
TFNP Characterizations of Proof Systems and
Monotone Circuits
Sam Buss # Ñ

University of California, San Diego, CA, USA

Noah Fleming # Ñ

Memorial University, St. John’s, Canada

Russell Impagliazzo #Ñ

University of California, San Diego, CA, USA

Abstract

Connections between proof complexity and circuit complexity have become major tools for obtaining
lower bounds in both areas. These connections – which take the form of interpolation theorems and
query-to-communication lifting theorems – translate efficient proofs into small circuits, and vice
versa, allowing tools from one area to be applied to the other. Recently, the theory of TFNP has
emerged as a unifying framework underlying these connections. For many of the proof systems which
admit such a connection there is a TFNP problem which characterizes it: the class of problems which
are reducible to this TFNP problem via query-efficient reductions is equivalent to the tautologies
that can be efficiently proven in the system. Through this, proof complexity has become a major
tool for proving separations in black-box TFNP. Similarly, for certain monotone circuit models, the
class of functions that it can compute efficiently is equivalent to what can be reduced to a certain
TFNP problem in a communication-efficient manner. When a TFNP problem has both a proof and
circuit characterization, one can prove an interpolation theorem. Conversely, many lifting theorems
can be viewed as relating the communication and query reductions to TFNP problems. This is
exciting, as it suggests that TFNP provides a roadmap for the development of further interpolation
theorems and lifting theorems.

In this paper we begin to develop a more systematic understanding of when these connections
to TFNP occur. We give exact conditions under which a proof system or circuit model admits a
characterization by a TFNP problem. We show:

Every well-behaved proof system which can prove its own soundness (a reflection principle) is
characterized by a TFNP problem. Conversely, every TFNP problem gives rise to a well-behaved
proof system which proves its own soundness.

Every well-behaved monotone circuit model which admits a universal family of functions is
characterized by a TFNP problem. Conversely, every TFNP problem gives rise to a well-behaved
monotone circuit model with a universal problem.

As an example, we provide a TFNP characterization of the Polynomial Calculus, answering a question
from [25], and show that it can prove its own soundness.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Proof Complexity, Circuit Complexity, TFNP

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.30

Funding Noah Fleming: NSERC.
Russell Impagliazzo: NSF CCF 2212135 and the Simons Foundation.

© Sam Buss, Noah Fleming, and Russell Impagliazzo;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 30; pp. 30:1–30:40

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sbuss@ucsd.edu
https://mathweb.ucsd.edu/~sbuss/
mailto:nfleming@mun.ca
https://www.cs.mun.ca/~nfleming/
https://orcid.org/0000-0002-8636-1290
mailto:russell@cs.ucsd.edu
https://cseweb.ucsd.edu/~russell/
https://doi.org/10.4230/LIPIcs.ITCS.2023.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 TFNP Characterizations of Proof Systems and Monotone Circuits

1 Introduction

In recent years, connections between proof systems and monotone circuit models have
revolutionized the areas of proof and circuit complexity, allowing for the tools from one area
to be applied to problems from the other. These connections take the form of

Interpolation Theorems, which translate small proofs into efficient computations in an
associated model of monotone circuit [6, 16,17,19,30,34–36,41,43,45].
Query-to-Communication Lifting Theorems, which translate efficient monotone computa-
tions into small proofs in an associated proof system [10,14,15,21,27–29,33,37,39,40,44,47].

Recently, the landscape of total functional NP (TFNP) has emerged as an organizing principle
for connections between proof systems and models of monotone circuits [12,26]. For many of
the proof systems which admit an interpolation theorem or lifting theorem there is a TFNP
problem which characterizes it in the following sense: the set of TFNP problems which are
reducible to this problem, via query-efficient reductions, is equivalent to the set of tautologies
that can be efficiently proven in the system. This has resulted in proof complexity becoming
a major tool for proving separations in black-box TFNP. Conversely, the novel perspective
offered by TFNP has provided a number unique results for proof complexity, such as complete
tautologies for certain proof systems, as well as striking intersection theorems [25].

An analogous phenomenon has emerged for monotone circuit complexity. For many
monotone circuit models, the set of functions which can be computed efficiently is equivalent
to the set of problems that can be reduced to a certain TFNP problem using communication-
efficient reductions. When these TFNP problems collide – that is, when there is both a proof
and circuit characterization of a particular TFNP problem – then we immediately obtain an
interpolation theorem between this proof system and circuit model [46]! Moreover, many of
the query-to-communication lifting theorems can be viewed as constructing a query-efficient
reduction to a particular TFNP problem out of a communication-efficient reduction to that
problem. This is exciting as it suggests understanding when TFNP problems admit such
characterizations as a pathway for developing further connections between proof complexity
and circuit complexity.

In this paper we give exact conditions under which a proof system or monotone circuit
model admits a characterization by a TFNP problem. For proof complexity, we show that
every well-behaved1 proof system which can prove its own soundness (a reflection principle)
is characterized by a TFNP problem – simply the search problem associated with its reflection
principle. This gives a recipe for constructing a TFNP problem which characterizes a given
proof system, simply write down the search problem for a reflection principle corresponding
to that proof system! Conversely, every TFNP problem gives rise to a well-behaved proof
system which proves its own soundness and which is closed under decision tree reductions.
Furthermore, this result is constructive: for every TFNP problem we give a proof system
which it characterizes. As an example, we provide a TFNP characterization of the Polynomial
Calculus, answering a question from [25], and show that it can prove its own soundness. For
circuit complexity, we show that every well-behaved model of monotone circuit which admits
a universal family of functions is characterized by a natural TFNP problem. Conversely,
every TFNP problem gives rise to a well-behaved monotone circuit model with a universal
problem.

1 We will say that a proof system of monotone circuit model is well-behaved if it satisfies some minor
technical conditions discussed in Subsection 1.2.

S. Buss, N. Fleming, and R. Impagliazzo 30:3

1.1 Overview: Connections Proof Complexity, and Circuit Complexity,
and TFNP

The connections between proof systems and monotone circuit models can be understood as
relating the complexity of two families of total search problems whose complexity characterizes
proof and circuit complexity respectively.

False Clause. SF for an unsatisfiable CNF formula F = C1 ∧· · ·∧Cm: given an assignment
x ∈ {0, 1}n output the index i ∈ [m] of a clause such that Ci(x) = 0.
Monotone Karchmer-Wigderson. mKWf for a monotone boolean function f : given
x, y ∈ {0, 1}n such that f(x) = 1 and f(y) = 0 output i ∈ [n] such that xi > yi.

The theory of total function NP considers the total search problems for which solutions
can be efficiently verified, grouping them into the class TFNP. There is believed to be no
complete problem for TFNP [42], and therefore much of the work on this subject has focused
on identifying sub-classes which do admit complete problems. This has resulted in a rich
landscape of classes which capture a wide variety of important problems in a range of areas
including cryptography, economics, and game theory. These classes are typically defined as
everything that can be efficiently reduced to a certain existence principle (of exponential size).
For example, PPA is the class of search problems that can be reduced to an (exponential
size) instance of the handshaking lemma. These exponential-size instances are given in a
white-box fashion: they are represented as a polynomial-size circuit which can be queried to
obtain each bit of the input.

The principal goal in the study of TFNP is to understand how these sub-classes relate.
However, a separation between any pair of sub-classes would imply P ̸= NP. Instead, a line
of work has sought to provide evidence of their relationships by proving black-box separations.
As opposed to the white-box setting, one is only given oracle access to the circuit, which may
be queried for each bit of the input; one may no longer observe how the circuit is defined.

Black-Box TFNP and Proof Complexity

Beginning with [3], proof complexity has become a major tool for proving black-box TFNP
separations. In fact, black-box TFNP – denoted TFNPdt – can be viewed as the study of the
false clause search problem. Every TFNPdt problem is equivalent to SF for some unsatisfiable
CNF formula F . Using this connection, Göös et al. [26] observed that many prominent
TFNPdt problems are characterized by associated proof systems in the sense that the CNF
formulas F that are efficiently provable in that proof system are exactly the problems SF

that are reducible to the TFNPdt problem. This has led to the characterization of many
well-studied TFNPdt subclasses:

FPdt = TreeRes [38].
PLSdt = Res [9].
PPAdt = F2-NS [26].
PPAdt

q = Fq-NS for any prime q [31]
PPADSdt = unary-NS [25].
PPADdt = unary-SA [25].
SOPLdt = RevRes [25].
EOPLdt = RevResT [25].

That is, these proof systems are characterized by complete problems for these classes, and
therefore an unsatisfiable formula F can be efficiently proven in one of these proof systems iff
SF lies in the corresponding class. Thus, separations between these proof systems translate
into separations between their corresponding TFNPdt subclasses. This has resulted in a
complete picture of how the most prominent TFNPdt subclasses relate [2, 7, 25,26].

ITCS 2023

30:4 TFNP Characterizations of Proof Systems and Monotone Circuits

This relationship has led to a number of striking results for proof complexity as well.
These include:

Complete Problems: Any proof system which is characterized by a TFNPdt problem SF

has F as its complete problem, in the sense that it has short proofs of exactly the formulas
F ′ for which SF ′ can be efficiently reduced to SF . [26]
Intersection Theorems: Proof systems which can efficiently prove a formula iff that
formula has short proofs in several other proof systems [25].
Coefficient Separations: Separations between the complexity of certain algebraic proof
system when their coefficients are represented in unary versus binary [25].

Despite all of this there are still many important TFNPdt problems – such as PPPdt-
complete problems – which have thus far evaded characterization by a proof system, as well
as many important proof systems for which no corresponding TFNPdt problem is known.

Communication TFNP and Monotone Circuit Complexity

Karchmer and Wigderson [32] showed that the monotone formula complexity of any mono-
tone function f is equal to the communication complexity of mKWf . Building on this,
Razborov [45] considered reductions between black-box TFNP classes where one measures the
amount of communication needed to perform the reduction (for some suitable partition of the
input), denoted TFNPcc, and showed that PLScc-complete problems characterize monotone
circuit complexity. There is good reason for this; analogous to how TFNPdt is the study
of the false clause search problem, TFNPcc can be viewed as the study of the monotone
Karchmer-Wigderson game. Indeed, every R ∈ TFNPcc is equivalent to mKWf (over the
same partition of the variables) for some associated monotone function f [20, 26].

Following these results, a number of TFNPcc problems have been characterized by models
of monotone circuits [17, 26]. However, there remain many important circuit models for
which no TFNPcc-characterization is known.

A Theory of Interpolation and Lifting Theorems

As we have just discussed, certain proof systems are characterized by TFNPdt problems, while
certain models of monotone circuits are characterized by problems in TFNPcc. Göös et al. [26]
observed that in all-known examples of TFNP problems which admit both a characterization
by a proof system and a monotone circuit, there exists both an interpolation theorems and
query-to-communication lifting theorem between that proof system and monotone circuit.
This is to be expected, as a key component of both interpolation and query-to-communication
lifting theorems proceeds by relating SF to mKWf for associated pairs (F, f). In fact, it is
not difficult to see that whenever a TFNP class admits a characterization by both a proof
system and a monotone circuit model then there is an interpolation theorem between this
proof system and circuit model – this follows by the simple observation that communication
protocols can simulate decision trees [46]! Thus, the landscape of TFNP, together with
characterizations of TFNP problems by proofs and circuits, appears to provide a roadmap for
potential interpolation and query-to-communication lifting theorems.

1.2 Our Results
Our first main result is a characterization of when a proof system admits a characterization
by a TFNPdt problem. We show that this occurs for any any proof system P which meets
the following two criteria:

S. Buss, N. Fleming, and R. Impagliazzo 30:5

i) Closure under decision-tree reductions: whenever there is a small P -proof of a formula
H, and SF efficiently reduces to SH , then there is also a small P -proof of F .

ii) Proves its own soundness: P can prove that its proofs are sound. That is, P has small
proofs of a reflection principle about itself, encoded in an efficiently-verifiable manner.

Conversely, we show that every TFNPdt problem has a proof system which characterizes it.
Furthermore, this proof system satisfies both conditions (i) and (ii). Out first main results
can be informally stated as follows.

▶ Theorem 1 (Informal). The following hold:
For any TFNPdt problem R there is a proof system P satisfying (i) and (ii) such that R

characterizes P in the sense that P has short proofs of F iff SF is efficiently reducible to
R.
For any proof system P which satisfies (i) and (ii) there is a TFNPdt problem R such
that R characterizes P .

By writing down an efficiently verifiable reflection principle for a proof system, this provides
a somewhat systematic way of generating a TFNPdt problem which characterizes that proof
system. As an example, we define a new TFNP subclass called IND-PPA, which contains
problems which can be solved by inductive inductive parity arguments. We show that the
IND-PPA-complete problem characterizes the F2-Polynomial Calculus proof system, and
furthermore that the F2-Polynomial Calculus can prove its own soundness.

▶ Theorem 2 (Informal). IND-PPAdt = F2-PC. As well, F2-PC has small proofs of an
efficiently verifiable reflection principle about itself.

As a bonus, we show that the technique that we use to generate the TFNPdt problem which
characterizes the F2-Polynomial Calculus can readily be applied in order to generate TFNPdt

problems which characterize all of the dynamic variants of static proof systems for which
TFNPdt are known. In Subsection 2.4, we provide TFNPdt problems for Fq-Polynomial
Calculus, unary Polynomial Calculus, and unary dag-like Sherali-Adams.

Our second main result is a characterization of the conditions under which monotone circuit
models admit corresponding TFNPcc problems. We formalize the concept of a monotone
circuit model as a monotone partial function complexity measure (mpc) – a mapping of
partial monotone functions to non-negative integers. We show that a TFNPcc problem is
characterized by a mpc iff the mpc meets the following criteria:

i) Closure under low-depth reductions: if whenever f is a partial function and h is comput-
able by a depth-d monotone Boolean circuit then mpc(f ◦ h) is only polynomially larger
in 2d and mpc(f).

ii) Admits a universal family: a family of functions Fm such that whenever mpc(g) ≤ m

for a monotone partial function g, there is a string zg so that F (x ◦ zg) solves g(x).

▶ Theorem 3 (Informal). Let mpc be a complexity measure. There is a R ∈ TFNPcc such
that Rcc characterizes mpc iff mpc satisfies (i) and (ii).

Finally, we investigate whether this characterization can be extended from partial function
complexity measures to total function measures. Since complexity measures on total functions
induce measures on partial functions, this allows us to give a general condition under which
a complexity measure on total functions has a TFNPcc characterization (Theorem 17) by
applying Theorem 3.

ITCS 2023

30:6 TFNP Characterizations of Proof Systems and Monotone Circuits

A Note on the Provability of Reflection Principles

Theorem 1 establishes that the property of P having short proofs of a reflection principle about
itself is closely related to having a TFNPdt characterization of P . The reflection principle for
propositional proof systems has already been studied in prior work. In particular, Cook [11]
showed that extended Frege (eF) has short proofs its consistency statements, and Buss [8]
showed that Frege (F) has short proofs of its consistency statements. From their results, it
follows readily that both proof systems, extended Frege and Frege, have short (polynomial
size) proofs of their reflection principles. It is also well-known that the extended Frege
and Frege proof systems can be characterized as very strong TFNPdt classes characterizable
in terms of second-order theories of bounded arithmetic, see [5]. Analogous results were
obtained for even stronger propositional proof systems by [23]. On the other hand, Garlik [22]
showed that resolution requires exponential length for refutations of (a particular “leveled”
version of) its reflection principle, and Atserias-Müller [1] gave exponential lower bounds on
resolution refutations of a relativized reflection principle.

Theorem 1 requires that the proof system P has short proofs of a variant of a reflection
principle about itself. There are two main differences between our encodings and previous
ones in the literature. The first is that the reflection principle is parameterized by a complexity
parameter c (see Section 2) rather than the typical size parameter. The second is that the
reflection principle must be efficiently verifiable, meaning that an error in the purported
P -proof in the reflection principle can always be verified by examining in a small number of
bits. Thus, for example, the bound of Garlik [22] does not contradict our results.

2 Proof Complexity and Black-Box TFNP

We begin by defining black-box TFNP. A total search problem is a sequence of relations
Rn ⊆ {0, 1}n × On, one for each n ∈ N which is total – for each x ∈ {0, 1}n there is i ∈ O
such that (x, i) ∈ Rn. A total search problem is in TFNPdt its solutions are verifiable: for
each i ∈ O there there is a decision tree T o

i of polylog(n) depth such that

T o
i (x) = 1 ⇐⇒ (x, i) ∈ Rn.

Decision Tree Reductions. A decision tree reduction from Q ∈ {0, 1}s × O′ to R ⊆
{0, 1}n × O is a set of decision trees Ti : {0, 1}s → {0, 1} for i ∈ [n] and T o

j : {0, 1}s → O′

for j ∈ O such that for any x ∈ {0, 1}s,

((T1(x), . . . , Tn(x), j) ∈ R =⇒ (x, T o
j (x)) ∈ Q.

That is, the Ti’s map inputs to from Q to R, and the T o
j ’s maps solutions to R back to

solutions to Q. The depth of the reduction is d, the maximum depth of any of the decision
trees involved, and the size is n. The complexity of the reduction is log n + d and the
complexity of reducing Q to R, denoted Rdt(Q), is the minimum complexity of any decision
tree reduction from Q to R. The TFNPdt subclass associated with R, denoted Rdt, is the set
of all Q ∈ TFNPdt such that Rdt(Q) = polylog(n).

Black-box TFNP is intimately connected with proof complexity. This connection can be
summarized by the following claim from [25,26].

▷ Claim 1. Let R ∈ {0, 1}n × O be any search problem in TFNPdt. Then there exists an
unsatisfiable CNF formula F on |O|-many variables such that R is equivalent to SF .

S. Buss, N. Fleming, and R. Impagliazzo 30:7

Proof. As R ∈ TFNPdt there are polylog(n)-depth decision trees {Ti}i∈O which verify R.
Define a canonical CNF formula associated with R to be

F :=
∧
i∈O

¬T o
i ,

where we have abused notation and associated T o
i with the DNF obtained by taking a

disjunction over the (conjunction of the literals along) the accepting paths in T o
i . This makes

a ¬T o
i a CNF formula expressing that T 0

i outputs 0. It is not difficult to check that a solution
to SF is equivalent to a solution to R. ◁

The upshot is that black-box TFNP is exactly the study of the false clause search problem!
Thus, it suffices to study the search problems for the canonical CNF formulas SF associated
with R ∈ TFNPdt instead of R itself. Furthermore, note that this is robust as for any pair of
decision trees {T o

i } and {T ′o
i } that verify the same R ∈ TFNPdt, the resulting false clause

search problems SF and SF ′ are polylog(n)-reducible.
Using this connection, Göös et al. [26] observed that many important proof systems are

characterized by associated TFNPdt problems in the sense that the CNF formulas F that
are efficiently provable in that proof system are exactly the problems SF that are efficiently
reducible to that TFNPdt problem.

Complexity Measure. The known characterizations of proof systems by TFNPdt problems
are in terms of a somewhat non-standard, but very natural, complexity parameter. For a
proof system P and unsatisfiable CNF formula F let the complexity required by P to prove
F be

P (F) := min{deg(Π) + log size(Π) : Π is a P -proof of F},

where deg denotes an associated degree measure of the proof system. For Nullstellensatz and
Sherali-Adams, this degree measure is the maximum degree of any polynomial in their proofs,
while for Resolution, degree is the proof width. While nonstandard, this complexity parameter
is very natural. Indeed, all of the query-to-communication lifting theorems referenced in the
introduction lift lower bounds on a complexity parameter for some proof system to lower
bounds on some monotone circuit model.

We say that a TFNPdt problem R characterizes a proof system P if Rdt = {SF : P (F) =
polylog(n)}; this is reflexive and so we also say that P characterizes R. In fact, many of these
characterizations hold in the following stronger sense: let P be any of the proof systems
listed above, and R be the canonical complete problem for its corresponding TFNPdt class,
then for any unsatisfiable CNF formula F ,

P (F) = Θ(Rdt(SF)).

In this section we give necessary and sufficient conditions for such a characterization to
occur. The first condition is that the proof system proves an efficiently verifiable variant of a
reflection principle.

What is a Reflection Principle?
The second condition of Theorem 1 is that the proof system must be able to prove its own
soundness. A reflection principle RefP for a proof system P states that P -proofs are sound;
it says that if Π is a P -proof of a CNF formula H then H must be unsatisfiable. This is
formalized with variables encoding a CNF H, a proof Π, and a truth assignment α to H.
The formula (falsely) asserts that Π is a P -proof of H and α satisfies H,

ProofP (H, Π) ∧ Sat(H, α).

ITCS 2023

30:8 TFNP Characterizations of Proof Systems and Monotone Circuits

We say that a reflection principle is efficiently verifiable if it is encoded as a low-width
CNF formula. In this case, solutions to the false clause search problem for the reflection
principle (also known as the wrong proof problem [4, 24]) can be efficiently verified, which is
essential for the reflection principle search problem to belong to TFNP.

For a proof system P , there are many ways to encode its proofs, with the choice of the
encoding potentially affecting the complexity of proving the associated reflection principle.
Rather than worrying about the particular encoding, we will instead define one reflection
principle for each efficiently verifiable way of encoding P -proofs, which we call a verification
procedure. Recall that the complexity c of a proof is always an upper bound on the width of
the CNF being proven. For this reason, and to simplify notation, we will bound the width of
the CNF H by c.

Verification Procedure. A verification procedure V for a proof system P is a mapping of
tuples (n, m, c) to CNF formulas that generically encodes complexity-c (or O(c)) P -proofs of
n-variate CNF formulas with m clauses of width at most c. Specifically, the CNF formula
Vn,m,c has three sets of variables x, H, Π, such that:

An assignment to the variables H := {Ci,j : i ∈ [m], j ∈ [c]} specifies a CNF formula with
m clauses over n variables, where Ci,j ∈ [2n] is the index of the j-th literal of the i-th
clause of H; if Ci,j ≤ n then it specifies a positive literal, and otherwise it specifies a
negative literal.
An assignment to the variables Π specifies a (purported) P -proof of H, such that any
error in Π can be verified by looking at the assignment to at most poly-logarithmically
many variables of Vn,m,c.
The CNF formula Vn,m,c has 2Θ(c) many variables.

As the complexity parameter c bounds the logarithm of the size of the proof, and by the
third point, the number of variables is exponential in Θ(c), the second condition ensures that
Vn,m,c has width poly(c) and can be verified by looking at polynomial-in-c many variables.
The third condition can be relaxed, and larger numbers of variables can be tolerated at the
cost of worse bounds in Theorem 6. We give a concrete example of a verification procedure
for the Polynomial Calculus proof system in Section 2.3.

For concreteness, we have fixed a particular encoding of H in order to avoid pathological
codings; e.g., ones in which a SAT oracle is used to decide whether the formula is satisfiable.
Since we allow arbitrary codings of proofs, this will be robust under different encodings of
CNFs as long as they are polynomial-time computable from ours.

We can now define a reflection principle for any proof system based on a verification
procedure.

Reflection Principle. Let P be a proof system and V be a verification procedure for P -proofs.
The reflection principle RefP,V associated with (P, V) is the unsatisfiable formula

ProofnH ,mH ,c(H, Π) ∧ SatnH ,mH ,c(H, α),

where H is a CNF formula over nH variables with mH clauses of width at most c. The j-th
literal (if any) of the i-th clause of H is specified by a vector Ci,j of log(2nH + 1) many
Boolean variables, and

ProofnH ,mH ,c(H, Π) := VnH ,mH ,c(H, Π).
SatnH ,mH ,(d,nF)(H, α) is the CNF formula stating that α is a satisfying assignment for
H. This is expressed as,

S. Buss, N. Fleming, and R. Impagliazzo 30:9

∀i ∈ [mH], ∃j ∈ [c]
[(

[[Ci,j = xk]] ∧ αk

)
∨
(
[[Ci,j = ¬xk]] ∧ ¬αk

)]
,

where [[p = ℓ]] is the indicator function of p being equal to ℓ. This can be encoded as a
CNF formula of width O(c log nH) and size mH exp(O(c log nH)).

For simplicity of notation, we will drop the subscripts P, V from Ref when the proof
system and verification procedure is clear. One technicality is that TFNPdt problems have
one instance for each number of variables n; to ensure that this is the case for Ref we could
use a pairing function on the multiple sets of variables for Ref, however we are going to ignore
this detail. Each reflection principle gives rise to a TFNPdt problem. Indeed, by construction
Ref is verifiable by observing polylog(n) many bits, where n is the total number of variables.

Conditions for a TFNP Characterization
The first necessary condition for a proof system to admit a characterization by a TFNPdt

problem will be that the proof system must efficiently prove a reflection principle about itself.
The second necessary condition is that the proof system must be closed under decision-tree
reductions, as TFNPdt is closed under these reductions.

Closure under Decision Tree Reductions. A proof system P is closed under decision tree
reductions if whenever there is a P -proof of complexity c of an unsatisfiable formula F , and
H reduces to F by depth-d decision trees, then there is a P -proof of H of complexity O(cd).

In all of the proof systems which are known to admit characterization by a TFNPdt

problem, closure under decision tree reductions takes the form of directly substituting (an
appropriate encoding of) decision trees into the proofs, resulting in a proof of complexity
O(cd). For example, if H reduces to F and we have a Resolution proof of F , then we
can obtain a Resolution proof of H by replacing each variable in the proof of F by the
(DNF formula corresponding to the accepting paths of) corresponding decision tree from the
reduction.

We are now ready to prove Theorem 1, which we state formally as follows.

▶ Theorem 1. The following hold:
i) For any TFNPdt problem R there is a proof system P such that R characterizes P .

Furthermore, P is closed under decision tree reductions and there is a reflection principle
RefP for P such that P (RefP) ≤ polylog(n).

ii) For any proof system P which is closed under decision tree reductions and for which
there is a reflection principle RefP of which P has polylog(n)-complexity proofs, there is
a TFNPdt problem R which characterizes P .

In fact, we prove a tighter characterization over the following two subsections, from which
Theorem 1 will follow. Part (i) follows from Theorem 6, with the “furthermore” part proven
in Theorem 5, while part (ii) is proven in Theorem 4.

2.1 A Proof System for any TFNP Problem
We begin by describing how any TFNPdt problem R can be transformed into a proof system
for refuting unsatisfiable CNF formulas of polylog width. The key observation is that because
each TFNPdt problem is equivalent to the search problem for some unsatisfiable CNF formula,

ITCS 2023

30:10 TFNP Characterizations of Proof Systems and Monotone Circuits

we can view decision tree reductions between TFNPdt problems as proofs in a proof system
– indeed, these reductions are sound and efficiently verifiable! More formally, a proof Π in
this proof system, of the (unsatisfiability) of a CNF formula H, will consist of a low-depth
decision reduction from SH to an instance of the false clause search problem SF for the
unsatisfiable formula F associated with the TFNP problem R. For this, we first define a
notion of reduction between CNF formulas.

Suppose C is a clause over n variables, and T = {Ti}i∈[n] is a sequence of depth-d decision
trees, where Ti : {0, 1}s → {0, 1}. We write C(T) to denote the CNF formula obtained by
substituting the decision trees Ti for each of the variables xi in C and rewriting the result as
a CNF formula. Formally, C(T) is formed by creating the a stacked decision tree T C that
sequentially runs the trees Ti for each variable xi used in C. A leaf of T C is labelled with
a 1 if the root-to-leaf path causes the trees Ti to output a satisfying assignment for C; the
other leaves are labelled with 0. Then C(T) is the CNF

C(T) :=
∧

{¬p : p is a rejecting path of T},

where a path p is identified with the conjunction of the literals set true along the path, and
¬p is its negation.

Reductions Between CNF Formulas. Next, we define what is means to reduce one false
clause search problem to another. We say that a CNF formula H on nH variables and mH

clauses reduces to an unsatisfiable F = C1 ∧ · · · ∧ Cm over n variables via depth-d decision
trees if there exist depth-d decision trees T = {Ti}i∈n where Ti : {0, 1}nH → {0, 1}, and
{T o

i }i∈[m] with T o
i : {0, 1}nH → [mH] so that the following conditions hold. Let FH be the

CNF formula

FH :=
∧

i∈[m]

∧
p∈T o

i

Ci(T) ∨ ¬p,

where p ranges over all paths of T o
i . Since Ci(T) is a CNF, FH is readily written as a CNF

by distributing ¬p into Ci(T). Then each clause Ci(T) ∨ ¬p must either be tautological
(contains a literal and its negation) or be a weakening of the clause of H indexed by the label
at the end of the path p.

Observe that a depth-d decision tree reduction of SH to SF introduces a new false clause
search problem SFH

that is directly a refinement of H. Clearly, if F is unsatisfiable, then so
is FH and consequently also H is unsatisfiable.

Canonical Proof System. Let SF ∈ TFNPdt. The canonical proof system PF for SF proves
an unsatisfiable CNF formula H on nH variables if H is reducible to an instance of F on some
n variables. A PF -proof Π consists of the decision trees T = {Ti}i∈[n] and T 0 = {T o

i }i∈[m] of
the reduction. The size of Π is the number of variables n of the instance of F , and the depth
is the maximum depth among the decision trees. The complexity of proving an unsatisfiable
CNF formula H is then the minimum over all P -proofs of H,

PF (H) := min{depth(Π) + log size(Π) : Π is a PF -proof of H}.

This proof system is sound as any substitution of an unsatisfiable CNF formula is also
unsatisfiable. To see that it is efficiently verifiable, observe that it suffices to form the CNF
FH from F and the decision trees Ti and T 0

i , and check that each of the clauses of FH is

S. Buss, N. Fleming, and R. Impagliazzo 30:11

either tautological or is a weakening of a clause in H. This can be done in polynomial-time
in the size of the proof. Finally, note that the Note that the canonical proof system is closed
under decision tree reductions.

The next theorem states that PF has a short proof of H iff SH efficiently reduces to SF .
This is almost immediate from the definitions.

▶ Theorem 4. Let SF ∈ TFNPdt and H be an unsatisfiable CNF formula. Then,
(a) If H has a size s and depth d proof in PF , then SH has a depth d and size O(s) reduction

to SF .
(b) If SH has a size s and depth d reduction to SF , then H has a size s2O(d) and depth d

proof in PF .
In particular, Sdt

F (SH) = Θ(PF (H)).

Proof. To prove (b), suppose T1, . . . , Tn and T o
1 , . . . , T o

m is a size-s and depth-d decision-tree
reduction from SH to SF . Construct FH as above using these decision trees. Let L be a
clause of Ci(T) for some i ∈ [m] and let p be a path in T o

i . If Ci(T) ∨ ¬p is tautological,
then we are done. Otherwise, we will argue that it is a weakening of a clause of H. Fix any
assignment x which falsifies L ∨ ¬p, then Ci is falsified by the assignment T1(x), . . . , Tn(x)
and T o

i (x) follows path p. Thus, by the correctness of the reduction, whenever L ∨ ¬p is false,
the T o

i (x)-th clause of ¬H must also be false, and so L ∨ ¬p is a weakening of this clause.
Each decision tree in the proof has depth at most d and therefore the size is at most s2O(d).

To prove (a), let n, T1, . . . , Tn, T o
1 , . . . , T o

m be a PF proof of H of size s and depth d. We
claim that this is also a reduction from SH and SF . Indeed, fix any assignment x such that
T1, . . . , Tn(x) falsifies clause Ci of F and the decision tree T o

i (x) follows some path p. Then,
a clause of the formula Ci(T) ∨ ¬p is falsified under x, and furthermore that clause is a
weakening of the T o

i (x)-th clause of H. Thus, (x, T o
i (x)) ∈ SH . This reduction has depth d

and size n = O(s). ◀

Canonical Proof Systems Prove their own Soundness
In this section we define a natural formulation of the reflection principle for the proof system
PF for any TFNPdt problem SF by way of defining a verification procedure for PF . We show
that the canonical proof system can prove this encoding of the reflection principle. To encode
proofs Π in the canonical proof system – which are decision tree reductions – we require the
notion of a generic of a decision tree, which is a template for decision trees of depth at most
d – any decision tree of depth at most d (over a set of variables α1, . . . , αn and output set
O) can be recovered from an assignment to the variables of a generic decision tree.

A generic decision tree of depth d over variables α1, . . . , αn and with output in O is a
complete binary tree in which the label of every internal vertex v is given by a vector of log n

of variables xv whose value specifies the index of some variable αi, and such that one child of
v is labelled 0 and the other is labelled 1. Each leaf l is labelled with log |O| variables xl. For
a given truth assignment to the variables xv, the generic decision tree induces a decision tree
that queries the variables α1, . . . , αn as specified by the values of all of the xv’s. Specifically,
for a given internal vertex v, the truth values assigned to the vector xv at v in the generic
decision tree determines a value i so that αi is queried at the corresponding vertex of the
induced decision tree. Similarly, for a leaf l, the values of the variables xl specify an j ∈ O
which is the label for the corresponding leaf in the induced decision tree.

Recall that in the reflection principle Proof(H, Π) states that the proof Π (which we will
encode using generic decision trees) is indeed a proof of H. To state Proof(H, Π), it will be
helpful to have the following definition. The decision tree simulating a generic decision tree

ITCS 2023

30:12 TFNP Characterizations of Proof Systems and Monotone Circuits

T̂ is obtained from T̂ as follows: Replace each internal vertex v of T̂ by a complete binary
tree querying the variables of xv, and at each leaf where xv = i, queries αi. The leaves l of
the generic decision tree are replaced with complete binary trees querying xl in which each
leaf where xl = j is labelled by the output j ∈ O.

Verification Procedure for PF . Let SF ∈ TFNPdt. We define a verification procedure
V PF

nH ,mH ,(d,nF) for PF , which encodes a complexity c = (d + log nF) P -proof Π of a CNF
formula H on nH variables and mH clauses as follows. Π is specified by nF depth-d generic
decision trees T̂1, . . . , T̂nF

with output in {0, 1} and mF depth-d generic decision trees
T̂ o

1 , . . . , T̂ o
mF

with output in [mH]. The constraints of Proof enforce that each clause of the
reduced CNF formula FH is a weakening of a clause of H. For each i ∈ [nF], let Si be the
decision tree simulating T̂i but eliminating the queries to the variables αi.2 Recall that the
assignment of truth values to the vector of variables xv at a vertex v determines the index
i ∈ [nH] of the variable being queried at v in the decision tree. Let zk ∈ [nF] denote the k-th
variable of F .

We will construct the constraints of Proof from the following decision trees TCi , for each
clause Ci in F : First, it runs the decision trees Sk for every k ∈ [nF] such that Ci involves zk:
this determines the literals which occur in one of the clauses of FH , namely in one of the
clauses that is formed by applying the decision trees T̂i to the clause Ci. We temporarily
use C ′ to denote this clause of FH . Note that C ′ involves variables of H; however, the truth
values (the αi values) of the variables in C ′ have not been queried and are instead treated in
the next phase as being set to the values that falsify C ′. Second, it runs the decision tree
simulating T̂i. A vertex of T̂i labelled with an xv is handled by querying the variables xv.
The results of the queries to xv specify a variable αi. The variable αi may appear in C ′ and
if so is treated as having the value that falsifies C ′. If, however, the variable αi does not
appear in C ′, then it is non-deterministically queried; that is, the tree TCi

branches to try
both 0 and 1 as truth values for αi. The result of running the decision tree simulating T̂i is a
value ℓ specifying a clause of H . Third, it queries the vector of variables Cℓ,j for j ∈ [c]: this
determines the literals of the ℓ-th clause of H . If a path in this decision tree determines that
the clause C ′ of FH is not a weakening of the ℓ-th clause of H , then the path is called “bad”.

The CNF formula ProofnH ,mH ,(d,nF)(H, Π) is
∧

bad p ¬p, expressing that there is no bad
path. It thus is satisfied only when the Π is a valid PF -proof of H.

As each generic decision tree has depth at most d, F has width at most polylog(nF), and H

has width at most c, the resulting CNF formula has width dpolylog(nF) + log mH + c log nH .

Canonical Reflection Principle. Let SF ∈ TFNPdt. We define its canonical reflection
principle RefF to be the conjunction

ProofnH ,mH ,(d,nF)(H, Π) ∧ SatnH ,mH ,(d,nF)(H, α),

where Sat is defined as in the definition of the reflection principle and Proof := V P
nH ,mH ,(d,nF).

In total, this is a CNF formula of width d log nF + log mH + c log nH over n = mF 2d+1 +
nF 2d log nH + cmH log 2nH many variables. In particular, under any assignment to the
variables, any clause of RefF can be evaluated by looking at the values of polylog(n) many
variables, where n is number of variables of Ref. Thus, SRefF

∈ TFNPdt.

▶ Theorem 5. For any SF ∈ TFNPdt, PF (RefF) ≤ polylog(n).

2 ProofnH ,mH ,(d,nF)(H, Π) does not involve the variables αi.

S. Buss, N. Fleming, and R. Impagliazzo 30:13

Proof. Fix an instance of SRefF
. By Theorem 4, it suffices to show that SRefF

is reducible to
an instance of SF . Let the instance of RefF be specified with parameters (nH , mH , (d, nF)),
letting c = d + log nF . For each generic decision tree T̂i of RefF , let Si be the decision tree
that simulates it. As well, let So

i be the decision tree that simulates T̂ o
i .

We will define the decision trees T1, . . . , TnF
, T o

1 , . . . , T o
mF

of the reduction from SRefF

to an instance of SF on nF variables. Define Ti := Si, and let T o
i be the decision tree

implementing the following algorithm which takes as input x ∈ {0, 1}n and outputs a falsified
clause of RefF (x) provided that the truth assignment (T1(x), . . . , TnF

(x)) falsifies clause Ci

of F . First, the algorithm runs the decision trees Ti for each i ∈ vars(Ci), and then it runs
the decision tree for So

i .
Let x∗ be the restriction of x to the variables queried thus far in the algorithm. As

(T1(x∗), . . . TnF
(x∗)) falsifies Ci, there must be a clause of FH falsified by x∗. This clause

should be a weakening of T o
i (x∗)-th clause of H . To check whether this is indeed the case, we

ask for the indices of the variables that occur in the T o
i (x∗)-th clause of H – this requires us

to query at most c log nH many variables. If our clause is indeed a weakening of the T o
i (x∗)-th

clause of H, then our x∗ must falsify the T o
i (x∗)-th clause of H, violating a constraint of

SAT. Thus, our algorithm will output the index of this violated clause SAT. Otherwise, if
this is not the case, then x∗ must falsify a clause of Proof, and so we can output the index of
this violated clause.

To convert this algorithm into a decision tree we must label the leaves which are the
terminals of paths which are not followed in any run of this algorithm. For a path not to be
followed by this algorithm, it must either correspond to a partial assignment x∗ such that
(T1(x∗), . . . , TnF

(x∗)) satisfies Ci, and therefore the output at that leaf can be arbitrary. As
H has width at most c and F has width polylog(nF), the depth d∗ of the resulting decision
tree is d∗ = O(c(d log nH + log mH)) + polylog(nF) and the number of variables is nF ; thus
the complexity of the reduction is d∗ + log nF , which is poly-logarithmic in n, the number of
variables of RefF . ◀

2.2 TFNP Problems for Proof systems which Prove their own Soundness
In this section we identify the necessary conditions for a proof system to be characterized by
a TFNPdt problem. The first necessary condition is that the proof system must be closed
under decision-tree reductions, as TFNPdt is closed under these reductions. That is, it must
admit short proofs of a reflection principle about itself. As we will show, any verification
procedure for its proofs will do.

▶ Theorem 6. Let P be a proof system that is closed under decision tree reductions, let V be
a verification procedure for P , and denote RefP,V by Ref. For any unsatisfiable CNF formula
H, the following hold.

i) Sdt
Ref(SH) ∈ O(P (H)).

ii) P (H) ∈ O(Sdt
Ref(SH)P (Ref)).

In particular, if P has polylog(n)-complexity proofs of Ref then P is characterized by SRef .

The first statement says that any P -proof of H induces a reduction from SH to SRef of the
same complexity. The second statement is a converse, saying that if there is a reduction from
SH to SRef and P can efficiently prove Ref then there is a P -proof of H whose complexity
is not much larger than the complexity of the reduction – in particular, it is factor of the
complexity needed for P to prove Ref larger than the complexity of the reduction.

Before proving this theorem we will give a high-level sketch of the proof for the case of
polylog(n)-complexity reductions. Let P be any proof system that is closed under decision
tree reductions. Observe that SRef ∈ TFNPdt as Ref is efficiently verifiable. Consider any

ITCS 2023

30:14 TFNP Characterizations of Proof Systems and Monotone Circuits

SH ∈ TFNPdt such that Sdt
Ref(SH) = polylog(n) (SH reduces to SRef with polylog-depth decision

trees). Then, as P is closed under decision tree reductions and there is a O(polylog(n))-
complexity P -proof of RefP , there must also be an efficient P -proof of H. Conversely,
suppose that Π is a polylog(n)-complexity P -proof of an unsatisfiable CNF formula H. We
can construct a reduction from SH to SRef by hard-wiring H and Π into SRef , leaving the
only truth assignment variables free. On any input α to the variables of H, the hard-wired
instance of SRef must output a falsified clause of H as Π is a valid P -proof of H.

Proof of Theorem 6. We will begin by proving (ii). Let H be any unsatisfiable CNF formula
and recall that Sdt

Ref(SH) denotes the complexity of reducing SH to SRef . As P is closed under
decision tree reductions, there is a P -proof of H with complexity P (H) = O(Sdt

Ref(SH)P (Ref)).
To prove (i), suppose that Π is a complexity c := P (H) proof in P of an unsatisfiable

CNF formula H . We will construct a reduction from SH to an instance of SRef as follows. Let
nH , mH be the number of variables and number of clauses of H respectively. The reduction
T = (T1, . . . , Tn) hardwires the input (H, Π) into the instance of SRef with parameters
nH , mH , c, using constant decision trees, leaving only α unspecified. Next, we argue that
this reduction is correct. Let α ∈ {0, 1}nH be any assignment to SH then, as Π is a valid
P -proof of H, the only outputs of SRef(T (α)) are clauses of H which are falsified under α.
As the number of variables of the instance of Ref is exponential in Θ(c), and the decision
trees T are constant, Sdt

Ref(SH) = O(P (H)). ◀

2.3 Example: The Polynomial Calculus
As an example, we give a characterization of the Polynomial Calculus by a natural TFNPdt

problem and show that it can prove a reflection principle about itself, establishing Theorem 2.
This answers an open question from [25], asking for a characterization of the Polynomial
Calculus. To define our characterization of the F2-Polynomial Calculus, we will leverage the
characterization of its static variant, F2 Nullstellensatz, by PPA-complete problems [26]. PPA
is the class of TFNP problems which can be solved by parity arguments, and the standard
PPA-complete problem is LEAF – given a fan-in ≤ 2 graph and a designated leaf v∗, find
another leaf. To characterize the F2-Polynomial Calculus, we define the TFNP class IND-PPA
which corresponds to inductive parity arguments, and whose complete problem is the LEAF

problem defined over a directed acyclic graph. At the end of this section we discuss how
this appears to be a general phenomenon – for any TFNP problem which characterizes a
static proof system, we can define an induction variant of that problem to characterize the
dynamic variant of that proof system. Using this, we give TFNP problems which characterize
the Fq-Polynomial Calculus, unary Polynomial Calculus, and unary dag-like Sherali-Adams.

The Polynomial Calculus (PC). The F2-Polynomial Calculus proves that an unsatisfiable
system of F2-polynomial equations {pi(x) = 0}i∈[m] has no solutions over {0, 1}. An
unsatisfiable CNF formula F = C1 ∧ . . . ∧ Cm is encoded as such a system of equations by
mapping each clause to the equation Ci such that Ci(x) = 1 iff Ci(x) = 0 (for example,
(x1 ∨ ¬x2 ∨ x3) represented as (1 + x1)x2(1 + x3) = 0). Note that the degree of Ci is equal to
the width of Ci. We will operate exclusively with multilinear arithmetic; that is, x2

i and xi

are represented by the same function. Formally, we operate modulo the ideal ⟨x2
i = xi⟩i∈[n].

A F2-PC proof is a derivation of the trivially false polynomial 1 = 0 from {pi(x) = 0}i∈[m]
by the following two rules:
Addition. From two previously derived polynomials p, q, deduce p + q.
Multiplication by a Variable. From a previously derived polynomial p, deduce xip for some

i ∈ [n].

S. Buss, N. Fleming, and R. Impagliazzo 30:15

The size of a proof is the number of monomials (with multiplicity) in the proof, the length is
the number of lines (applications of rules), and the degree is the maximum degree of any
polynomial at any step in the proof. The complexity of proving an unsatisfiable CNF formula
F in F2-PC is

min{size(Π) + log degree(Π) : F2-PC proofs Π of F}

Next, we define IND-PPA, the subclass of TFNPdt problems which are reducible to the
IND-PPA-complete problem IND-LEAF, which will characterize F2-PC. At a high level
this is the LEAF problem defined over a directed acyclic graph (dag). An instance of this
problem is given by a set set of N nodes (corresponding to monomials) and a set of L pools
(corresponding to lines in the proof). The pools are arranged in a dag; each pool ℓ ∈ [L] has
a set of immediate predecessors described by variables P

(ℓ)
ℓ′ ∈ {0, 1} for ℓ′ < ℓ. Each pool

ℓ is associated with a set of nodes A(ℓ) ⊆ [N] and we hard-code that the root pool L has
A(ℓ) = {1} for some distinguished 1-node. We have an instance of LEAF defined over the
nodes of this dag as follows: for each pool ℓ we have a matching M (ℓ) between the nodes of ℓ

and the nodes of its predecessors; see Figure 1. Since the L-th pool contains only a single
node, there must be some pool with an unmatched node. A solution is an unmatched or
mismatched node.

We remark that the dag of pools is specified by input variables P
(ℓ)
ℓ′ to the problem. This

is crucial; if the dag was fixed in advance, then this problem would be in PPA – there is a
simple reduction to LEAF – and thus gives rise to a Nullstellensatz proof.

Induction PPA. The IND-PPA-complete problem IND-LEAF is defined as follows
Structure. [L] pools and [N] nodes. We think of each ℓ ∈ [L] as being associated with its
own copy of [N].
Variables. For each ℓ ∈ L and ℓ′ < ℓ we have P

(ℓ)
ℓ′ ∈ {0, 1} indicating whether ℓ′ is an

immediate predecessor of pool ℓ. For each pool ℓ ∈ [L] and node m ∈ [N], we have a
variable A

(ℓ)
m ∈ {0, 1} indicating whether node m is active at pool ℓ. Finally, we have

a matching between the nodes of ℓ ∈ [ℓ] and the nodes of all of its predecessors: For
each ℓ′ < ℓ and m ∈ [N] there is a variable M

(ℓ)
ℓ′,m′ ∈ [ℓ] × [N] indicating where ℓ′’s copy

of node m′ is matched in the matching for pool ℓ. The root pool L has A
(L)
1 = 1 and

A
(L)
m = 0 for all m ̸= 1.

Solutions. Since the root has an odd number of active nodes, and each matching is
even, there must be some pool ℓ ∈ [L] with an erroneous matching. A solution is any
triple (ℓ, ℓ′, m) ∈ [L]2 × [N] such that ℓ′ is a predecessor of ℓ and m is an active node
for ℓ′, and m is matched to some node m′ of some pool ℓ′′ which is not matched to
m. That is, P

(ℓ)
ℓ′ = 1, A

(ℓ)
m = 1, M

(ℓ)
(ℓ′,m) = (ℓ′′, m′), and either P

(ℓ)
ℓ′′ = 0, A

(ℓ′′)
m′ = 0, or

M
(ℓ)
ℓ′′,m′ ̸= (ℓ′, m).

Observe that this problem is in TFNPdt, as any candidate solution can be verified by
observing the values of O(log n) many variables.

▶ Theorem 7. For any unsatisfiable CNF formula F ,
If there is a depth-d reduction fron SF to an instance of IND-LEAF on s variables, then
there is a degree-O(d), size-s22O(d) F2-PC proof of F .
If F has a size-s and degree-d F2-PC proof of F , then there is a depth-O(d) reduction
from SF to an instance of IND-LEAF on O(s2)-variables.

In particular, IND-LEAFdt(SF) = Θ(F2-PC(F)).

ITCS 2023

30:16 TFNP Characterizations of Proof Systems and Monotone Circuits

1

3

5
7

1
2

7

2

55
3

1

Pool 4

Pool 1 Pool 2

Pool 3

M
(4)
3,2 = (2, 2) and M

(4)
2,2 = (3, 2)

A
(3)
5 = 1

P
(4)
3 = P

(4)
2 = 1 and P

(4)
1 = 0

Figure 1 An example matching for Pool 4. The pink area indicates the active predecessors of
Pool 4. The yellow circles indicate the active nodes for that pool; for example Pool 1 has only node
1 active: A

(1)
1 = 1, while A

(1)
m = 0 for all m ̸= 1. The edges correspond to the matching for pool 4.

For example, M
(4)
2,2 = (3, 2) and M

(4)
3,2 = (2, 2) meaning that in the matching for pool 4, the copy of

node 2 in pools 3 and 2 are matched.

We remark that an analogous statement holds for the F2-PCR proof system, which builds
on F2-PC to include additional “dual” variables xi for each i ∈ [n] to represent ¬xi, along
with the additional axioms xi + xi = 0. Indeed, this is only a change to the encoding of the
CNF formula F as a set of polynomials and does not affect the resulting TFNPdt problem.
Note that this does not contradict the separation between PC and PCR due to de Rezende et
al. [13], as their separation is in terms of size, while this characterization is in terms of the
complexity measure.3

We break the proof of this theorem into two lemmas, Lemma 8 and Lemma 9. In the
proofs of both lemmas we will crucially use the fact that any depth-d decision tree (as well
as any path in that decision tree) can be encoded as a degree-d polynomial.

▶ Lemma 8. Let F be an unsatisfiable CNF formula. If SF is reducible to an instance of
IND-LEAF on n variables using decision trees of depth at most d then there is an O(d)-degree
and size-n22O(d) F2-Polynomial Calculus proof of F .

Proof. Let F be an unsatisfiable CNF formula and suppose that SF is reducible to an
instance of IND-LEAF on n variables using decision trees of depth at most d. That is, each
variable x of the IND-LEAF instance is computed by a depth-d decision tree Tx querying

3 Indeed, for any CNF formula F of width w, there are 2w-depth decision tree reductions between SF and
SD where D is the encoding of F as a system of polynomial equations using dual variables. That SF

reduces to SD is immediate. To reduce SD to SF define decision trees Ti = xi for each i ∈ [n] (querying
the positive dual variable for xi). For each clause Cj of F define decision trees T o

j as follows: for each
variable xi ∈ Cj , query xi and its dual variable xi; if these variables are not consistent, output the
index of the constraint xi + x̄i = 0 which is violated. Otherwise, if all xi and x̄i are consistent, output
the index of the (polynomial encoding the) clause Cj .

S. Buss, N. Fleming, and R. Impagliazzo 30:17

variables of F ; for simplicity, we will abuse notation and associate each variable x with
the polynomial formed by taking the sum over the (product of the literals on each of the)
accepting paths of Tx (those labelled 1). As well, let {T o

i }i be the decision trees for each
solution i of the IND-LEAF instance.

For ℓ ∈ L let

qℓ :=
∑

m∈[N]

A(ℓ)
m ,

over F2. We will derive by induction on ℓ = 1, . . . , L that qℓ = 0. Roughly, this polynomial
states that there is a perfect matching between the nodes in ℓ and the nodes in its predecessors.
This will be sufficient to complete the proof as A

(L)
1 = 1 and A

(L)
m = 0 for all m ≠ 1, and so

the decision trees for these variables are identically 1 and 0 respectively. Thus, we will have
derived 0 =

∑
m∈[N] A

(L)
m = A

(L)
1 = 1.

Now, suppose that we have derived qℓ′ = 0 for all ℓ′ < ℓ with with a degree-O(d) F2-PC
proof; we show how to drive qℓ = 0. At a high level, this follows from the fact that there is a
perfect matching between the nodes of pool ℓ and all of its predecessors. For simplicity of
exposition, we will define an additional variable P

(ℓ)
ℓ := 1, whose decision tree is the constant

1 function.

▷ Claim 2. There is a degree-O(d), size-NL2O(d) F2-PC proof of the polynomial∑
ℓ′≤ℓ

P
(ℓ)
ℓ′

∑
m∈[N]

A(ℓ′)
m = 0,

from the axioms.

This claim is sufficient to complete the proof. Indeed, we can use it in order to derive
qℓ = 0 from qℓ′ = 0 for ℓ′ < ℓ (which we have derived by induction) without significantly
increasing the degree. To see this, multiply each qℓ′ by P

(ℓ)
ℓ′ and sum them to obtain∑

ℓ<ℓ′

P
(ℓ)
ℓ′ qℓ′ =

∑
ℓ<ℓ′

P
(ℓ)
ℓ′

∑
m∈[N]

A(ℓ′)
m = 0.

Adding this polynomial to
∑

ℓ′≤ℓ P
(ℓ)
ℓ′
∑

m∈[N] Aℓ′

m = 0, which has a low-degree proof from F

by the previous claim, gives pℓ = 0. Note that since every pℓ′ is a degree-d polynomial, each
of these polynomials has degree at most 2d. Therefore, this inductive step requires degree
O(d) and size LN2O(d). ◀

Proof of Claim 2. To prove this claim we will show that this polynomial can be written as a
sum of indicator functions of whether each active monomial in a predecessor of ℓ is correctly
matched. Then, we break this polynomial up into indicators corresponding to correct and
erroneous matchings. We show that the correct matchings sum to 0 by a parity argument,
and that the erroneous matchings can be derived from the axioms (using the fact that they
produce a solution to the IND-LEAF instance).

For any function f element o in the range of f , denote by [[f = o]] the indicator polynomial
which is 1 on input x if f(x) = o and 0 otherwise. For m ∈ [N] and ℓ′ < ℓ consider the
polynomial

match(ℓ)
m,ℓ′ :=∑

m∗∈[N],
ℓ∗∈[ℓ]

[[
M

(ℓ)
m,ℓ′ = (m∗, ℓ∗)

]] ∑
α,β∈{0,1}

[[
P(ℓ)

ℓ∗ = α
]][[

A
(ℓ∗)
m∗ = β

]] ∑
m̂∈[N],

ℓ̂∈[ℓ]

[[
M

(ℓ)
m∗,ℓ∗ = (m̂, ℓ̂)

]]
,

ITCS 2023

30:18 TFNP Characterizations of Proof Systems and Monotone Circuits

which records all possible matchings for m and matchings of the node that it is matched
to. That is, match(ℓ)

m,ℓ′ is the sum over all of the paths in the decision tree that results
from sequentially running the decision trees for M

(ℓ)
m,ℓ′ , P

(ℓ)
ℓ∗ , A

(ℓ∗)
m∗ , and finally M

(ℓ)
m∗,ℓ∗ . As

match(ℓ)
m,ℓ′ is the sum over all of the paths in a decision tree, it follows that match(ℓ)

m,ℓ′ = 1.
Using this polynomial, define

match(ℓ) :=
∑

ℓ′∈[ℓ]

P
(ℓ)
ℓ′

∑
m∈[N]

A(ℓ′)
m match(ℓ)

m,ℓ′ ,

which records the matching for pool ℓ. Note that match(ℓ) =
∑

ℓ′∈[ℓ]
∑

m∈[N] P
(ℓ)
ℓ′ A

(ℓ′)
m as

match(ℓ)
m,ℓ′ is equal to 1.

We will partition the terms of match(ℓ) into two sets, where C is the set of terms where
the copy of m belonging to ℓ′ is correctly matched – that is, for all ℓ′ ≤ ℓ and m ∈ [N]
with P

(ℓ)
ℓ′ = 1 and A

(ℓ′)
m = 1, m is matched to a node m∗ ∈ [N] belonging to a pool

ℓ∗ ≤ ℓ (M (ℓ)
ℓ′,m = (ℓ∗, m∗)) with P

(ℓ)
ℓ∗ = 1 and A

(ℓ∗)
m∗ = 1 which is matched back to m

(M (ℓ)
ℓ∗,m∗ = (ℓ′, m)) – and E the remaining terms corresponding to erroneous matchings.

Observe that each term in C occurs an even number of times, as (m, ℓ′) is matched to (m∗, ℓ∗)
iff (m∗, ℓ∗) is matched to (m, ℓ′). Thus, summing over the terms in C gives

∑
t∈C t = 0.

Consider a term t ∈ E. This term corresponds to a node m in some pool ℓ′ being incorrect
matched; let s be this incorrect matching and we will denote by ts that t witnesses the
incorrect matching s. Let T o

s be the decision tree for solution s and abuse notation by
identifying it with the polynomial obtained by summing over (the product of the literals on)
each of its paths. Recalling that the result of summing over all paths in a decision tree is 1,
we have

match(ℓ) =
∑

t∗∈C

t∗ +
∑

ts∈E

ts = 0 +
∑

ts∈E

ts · T o
s .

An incorrect matching s is a solution to IND-LEAF instance. Thus, as this instance of
IND-LEAF solves SF , any truth assignment x which satisfies ts must also falsify the T o

s (x)-
th clause of F . It follows each term of ts · T o

s which is not identically 0 must contain
the polynomial C for some clause C of F , and therefore ts · T o

s = 0 can be derived by
multiplication from the axiom C = 0. Thus, as each of the P (ℓ), M (ℓ), and A(ℓ) variables are
computed by depth-d decision trees,∑

ℓ′≤ℓ

P
(ℓ)
ℓ′

∑
m∈[N]

A(ℓ′)
m =

∑
ℓ′∈[ℓ]

P
(ℓ)
ℓ′

∑
m∈[N]

A(ℓ′)
m match(ℓ)

m,ℓ′ = match(ℓ) =
∑

ts∈E

ts · T o
s = 0

has a degree-6d and size-NL2O(d) F2-PC derivation. ◁

We now prove the converse of Theorem 7, which follows from the next lemma noting that
the length of a F2-PC proof is always upper-bounded by the size.

▶ Lemma 9. Let F be an unsatisfiable CNF formula on n variables. If there is a F2-
Polynomial Calculus proof of F with size s, length-L, and degree-d then SF is reducible by
decision trees of depth O(d) to an instance of IND-LEAF on O(sL) variables.

A representation of this construction is given in Figure 2.

S. Buss, N. Fleming, and R. Impagliazzo 30:19

x1x2 + x1x3

x1x2 + x1 x1x3 + x1

x3 + x1

x1x2

x1

x1

x1x3

x3

x1

x1x3

x1x2

x1

11

Figure 2 A IND-LEAF instance constructed from a Polynomial Calculus derivation. Left: a
Polynomial Calculus derivation. Right: the corresponding IND-LEAF instance. The non-zero
variable of the IND-LEAF is labelled with the variables that they query in their decision tree.
The red area is represents the children of the pool corresponding to the line x1x2 + x1x3 (i.e.,
P

(4)
2 = P

(4)
3 = 1), while the blue area indicates the children of the line x1x3 + x1 (P (2)

1 = x1). The
black lines indicate the matchings.

Proof. Let N be the number of distinct monomials that appear in the F2-PC proof of F . We
construct an instance of IND-LEAF over pools [L] and nodes [N]. We will abuse notation and
associate each ℓ ∈ [L] with the ℓ-th line in the proof and each m ∈ [N] with its corresponding
monomial.

Fix some ℓ ∈ [L] and for each monomial m ∈ [N] occurring in line ℓ define A
(ℓ)
m to be

the depth-d decision tree which outputs 1 iff m(x) = 1. For the remaining monomials m,
set A

(ℓ)
m = 0. Next, we set the predecessor variables as follows. If ℓ was derived by addition

from ℓ′, ℓ′′, then set P
(ℓ)
ℓ′ = P

(ℓ)
ℓ′′ = 1 and P

(ℓ)
ℓ∗ = 0 for all other ℓ∗ ∈ [L]. Otherwise, if ℓ was

derived by multiplication by a variable xi from ℓ′, then we set P
(ℓ)
ℓ′ = xi and P

(ℓ)
ℓ∗ = 0 for all

ℓ∗ ̸= ℓ′. Finally, if ℓ was an initial clause of F then we set P
(ℓ)
ℓ∗ = 0 for all ℓ∗.

Next, we set the matching variables of each ℓ which does not correspond to an initial
clause of F as follows. Observe that if ℓ was derived by addition from ℓ′, ℓ′′ then every
monomial m in ℓ must occur in exactly one of ℓ′, ℓ′′ as otherwise it would have cancelled
over F2. Thus, if ℓ′ is the child of ℓ in which m also occurs, then we set M

(ℓ)
ℓ′,m = (ℓ, m) and

M
(ℓ)
ℓ,m = (ℓ′, m), matching those two occurrences of the m-th node. Otherwise, if m does not

appear in ℓ, but is in one of the predecessors of ℓ, say ℓ′, then it must also appear in ℓ′′. In
this case we set M

(ℓ)
ℓ′,m = (ℓ′′, m) and M

(ℓ)
ℓ′′,m = (ℓ′, m). Finally if m does not occur in any of

these lines, then we set M
(ℓ)
ℓ∗,m arbitrarily for ℓ∗ ∈ {ℓ, ℓ′, ℓ′′}.

Otherwise, if ℓ was derived from ℓ′ by multiplication with some variable xi then we set
the matching in a similar way as above. A monomial m occurs in ℓ if either m or m \ xi

occurs in ℓ′, but not both. For each m ∈ [N], if m occurs in ℓ then we set M
(ℓ)
ℓ,m match it

to the m or m \ xi that occurs in ℓ′, and set the matching variable for this node to match
it back to (ℓ, m). Otherwise, if m and m \ xi occur in ℓ′ then set M

(ℓ)
ℓ′,m = (ℓ′, m \ xi) and

M
(ℓ)
ℓ′,m\xi

= (ℓ′, m). Finally, for match the m which do not occur in ℓ or ℓ′ arbitrarily.

ITCS 2023

30:20 TFNP Characterizations of Proof Systems and Monotone Circuits

Lastly, we set the matching variables of the ℓ ∈ L which correspond to an axiom
A ∈ {C : C ∈ F}. Each M

(ℓ)
ℓ,m is defined by querying the variables in A (of which there are

at most d by definition). If A is satisfied, then we fix an arbitrary matching between the
monomials of A, and otherwise if A is falsified then we fix an arbitrary false matching (say,
match each of the monomials in A in a cycle).

Observe that violations occur only in the matchings of ℓ ∈ [L] which correspond to clauses
of F that are falsified. Thus, any solution to this instance of IND-LEAF will be a solution
to SF and we can define the output decision trees for these clauses as such. The output
decision trees corresponding to other solutions can be set to output a fixed arbitrary solution
as those solutions will never occur. ◀

The Polynomial Calculus Proves its own Soundness
Next, we state a reflection principle for the F2-Polynomial Calculus using a natural verification
procedure.

A Verification Procedure for F2-PC. We define the following verification procedure
V PC

nH ,mH ,(d,s,L)(H, Π) for c = d + log s + log L. For simplicity of description we have in-
cluded a length parameter L, however since L ≤ s, we could have used s instead and included
additional variables to indicate which lines are actually part of the proof and which are not;
this would only affect the complexity up to log-factors. As well, for simplicity, we will group
the F2-PC rules into a single inference rule:

l1 l2
l1x + l2y

for any x, y ∈ {0, 1, x1, . . . , xn}.
Every line ℓ ∈ [L] is described by a list of s degree-d monomials mon(ℓ)

m for m ∈ [s], where
mon(ℓ)

m,i ∈ [nH] for i ∈ [d] specifies the i-th variable in m. The (nh + 1)-st value is understood
to indicate the 1 polynomial. However, not every line contains all s monomials, and so we
include a variable a

(ℓ)
m ∈ {0, 1} which indicates whether the i-th monomial is active – that is,

whether it occurs in line ℓ. We reserve the first mH lines ℓ ∈ [L] for the input clauses of H.
Each line ℓ > mH has two predecessor pointers p

(ℓ)
1 , p

(ℓ)
2 ∈ [ℓ − 1] indicating the lines from

which ℓ was derived (if any), and a pair of indices v
(ℓ)
1 , v

(ℓ)
2 ∈ [nH + 2] indicating the variables

x, y that the lines indicated by p
(ℓ)
1 , p

(ℓ)
2 were multiplied by in order to obtain ℓ; the final two

values nH + 1, nH + 2 indicate the constants 0 and 1 respectively. Finally, to ensure that each
inference is sound, for every line ℓ there is a matching between the monomials of ℓ and those
of ℓ′ < ℓ. We will require that each active monomial for ℓ is matched to an appropriate active
monomial of its predecessors. The matching is given by variables match(ℓ)

ℓ′,m′ ∈ {0, 1, 2} × [s],
where 0 indicates that m′ is matched to a monomial in ℓ, 1 to a monomial in p

(ℓ)
1 and 2

means that it is matched to a monomial in p
(ℓ)
2 . For the leaves ℓ ∈ [mH] we enforce that

there is a matching between its active monomials match(ℓ)
ℓ,m′ ∈ [s].

The constraints are as follows:
Initial Clauses. We enforce that the first mH lines are active, that the monomials of
ℓ ∈ [mH] are exactly the monomials of the ℓ-th clause of H , and that each active monomial
is matched with another active monomial in ℓ.
Root. To require that this is indeed a proof of H , we enforce that the root L of the proof
has a

(L)
1 = 1, mon(L)

1,i = nH + 1 (i.e., is the constant 1 polynomial) for all i ∈ [d], and
a

(ℓ)
m = 0 for all m ̸= 1.

S. Buss, N. Fleming, and R. Impagliazzo 30:21

Inference. To express the inference rule, we will require that if line ℓ > mH was derived
from lines p

(ℓ)
1 , p

(ℓ)
2 with variables v

(ℓ)
1 , v

(ℓ)
2 , then the monomials of ℓ are exactly those in

v
(ℓ)
1 p

(ℓ)
1 + v

(ℓ)
2 p

(ℓ)
2 after cancelling mod2. More concretely, that each active monomial in ℓ

is matched to the active monomial in p
(ℓ)
1 or p

(ℓ)
2 from which it was derived.

Define RefPC := Sat ∧ ProofPC where ProofPC := V PC. We show that F2-PC has efficient
proofs of RefPC.

▶ Theorem 10. PC(RefPC) ≤ polylog(n).

Proof. By Theorem 7 it suffices to construct a reduction from SRefPC to the IND-PPA-
complete problem IND-LEAF Fix an instance of RefPC with parameters nH , mH , (d, s, L).
We construct an instance of IND-LEAF with L pools and s nodes. The high-level idea of
the proof is simple: we view RefPC as IND-LEAF, where each node for each line corresponds
to a monomial which is encoded by d log nH bits. We then arrange the matching in the
IND-LEAF instance so that two nodes m, m′ that are matched in RefPC are matched in
IND-LEAF if they were correctly derived – if m is derived from m′ by multiplication by a
variable x then we check that indeed m = m′x.

First, we define the decision trees for the variables of IND-LEAF. For each ℓ ∈ [L] and
ℓ′ < ℓ, we define its predecessor variables P

(ℓ)
ℓ′ by querying p

(ℓ)
1 and p

(ℓ)
2 and outputting 1 if

either of these is ℓ′, and 0 otherwise.
We define the activity A

(ℓ)
m of the m-th node of ℓ by querying whether a(ℓ) = 1, then

querying the d log nH bits of mon(ℓ)
m , and then checking that αi = 1 for all i ∈ Vars(mon(ℓ)

m)
(the variables in monomial m). A

(ℓ)
m = 1 if all of these checks pass, and 0 otherwise.

Finally, the matching variables M
(ℓ)
ℓ′,m′ are defined as follows. If ℓ′ ̸= ℓ we query p

(ℓ)
1 and

p
(ℓ)
2 to determine if ℓ′ is one of the children of ℓ. If it is not then the output of M

(ℓ)
ℓ′,m′ can

be arbitrary. Otherwise, if ℓ′ = ℓ then we can continue. We query v
(ℓ)
1 to determine the

variable y that was used to derive monomial m′, and we query match(ℓ)
ℓ′,m to obtain a pair

j ∈ {0, 1, 2} × [s] and m∗ ∈ [s] indicating to which child of ℓ and which monomial m∗ the
monomial m is matched. As well, we query match(ℓ)

p
(ℓ)
j

,m∗
to ensure that this matching is

consistent. Finally, query mon(ℓ)
m and mon(p

(ℓ)
j

)
m∗ , where p

(ℓ)
0 := ℓ. If the variables occurring in

m are not the the same as those in v
(ℓ)
1 m∗, then let M

(ℓ)
ℓ′,m be some arbitrary (ℓ̂, m̂) such that

ℓ̂ ̸= p
(ℓ)
1 , p

(ℓ)
2 . In particular, this means that a(ℓ̂) = 0 and this will cause a violation (solution).

Otherwise, set M
(ℓ)
ℓ′,m = (p(ℓ)

j , m∗).
Next, we define the output decision trees for the solutions of this instance of IND-LEAF.

Let (ℓ, ℓ′, m) be a solution, we create a decision tree mapping this solution back to a falsified
clause of RefPC as follows. If ℓ is one of the initial clauses Cℓ of H, i.e., ℓ ≤ mH , then we
query whether Cℓ(α) = 0, and if so we output the index of the falsified constraint of SAT
which states that the ℓ-th clause of H is satisfied under α. Otherwise, this decision tree
queries the decision tree for M

(ℓ)
ℓ′,m. If we discover that m is matched to a monomial m∗ with

m ̸= v
(ℓ)
1 m∗, or if m is matched to a monomial m∗ but that monomial is not matched to m,

then we output the index of the clause of RefPC which states that this should not happen.
This completes the description of the reduction. Each of the decision trees involved

queries at most polylog(n) many variables and thus by Theorem 7 it follows that there is a
polylog(n)-complexity F2-PC proof of RefPC. ◀

ITCS 2023

30:22 TFNP Characterizations of Proof Systems and Monotone Circuits

2.4 Characterizing Dynamic Variants of Static Systems
We end this section by discussing how induction variants of TFNP problems can be used
to generalize TFNPdt characterizations of static proof systems (such as Nullstellensatz and
Sherali-Adams) to characterizations of their dynamic variants (such as the Polynomial
Calculus and dag-like Sherali-Adams). At a high-level, this is done as follows: if a static
proof system is characterized by a TFNP problem R then we can define an IND-R problem
to characterize the dynamic version of the proof system as follows: there are pools 1, . . . , L

which correspond to the lines of the proof, and each ℓ ∈ [L] has children defined by variables
P

(ℓ)
ℓ′ which indicates whether ℓ′ is an immediate predecessor of ℓ. Thus, the pools together

with their predecessors define the dag-structure of the proof. We then have an instance of the
TFNP problem R defined over this dag. The crucial part is that the predecessors P (ℓ) of ℓ are
not fixed. As examples of this, we show how to leverage the known TFNPdt characterizations
of the static proof systems Fq-Nullstellensatz [31], unary Nullstellensatz [25], and unary
Sherali-Adams [25] to define TFNPdt problems which characterize their dynamic variants,
Fq-PC, unary PC, and unary dag-like Sherali-Adams.

Fq-Polynomial Calculus
First, it is straightforward to generalize the IND-PPA-complete problem IND-LEAF to
characterize Fq-Polynomial Calculus for other q ̸= 2. The IND-PPAq-complete problem IND-
LEAFq will be defined as IND-LEAF except that one matches q-tuples rather than pairs. It
is not difficult to see that this characterizes Fq-Polynomial Calculus. Using IND-LEAFq, one
can obtain a variant of Theorem 7 for Fq-PC by an almost identical proof.

Unary Polynomial Calculus.
The unary Polynomial Calculus (uPC) proof system is the Polynomial Calculus operating
over the integers, rather than a finite field. Unary refers to the fact that the size of a uPC
proof is measured with coefficients written in unary – if a monomial αm, for α ∈ Z, occurs
in some line in the proof then it contributes |α| towards the size. We will use the following
non-standard definition of the Polynomial Calculus over the integers. An unsatisfiable
CNF formula F = C1 ∧ . . . ∧ Cm is encoded as a system of equations by mapping each
Ci clause to the polynomial equation Ci such that Ci(x) = 1 iff Ci(x) = 0. The unary
Polynomial Calculus will prove that F is unsatisfiable by deriving the constant −1 from the
equations {Ci(x) = 0, −Ci(x) = 0 : Ci ∈ F} using the the addition and multiplication by a
variable rules as stated for F2-PC4. As before, we operate over the ideal ⟨x2

i = xi⟩i∈[n], thus
multi-linearization is done implicitly.

Using the characterization of the unary Nullstellensatz proof system (the static version of
uPC) by the PPAD-complete problem END-OF-LINE [25], one can define an IND-END-OF-
LINE problem which will be complete the complete problem for a corresponding IND-PPAD
class, in order to characterize uPC. The main difference between IND-END-OF-LINE and
IND-LEAF is that the edges in the matchings of IND-END-OF-LINE are directed. The
direction of the edges in the matching will be used to indicate the signs of monomials in

4 Typically, the Polynomial Calculus is defined with a multiplication rule rather than addition, where
one may derive αp + βq from previously derived polynomials p, q and α, β ∈ Z. However, as we are
measuring coefficients in unary, multiplication by positive coefficients may be simulated by repeated
addition. To simulate the use of negative coefficients, we push the negations to the leaves of the proof
and include both Ci = 0 and −Ci = 0 as axioms.

S. Buss, N. Fleming, and R. Impagliazzo 30:23

the uPC proof as follows: If a node m ∈ [N] belonging to pool ℓ occurs are the head of an
arrow (directed edge) in the matching M (ℓ) then it is considered positive, while if it occurs
are the tail of an arrow in M (ℓ) then it is negative. However, if m belongs to a pool ℓ then if
it occurs at the head of an arrow in M (ℓ∗) for ℓ∗ > ℓ then it is considered negative and if
it as the tail then it is positive. This change in meaning depending on whether this is the
matching for the pool ℓ to which it belongs versus a parent pool should be thought of as the
sign of monomials propagating from the children ℓ to the parent ℓ∗ in the matching M (ℓ∗).

Induction PPAD

The IND-PPAD complete problem IND-END-OF-LINE is defined as follows:
Structure. [L] pools and [N] nodes. Each ℓ ∈ [L] will correspond to a line in the
polynomial calculus proof and be associated with its own copy of [N].
Variables. For each ℓ ∈ [L] and ℓ′ < ℓ we will have a predecessor variable P

(ℓ)
ℓ′ ∈ {0, 1}

indicating whether ℓ′ is a predecessor of ℓ. For each pool ℓ ∈ [L] and each node m ∈ [N]
we have a variable A

(ℓ)
m ∈ {0, 1} indicating whether node m is active in pool ℓ. There

is a distinguished node 1 ∈ [N] and we hardcode that A
(ℓ)
1 = 1 and A

(ℓ)
m = 0 for all

m ̸= 1. Finally, we have a directed matching between the nodes in pools ℓ′ ≤ ℓ, defined
by variables M

(ℓ)
ℓ′,m ∈ {−, +} × [L] × [M] indicating to which node and pool ℓ′’s copy of

m is matched in a directed fashion, and whether it appears at the head (+) or tail (-) of
the arrow.
Solutions. IND-PPAD will state the following: (i) For each pool ℓ with no predecessors,
M (ℓ) enforces that there is a matching between the nodes of pool ℓ. (ii) if ℓ′ < ℓ is a
predecessor of pool ℓ then either every active node of m of ℓ occurs at the opposite end of
an arrow in the matching M (ℓ) for ℓ than in matching for M (ℓ′) (e.g., m occurs at the
tail of an edge in M (ℓ) and the head of an edge in M (ℓ′)), or every active node m of ℓ

occurs at the same end of an arrow in M (ℓ) as in M (ℓ′). (iii) The root pool L contains
only a distinguished 1-node. Observe that (i) – (iii) cannot hold simultaneously, and thus
IND-PPAD is total. Formally, the solution of IND-PPAD are as follows:

Matching Solutions. A triple (ℓ, ℓ′, m) ∈ [L]2 × [N] such that ℓ′ is either a predecessor
of ℓ or ℓ itself, m is an active node of ℓ′ and m is matched to a node m′′ of some
pool ℓ′′ but m′′ is not matched back to m. That is, P

(ℓ)
ℓ′ = 1 or ℓ = ℓ′, A

(ℓ′)
m = 1,

M
(ℓ)
ℓ′,m = (α, ℓ′′, m′′) for some ℓ′′ ∈ [L], m′′ ∈ [N], α ∈ {−, +}, but either A

(ℓ′′)
m′′ = 0 or

M
(ℓ)
ℓ′′,m′′ ≠ (β, ℓ′, m), where β is the opposite sign of α (i.e., m is the head of an arrow

to m′′, but m′′ is not the tail).
Polarity Solutions. A tuple (ℓ, ℓ′, m) ∈ [L]2×[N]2 which violates (ii). That is, A

(ℓ′)
m = 1,

P
(ℓ)
ℓ′ = 1, M

(ℓ′)
ℓ′,m = (α, ∗, ∗) and M

(ℓ)
ℓ′,m = (α, ∗, ∗).

A portion of an instance of IND-END-OF-LINE is depicted in Figure 3.

▶ Theorem 11. For any unsatisfiable CNF formula F ,
If there is a depth-d reduction from SF to an instance of IND-END-OF-LINE on s

variables then there is a degree-O(d) and size-s32O(d) uPC proof of F .
If F has a size-s and degree-d uPC proof of F then there is a depth-O(d) reduction from
SF to an instance of IND-END-OF-LINE on O(s2)-many variables.

In particular, IND-END -OF-LINEdt(SF) = Θ(uPC(F)).

A proof of this theorem is given in the Appendix.

ITCS 2023

30:24 TFNP Characterizations of Proof Systems and Monotone Circuits

1

3

5

1
2

2

5 3

1 is a negative node in pool 4 3 is a positive node in pool 4

Pool 2’s positive node 2 cancels with Pool 3’s negative node 2

Pool 3

Pool 2 Pool 1

Figure 3 Part of an IND-END-OF-LINE instance. The yellow circles indicate the active nodes of
each pool; for example A

(4)
1 = A

(4)
3 = A

(4)
5 = 1 and A

(4)
m = 0 for all other m. The pink area indicates

the predecessors of pool 4; P
(4)
1 = P

(4)
2 = 1. The solid arrows indicate the matching M (4) for pool 4,

while the dashed arrows indicate that matchings for pools 1 and 2. For example M
(4)
4,1 = (+, 2, 1)

and M
(4)
2,1 = (−, 4, 1). Positive nodes are nodes which correspond to positive monomials in the uPC

proof, while negative nodes correspond to negative monomials.

Unary DAG-Like Sherali-Adams
The unary dag-like Sherali-Adams proof system is a generalization of the uPC proof system
and the Sherali-Adams proof system (see e.g., [18] for a definition), which allows one to
introduce additional conical juntas at each step in the proof. A conical junta is a polynomial
of the form J =

∑
λiDi where λi ≥ 0 and Di is of the form

∏
i∈S xi

∏
j∈T (1 − xj) for some

S, T ⊆ [n]. Formally, unary dag-like Sherali-Adams (uDSA) proves that an unsatisfiable
CNF formula F is unsatisfiable by deriving the contradiction −1 ≥ 0 from the equations
{Ci(x) = 0, −Ci(x) = 0 : Ci ∈ F} using the addition and multiplication by a variable rules
from uPC along with the following addition rule:

Junta Rule. From a previously derived polynomial p ≥ 0, derive p + J ≥ 0 for ay conical
junta J .

As before, we work over the ideal ⟨x2
i = xi⟩i∈[n], multi-linearizing implicitly. We measure the

degree of a uDSA proof by the maximum degree of any polynomial derived, and the size as
the sum of the sizes of the polynomials derived, where coefficients are written in unary.

Using the characterization of unary Sherali-Adams by the PPADS complete problem
SINK-OF-LINE, we can define a TFNP subclass IND-PPADS whose complete problem IND-
SINK-OF-LINE will characterize uDSA. IND-SINK-OF-LINE restricts the solutions of
IND-END-OF-LINE to permit nodes occurring at the head of arrows to be incorrectly
matched. This corresponds to allowing one to introduce positive monomials (and thus conical
juntas) free-of-charge in the uDSA proof. Formally, we replace the matching solutions with
the following:

S. Buss, N. Fleming, and R. Impagliazzo 30:25

1. Matching Solutions*. A triple (ℓ, ℓ′, m) ∈ [L]2 × [N] such that m is an active node of ℓ′

and either (a) ℓ′ is a predecessor of ℓ and m is matched to some node m′′ of some pool
ℓ′′ but m′′ is not matched back to m, or (b) ℓ′ = ℓ and m occurs at the tail of an arrow
in the matching for ℓ and m is matched to a node which is not matched back to it. That
is, A

(ℓ′)
m = 1 and either

(a) P
(ℓ)
ℓ′ = 1 and M

(ℓ)
ℓ′,m = (α, ℓ′′, m′′), but either A

(ℓ′′)
m′′ = 0 or M

(ℓ)
ℓ′′,m′′ ≠ (β, ℓ′, m), where

β is the opposite sign of α, or
(b) ℓ = ℓ′ and M

(ℓ)
ℓ,m = (−, m′′, ℓ′′) for some m′′ ∈ [N], ℓ′′ < ℓ and M

(ℓ)
ℓ′′,m′′ ≠ (+, ℓ′, m) or

P
(ℓ)
ℓ′′ = 0.

We also add the following solution5, which requires that the node in the final line occurs
at the tail of an arrow (is negative) in M (L).

Final Pool Solution. A pair (L, 1) such that M
(L)
L,1 = (+, ℓ′, m) for some ℓ′ ≤ ℓ and

m ∈ [N].
One can obtain a characterization theorem of uDSA by IND-SINK-OF-LINE (analogous
to Theorem 11) by combining by combining the proof of Theorem 11 with the proof of the
characterization of uSA by SINK-OF-LINE from [25].

3 Communication TFNP and Monotone Circuit Complexity

In addition to proof system characterizations of black-box TFNP problems, the communication
versions of TFNP problems have provided characterizations of monotone circuit models
[26, 32, 45]. When combined with lifting techniques translating decision tree lower bounds to
communication complexity lower bounds, this has resulted in numerous new lower bounds for
a variety of monotone circuit models. For example, bounds on the F2-Nullstellensatz proof
system, which is characterized by black-box PPA were lifted to communication-PPA lower
bounds, which characterizes F2-monotone span programs [40]. Converseley, as described in
the introduction, a black-box and communication characterization of the same TFNP subclass
generically gives rise to a monotone interpolation theorem, translating small proofs in the
associated proof system into efficient computations in the associated model of computation.

In this section, we give generic conditions under which a monotone circuit model has
a communication-TFNP characterization. We will formalize monotone circuit models as
complexity measures on partial monotone functions. As has been pointed out in the past,
there is a direct mapping from TFNP problems to partial monotone functions, and we utilize
this mapping. This will allow us to give an exact characterization of when a complexity
measure on partial functions has a TFNP characterization, proving Theorem 3. Since
complexity measures on total functions induce complexity measures on partial functions,
this also gives a general condition under which a complexity measure on total monotone
functions has a TFNP characterization. Unfortunately, we don’t have a converse statement
for total functions and it is conceivable that measures that don’t meet our criteria also have
TFNP characterizations.

It would be plausible to propose that some of the results in this section might have
analogs for non-monotone models of computation. However, the techniques we use seem not
to hold for these models, which might indicate why TFNP or other communication complexity
characterizations of non-monotone circuits are much more difficult to use to prove lower
bounds.

5 Note that we could have added this final pool solution to our definition of IND-END-OF-LINE without
changing its complexity. Indeed, this solution just enforced that the final line is −1 in the uPC proof,
which can be assumed without loss of generality, and thus IND-END-OF-LINE with the final pool
solution reduces to IND-END-OF-LINE.

ITCS 2023

30:26 TFNP Characterizations of Proof Systems and Monotone Circuits

3.1 Communication TFNP
For n bit strings x and x′, we say that x′ dominates x, written x ≤ x′, if xi ≤ x′

i for every
i ∈ [n]. A partial Boolean function f on n bit strings is described by two disjoint sets of
inputs, Nof which is the set of strings that f rejects, and Yesf , the strings that it accepts.
f is total if Nof ∪ Yesf = {0, 1}n. A partial Boolean function f is monotone if whenever
x ∈ Nof and x′ ≤ x, then x′ ∈ Nof and whenever y ∈ Yesf and y ≤ y′ then y′ ∈ Yesf . For
partial functions f and g, we say f is solved by g if Nof ⊆ Nog and Yesf ⊆ Yesg. That is, g

contains f as a sub-function.
Let h : {0, 1}n → {0, 1}n′ , and let f be a partial function on n′-bit inputs. Then f ◦ h is

the partial function where Yesf◦h = {x|h(x) ∈ Yesf } and Nof◦h = {x|h(x) ∈ Nof }. If h is
monotone in its input, and f is monotone, then f ◦ h is monotone.

Monotone Partial Function Complexity Measures

A monotone partial function complexity measure mpc is a map from partial monotone
functions to non-negative integers that is Monotone Under Solutions: whenever g solves
f , mpc(g) ≥ mpc(f).6 Typical such measures are the minimum circuit size in a monotone
model of a total function that solves f , but we won’t include a circuit model explicitly.

We are now ready to define what a communication-TFNP characterization of a measure
means. For a partial Boolean function f on n inputs, the Karchmer-Wigderson game for f ,
denoted KWf , is the communication problem where one player has x ∈ Nof the other has
y ∈ Yesf and the output is a position i so that xi ̸= yi. Similarly, for a monotone Boolean
function f on n inputs, the monotone Karchmer-Wigderson game for f , denoted mKWf , is a
restriction of the Karchmer-Wigderson game to require that the output is a position i such
that xi < yi. Karchmer and Wigderson [32] showed that communication complexity of KWf

(mKWf) is an exact characterization of the (monotone) circuit depth needed to compute f ,
or equivalently communication-FP.

Communication TFNP

Consider relational communication problems defined by a predicate R ⊆ X × Y × [ℓ]. The
corresponding communication problem has one player given x ∈ X, the other y ∈ Y , and
the goal being to output an index i so that R(x, y, i) holds. We say this problem is in t-bit
communication-TFNP if for every x ∈ X, y ∈ Y , for some i, R(x, y, i); and given i, there is a
t-bit communication protocol V (x, y, i) to determine whether R(x, y, i) holds. We say that
R ∈ TFNPcc if R is in polylog(n)-bit communication TFNP.

We say that one communication problem R ⊆ X × Y × [ℓ] mapping reduces to another
R′ ⊆ X ′ ×Y ′ × [ℓ′] with communication t if there are functions MX : X → X ′ , MY : Y → Y ′

and a t-bit communication protocol S(x, y, i′) which outputs i so that

R′(MX(x), MY (y), i′) =⇒ R(x, y, S(x, y, i′)).

In particular this means that R requires at most t more bits of communication than R′ to
solve. We say that two communication problems R, R′ are equivalent under t-bit mapping
reductions if they t-bit mapping reduce to each other.

6 Recall that a partial function g solves f if Nof ⊆ Nog and Yesf ⊆ Yesg.

S. Buss, N. Fleming, and R. Impagliazzo 30:27

The following lemma says that TFNPcc is exactly the study of the monotone Karchmer-
Wigderson search problem.

▶ Lemma 12. For any search problem R ⊆ X × Y × [ℓ] in t-bit communication TFNP, there
is a partial function F , on 2tℓ many variables, such that R is equivalent to mKWF under
t-bit mapping reductions.

Proof. Let S(x, y, j) be a t-bit protocol that verifies that j ∈ [ℓ] is a valid solution on input
(x, y). We define a partial function F on N = 2tℓ input bits. We think of each coordinate as
representing a solution j ∈ [ℓ] and a communication pattern for S(x, y, j). We then construct
the accepting and rejecting sets for F ; for each x ∈ X we construct an input α(x) ∈ {0, 1}N

in NoF as follows: for each j ∈ [ℓ] and t-bit communication pattern p ∈ {0, 1}t we set

α
(x)
(j,p) =

{
1 if there is a y ∈ Y such that S(x, y, j) evolves according to p and S(x, y, j) = 1,
0 otherwise.

To construct YesF we build an input β(y) ∈ {0, 1}N in the same way, except we reverse 0
and 1:

β
(y)
(j,p) =

{
0 if there is a x ∈ X such that S(x, y, j) evolves according to p and S(x, y, j) = 1,
1 otherwise.

We claim that mKWF is equivalent to R, using this construction as the map. Let j

be a solution to R on input (x, y). We simulate S(x, y, j) and output j together with
the communication pattern p for the simulation. This gives an index (j, p) such that
α

(x)
(j,p) = 1 > 0 = β

(y)
(j,p), which is a solution to mKWF on input (α(x), β(y)). In the reverse

direction, if we are given a bit (j, p) such that α(x) > β(y), then we know that S(x, y, j)
accepts, and we can return j. ◀

Thus, we can restrict attention to instances of the monotone Karchmer-Wigderson search
problem. Analogous to black-box TFNP, we measure the complexity of reducing one search
problem to another as the amount of communication needed together with the logarithm of
the number of bits of the resulting input (up to a constant). Formally, let Rn ⊆ Xn ×Yn × [ℓn]
be a sequence of TFNPcc-problems where Xn, Yn ⊆ {0, 1}poly(n) and ℓn = poly(n). Define the
complexity measure Rcc on monotone partial Boolean functions f as

Rcc(mKWf) := min log n + t,

over the set of n, t so that mKWf mapping reduces to Rn with t-bits of communication. We
say that a family of TFNPcc problems R characterizes a mpc if Rcc(mKWf) = logΘ(1) mpc(f)
for every monotone function f .

We will also need the following notion which will essentially allow us to pad a search
problem. Say that the sequence Rn is paddable if there is a quasi-polynomial function p

and a function t(n) = polylog(n) so that Rn is t(n′)-communication reducible to Rn′ for
all n′ ≥ p(n). The condition that the sequence Rn be paddable looks a bit artificial at
first. However, if we drop it, we would allow totally unrelated TFNP subclasses to be
used in a characterization, e.g., a class that is essentially PPA for infinitely many sizes and
suddenly switches to the pigeon-hole principle, and back again. Or have all of TFNP by
slowly introducing TFNP problems into the sequence in a non-computable way. So we think
natural subclasses of TFNP with complete problems will have the paddable property.

ITCS 2023

30:28 TFNP Characterizations of Proof Systems and Monotone Circuits

In the remainder of this section we will prove Theorem 3. We will first give conditions
for a TFNPcc characterization which involve a stronger notion of a universal family of
functions, which we will call complete families (Theorem 13). Using this, we then weaken the
requirement of having a complete family to admitting a universal family (Theorem 17), which
gives Theorem 3. In between, we explore sufficient conditions for TFNPcc-characterizations
of total functions.

3.2 Complete Problems give TFNP Characterizations
Our first characterization of mpc measures with TFNPcc connections involves three properties:

i) Closed Under Reductions. Say that an mpc is closed under reductions if for any
h : {0, 1}n → {0, 1}n′ that is computable by monotone Boolean circuits of depth d, and
any partial monotone function f on n′ bit inputs, mpc(f ◦ h) ≤ poly(n, n′, mpc(f), 2d).

ii) Admits a Complete Family. A complete family for an mpc is a family Fm of partial
functions on N(m) ≤ quasipoly(m) bit inputs such that for every partial monotone
function f with mpc(f) ≤ m, there is a polylog(m)-depth monotone circuit computing a
function h so that Fm ◦ h solves f , and mpc(Fm) ≤ quasipoly(m).7

We are now ready to prove the main theorem of our section which describes when mpc
measures have TFNPcc characterizations.

▶ Theorem 13. Let mpc be a complexity measure. Then there is a paddable sequence of
TFNP communication problems Rn which characterizes mpc iff (i) and (ii) hold. Moreover,
the sequence Rn can be made explicit (i.e., computably described) iff the sequence of complete
functions for f can be made explicit.

To prove this, we will use the following lemma which says that reductions between
monotone Karchmer Wigderson games and monotone reductions between functions are
identical. Note that while this is intuitive and has a simple proof, the proof does not seem
to extend to non-monotone complexity. This might be an important distinction between
monotone and non-monotone circuit complexity.

▶ Lemma 14. Let f and g be monotone partial Boolean functions. Then mKWf has a
communication-t mapping reduction to mKWg iff there is a function h computable by a
depth-t monotone circuit so that g ◦ h solves f .

Proof. As before, let Yesf , Nof and Yesg, Nog be the set of accepting and rejecting inputs of
f and g respectively.

For the if direction, suppose that there is a function h computable by depth-t monotone
circuits such that g ◦ h solves f . From this, we define a reduction from mKWf to mKWg

as follows: first, we let h be both MX and MY ; it remains to define S. Since g ◦ h solves
f , for every (x, y) ∈ Nof × Yesf , we have (h(x), h(y)) ∈ Nog × Yesg. Thus, (h(x), h(y)) is
a valid input to mKWg. A solution to mKWg on this input is a bit position i such that
h(x)i < h(y)i. Let hi be the partial function, defined on inputs in Nof ∪ Yesf , which outputs
the i-th bit of h. Since h is computable by depth-t monotone circuits, so is hi. Thus, by the
Karchmer-Wigderson transformation [32], there is a t-bit communication protocol Si(x, y)

7 Note that in the definition of admitting a complete family are insisting that f reduce to Fm for an m
only dependent on its complexity, not its input size. Most natural notions of circuit complexity have
circuit size be always at least the number of bits the function actually depends on, and the reduction
can ignore the irrelevant bits, so this should not usually be a problem.

S. Buss, N. Fleming, and R. Impagliazzo 30:29

for mKWhi . Following this protocol on any input (x, y) for which h(x)i < h(y)i will output a
position j such that xj < yj , which is a solution to mKWf . Thus, we can define S as follows:
on input (x, y, i) it runs Si(x, y) and outputs the answer.

Conversely, suppose that we have a t-bit communication reduction MX , MY , S(x, y, i)
from mKWf to mKWg. From the protocol S, which maps solutions i to mKWg on input
MX(x), MY (y) back to solutions S(x, y, i) to mKWf on input (x, y), we construct a function
h computable with depth-t monotone circuits such that g ◦ h solves f . For each i, consider
the monotone partial function Hi whose no-inputs are the x for which there is an x ≤ x′

with x′ ∈ Nof and MX(x′)i = 0, and whose yes-inputs are those y for which there is y ≤ y′

with y′ ∈ Yesf and MX(y′)i = 1; we call such an input pair a dominating and dominated
pair for Hi.

By the definition of reduction, whenever x′ ∈ Nof , MX(x′)i = 0, y′ ∈ Yesf and MY (y′)i =
1, the communication protocol S(x′, y′, i) returns a position j with x′

j < y′
j . Given any input

pair (x, y) to mKWf where there is a dominating and dominated pair (x′, y′) for Hi as above,
the parties can, without communication, find x′ and y′ respectively and then run the protocol
S(x′, y′, i) to obtain the index j. By definition, xj ≤ x′

j < y′
j ≤ yj , so this modified protocol

solves the mKWHi game. Therefore, by the Karchmer-Wigderson transformation [32], there is
a depth-t monotone circuit computing a function hi that rejects all x ∈ Nof with MX(x)i = 0
and accepts all y ∈ Yf with MY (y)i = 1; it follows that hi(x) ≤ MX(x)i for all x ∈ Nof , and
if y ∈ Yesf then MY (y)i ≤ hi(y). Letting h = (h1, . . . , hn), where n is the number of input
bits to f , we have that for each x ∈ Nof , h(x) ≤ MX(x) ∈ Nog, so by monotonicity of g,
h(x) ∈ Nog. Similarly, if y ∈ Yesf , MX(y) ≤ h(y) and h(y) ∈ Yesg. Thus, g ◦ h solves f and
g is computable by depth-t monotone circuits. ◀

We will now use the lemma to prove the theorem.

Proof of Theorem 13. Let mpc be a complexity measure with properties (i) and (ii) and
let Fm be the complete family of partial monotone functions guaranteed by (ii). Let Rm :=
mKWFm be the monotone Karchmer-Wigderson game for Fm. Observe that as Fm is complete,
it reduces to Fm′ for all m′ ≥ mpc(Fm) = quasipoly(m) via depth-polylog(m′) reductions.
Thus by Lemma 14, Rn = mKWFm reduces to Rm′ = mKWFm′ with communication-
polylog(m′) for all such m′, and so R is paddable.

We claim Rcc(mKWf) = logΘ(1) mpc(f) for every monotone partial function f . Letting
m = mpc(f), f reduces to Fm with a polylog(m)-depth monotone circuit, as Fm is complete.
Then by Lemma 14, mKWf reduces to mKWFm

with polylog(m) bits of communication.
It follows by definition that Rcc(mKWf) ≤ polylog(m) = polylog(mpc(f)). In the other
direction, let Rcc(mKWf) = M . Then there are n, t with t + log n = M so that mKWf is
t-communication reducible to mKWFn . By Lemma 14, it follows that Fn ◦ h solves f for
some depth-t circuit h. Then by monotonicity under solutions, and closure under reductions,

mpc(f) ≤ mpc(Fn ◦ h) ≤ poly(mpc(Fn), 2t) = poly(n, 2t) = 2O(M).

Next we prove the converse direction of the theorem. Let Rn be any paddable sequence of
communication TFNP problems and define a monotone partial function complexity measure
mpc as

mpc(f) := 2Rcc(mKWf)

for every monotone partial function f . By construction, mpc is monotone under solutions.
We will show that mpc has the properties (i) and (ii). First, assume g ◦ h solves f and h is
computable by depth-t monotone circuits. Then by Lemma 14, mKWf has a t-bit reduction to

ITCS 2023

30:30 TFNP Characterizations of Proof Systems and Monotone Circuits

mKWg. As well, mKWg has a t′ bit reduction to Rn where t′ +log n = Rcc(mKWg). Stringing
these together, f has a t + t′ bit reduction to Rn, and so Rcc(mKWf) ≤ t + t′ + log n =
t + Rcc(mKWg), and mpc(f) ≤ 2tmpc(g). Therefore, mpc is closed under reductions.

Finally, we give a complete family for mpc. Let FN be the sequence of partial monotone
functions given by Lemma 12 such that RN is equivalent to mKWFN

. Note that by definition
FN has at most N2t many input bits where t = polylog(N) is the number of bits that
need to be communicated in order to verify solutions to RN , and also that mpc(FN) =
2Rcc(mKWFN

) ≤ 2t = quasipoly(N).
We will show that for each m, there is an N ′ = quasipoly(m) so that every partial function

f with mpc(f) ≤ m reduces to FN ′ via a polylog(m)-depth reduction. Fix some f with
mpc(f) ≤ m and let M = log mpc(f) = Rcc(mKWf). Then mKWf reduces to some Rn in t

bits of communication, where t + log n = M ; in particular, t is at most M and log n ≤ M .
Then by paddability, we can reduce this to some RN ′ where N ′ = quasipoly(n) ≤ quasipoly(M)
is a fixed function of m, and the further communication is at most polylog(M). Then by
Lemma 14, f has a polylog(M)-depth circuit reduction to FN ′ as desired. Thus, mpc is
closed under reductions and admits a complete family. ◀

A Partial Characterization for Complexity Measures on Total Functions
Analogous to measures on partial functions, let a monotone (total function) complexity
measure mc map total monotone functions to non-negative integers. From any mc we can
extract a monotone complexity measure mpc on partial functions by

mpc(F) := min{mc(f) : total f solving F}.

Observe that mpc will always satisfy monotonicity under solutions because if g solves f , the
set of total functions that solve g is a subset of those that solve f , so the min for g will be at
least that for f .

Generalizing the definition for partial functions, say that a monotone complexity measure
mc has a complete family if there is a family of total monotone functions Fm such that for
every total monotone function f on n bit inputs with mc(f) ≤ m, there is a log m-depth
monotone circuit computing a function h so that Fm ◦ h solves f , and mc(Fm) ≤ poly(m).

We will prove the following lemma, whose corollary gives sufficient conditions for a
monotone complexity measure to give rise to a corresponding TFNPcc problem.

▶ Lemma 15. mpc is closed under reductions and has a complete (partial function) family
if and only if mc is closed under reductions and has a complete total function family.

An immediate consequence is the following.

▶ Corollary 16. If a monotone complexity measure mc is closed under reductions and has a
complete family, then it has a TFNPcc characterization by a sequence of paddable relations.
If not, mc has no such characterization.

This still leaves open the possibility that there is a characterization of the complexity
measure that does not extend to partial functions for some complexity measures without
complete problems.

Proof of Lemma 15. To prove the lemma, we will first assume mc is closed under reductions,
e.g., mc(f ◦ h) ≤ poly(mc(f), 2d) when h is computable in depth d. Let F be a partial
function, and let f be a total function of minimal complexity solving F . Then f ◦ h solves

S. Buss, N. Fleming, and R. Impagliazzo 30:31

F ◦ h, so mpc(F ◦ h) ≤ mc(f ◦ h) ≤ poly(mc(f), 2d) = poly(mpc(F), 2d). Conversely, since
mpc(f) = mc(f) for total functions, it follows immediately that if mpc is closed under
reductions, then so is mc.

If Fm is a family of complete partial functions for mpc, let fm be the corresponding minimal
complexity total functions solving Fm. Note that mc(fm) = mpc(Fm) = quasipoly(m). Let g

be any total function and let m = mpc(g) = mc(g). Then there is a function h computable
by polylogm-depth monotone circuits such that Fm ◦ h solves h. Furthermore, fm ◦ h solves
Fm ◦ h, and so fm ◦ h solves g. However, the only way for one total function to solve another
is if they are equal, so fm ◦ h = g. It follows that fm is also complete and, by assumption, is
total.

Conversely, if fm is complete for mc, then let G be any partial function, let g be a minimal
complexity total function solving G, and let m = mpc(G) = mc(g). Then g = fm ◦ h for
some function h computable by polylogm-depth circuits, and so solves G. Thus, fm is also
complete for mpc. ◀

3.3 Universal Functions vs. Complete Functions
We can simplify the condition that there be complete functions in the class to having universal
families of functions, replacing (ii) in Theorem 17 by the following:

ii†) Admits a Universal Family. Let Fm be a sequence of partial monotone functions, and
let mpc be a complexity measure on such functions. We say Fm is universal for mpc if
whenever mpc(g) ≤ m , there is a fixed string zg so that F (x ◦ zg) solves g(x). Observe
that such an Fm can be viewed as complete under depth 0 reductions.

▶ Theorem 17. Let mpc be a monotone partial function complexity measure satisfying (i)
and (ii). Then mpc admits a universal family if and only if it admits a complete family.

Using Lemma 15, we can derive an analogous statement to Corollary 16 for total functions
as well. Next, we state Theorem 3 formally, which follows immediately from Theorem 17
and Theorem 13.

▶ Theorem 3. Let mpc be a complexity measure. Then there is a paddable sequence of TFNP
communication problems Rn which characterizes mpc iff (i) and (ii†) hold. Moreover, the
sequence Rn can be made explicit (i.e., computably described) iff the sequence of complete
functions for f can be made explicit.

Proof of Theorem 17. If there is a universal family Fm for mpc then we can let Gm = Fm

since as mentioned above, Fm is complete under depth 0 reductions.
Conversely, say that a monotone partial complexity measure mpc admits a complete

family under d(m)-depth reductions if there exists a family Gm of functions such that
mpc(Gm) ≤ 2d(m) and for every partial monotone function f with mpc(f) ≤ m, there is a
depth-d(m) monotone circuit computing a function h so that Gm ◦ h solves f . Suppose that
Gm(x) is complete under depth d(m) reductions, where the input size |x| = M ≤ poly(m).
We want to construct a partial function Fm which can code any composition g(x) = Gm(h(x))
for any g with mpc(g) ≤ m and for any h computable by monotone circuits of depth at
most d(m). We will actually end up coding a more powerful set of reductions, because we
cannot code exactly this family and be monotone. Observe that h has at most m input bits,
M output bits, and at most 2d(m) gates total. Thus, we can embed h into a depth-2d(m)
alternating unbounded fan-in ∧-∨ circuit with m inputs, M outputs, and 2d(m)M gates at
each intermediate level. We can represent the connectivity of the embedding by having one
bit for each pair of gates, including inputs and outputs, saying whether the earlier gate is an
input to the later one.

ITCS 2023

30:32 TFNP Characterizations of Proof Systems and Monotone Circuits

So, we let Fm be a partial monotone function with m + (m + (2d(m) − 2)M2d(m) + M)2

inputs. The first m inputs to Fm code the input x to g, and the other bits, denoted Bi,j ,
code the connectivity relation for the circuit computing h. The gates at even levels will be
∨-gates, and those at odd levels ∧-gates. Because we need the circuit evaluation problem to
be monotone, we cannot enforce that each gate has exactly two incoming wires, so we allow
the gates to be arbitrary fan-in instead. If j is a gate on an even levels, for each earlier gate
i including input positions, we let Bi,j be 1 if i is an input to j and 0 otherwise. For odd
levels, we reverse the roles of 0 and 1.

To compute Fm, we work our way up the circuit computing a bit Hi for each gate i. For
i in the first level, Hi is the i-th input bit (the i-th bit of x. For other levels, we use the rule
Hj =

∨
(Hi ∧ Bi,j) at even levels, and Hj =

∧
(Hi ∨ Bi,j) at odd levels, where the scope of i

is all gates at earlier levels. After computing the values Hj for the gates at the top level, we
apply Gm to the result.

By construction, Fm reduces to Gm via a depth 4d(m) monotone circuit with fan-in
M2d(m) ∧’s and ∨’s, which can also be computed by a depth 4d(m)(d(m) + log M) depth fan-
in two monotone circuit. Thus, by composition with reductions, mpc(Fm) is quasi-polynomial
in m. Also, for any g with mpc(g) ≤ m, g can be solved by F ◦h where h can be computed by
monotone depth-d circuits. The input zg includes the values Bi,j according to the connectivity
for h; unused bits in zg can be set to 0. By construction, Fm(x ◦ zg) = Gm(h(x)) which
solves g. ◀

4 Future Directions

The TFNP connection, mapping proof systems to circuit lower bounds via lifting, has been
extremely successful. Our results show that this TFNP connection is generic , and characterize
the conditions under which it can be made. However, there are many gaps left in making
these lower bounds systematic rather than ad hoc, and extending them to new models of
computation and proof systems.

In particular,
1. We have a generic relationship between proof systems and decision tree TFNP problems,

and a generic relationship between monotone circuit complexity problems and circuit
lower bounds. Can we complete the chain by proving a generic lifting theorem, and
show that for each TFNP problem, lower bounds for the corresponding proof systems and
complexity measures are equivalent?

2. Our characterization of proof systems that correspond to TFNP problems involves proving
their own soundness. Can we use this to show a version of Gödel’s second incompleteness
theorem, that some proof systems cannot prove their own soundness because they do not
have a tight TFNP connection?

3. TFNP has a direct connection to monotone complexity via the monotone KW games.
Can we similarly characterize the class of communication problems corresponding to
non-monotone KW games?

4. We showed that reductions between the monotone KW games were equivalent to small
depth monotone reductions between the corresponding functions. Does this extend to
non-monotone games and non-monotone reductions? If not, can we give an example
of functions with reductions between the KW games and no reductions between the
corresponding functions? (Since this is interesting even for sub-logarithmic bit reductions,
this could possibly be shown unconditionally without proving new formula lower bounds.)

S. Buss, N. Fleming, and R. Impagliazzo 30:33

References
1 Albert Atserias and Moritz Müller. Automating resolution is NP-hard. Journal of the

Association for Computing Machinery, 67(5):31:1–31:17, 2020.
2 Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space trade-offs in resolution:

Superpolynomial lower bounds for superlinear space. SIAM J. Comput., 45(4):1612–1645,
2016. doi:10.1137/130914085.

3 Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi.
The relative complexity of NP search problems. J. Comput. Syst. Sci., 57(1):3–19, 1998.
doi:10.1006/jcss.1998.1575.

4 Arnold Beckmann and Sam Buss. The NP search problems of frege and extended frege proofs.
ACM Trans. Comput. Log., 18(2):11:1–11:19, 2017. doi:10.1145/3060145.

5 Arnold Beckmann and Samuel R. Buss. The NP search problems of Frege and extended Frege
proofs. ACM Transactions on Computational Logic, 18(2):Article 11, 2017.

6 Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes proofs
with small coefficients. J. Symb. Log., 62(3):708–728, 1997. doi:10.2307/2275569.

7 Josh Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems and proposi-
tional proof systems. In 19th Annual IEEE Conference on Computational Complexity (CCC
2004), 21-24 June 2004, Amherst, MA, USA, pages 54–67. IEEE Computer Society, 2004.
doi:10.1109/CCC.2004.1313795.

8 Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings of the
19-th Annual ACM Symposium on Theory of Computing, pages 123–131, May 1987.

9 Samuel R. Buss, Leszek Aleksander Kolodziejczyk, and Neil Thapen. Fragments of approximate
counting. J. Symb. Log., 79(2):496–525, 2014. doi:10.1017/jsl.2013.37.

10 Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate constraint
satisfaction requires large LP relaxations. J. ACM, 63(4):34:1–34:22, 2016. doi:10.1145/
2811255.

11 Stephen A. Cook. Feasibly constructive proofs and the propositional calculus. In Proceedings
of the Seventh Annual ACM Symposium on Theory of Computing, pages 83–97. Association
for Computing Machinery, 1975.

12 Susanna F. de Rezende, Mika Göös, and Robert Robere. Guest column: Proofs, circuits, and
communication. SIGACT News, 53(1):59–82, 2022. doi:10.1145/3532737.3532746.

13 Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and Dmitry Sokolov. The
power of negative reasoning. In Valentine Kabanets, editor, 36th Computational Complexity
Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference),
volume 200 of LIPIcs, pages 40:1–40:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.CCC.2021.40.

14 Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere, and
Marc Vinyals. Lifting with simple gadgets and applications to circuit and proof complexity.
In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 24–30. IEEE, 2020. doi:
10.1109/FOCS46700.2020.00011.

15 Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction hinders
real communication (and what it means for proof and circuit complexity). Electron. Colloquium
Comput. Complex., page 6, 2021. URL: https://eccc.weizmann.ac.il/report/2021/006,
arXiv:TR21-006.

16 Noah Fleming. The Proof Complexity of Integer Programming. PhD thesis, University of
Toronto, Canada, 2021. URL: http://hdl.handle.net/1807/108797.

17 Noah Fleming, Mika Göös, Stefan Grosser, and Robert Robere. On semi-algebraic proofs
and algorithms. In Mark Braverman, editor, 13th Innovations in Theoretical Computer
Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume
215 of LIPIcs, pages 69:1–69:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ITCS.2022.69.

ITCS 2023

https://doi.org/10.1137/130914085
https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1145/3060145
https://doi.org/10.2307/2275569
https://doi.org/10.1109/CCC.2004.1313795
https://doi.org/10.1017/jsl.2013.37
https://doi.org/10.1145/2811255
https://doi.org/10.1145/2811255
https://doi.org/10.1145/3532737.3532746
https://doi.org/10.4230/LIPIcs.CCC.2021.40
https://doi.org/10.1109/FOCS46700.2020.00011
https://doi.org/10.1109/FOCS46700.2020.00011
https://eccc.weizmann.ac.il/report/2021/006
http://arxiv.org/abs/TR21-006
http://hdl.handle.net/1807/108797
https://doi.org/10.4230/LIPIcs.ITCS.2022.69

30:34 TFNP Characterizations of Proof Systems and Monotone Circuits

18 Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and efficient
algorithm design. Found. Trends Theor. Comput. Sci., 14(1-2):1–221, 2019. doi:10.1561/
0400000086.

19 Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere. Random Θ(log n)-CNFs
are hard for cutting planes. J. ACM, 69(3):19:1–19:32, 2022. doi:10.1145/3486680.

20 Anna Gál. A characterization of span program size and improved lower bounds for monotone
span programs. Comput. Complex., 10(4):277–296, 2001. doi:10.1007/s000370100001.

21 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower
bounds from resolution. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors,
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 902–911. ACM, 2018. doi:10.1145/
3188745.3188838.

22 Michal Garlik. Resolution lower bounds for refutation statements. In Proc. 4 Intl. Symp. on
Mathematical Foundations of Computer Science (MFCS), pages 37:1–37:13, 2019.

23 Paul Goldberg and Christos Papadimitriou. Towards a unified complexity theory of total
functions. Journal of Computer and System Sciences, 94:167–192, 2018.

24 Paul W. Goldberg and Christos H. Papadimitriou. Towards a unified complexity theory
of total functions. Electron. Colloquium Comput. Complex., page 56, 2017. URL: https:
//eccc.weizmann.ac.il/report/2017/056, arXiv:TR17-056.

25 Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert
Robere, and Ran Tao. Separations in proof complexity and TFNP. CoRR, abs/2205.02168,
2022. doi:10.48550/arXiv.2205.02168.

26 Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone
complexity and TFNP. In Avrim Blum, editor, 10th Innovations in Theoretical Computer
Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, volume
124 of LIPIcs, pages 38:1–38:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ITCS.2019.38.

27 Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes is
NP-hard. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 68–77. ACM,
2020. doi:10.1145/3357713.3384248.

28 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles
are nonnegative juntas. SIAM J. Comput., 45(5):1835–1869, 2016. doi:10.1137/15M103145X.

29 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition
number. SIAM J. Comput., 47(6):2435–2450, 2018. doi:10.1137/16M1059369.

30 Pavel Hrubeš and Pavel Pudlák. Random formulas, monotone circuits, and interpolation. In
58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017, pages 121–131, 2017. doi:10.1109/FOCS.2017.20.

31 Pritish Kamath. Some hardness escalation results in computational complexity theory. PhD
thesis, Massachusetts Institute of Technology, 2019.

32 Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM J. Discret. Math., 3(2):255–265, 1990. doi:10.1137/0403021.

33 Pravesh K. Kothari, Raghu Meka, and Prasad Raghavendra. Approximating rectangles by
juntas and weakly-exponential lower bounds for LP relaxations of CSPs. In Hamed Hatami,
Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 590–603. ACM, 2017. doi:10.1145/3055399.3055438.

34 Jan Krajícek. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. J. Symb. Log., 62(2):457–486, 1997. doi:10.2307/2275541.

35 Jan Krajícek. Interpolation by a game. Math. Log. Q., 44:450–458, 1998. doi:10.1002/malq.
19980440403.

https://doi.org/10.1561/0400000086
https://doi.org/10.1561/0400000086
https://doi.org/10.1145/3486680
https://doi.org/10.1007/s000370100001
https://doi.org/10.1145/3188745.3188838
https://doi.org/10.1145/3188745.3188838
https://eccc.weizmann.ac.il/report/2017/056
https://eccc.weizmann.ac.il/report/2017/056
http://arxiv.org/abs/TR17-056
https://doi.org/10.48550/arXiv.2205.02168
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://doi.org/10.1145/3357713.3384248
https://doi.org/10.1137/15M103145X
https://doi.org/10.1137/16M1059369
https://doi.org/10.1109/FOCS.2017.20
https://doi.org/10.1137/0403021
https://doi.org/10.1145/3055399.3055438
https://doi.org/10.2307/2275541
https://doi.org/10.1002/malq.19980440403
https://doi.org/10.1002/malq.19980440403

S. Buss, N. Fleming, and R. Impagliazzo 30:35

36 Jan Krajícek. Randomized feasible interpolation and monotone circuits with a local oracle. J.
Math. Log., 18(2):1850012:1–1850012:27, 2018. doi:10.1142/S0219061318500125.

37 James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of semidefinite
programming relaxations. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 567–576. ACM, 2015. doi:10.1145/2746539.2746599.

38 László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. Search problems in the decision
tree model. SIAM J. Discret. Math., 8(1):119–132, 1995. doi:10.1137/S0895480192233867.

39 Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang. Lifting with
sunflowers. In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science
Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume 215
of LIPIcs, pages 104:1–104:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ITCS.2022.104.

40 Toniann Pitassi and Robert Robere. Lifting nullstellensatz to monotone span programs over
any field. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 1207–1219. ACM, 2018. doi:10.1145/3188745.3188914.

41 Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. J. Symb. Log., 62(3):981–998, 1997. doi:10.2307/2275583.

42 Pavel Pudlák. On the complexity of finding falsifying assignments for herbrand disjunctions.
Arch. Math. Log., 54(7-8):769–783, 2015. doi:10.1007/s00153-015-0439-6.

43 Pavel Pudlák and Jirí Sgall. Algebraic models of computation and interpolation for algebraic
proof systems. In Paul Beame and Samuel R. Buss, editors, Proof Complexity and Feasible
Arithmetics, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, April
21-24, 1996, volume 39 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 279–295. DIMACS/AMS, 1996. doi:10.1090/dimacs/039/15.

44 Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Comb., 19(3):403–
435, 1999. doi:10.1007/s004930050062.

45 Alexander Razborov. Unprovability of lower bounds on circuit size in certain fragments of
bounded arithmetic. Izvestiya Mathematics, 59(1):205–227, 1995.

46 Robert Robere. Separations in proof complexity and TFNP. Talk at the Satisfiability: Theory,
Practice, and Beyond Reunion, Simons Institute, Berkeley, 2022.

47 Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook. Exponential lower
bounds for monotone span programs. In Irit Dinur, editor, IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, pages 406–415. IEEE Computer Society, 2016. doi:10.1109/
FOCS.2016.51.

A Appendix: Proof of Theorem 11

In this appendix we prove Theorem 11, which we break into the following two lemmas. Recall
that the length of a uPC proof is the number of lines (deductions) in the proof.

▶ Lemma 18. Let F be an unsatisfiable CNF formula on n variables. If there is a uPC proof
of F with size-s, length-L, and degree-d then there is a depth-O(d) decision-tree reduction
from SF to an instance of IND-END-OF-LINE on O(sL) many variables.

Proof. Fix a unary Polynomial Calculus proof Π of some unsatisfiable CNF formula F . For
each monomial m, let cm be the maximum absolute value of any coefficient of m that occurs
in Π, and define N :=

∑
m cm. We will have cm nodes for monomial m and implicitly identify

any of these cm nodes with the monomial m. We define an IND-END-OF-LINE instance on
L pools and N nodes in much the same way as we did for F2-PC.

ITCS 2023

https://doi.org/10.1142/S0219061318500125
https://doi.org/10.1145/2746539.2746599
https://doi.org/10.1137/S0895480192233867
https://doi.org/10.4230/LIPIcs.ITCS.2022.104
https://doi.org/10.1145/3188745.3188914
https://doi.org/10.2307/2275583
https://doi.org/10.1007/s00153-015-0439-6
https://doi.org/10.1090/dimacs/039/15
https://doi.org/10.1007/s004930050062
https://doi.org/10.1109/FOCS.2016.51
https://doi.org/10.1109/FOCS.2016.51

30:36 TFNP Characterizations of Proof Systems and Monotone Circuits

For each ℓ ∈ [L], we define the active nodes m ∈ [N] for pool ℓ as follows. If monomial m

occurs in the ℓ-th line of Π with coefficient c, let m1, . . . , mc be the first c nodes corresponding
to copies of monomial m and set A

(ℓ)
mi = m(x) for all i ∈ [c]. Fix A

(ℓ)
m′ = 0 for the remaining

nodes m′ ∈ [N] \ {m1, . . . , mc}. Note that as m is a monomial of degree ≤ d, m(x) can be
computed by a depth-d decision tree.

If line ℓ is derived by addition from two lines ℓ′, ℓ′′, set P
(ℓ)
ℓ′ = P

(ℓ)
ℓ′′ = 1 and P

(ℓ)
ℓ∗ = 0 for

all ℓ∗ ̸= ℓ′, ℓ′′. If ℓ was derived from ℓ′ by multiplication by some variable xi set P
(ℓ)
ℓ′ = xi

and P
(ℓ)
ℓ∗ = 0 for all ℓ∗ ̸= ℓ′.

Finally, for each ℓ ∈ [L] we define the matching M (ℓ) as follows. For this it will be
convenient to think of each line ℓ in Π as a multi-set of monomials, each with an associated
positive or negative coefficient, and a corresponding node in N . There are three cases:
Case 1. If ℓ was derived by addition from some ℓ′, ℓ′′ < ℓ then every monomial m in line

ℓ comes from one of ℓ′, ℓ′′ – suppose that m comes from ℓ′ – and so we match m to
the copy of m in ℓ′. If m has a positive coefficient in ℓ, then we set M

(ℓ)
ℓ,m = (+, ℓ′, m)

and M
(ℓ)
ℓ′,m = (−, ℓ, m), and if it has a negative coefficient we set M

(ℓ)
ℓ,m = (−, ℓ′, m) and

M
(ℓ)
ℓ′,m = (−, ℓ, m).

It remains to define the matchings for all monomials m which occur in ℓ′ or ℓ′′ but not in ℓ;
suppose that m belongs to ℓ′. For this to happen, m must have cancelled with a negative
coefficient copy of itself in ℓ′′ and so we match them. That is, if m occurs positively
in ℓ′ then we set M

(ℓ)
ℓ′,m = (−, ℓ′′, m) and M

(ℓ)
ℓ′′,m = (+, ℓ′, m), and if it occurs negatively

then we set M
(ℓ)
ℓ′,m = (+, ℓ′′, m) and M

(ℓ)
ℓ′′,m = (−, ℓ′, m). The matching variables for the

remaining nodes (which do not correspond to monomials occurring in lines ℓ, ℓ′, ℓ′′) can
be set arbitrarily.

Case 2. If ℓ was derived by multiplication by a variable xi from some ℓ′ < ℓ then for every
monomial m in line ℓ, there must be a monomial m′ = m \ xi or m′ = m belonging to
ℓ′ from which it was derived. If m is positive in ℓ then match M

(ℓ)
ℓ,m = (+, ℓ′, m′) and

M
(ℓ)
ℓ′,m′ = (−, ℓ, m), and if m is negative in ℓ then M

(ℓ)
ℓ,m = (−, ℓ′, m′) and M

(ℓ)
ℓ,m = (+, ℓ, m).

Finally, we match the remaining nodes corresponding to monomials in ℓ′ that have yet to
be matched. Each of these remaining monomials must have cancelled after multiplication
by xi so as to not appear in ℓ. The only cancellations which can occur are pairs
(m, mxi) such that m does not contain xi and m and mxi occur with different signs in ℓ′.
Suppose that m occurs positively in ℓ′ then we match M

(ℓ)
ℓ′,m = (−, ℓ′, mxi) and M

(ℓ)
ℓ′,mxi

=
(+, ℓ′, m), and similarly if m occurred negatively then we match M

(ℓ)
ℓ′,m = (+, ℓ′, mxi) and

M
(ℓ)
ℓ′,mxi

= (−, ℓ′, m). The remaining nodes (which do not correspond to nodes in ℓ or ℓ′)
may be matched arbitrarily.

Case 3. If ℓ is an axiom of F – that is, ℓ is C for some C ∈ F – then for each monomial
m ∈ C, the matching M

(ℓ)
ℓ,m is defined by querying the ≤ d variables in C. If we discover

that C(x) = 0 (that is, C is satisfied) then we fix an arbitrary matching between the
positive and negative monomials in C which are not set to 0 under x such that each
negative monomial is at the tail of some arrow and each positive monomials is at the
head of some arrow. Otherwise, if C(x) ̸= 0 then we fix the matching variables arbitrarily
(there will always be a solution in this case).

Observe that the only solutions to the constructed IND-END-OF-LINE instance occur
at the pools ℓ ∈ [L] corresponding to an axioms C ∈ F for which C(x) = 0. Thus, any
solution to IND-END-OF-LINE will be in a violated clause of F , a solution to SF . Using
this, we can define the output decision trees: for any solution s belonging a pool ℓ ∈ [L]

S. Buss, N. Fleming, and R. Impagliazzo 30:37

which corresponds to an initial clause Ci ∈ F , the output decision tree T o
s outputs i. The

output decision trees corresponding to the remaining solutions (which do not occur in this
instance of IND-END-OF-LINE) can be set arbitrarily. ◀

▶ Lemma 19. Let F be an unsatisfiable CNF formula. If SF reduces to an instance of
IND-END-OF-LINE on n variables using depth-d decision trees, then there is an degree-O(d)
and size n32O(d) uPC proof of F .

Proof. Let F be an unsatisfiable CNF formula and suppose that SF reduces by depth-d
decision trees to an IND-END-OF-LINE instance on n variables. For each variable x of the
IND-END-OF-LINE let Tx be the decision tree computing x. As before, we will associate Tx

with the polynomial formed by taking a sum over the accepting paths in Tx. As well, for
each solution s of the IND-END-OF-LINE instance let T o

s be the output decision tree. We
will say that a node m which active for ℓ is positive if it appears at the head of an arrow
in M (ℓ) and negative otherwise. Recall that for a function f element o in the range of f ,
[[f = o]] denotes the indicator polynomial which is 1 on input x if f(x) = o and 0 otherwise.

For ℓ ∈ [L] define the polynomial

qℓ :=
∑

m∈[N]

A(ℓ)
m

(∑
m∗∈[N],ℓ∗≤ℓ

[[
M

(ℓ)
ℓ,m = (+, ℓ∗, m∗)

]]
−

∑
m∗∈[N],ℓ∗≤ℓ

[[
M

(ℓ)
ℓ,m = (−, ℓ∗, m∗)

]])

which records the difference between the number of positive and negative nodes for pool ℓ.
We will derive by induction on ℓ = 1, . . . , L that qℓ = 0 and −qℓ = 0. This will complete the
proof as for pool L, A

(L)
1 = 1 and A

(L)
m = 0 for all m ̸= 1 and so

0 = qL =
∑

m∗∈[N],ℓ∗≤L

[[
M

(L)
L,1 = (+, ℓ∗, m∗)

]]
−

∑
m∗∈[N],ℓ∗≤L

[[
M

(L)
L,1 = (−, ℓ∗, m∗)

]]
.

From which we can derive the 1 = 0 by the following claim, noting that the terms of qL are
exactly the paths in the decision tree for M

(L)
L,1 .

▷ Claim 3. Let T be any depth-d decision tree and let q(x) =
∑

p∈T αpp(x), where the
sum is taken over (the polynomial representation of) each root-to-leaf path p in T , and
αp ∈ {±1}. Then there is a uPC degree-2d and size O(|T |) derivation of 1 = 0 from q(x) = 0
and −q(x) = 0.

Proof. From q = 0 we will derive p = 0 for each p ∈ T . This completes the proof as∑
p∈T p = 1 for any decision tree T . For any path p′ ∈ T with αp′ = 1 observe that

p′q =
∑

p∈T αpp′p = p′ as any pair of paths p ̸= p′ contain an opposing literal (i.e., x and
(1 − x) for some variable x) and thus sum to 0. Similarly, we can derive p′ = 0 for any p′ ∈ T

with αp′ = −1 by multiplying −q = 0 by p′. ◁

It remains to show that qℓ = 0 can be derived from qℓ′ = 0 for ℓ′ < ℓ. Note that we can
derive −qℓ = 0 by a symmetric argument by using −A(x) = 0 for each axiom A(x) = 0 used
in the derivation of qℓ = 0. Our induction will rely on (i) the matching M (ℓ), and (ii) the
consistencies of polarities – if m is a node of ℓ′ which occurs at one end of an arrow in the
matching for ℓ′, then it must occur at the other end of an arrow in the matching for ℓ, if ℓ′

is a predecessor of ℓ. We will represent (i) by the following polynomial which records the
difference between the number of positive and negative nodes involved in the matching for
pool ℓ

ITCS 2023

30:38 TFNP Characterizations of Proof Systems and Monotone Circuits

deriv(ℓ) :=
∑
ℓ′≤ℓ

P
(ℓ)
ℓ′

∑
m∈[N]

A(ℓ′)
m

 ∑
m∗∈[N],ℓ∗≤ℓ′

[[
M

(ℓ)
ℓ,m = (+, ℓ∗, m∗)

]]
−
[[

M
(ℓ)
ℓ,m = (−, ℓ∗, m∗)

]] ,

where, for convenience of notation, we have introduced an additional variable P
(ℓ)
ℓ which is

fixed to 1.
We will represent (ii) by the polynomial

consist(ℓ)
ℓ′ = P

(ℓ)
ℓ′

∑
m∈[N]

A(ℓ′)
m

∑
ℓ∗≤ℓ

([[
M

(ℓ)
ℓ′,m = (−, ℓ∗, m∗)

]]
−
[[

M
(ℓ)
ℓ′,m = (+, ℓ∗, m∗)

]])
−P

(ℓ)
ℓ′ qℓ′ .

The equation consist(ℓ)
ℓ′ = 0 states that the active nodes for line ℓ′ must occur with the same

polarity in the matching for pool ℓ′ as in the matching for pool ℓ. The following claims give
short uPC derivations of these polynomials from the axioms.

▷ Claim 4. For any ℓ ∈ [L], deriv(ℓ) = 0 has a degree-O(d) and size-NL2O(d) uPC proof
from the axioms.

▷ Claim 5. For any ℓ ∈ [L] and ℓ′ < ℓ, consist(ℓ)
ℓ′ has a degree-O(d) and size-NL2O(d) uPC

proof from the axioms.

Assuming these claims, we show how to derive qℓ = 0 from qℓ′ = 0 for all ℓ′ < ℓ. For each
ℓ′ < ℓ, sum the polynomial P

(ℓ)
ℓ′ qℓ′ = 0 with consist(ℓ)

ℓ′ to deduce

P
(ℓ)
ℓ′

∑
m∈[N]

A(ℓ′)
m

∑
ℓ∗≤ℓ

([[
M

(ℓ)
ℓ′,m = (−, ℓ∗, m∗)

]]
−
[[

M
(ℓ)
ℓ′,m = (+, ℓ∗, m∗)

]])
= 0.

Summing these polynomials with deriv(ℓ) = 0 gives qℓ = 0. We apply Claim 4 ℓ ≤ L times
and Claim 5 once. Thus, this induction step can be performed in degree O(d) and size
NL22O(d). ◀

Proof of Claim 4. For ℓ′ ≤ ℓ, m ∈ [N] and α ∈ {−, +} define

match(ℓ)
α,m,ℓ′ :=

∑
m∗∈[N],

ℓ∗∈[ℓ]

[[
M

(ℓ)
m,ℓ′ = (α, m∗, ℓ∗)

]] ∑
γ,δ∈{0,1}

[[
P

(ℓ)
ℓ∗ = γ

]][[
A

(ℓ∗)
m∗ = δ

]]
·

∑
m̂∈[N],ℓ̂∈[ℓ]

β∈{−,+}

[[
M

(ℓ)
m∗,ℓ∗ = (β, m̂, ℓ̂)

]]
,

which records whether node m belonging to ℓ′ is at the head or tail of an arrow, and whether
it is correctly matched in the matching M (ℓ) for ℓ. Note that∑

γ,δ∈{0,1}

[[
P

(ℓ)
ℓ∗ = γ

]][[
A

(ℓ∗)
m∗ = δ

]] ∑
m̂∈[N],ℓ̂∈[ℓ]

β∈{−,+}

[[
M

(ℓ)
m∗,ℓ∗ = (β, m̂, ℓ̂)

]]
= 1, (1)

as it is the polynomial obtained from summing over all paths in the stacked decision tree
obtained by running the decision trees for P

(ℓ)
ℓ∗ , A

(ℓ∗)
m∗ and then M

(ℓ)
m∗,ℓ∗ .

Now, consider the polynomial P
(ℓ)
ℓ′ A

(ℓ′)
m match(ℓ)

α,m,ℓ′ and partition its terms into two sets,
a set C

(ℓ′,m)
α which corresponds to correct matchings – that is, m is matched to a node

m∗ ∈ [N] belonging to a pool ℓ∗ ≤ ℓ (M (ℓ)
ℓ′,m = (α, ℓ∗, m∗)) with P

(ℓ)
ℓ∗ = 1 and A

(ℓ∗)
m∗ = 1 which

S. Buss, N. Fleming, and R. Impagliazzo 30:39

is matched back to m, meaning that M
(ℓ)
ℓ∗,m∗ = (γ, ℓ′, m), where γ is the opposite sign of α –

and E
(ℓ′,m)
α which will contain the remaining terms, corresponding to erroneous matchings.

Using these polynomials, define

match(ℓ) :=
∑

ℓ′∈[ℓ]

∑
m∈[N]

A(ℓ′)
m P

(ℓ)
ℓ′

(
match(ℓ)

+,m,ℓ′ − match(ℓ)
−,m,ℓ′

)
,

which records the matching for pool ℓ. By (1), this polynomial is equivalent to deriv(ℓ),
and therefore it suffices to show that this polynomial has a low-degree derivation from the
axioms. To do so, partition the terms of match(ℓ) into three sets, C+, C−, E as above, where
Cα =

⋃
C

(ℓ′,m)
α for α ∈ {−, +}, and E =

⋃
E

(ℓ′,m)
+ ∪ E

(ℓ′,m)
− where the unions are taken over

ℓ′ ≤ ℓ and m ∈ [N]. Observe that because the matchings in C+ and C− are correct, for
every node at the head of an arrow, a node occurs at the tail of that arrow. It follows that∑

t∈C+
t −

∑
t′∈C−

t′ = 0.
Next, consider a term t ∈ E. This term corresponds to a node m in some pool ℓ′ ≤ ℓ

that is incorrectly matched; let s be this incorrect matching. We will denote by ts that the
term t witnesses s. Let T o

s be the output decision tree for solution s and abuse notation by
letting T o

s also denote the polynomial formed by taking the sum over all of the paths in the
decision tree T o

s . Recalling that the sum over all paths in a decision tree is 1,

match(ℓ) =
∑

t∈C+

t −
∑

t′∈C−

t′ +
∑

ts∈E

ts = 0 +
∑

ts∈E

ts =
∑

ts∈E

ts · T o
s .

An incorrect matching is a solution to IND-END-OF-LINE. Therefore, because this instance
solves SF , any truth assignment x which satisfies ts must falsify the T o

s (x)-th clause of F . It
follows that each term of ts · T o

s that is not identically 0 must contain the polynomial C = 0
for some clause C of F . Thus, ts · T o

s can be derived by multiplication from the axioms C = 0
and −C = 0. It follows that deriv(ℓ) has a proof of degree at most the degree and size of
match(ℓ), which are 6d and NL2O(d) respectively. ◁

Proof of Claim 4. For α ∈ {−, +}, define the polarity polynomial

pol(ℓ′)
α := P

(ℓ)
ℓ′

∑
m∈[N]

A(ℓ′)
m

∑
ℓ∗≤ℓ′,m∗∈[N]

[[
M

(ℓ′)
ℓ′,m = (α, ℓ∗, m∗)

]] ∑
ℓ̂≤ℓ,m̂∈[N]
β∈{−,+}

[[
M

(ℓ)
ℓ′,m = (β, ℓ̂, m̂)

]]
,

which records for each node at the α-end of an arrow in the matching for ℓ′, which end
of an arrow it occurs at in the matching for pool ℓ′. We will partition the set of terms of
this polynomial into two sets, C

(ℓ′)
α and E

(ℓ′)
α C

(ℓ′)
α . C

(ℓ′)
α will be the terms t which are the

indicators of correct assignments of polarities of the nodes in pool ℓ′ in the matchings M (ℓ)

and M (ℓ′) – that is, if m is an active node for ℓ′ and m occurs at the head of an arrow in
the matching for M (ℓ′) then it is at the tail of an arrow in the matching for M (ℓ) if ℓ′ is
a predecessor of ℓ. E

(ℓ′)
α C

(ℓ′)
α will be the remaining terms which correspond to erroneous

assignments of polarities. As well, observe that

pol(ℓ′)
α = P

(ℓ)
ℓ′

∑
m∈[N]

A(ℓ′)
m

∑
ℓ∗≤ℓ′,m∗∈[N]

[[
M

(ℓ′)
ℓ′,m = (α, ℓ∗, m∗)

]]
· 1,

as
∑

ℓ̂≤ℓ,m̂∈[N],β∈{−,+}[[M (ℓ)
ℓ′,m = (β, ℓ̂, m̂)]] is the polynomial obtained by taking a sum over

all paths in the decision tree for M
(ℓ)
ℓ′,m = (β, ℓ̂, m̂), which sums to 1.

ITCS 2023

30:40 TFNP Characterizations of Proof Systems and Monotone Circuits

Similarly, let

pol(ℓ)
α := P

(ℓ)
ℓ′

∑
m∈[N]

A(ℓ′)
m

∑
ℓ∗≤ℓ,m∗∈[N]

[[
M

(ℓ)
ℓ′,m = (α, ℓ∗, m∗)

]] ∑
ℓ̂≤ℓ′,m̂∈[N]

β∈{−,+}

[[
M

(ℓ′)
ℓ′,m = (β, ℓ̂, m̂)

]]
,

be the polynomial which records for each active node of ℓ′ which occurs at the α-end of an
arrow in M (ℓ), which end of an arrow it occurs at in M (ℓ′). Define C

(ℓ)
α and E

(ℓ)
α analogously,

and note that

pol(ℓ)
α = P

(ℓ)
ℓ′

∑
m∈[N]

A(ℓ′)
m

∑
ℓ∗≤ℓ,m∗∈[N]

[[
M

(ℓ)
ℓ′,m = (α, ℓ∗, m∗)

]]
· 1,

by the same reasoning as above.
Putting these together, we have

consist(ℓ)
ℓ′ = pol(ℓ)

− − pol(ℓ)
+ − pol(ℓ′)

+ + pol(ℓ′)
− .

We will derive pol(ℓ)
+ −pol(ℓ′)

− = 0 and pol(ℓ)
− −pol(ℓ′)

+ = 0 separately from the axioms, beginning
with pol(ℓ)

+ − pol(ℓ′)
+ = 0. Consider any term t in C

(ℓ′)
+ and observe that since t is correct,

it records that an active monomial m of ℓ′ which occurs at the head of an arrow in M (ℓ′)

occurs at the tail of an arrow in M (ℓ). Thus, t occurs also in C
(ℓ)
− . By a symmetric argument,

any term t occurring in C
(ℓ)
− occurs in C

(ℓ′)
+ . Thus,

∑
t∈C

(ℓ′)
+

t −
∑

t∈C
(ℓ)
−

t = 0, and also∑
t∈C

(ℓ′)
−

t −
∑

t∈C
(ℓ)
+

t = 0 by a similar argument. Denoting the union of all of the error sets

by E := E
(ℓ)
+ ∪ E

(ℓ)
− ∪ E

(ℓ′)
+ ∪ E

(ℓ′)
− , we have

consist(ℓ)
ℓ′ =

(∑
t∈C

(ℓ′)
+

t −
∑

t∈C
(ℓ)
−

t
)

+
(∑

t∈C
(ℓ′)
−

t −
∑

t∈C
(ℓ)
+

t
)

+
∑
t∈E

t = 0 +
∑
t∈E

t.

It remains to show that each term t ∈ E can be derived from the axioms with a low-degree
uPC proof. As each t ∈ E witnesses a node which switched polarity between the matching for
line ℓ′ and the matching for line ℓ, this is a solution s to IND-END-OF-LINE ; we will denote
denote t by ts to record the fact that t witnesses solution s. Let T o

s be the output decision
tree corresponding to solution s, and abuse notation by identifying it with polynomial formed
by taking the sum over all paths in T o

s . As the sum over all paths in a decision tree gives the
1 polynomial, we have ts = ts · T o

s . As ts witnesses solution s, it follows that any assignment
x such that ts(x) = 1 must falsify the T o

s (x)-th clause C of F . Thus, ts · T o
s can be derived

from the axioms C = 0 and −C = 0. It follows that

consist(ℓ)
ℓ′ = 0 +

∑
ts∈E

ts · T o
s = 0

has a uPC proof from the axioms of degree at most 4d and size NL2O(d). ◁

	1 Introduction
	1.1 Overview: Connections Proof Complexity, and Circuit Complexity, and TFNP
	1.2 Our Results

	2 Proof Complexity and Black-Box TFNP
	2.1 A Proof System for any TFNP Problem
	2.2 TFNP Problems for Proof systems which Prove their own Soundness
	2.3 Example: The Polynomial Calculus
	2.4 Characterizing Dynamic Variants of Static Systems

	3 Communication TFNP and Monotone Circuit Complexity
	3.1 Communication TFNP
	3.2 Complete Problems give TFNP Characterizations
	3.3 Universal Functions vs. Complete Functions

	4 Future Directions
	A Appendix: Proof of Theorem 11

