND,; as
a central problem for the study of PT Oy 4, we consider special cases of the problem
in Sect. 7. In particular, if X contains vectors of dimension 2 and Y contains vectors
of dimension d, we show the following algorithm, which uses the Erdos-Szekeres
Theorem as main ingredient. We use this to extract lists of vectors so that when we
restrict to any dimension, the vectors appear in monotonic increasing or decreasing
order. This way, the vectors that dominate some fixed vector x form an interval,
which allows us to take advantage of fast segment trees that solve an interval covering
problem.

~ _ L
Theorem 17 There is a O(n2 24 time algorithm for VCND when one set of vectors
is of dimension 2 and the other is of dimension d.

Note that such an improvement to O (n>~¢@) with e(d) > 0 for the general VCNDy
problem would refute the 3-uniform hyperclique hypothesis by Theorem 15. Further-
more, we also give an algorithm for VCND; when d = O (n).

4 Baseline Algorithms

In this section, we give our baseline algorithms via a reduction to orthogonal range
counting. We note that we do not aim to optimize logarithmic factors.

Lemma4 Given a formula ¢(x,y) with d ordering relations and unary predicates
and two sets X, Y of vectors in RY, there is an O(n log"l_1 (n)) time algorithm that
returns an array A indexed by each x € X so that A[x] is the number of y € Y such
that ¢(x, y) is true.

Proof Consider a fixed x in the domain. The task is to count the number of y such that
¢(x, y) is satisfied. Assume the unary relations in the vocabulary are Ry, ..., Rx. The
truth value of ¢(x, y) will depend on two factors: the order between x and y in each
of the d dimensions, and the unary relations Ry, ..., Ry satisfied by y. We will denote
the first by a vector « and the second by a vector 8. Since k and d are constant, there
are finitely many possibilities for o and 8, so we may consider them all. So, when we
find an @ and B that makes ¢(x, y) true, we can orthogonal range search for vectors
x, y that have order « and vectors y that satisfy the unary relations given by .
Formally, consider the truth value of ¢ (x, y) with respect to some « € {0, 1, —1}d
and B € {0, 1}¥, where the comparison of x and y under the i’ ordering is given the
truth value according to «[i] and every unary relation on y is given the truth value
according to B. Here, a[i] = 1 denotes x >; y, a[i] = 0 denotes x =; y, and
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afi] = —1 denotes x <; y. If B[i] = 1 then we set R;(y) to true and otherwise set
R;(y) to false. To compute |{y | ¢(x, y) is satisfied}|, for each («, B) that satisfies
¢(x,y), we will count the number of y € Y such that their order with x is given by
o and the unary relations they satisfy is given by 8. Then, we will sum these values
over every («, f) that satisfy ¢ (x, y).

Specifically, observe that in linear time, we can compute, for each 8 € {0, l}k, the
set Y of vectors with unary relations given by 8. To count, given« € {0, 1, —1 14, the
number of y € Yg so that their order with x is «z, we apply a standard orthogonal range
counting [22, 35]. If o; = 1, the range in the i'" dimension will be [0, x;). If ; = 0,
then the range in the i’ h dimension will be {x;}, and if o; = —1, then the range in the
i'" dimension will be (xi, n]. For example, let x = (3,4, 5), and let ¢ = (1,0, —1).
Then, we query the number of y € Y that lie in the range [0, 3) x {4} x (5, n]. Such
a query can be done in time 0(10gd —1p), see [22, 35]. Overall, we can compute the
total number of y satisfying ¢(x, y) in time O (log? ! n).

Performing this for each x € X takes total time O (nlog? =" n). O

We obtain our baseline algorithm for purely total ordering relations by observing
that the above information is sufficient to decide any PT O, 4 formula.

Theorem 3 There is an algorithm running in time O (n log?~'(n)) for model-checking
a two-quantifier formula Q1x Q2y(x, y) with d ordering relations and unary predi-
cates.

Proof From Lemma 4, we can compute an array A indexed by vectors x € X so that
Alx] = #¢(x, ) in time O(n logd’] n). If Q10> is 33, it is enough to check that
#o(x, ) > 0 for some x € X. Similarly, if Q1Q> is 3V, it is enough to check that
#p(x,-) = |Y| for some x € X. Both can be done by simply scanning the array. All
other formulas are equivalent to one of these cases by negation. O

Corollary 5 Model-checking formulas in PT Oy 4 is in TIME(n*~1 1og?=(n)).

Proof Simply brute force search over the first k —2 quantifiers, then use the 2-quantifier
algorithm that runs in time O (n log”"_1 (n)). This takes time O (n*~! logd_l (n)). O

In fact, we can extend these ideas to give a baseline algorithm for the class 7 Oy 4.
Theorem 6 Model-checking formulas in T Oy 4 is in TIME(m*—! logd’1 (m)).

Proof We will exhaustively search over the first k — 2 quantifiers. Then, our plan
will be to try to count |{y | ¢(x, y) is satisfied}| by separating into two cases: these
are when objects x and y appear (or do not appear) together in a sparse relation. We
will create an auxiliary formula ¢*(x, y) where every relation R(x, y) that appears
in ¢(x, y) is set to false. Then, we use the algorithm from Lemma 4 to compute an
array A* with A*[x] = |{y | ¢*(x, y) is satisfied}|. If y shares no relations with x,
then ¢ (x, y) is true if and only if ¢*(x, y) is true. However, if x and y appear together
in some relation, then it is possible that ¢*(x, y) and ¢(x, y) have different truth
values. Since our relation is sparse, we can correct this in O (m) time by exhaustively
searching over the vectors y that appear in some relation with x. If ¢(x, y) is true and
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©*(x, y) is true, then we do not alter our current count. If ¢ (x, y) is true but ¢*(x, y)
is false, then we increment our count by 1. Similarly, if ¢ (x, y) is false and ¢*(x, y)
is true, we decrement our count by 1. Lastly, if both ¢(x, y) and ¢*(x, y) are false,
we do not alter the count. With this, we can compute an array A indexed by x in time
O(mlog?='m) where A[x] = |{y | ¢(x, y) is satisfied}|.

Therefore, given a sentence in 7 O 4, we exhaustively search over the first k — 2
quantifiers then compute this array A. If the last two quantifiers are 33, it is enough
to check that some entry in the array is greater then 1, and if the last two quantifiers
are 3V, it is enough to check that some entry in the array is the size of the domain for
the last quantifier. Overall this takes time O (m*~!log?~! m). O

5 Completeness for Quantifier Structures

In this section, we give our completeness results for each quantifier structure, including
evidence why we do not expect any quantifier structure other than 33V to contain a
complete problem for the full classes PT Ok.4, T O 4.

5.1 Quantifier Structures Reducing to Triangle Problems

In this section, we characterize the complexity of problems for the class of 333 and
V33 formulas with ordering relations. We show that for PT O333, the complexity of
the hardest problem in the class is equivalent to that of triangle detection in sparse
graphs. In other words, triangle detection is (equivalent to) a complete problem for
this class. We show that every problem in 7 O333 (i.e., when we also allow sparse
relations in addition to orderings) reduces to the problem of counting triangles in
sparse graphs. (Thus, the complexity of this class is somewhere between deciding
whether a triangle exists and counting the number of such triangles. Currently, the
best algorithms for these problems are identical ([10]), but there is no known proof of
equivalence.) We show that every problem in T Ovag reduces to that of determining,
for each edge in a sparse graph, how many triangles contain this edge. Again, currently
the best algorithm for this problem is essentially the same as that for triangle detection
and counting ([10]).

In particular, these results show that these classes are all decidable in time O (m
Hence, these quantifier structures are significantly easier to check than the others we
consider (assuming SETH and Low-dimension hitting set conjectures).

1.41)

5.1.1 PTOaa3

Theorem 7 The triangle detection problem in sparse graphs is fine-grained equivalent
to a problem that is complete for model-checking 333 formulas with only ordering
relations and unary relations.

Proof The triangle detection problem in sparse graphs asks if for a graph G = (V, E)
given in adjacency list format, there exist x, y, z € G such that (x, y), (y, 2), (x,z) €
E. We first show that this problem is equivalent under exact-time preserving reductions
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to an ordering problem with the same logical structure and dimension 3. The problem
is: Given three sets of vectors A, B, C of dimension 3, are there a € A, b € B, and
c € C with a; = c1,a2 = by and b3 = ¢3? To reduce triangle detection to this
problem, assign the vertices names that are positive integers, i.e., we identify V with
{1,...,n}. For each edge (x,y) € E, we create vectors (x,y,0) € A, (0,x,y) € B
and (v, 0, x) € C. Thus, the number of vectors is linear in the number of edges in
our graph, and the sets of vectors can be created in linear time. If there is a triangle,
X, y,z in the graph, (x, y,0) € A, (0, y,z) € B, and (x,0, z) € C are three vectors
satisfying the constraints. Contrapositively, any three vectors satisfying the constraints
must be of the above form, so must correspond to a triangle in the original graph.

In the reverse direction, for each vector (ay, ap, a3) € A, create vertices (1, a;) and
(2, ap) if not already present and add an edge from vertex (1, ay) to vertex (2, az).
Similarly, we have edges from (2, by) to (3, b3) for all (b1, by, b3) € B, and from
3,¢3) to (1, ¢cy) for (c1,c2,c3) € C. The graph created has a linear number of
edges and triangles correspond exactly to solutions to our problem. So this problem
is equivalent to triangle detection.

Thus, the maximum complexity of predicates in PT O333 is at least that of triangle
detection, since it is equivalent to a member of this class.

We next show how to reduce any 333 pure ordering problem to triangle detection.
The first step is to reduce such a problem to one with only equality checks.

Consider a formula of the form Ix3y3ze(x, y, z), where there are d ordering rela-
tions. Say that a < b for positive integers a and b, where a = a . . . ag in binary, and
b = by ... bo in binary. Call the position of divergence the first j (starting at the high
order bits) so that that b; > a;. Thenay...aj41 = by...bjy1,a; =0 < b; = 1.
If a = b, we call —1 the point of divergence. We break up the possible triples x, y, z
into cases based on their ordering in the d different orders, and the point of divergence
between their ranks for every pair in every order. Since the ranks are integers from 1
to n, there are 1 4 logn possible points of divergence. Furthermore, since there are
only two possible orderings for each pair per order, there are at most O (log>? ) cases
in total. We further break up into sub-cases based on which subsets of unary relations
are true for x, y, z, which is at most constantly many sub-cases per case.

We determine for each case, whether there is an x, y, z with those comparisons and
points of divergence and unary relations for which ¢(x, y, z) holds. However, since
each case specifies all comparisons and unary relations, ¢(x, y, z) is either constantly
true or constantly false for these cases. So this simplifies to determining, for each
sub-case where ¢(x, y, z) is true, whether there is a triple (x, y, z) consistent with
that sub-case. For this, we use the characterization above. First, for each vector, we
discard it if it does not match the unary relations for this sub-case. Secondly, if in the
case x; < y;, and the point of divergence for the comparison is j, we discard x as a
possibility if x; ; # 0 and y as a possibility if y; ; # 1, and the reverse if x; > y;.

For each non-discarded vector x, we create a new vector X of dimension 3, where in
the second coordinate we concatenate in order of i all the strings x; g, ..x; j+1 where
Ji 1s the point of divergence for x; and y;, and do likewise for the points of divergence
for x; and z; in the first coordinate. The third coordinate has a default value like —1.
For y, we do likewise, putting the parts related to the points of divergence with x in
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the second coordinate, and with z in the third to create Y, and for z we put the parts
related to x in the first coordinate, and the parts related to y in the third.

Then as above, we ask: is there a triple X, Y, Z so that X| = Z;, X» = Y> and
Y3 = Z3?1fs0, since all the strings concatenated have a fixed length, each concatenated
string must be identical, so the corresponding x, y, z do have the orders and the points
of divergence for the sub-case we are considering. Conversely, if x, y and z have those
points of divergence, each string concatenated will be identical, so the equations will
hold. As noted above, this problem is equivalent to triangle detection.

Thus, triangle detection is hard for PT O333, and the equivalent problem is complete
for this class. O

Corollary 18 Model checking for every problem in PT Osza3 can be solved in
O (147 time.

Proof Combine the above reduction with the algorithm from [10]. O

5.1.2 TOa33
A more general statement of the construction above is:

Lemma19 Let X,Y,Z be sets of vectors of constant dimension d. In time
0 (nlog®W n), we can construct a family of O (1og®MV (n)) tripartite multi-graphs
so that:

1. For the tripartition of vertices into A, B, C of each graph G;, each element x € X
corresponds to at most a single edge e, between A and B, each element'y € Y
corresponds to at most a single edge ey between B and C, and each element z € Z
corresponds to at most a single edge e, between A and C, and there are no other
edges. Given x, i, one can compute ey in constant time, or say it doesn’t exist.

2. Given i, we can compute in constant time a complete set of values for all unary
relations on x,y, and z, and values for order relations between x;, y; and z; for
1 < j <d, sothatforeverytriangle ey, ey, e; in G;, x, y, z satisfy these relations.

3. Foreverytriple x,y, z, ex, ey, e; form a triangle in exactly one G,;.

We will use this lemma to show:

Theorem 8 Every problem in T O333 4 reduces to the problem of counting the number
of triangles in a sparse graph via reductions that preserve time up to polylog factors.

Proof We will first show that the triangle counting problem is complete for the class
#F Os3: given a quantifier-free formula @ (x, y, z) with only sparse relations, count the
number of solutions x, y, z.

Lemma 20 We can reduce a problem ® in #F O3 to the case where we have to count

the number of solutions for constantly many formulas where each is a conjunction of
positive relations.
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Proof We first reduce from the general case to the case when & is a conjunction of
relations and negated relations. We branch on all possible settings of the relations
that could hold among x, y, z, and we count the number of triples satisfying each
conjunction that satisfies @ (ie., we write ® as a DNF of mutually exclusive terms,
and count each term). Then we add up the results. Secondly, we can reduce to the case
when all relations appear positively. If =R(x, y) (or any other subset of variables)
appears in the conjunction, we can write ® = —R(x, y) A W(x, y, z), where W has
strictly fewer negated relations, as does R(x, y) A W(x, y, z). If we count both the
number of triples that satisfy & and R(x, y) A W, their difference is the number that
satisfy @. Thus, we can reduce any such counting problem withi > 1 negated relations
to two such problems with i — 1 negated relations. Applying this repeatedly, we reduce
to the case with no negations. O

Lemma 21 Sparse triangle counting is complete for #F O3.

Proof We apply Lemma 20 and reduce to a set of counting problems which are con-
junctions of positive relations. If the set of binary or greater relations is empty, we
can individually count in linear time the number of elements x that satisfy all unary
relations R(x) and similarly for y and z, and return their product. If there is a relation
that involves all three variables, we enumerate the the triples satisfying that relation
and compute the number of those that satisfy ®. If there are no 3-ary relations, and
the binary relations are only between two specific variables (e.g., x and y), we can
enumerate all such pairs x, y, then separately count the z’s that satisfy unary relations
and multiply these two counts. If there are specified relations on one of the variables,
say x, and relations between x and y as well as x and z, but no relations between the y
and z, we can compute, for each x both the number of consistent y’s and the number
of consistent z’s in time equal to the number of tuples containing x. Then, we multiply
these counts and sum up the results. This takes O (m) time total. Finally, if there are
relations specified between every pair of variables, we can use these to specify the
edges of a tripartite graph where the vertices are the elements that satisfy the unary
relations and edges are pairs that satisfy all binary relations. This graph has at most
O (m) edges, so it is an instance of sparse triangle counting of the same size as our
original problem. O

Now we return to the theorem. Given a formula ®(x, y, z) with both ordering and
sparse relations as well as input relations, we use the ordering and unary relations to
construct the family of multi-graphs G; as in the lemma. Because each triple x, y, z
appears as a triangle in exactly one graph, it suffices to decide whether there is an i and
a triple x, y, z so that ey, ey, e; form a triangle in G; and ®(x, y, z) holds. Because
for each i, all unary and ordering relations are fixed for triangles, we can compute
a restricted formula ®; (x, y, z) with only sparse binary or greater arity relations in
X, y, z so that ®;(x, y, z) is equivalent to ®(x, y, z) for triangles in G;. Thus, it is
equivalent to decide whether there is an i and a triple x, y, z so that ey, ey, e; form a
triangle in G; and ®; (x, y, 2).

G, is a multigraph, because different elements x might map to edges e, with the
same endpoints (but the elements themselves might have different binary relations
and therefore be distinguishable). Let H; be the graph corresponding to G; when we
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combine parallel edges. For each tuple in a relation and each pair of elements x, y in
the tuple, if e, and e, do not share an endpoint, x and y cannot be part of a triangle,
and if they do, the endpoints form a triple of vertices in H;. We can enumerate all such
triples in O (m) time. Any triangle in H; that is not one of these triples corresponds
to three elements that have no true relations. We can tell if there is such a triangle by
counting the total number of triangles in H;, and subtracting the number of triangles
among the O (m) special triples. If ®; is true when all relations are true, and there is
such a triangle, we can return true. If not, any x, y, z that form a triangle and satisfy
®; must form a triangle on our list.

We can, as a linear-time pre-processing step, for each edge (a, b), compute the set
of elements x so that e, goes from a to b, and for each triple in our collection store
the set of relations among x, y, z. For each triple T; = (a, b, ¢) in our collection,
we have sets X ; mapping to (a, b), Y; mapping to (b, ¢), and Z; mapping to (c, a).
Let m; be the number of relations among the elements of these sets. Since any two
elements in X, Y;, or Z; with no relations are indistinguishable, we can remove all
but one such element from each set so that there are at most O (m ) elements total.
Since each relation determines at most a single triangle, we have ) jmj =m. If we

can count triangles in time O (m!'T®) for sparse graphs, as we saw earlier, we can
compute the number of triples among X;, Y, Z; that satisfy ®; in O (m'*®) time. If
any count is positive, we return true. If all counts are 0, we return false. The total time
is Zj 0(m}+°‘) < Zj O(m%m;) < O(m'*?). Thus, the exponent for the general
class is the same as for counting triangles in sparse graphs. O

5.1.3 TOya3

We can get a similar but more complex hard problem for 7" Ov33. Consider the problem
of given a tripartite graph in adjacency list format, creating an array indexed by edges
and giving the number of triangles containing that edge. The method of [10] can be
used to give an algorithm with the same complexity for this problem as for counting
triangles or deciding whether a triangle exists. Call this problem Edgewise Triangle
Counting (ETC).

We will show that the complexity of this problem is an upper bound for the com-
plexity of any problem in 7 Ovyz3.

Consider the class of problems: For a formula ® (x, y, z) and a model given as lists
of tuples for each relation, create an array indexed by x, giving the number of y, z
so that ®(x, y, z) holds. We use similar argument as for the 7" O333 case to show that
this class of problems reduces to ET C: We apply Lemma 20 and reduce to counting
for constantly many formulas which are conjuction of positive relations. We observe
that each such formula is essentially either counting triples overall, counting triples
containing a single edge, a path of length 2, a triangle, or a hyperedge. All but the
triangle can be solved in linear time, even in the array version. In the triangle case, we
are counting for each x, the number of triangles involving a single vertex x. However,
we can compute the number for a vertex by summing up all the numbers for adjacent
edges to some y, since every triangle in the tripartite graph contains exactly one such
edge.
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Next, to decide a Vx3y3z P (x, y, z), we create the graphs G; again just as before,
and define ®; (x, y, z) containing only sparse bipartite or 3-ary relations as before. For
each graph, we will find the set of x so that there is a triple x, y, z so that ®; (x, y, z)
and ey, ey, e; form a triangle in G;. The union of these sets is thus the set of x so
that there are y, z with ®(x, y, z), and we check to see if that is all x. As before, we
find the set of triangles in H; determined by tuples in a relation in O (m) time. For
every edge in H;, we count the number of triangles in H; containing this edge, and
subtract the number of such triangles on our list. For each edge in H; where this is
positive, if ®; is satisfied by all false relations, we add the corresponding elements to
our set. We then need to also include those x so that there is some triple x, y, z in our
set with ®; (x, y, 7). As before, if we can solve ET C in time O(mH'"‘), we can solve
the array counting problem for the elements corresponding to each triple in O(m}”‘)
time, and then mark those elements with a positive array position. All elements with
no relations should be marked or unmarked identically, so we only need to include
one such element in our sub-routine, but mark all such elements.

Corollary 22 Model-checking for sentences in T Oy3z can be done in time é(m“”).

5.2 Nondeterministic Complexity of TO3y3

Here, we show why problems in 7 Ogy3 are unlikely to be SETH-hard. In par-
ticular, we will show that every problem in PT Ogy3 is in NTIME(n logo(l) n) N
co-NTIME(n10g®™" 1) and every problem in T Ozy3 is in NTIME(m>/210g™ m) N
co-NTIME(m?/2 logo(l) m). From [17], it then follows that if the Nondeterministic
Strong Exponential Hypothesis is true, then no reduction can show these problems are
SETH-hard with exponent greater than 1.5. Via direct reduction, for PT Oy, no SETH-
hardness can be shown for exponent greater than k — 2 for any quantifier sequence
ending with 3V3. Later, we will show that SETH hardness is possible up to that same
exponent (Theorem 13).

Lemma 23 Model-Checking sentences in PT Ozy3 can be done in nondeterministic
and co-nondeterministic time O (n 10gd_1 n). Similarly, model-checking in T O3v3 can
be done in nondeterministic and co-nondeterministic time O (m>/? logd_l m)

Proof Let 3xVy3z®(x, v, z) be a problem in PT Ogyz. To solve it using a non-
deterministic algorithm, we guess element x* nondeterministically and verify
Vy3z®(x*, y, z). This latter is a two quantifier statement and so can be solved
in quasi-linear time using the base-line algorithm, once we add unary relations
U(y) = (x* <; y) for each comparison relation <;.

The complementary problem is Vx3yVz—®(x, y, z). To solve it nondetermin-
istically, for each x we guess a y,. Then we create a new comparison relations
(x 5; 7) = (yxr <; z) for every comparison relation <;, and new unary rela-
tions U(x) = (x < yy) for each comparison relation <; and U'(x) = U(yx)
for each unary relation U. This can be done in linear time. Then we can rewrite
—®(x, vy, 2) = W¥(x, z) by replacing relations involving y, with these new relations.
Then we verify that VxVzW (x, z) using the baseline algorithm in quasi-linear time.
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If ®(x, y, z) also has sparse relations, we can use the same method. However, for
the co-nondeterministic algorithm, we need to create relations R’ (x, z) = R(yy, z) for
sparse relations R. If many y, are in many tuples for R, this can blow up the number
of tuples in the relation. We use the low-degree/high-degree method to get around this.
Without loss of generality, we can assume that the variables x, y, z come from disjoint
sub-sets of elements, possibly by duplicating elements. For each y* that appears in
> m!/? tuples, we use the baseline algorithm to compute {x|Vz® (x, y*, z)}. We then
delete this set of elements x as candidates for the first quantifier since we have shown
that the statement IyVz®(x, y, z) is true for these x, and delete y* since it cannot
be used for any further x’s. There are at most O(4/m) such y, and each use of the
baseline algorithm takes quasi-linear time. At the end, all y’s appear in at most /m
tuples, and we can nondeterministically guess y, for each remaining x, and create the
relations previously described, as well as the relations described above for each sparse
relation. Since each x will appear in at most O (,/m) new tuples, the total number of
tuples in the new model is O (m>/?). Using the baseline algorithm on the resulting two
quantifier model-checking problem thus takes time O (m3/%1log? =" n). O

Exhaustively searching over the first k — 3 quantifiers gives us the following.

Theorem 10 Model-checking formulas in PT Oy 4 ending in 3V can be done in
nondeterministic and co-nondeterministic time O (n*=2 logd_1 (n)).

Theorem 11 Model-checking formulas in T Oy 4 ending in AV3 can be done in non-

deterministic and co-nondeterministic time O (m*=3/2 logd_1 (m)).

5.3 Quantifier Structure 33V

Lastly, we will show that VCND is a complete problem for model-checking 33V for-
mulas with ordering relations.

Theorem 14 For all d, there exists a d' such that VCNDy is complete for model-
checking 33V formulas in PT Oy 4.

Proof We start with a first-order formula 3x3yVze(x, v, z) containing ordering rela-
tions between x, y, and z. We want to reduce to VCND,: Given sets of d-dimensional
vectors X, Y and 2d-dimensional vectors Z, is there a pair x € X and y € Y such
that x o y fdom z for all z € Z. We will use a similar technique as in the proof of
Theorem 7.

Lemma 24 We can write

ey, 0= \/ Vel y) Agulx,y,2),
aef0,1,—1}4

where for each «, ¢y (x, y, z) does not contain any comparisons between x and y.

Proof For vectors x € X and y € Y, define v, , € {0, 1, —l}d where vy y[i] = —1if
X <; ¥, uxylil=0ifx =; y,and vy y[i] = 1if x >; y. The vector v, , captures the
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relationship between x and y with respect to the total orderings <;. Thus, we consider
the formula

w(xay’Z)E \/ Wa(xv)’)/\‘Pa(x,y’Z),
aef0,1,—1}4

where Y/ (x, y) is true if and only if vy , = o and ¢, (x, y, z) is obtained by replacing
any predicates comparing x and y under the i" ordering relation with the truth value
given by «;. O

Lemma 25 For each o, we can efficiently construct a set 1, and for each € € I,
construct sets Xy, Yy with the following properties:

o For every pair x € X and 'y € Y with vy y = «a, there exists exactly one £ € I,
such that x € Xy, y € Yy.
o foreveryl € Iy, x € Xy, y € Yy it holds that vy = a.

Proof As before, say that a < b for positive integers a and b, where a = ay ... ag in
binary, and b = by ... by in binary. The position of divergence is the first j starting at
the high orderbits sothatb; # a;. Then,ay ...aj11 =by...bjy1,a; =0 < b; =1.
If a = b, we call —1 the point of divergence. Recall that we are working with d-
dimensional vectors in X and Y with integer entries from 1 to n. Consider the set

S =A{(G1,....ig) | =1 <i; <logn}. We will use elements of S to “guess” the points
of divergence between two vectors. Consider arbitrary w € S.
We will alter the vectors in X and Y according to w. Say that w; = j. If x; =

ay ...ay and y; = by ... by in binary, then we replace the i th coordinate in x with two
coordinates, these being ay ...a;11 and a;. Similarly, we replace the i th coordinate
in y with two coordinates by ...bj 1 and b;. If j = —1 we can simply put a special
symbol for the second coordinate. We perform this operation for each coordinate i
andeachx € Xandy €Y.

Then, we sort these vectors by the first dimension. We will group together the
vectors that have the same value in the first coordinate. If «; = 1 (i.e. its required
that the first entry of x has value larger than y), then we will discard all the vectors in
the group that belong to the set X and have 0 in the second coordinate (since at point
of divergence y will have larger value). Similarly, we will discard all the vectors in
the group that belong to the set Y and have 1 in the second coordinate. Analogously,
if ; = —1, we discard vectors from X which have 1 in the second coordinate and
vectors from Y when they have 0 in the second coordinate. If «; = 0, we discard the
all the vectors unless w; = —1. Notice now that for every pair of vectors x € X and
y € Y that belong to this group, the relationship of x and y under < agrees with «;.
We recurse on each dimension and perform this for each group. The vectors that came
from X then form the set X, and the vectors from Y form Y,. The set I indexes each
of the possible groups that were formed. O

Now, for each pair of sets X, Y, we will create a VCND instance such that it is a
yes instance if and only if there exist x € X, y € Y, such that ¢, (x, y, z) is true for
every z € Z.
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We will assume that the vectors in X; and Y, appear in their original form, rather
than how they were altered in the previous step. Additionally, to make the reduction
work, each vector x = (x1, ..., x4) will be altered to be (x1, —x1, ..., xq, —xq). We
perform the same operation to vectors in Y. We can assume that ¢y (x, y, z) is written
in conjunctive normal form. For each clause C in ¢4 (x, y, z) and each z € Z, we
create a new vector z¢ in 4d dimensions. Let z = (z1, ..., z24). If the comparison
x >; z appears in the clause C, then we set the (2i — 1) coordinate to z; and the
2i'" coordinate to co. If the comparison x <; z appears in the clause C, then we
set the (2i — 1)”1 coordinate to co and the 2i’" coordinate to —z;. We perform the
same operation for comparisons between y and z, this time making the changes in the
corresponding dimensions in the last 2d dimensions of z¢. If x <; z appears, then as
our vectors have integer entries, we can treat this as x — 1 <; z (the same trick works
for x >; z). We can assume x =; y does not appear in any clause since ((x =; y) v C)
where C is some clause is equivalent to ((x >; y) VC) A ((x <; y) Vv C). To give
an example, when d = 2, and we have the clause (x >1 z) V (y <7 z), we create the
vector (z1, 00, 00, 00, 00, 00, 00, —z3). Thus, if x o y ﬁdom z, then x, y, z satisfy this
clause. We create this vector z¢ for each clause C in ¢4 (x, v, z) and each z € Z. At
least one of these VCND instances is a yes-instance if and only if there is some x € X
and y € Y so that x, y, z satisfy each clause of ¢(x, y, z) forall z € Z.

The last point to make is that this reduction is fine-grained. We have many VCND
instances of the form Xy, Y,, Z where £ € I,. If | X,| or |Yy| is of size less than
n!=€/3_ then we use the data structure from [18] to decide this instance in time
O(X¢||Ye| logO(d>). Doing this for each instance where either | X,| or Y| is less
than n'~¢/3 can take time at most n2~¢/3. Otherwise, | X¢||Y¢| > n?2¢/3. Since there
are at most | X||Y| = O(n?) many pairs that can arise, we are in this case at most n2¢/3
times. If we use the improved O (n?>~¢) time algorithm on these instances, we will use
time at most O (n>~¢/3). Combining this with the previous step gives an O (n>~¢/3)
algorithm for model-checking the sentence 33V (x, y, z). O

6 Hardness Results

In this section, we will present the proofs of Theorem 15, 12 and 13. These results
will establish hardness for model-checking sentences ending in 33V or 3v3.

Theorem 15 Fork > 2 and h > 3, under the h-uniform hk-HyperClique hypothesis,
model checking formulas in PT Oy pk ending in 33V requires time Q (nk—oMy,

Proof For simplicity, we will state the proof for & = 3; the adaptation to &7 > 3 is
straightforward. We will reduce determining if a 3-uniform hypergraph contains a 3k-
HyperClique to deciding a k + 1 quantifier sentence in PT Oy41 3¢. As a warmup, we
will reduce 3-uniform k-HyperClique to a sentence in PT Oy 1 x with O (n?) objects,
which gives an Q (n*/3=°(M)y lower bound. Then, we will describe how to alter the
sentence by reducing from 3-uniform 3k-HyperClique to give the desired lower bound
(for h > 3, this will correspond to reduction from A-uniform hk-HyperClique).
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Without loss of generality, we may assume that we are given a k-partite 3-uniform
hypergraph G = (V; U - -- U Vj, E) using standard color-coding arguments. We view
each V; as a disjoint copy of {1, ..., n}.

The symbols [J and * are special constants which we use to differentiate between
different vertex and non-edge objects, which will introduce now. For 1 < i < k and
each vertex v € V;, we introduce a vertex object of dimension k where the i-th entry is
set to v, and remaining k£ — 1 entries are set to [J. This allows us to represent a choice
for including some vertex v for part V; into our clique

For each non-edge {v,, vp, v} ¢ E with v, € V,,vp € Vp,v. € V., we create a
non-edge object: We set the a-th, b-th and c-th dimension to v,, vp and v,, respectively,
and set all other dimensions to the special constant *. Intuitively, the non-edge objects
represents all forbidden configuration of our clique.

The claim is that deciding the following formula decides the existence of a k-
HyperClique:

A Axo .. I VYT (X1, ..., x0) A | E(y) = /\ C(Xiy, Xiy, Xiy, ) )

1<iy<ip<iz<k

where

e T(x1,...,xx) checks if each x; is a vertex object for the part V;. Doing so will
simply involve checking that for all 7, all but the i-th coordinate of x; is the O
constant.

e E(y) checksif y is a non-edge object. This can be done by checking whether some
coordinate is the * constant.

e C(xj,, Xiy, xi3, y) checks if the “forbidden” edge represented by y is different
from the edge given by the vertices that x;,, x;,, X;, represent. This can be done by
checking that y is different from at least one of x;,, x;,, or x;; in the i;-th, i>-th,
and i3-th coordinate respectively.

However, there are O (n*) many vectors in the domain. We will now remedy this by
reducing from 3k-HyperClique. To this end, let G be a 3k-partite 3-uniform hypergraph
with vertex parts Vi, ..., V3. This time, each vertex object will represent a choice
of 3 vertices: we group the 3k vertex parts into k groups V/, ..., V, of three vertex
parts each. For each Vi’ (representing the three vertex parts V3i41, V3it2, V3i43), and
every triplet of vertices v € Vajy1,v' € Vai40,v” € V3;43, we create a vertex object
of dimension 3k, where we set the coordinates 3i + 1, 3i +2 and 3i + 3 to v, v/, and
v”, respectively, and all other to the special constant (1.

The edge objects will be constructed as before. The formula will change very slightly
to implement the same idea as before: The formula 7' (x1, .. ., x;) will again check that
the x1, ..., x; are vertex objects and E(y) will check that y is a non-edge object. For
any non-edge object y, we need to ensure that the non-* dimensions a, b, ¢ are not all
equal to the dimensions a, b, c in the corresponding vertex objects x,/, X/, X/, Where
a',b', ¢ denote the groups V,, Vé,, VC’, containing V,, Vp, V., respectively. Again,
we have O (n?) objects, but this time we reduced from 3k-HyperClique: An O (n*~¢)-
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time algorithm for model-checking the above sentence (in PT Oj1 3x) would give an
O (n3¥=3¢) algorithm for 3-uniform (3k)-HyperClique. o

The following result establishes hardness of 3V with no additional quantifiers.

Theorem 12 Assuming the Hitting Set conjecture, for all € > 0, there exists some d
such that model checking formulas in PT O3va,q4 requires time 2 (nz’e).

Proof Consider the Hitting Set problem: we are given sets U, V of n vectors in {0, 1}¢
with d = clogn, and the task is to determine whether there is some u € U such that
for all v € V there is some k € [d] with u[k] = v[k] = 1. Recall that the Hitting Set
conjecture is that for all ¢ > 0 there is some ¢ such that Hitting Set with d = clogn
cannot be solved in time O (n27¢).

The idea is to block the d vector-dimensions into b = [d/s] blocks of size s =
log(n)/2, and define a 2b-dimensional order property: For each vector u € U, we
define an object whose first b dimensions represent u. Here, each dimension i encodes
the i-th block of s bits of u, i.e., each dimension i uses an (arbitrary) total order on
the block configurations {0, 1}*. Likewise, for each vector v € V, we define an object
whose last b dimensions represent the bits of v.

The formula will be:

b
e XVy e YA e Z: \@i =i = 0008 (xi =2 A Yigh = Zitp)) -
i=1

Here, for any x, y, an appropriately chosen z € Z is supposed to serve as a witness
that there is some k € [d] with x[k] = y[k] = d. To do this, for any block i, we
consider pairs of admissible configurations of the i-th blocks of x and y, namely: for
any «, B € {0, 1}* such that there is some k € [s] with a[k] = B[k] = 1, we define
the object z; . g such that its i-th dimension in the first half is ¢, its i-th dimension in
the second half is 8, and all other dimensions are co.

By this construction, the formula is satisfied if and only if for there is some u € U
such that for all v € V we can find a block i and a corresponding bit k in block i in
which both x and y have a 1, i.e., u and v are non-orthogonal. Since |Z| < 225 — p,
we obtain our lower bound, assuming the Hitting Set conjecture: Let £ > 0 and take
a ¢ such that Hitting Set on dimension d = ¢logn has no O(n>~¢) time algorithm.
Then,a O (nz_‘8 ) time algorithm for PT O3v3  with b < [2¢] would give a Hitting Set
algorithm on dimension d = clogn in time O (n>~%), contradicting the assumption.
This concludes the claim. O

Finally, for k-quantifier sentences ending in 3v3, we have the following result.

Theorem 13 Assuming SETH, model checking formulas in PT Oy 2 ending in 3V3
requires time Q(n*=27¢) for any € > 0.

Proof We will reduce k-Orthogonal Vectors to deciding a first-order sentence with k+2
quantifiers ending in 33 with 2 ordering relations. We will associate the elements of
the domain with 2-dimensional vectors. Let A = {ay, ..., a,} be our k-Orthogonal
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vectors instance. We will assume that for every coordinate j, there is some vector
a € A witha[j] = 0. Otherwise, this is trivially a no-instance. For each vector a; and
coordinate j where a;[j] = 0, we introduce a vector (i, j) into our domain. Thus,
we have O (nd) many vectors in our domain. The claim is that deciding the following
sentence on this new domain correctly decides if there are k-Orthogonal vectors in A:

k

dx13xy ... A Vydu \/(m =X 1 ANuU2=y2).
i=1

Say the sentence is satisfied by our domain. Let the first coordinate of x; be 0;. Then,
we claim that a,,, ..., a,, are a k-orthogonal set of vectors. By our assumption, for
every 1 < j < d there is some vector @, € A with a,[j] = 0. The universal quantifier
ensures that for the correspdonding vector y = (v, j), our sentence is satisfied and so,
there is some object x; of the form (o;, j). Therefore, there is a 0 in the j? h coordinate
of a,,;. As this is true for all 1 < j < d, we infer that this choice of vectors is indeed
k-orthogonal.

Conversely, if thereis a k-orthogonal tuple a,,, . . ., a,, € A,thenchoosexy, ..., xk
such that x; = (o;, j;) foreach 1 <i < k (and an arbitrary 0-coordinate j;). Observe
that for any choice of y = (i’, j’) there is some a; with a;[j'] = 0, and thus u = (i, j')
satisfies the condition.

Consequently any O (n*~¢)-time algorithm for this (k 4+ 2)-quantifier sentence
would give a O(n*~€poly(d)) algorithm for k-OV, contradicting the Moderate-
dimension k-OV conjecture and thus SETH. O

We prove our n2~°() lower bound for VCND, under SETH via reduction from the
low-dimensional Orthogonal Vectors Hypothesis which is well-known to be implied
by SETH (see, e.g. [30]). This reduction is very similar to our Hitting Set reduction
for Av3.

Theorem 16 Assuming SETH, for every € > 0, there is a d such that VCND,; requires
time Q2 (n%°).

The result follows from the following lemma, since the low-dimension Orthogonal
Vectors Hypothesis states that for every €, there exists some ¢ such that OV with
dimension d = clogn cannot be solved in time O (n?-9).

Lemma 26 For constant ¢ > 0 and T (n) = w(n), if VCNDy, is solvable in time
O(T (n)), then OVeiog(n) is solvable in time O (T (n)), or

(OVetogn, T(n)) <rGr (VCNDs4c, T (n)) .

Proof Consider an Orthogonal Vectors instance on dimension clogn vectors. Let

s = 10%. First, for each vector x = (x1,x2,...,Xclogn), W€ Will create a new

vector x’ = (x, x5, ...,x;) where b = le’# = 2c and x| is the integer given by
the bits Xy —1)41Xs(i—1)42 - - - Xsi. In other words, we are grouping s bits of x at a

time and converting them to integer values. Lastly, we will convert each vector x’ =
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(X1, x5, ..., xp) to (x], =x], x5, —x5, ..., x;, —x;). The set of x’ vectors become X',
and Y’ is obtained by performing the same operation to the vectors in Y. Lastly, we
want to create a set of vectors Z that will “encode” witnesses to non-orthogonality.
Consider a vector € {0, 1}°. Let - denote the set of vectors orthogonal to «. For
eachi € [b],a € {0, 1}*,and B € {0, 1}* \otJ- we create vectors of the form

(00,..., o ,—a,...,00)0(00,..., B ,—=B,...,00).
2i—1 2i 2i—1 2

Here, in the vector notation, we are implicitly viewing « and $ as integers specified
by the binary strings «, 8. This vector has the property that it dominates some other
vector if and only if the two agree on the indices that are not oo in our gadget. These
vectors then form our Z set. Now, assume the Orthogonal Vectors instance indeed
contained an orthogonal pair of vectors x and y. Consider the vectors x’ € X’ and
y' € Y’. Assume for the sake of contradiction that some vector z € Z dominates
x"oy’. Then, x" o y’ must have agreed on the non-oo entries of z. But these are exactly
the entries given by some « and 8, where o and 8 have binary representations that are
not orthogonal, which contradicts the assumption that x is orthogonal to y. Similarly,
if all of the pairs of vectors x, y were not orthogonal, then they must have agreed with
some vector in z on the non-oo entries, so they could not form a yes-instance of VCND.

Creating the set of X’ and Y’ vectors takes time linear in the number of vectors in
the OV instance. Creating the set of Z vectors takes time 0% -b) = O(n) with our
choice of s, b. O

7 Specialized Algorithms for VCND4

Since VCND, turned out to be the only candidate for completeness of PT Oy 4, we
study this problem in more detail in this section.

First, we will present an improved algorithm for VCND,; when the dimension of
one of the sets is very small. Then, when d = O (n), we give an improved algorithm
for VCND, using fast matrix multiplication.

~ _ 1
Theorem 17 There is a O(n2 2y time algorithm for VCND when one set of vectors
is of dimension 2 and the other is of dimension d.

Proof We will assume the set X contains vectors of dimension d and Y contains vectors
of dimension 2. We utilize the well-known Erdos-Szekeres Theorem to preprocess the
vectors in X. There are many equivalent formualations of this theorem, but the version
we will use is as follows: In a list of n integers, there is a monotonic subsequence of
size at least [/n]. Consider the vectors in X restricted to their first coordinate. This
is indeed a list of length n. We compute the longest increasing subsequence on the
list in order and in reverse, which is guaranteed to return a monotonic sequence of
length at least [/n]. We then recurse on the list of vectors whose first coordinate is
part of the monotonic subsequence, this time considering the next dimension of these
vectors. We repeat this process for the remaining set of at most n — [/n] vectors. The

_1 1
result of this preprocessing is O(n1 29) lists each of size O (n2?) where each of the
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lists are monotonic in each dimension. This preprocessing takes time O (n3/%logn)
since we can compute longest increasing subsequences in time O (n log n). Note that
each of these lists will have the property that when the vectors are viewed restricted
to some dimension, the vectors appear in either increasing or decreasing order.

For each of the O(nlfz%‘) lists, we begin with the first vector x in the list. We can
keep multiple copies of the Z set where in each copy the list is sorted with respect
to a certain dimension. Then, we use binary search to compute the set of z € Z that
dominate the given x. We can keep pointers in place at each iteration so that updating
this set is fast for the next x’ in the list. Let L, denote the list of z € Z that dominate
x. The last observation is that since the set of Y vectors is of dimension 2, we can
remove vectors to make the set Pareto optimal. Then, we can assume that the set of
Y have the property that they are in increasing order in the first dimension, and in
decreasing order in the second dimension. Therefore, for a fixed z, the setof y € ¥
that are dominated by z form a contiguous interval. We can compute this interval with
two binary searches. Thus, for each z € Ly, we add the interval of y vectors that are
dominated by z to a segment tree [19], adding 1 to each entry occupied by an interval.
We then query the min-element in the segment tree. If the min-element is 0, then there
was some y € Y that was not dominated by any z € L,, in which case we accept.
Otherwise, we continue to compute L,s, where x’ is the next vector in the list. Since
we preprocessed the list, we can update L, using the saved pointers to compute L.
We will perform at most n updates to L, to compute L,/ for any x’ in the list.

~ oL _ L

The running time of this algorithm is O (n2 24} since in each of the O (n1 24 lists,
we perform O (n) updates to the tree at each step. Each of the queries to the segment
tree are logarithmic in . O

One might hope to extend this algorithm to VCND on two sets of d-dimension vec-
tors using a generalization of the segment tree seen here. Indeed, a multidimensional
segment tree supporting addition and min-queries in time poly-logarithmic in » would
provide a truly subquadratic algorithm for VCND,. However, this may be too much
to hope for since a multidimensional segment tree supporting these operations would
violate SETH [36, 39].

Lastly, when the dimension d = O(n), we can use a similar idea from Williams
[48] to obtain speedups using fast matrix multiplication.

Theorem 27 Whend = O (n), there is an algorithm running in time O (n® + n*d) for
VCND; where w is the matrix multiplication constant.

Proof For each x € X, we create a bit vector vy where vg[i] = 1 if and only if x is
dominated by the i*" vector in Z. We define vy similarly. Computing the vx and vy
takes time O (n2d). Then, create matrices A and B where the columns of A and B are
the vy and vy, respectively. Compute A "B using fast matrix multiplication, and check
if any of the entries in the resulting matrix are 0. In the resulting matrix, a 0 appears
in the location (i, j) iff the vectors at indices i and j are a witness to VCNDy O
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8 Conclusion and Open Problems

We have introduced general classes 7 Ok 4, PT Oy 4 of multidimensional ordering
problems as model-checking problems for k-quantifier first-order formulas over d suc-
cinctly represented ordering relations (with or without additional explicitly represented
relations). We gave a conditionally tight algorithm running in time O (m*~"1log? m)
for all these problems. For PT Oy 4, we gave complete or hard problems for most quan-
tifier structures, and identified a problem VCND, as the essentially only candidate to
be complete for PT Oy 4.

The main open problem is to prove or disprove that VCNDy is complete for PT Oy 4.
The major challenge here is to reduce 3V3-quantified ordering problems to the 33V-
quantified VCNDy. Such a reduction is possible in the unordered setting [30], but its
unclear how to make this approach work in our setting. Likewise, can we prove that a
hybrid version of VCND, and the orthogonal vectors problem (which is complete for
the sparse-relational setting [30]) is complete for T Oy 4? An intermediate step could
be to find a complete problem for 3V3-quantified ordering problems.

A further general algorithmic question is to study existence of improved algorithms
for very small constant dimensions d, such as d = 1 and d = 2, in particular the
existence of O(n>~¢@) time algorlthms w1th €(d) > 0, for 3-quantifier problems.

In this direction, we have given an O(n 2‘1 )-time algorithm for the central VCND
problem where one set of vectors has dimension 2 and the other has dimension d. Note
that by our results, such an algorithm for the general VCND, problem would refute
the 3-uniform HyperClique conjecture. Can we classify which problems admit such
improved algorithms for small dimensions?
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