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Abstract—The problem of correcting deletions and insertions
has recently received significantly increased attention due to
the DNA-based data storage technology, which suffers from
deletions and insertions with extremely high probability. In this
work, we study the problem of constructing non-binary burst-
deletion/insertion correcting codes. Particularly, for the quater-
nary alphabet, our designed codes are suited for correcting a
burst of deletions/insertions in DNA storage.

Non-binary codes correcting a single deletion or insertion were
introduced by Tenengolts [1984], and the results were extended to
correct a fixed-length burst of deletions or insertions by Schoeny et
al. [2017]. Recently, Wang et al. [2021] proposed constructions of
non-binary codes of length n, correcting a burst of length at most
two for g-ary alphabets with redundancy logn+ O(log g loglogn)
bits, for arbitrary even g. The common idea in those constructions
is to convert non-binary sequences into binary sequences, and the
error decoding algorithms for the g¢-ary sequences are mainly
based on the success of recovering the corresponding binary
sequences, respectively.

In this work, we look at a natural solution that the error
detection and correction algorithms are performed directly over
g-ary sequences, and for certain cases, our codes provide a more
efficient encoder with lower redundancy than the best-known
encoder in the literature. Particularly,

« (Single-error correction codes) We first present a new version
of non-binary VT codes that are capable of correcting a single
deletion or single insertion, providing an alternative simpler
and more efficient encoder of the construction by Tenengolts
[1984]. Our construction is based on the differential vector,
and the codes are referred to as the differential VT codes. In
addition, we provide linear-time algorithms that encode user
messages into these codes of length n over the g-ary alphabet
for ¢ > 2 with at most [log, ] +1 redundant symbols, while
the optimal redundancy required is at least log, n+log, (¢—1)
symbols. Our designed encoder reduces the redundancy of
the best-known encoder of Tenengolts [1984] by at least 2
redundant symbols or equivalently 2log, ¢ bits.
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o (Burst-error correction codes) We use the idea of the binary
shifted VT codes to define the g-ary differential shifted VT
codes, and propose non-binary codes correcting a burst of up
to two deletions (or two insertions) with redundancy log n +
3loglogn + O(log q) bits, which improves a recent result of
Wang et al. [2021] with redundancy log n+ O(log g log log n)
bits for all ¢ > 8. We then extend the construction to design
non-binary codes correcting a burst of either exactly or at
most ¢ deletions (or insertions) for arbitrary ¢ > 2.

I. INTRODUCTION

Codes correcting deletions and insertions are important for
many data storage systems such as the bit-patterned media
magnetic recording systems [2] and racetrack memory devices
[3]. Insertions and deletions may also occur due to the syn-
chronization errors in communication systems [4] and mobile
data [5]. Furthermore, the problem of correcting such errors
has recently received significantly increased attention due to
the DNA-based data storage technology, which suffers from
deletions and insertions with extremely high probability [6]—
[10]. Designing codes for correcting deletions and/or insertions
is well-known to be a challenging problem, even in the most
fundamental settings with only a single error. One of the
challenges that make deletions or insertions more destructive
than substitutions is that only a small number of errors can
cause the original data sequences and the received sequences
to be vastly different under the Hamming metric.

In this work, we focus on the design of non-binary codes
that are capable of correcting a burst of deletions (or inser-
tions), where a burst refers to a block of errors that occur in
consecutive symbols. This has been pointed out as a typical type
of error that arises in DNA-based data storage technology that
uses nanopore sequencing technologies [11], [12]. In addition,
in wireless communications, burst errors also occur with high
frequency due to multi-path fading [13], [14]. In this work,
not only are we interested in constructing large error-correction
codes, we desire efficient encoders and decoders that map arbi-
trary user data into these codes and vice versa. In general, code
design takes into account the lowest redundancy required to
correct such errors with fast encoding and decoding procedures.
In this work, we define B;(x) to be the set of sequences that
can be obtained from x via a burst of either ¢ deletions or ¢
insertions. Similarly, B, (x) is the set of sequences that can



be obtained from x via a burst of at most ¢ deletions or at most
t insertions.

Over the g-ary alphabet, ¢ > 2, consider a channel model
with codewords of length n and a given error ball function B.
Suppose that the optimal redundancy required to correct such
errors is r, ¢ %; then two crucial coding theory problems are:

P1: Code Construction. Can one construct the largest-size
code C of length n, whose redundancy, denoted by re, should
satisfy that lim,, o (re — Iy q,8) = 0?

P2: Encoder/Decoder Design. Can one design an efficient
encoder ENC (and a corresponding decoder DEC) that encodes
arbitrary user messages into codewords of length n in C such
that the redundancy of the encoder ENC, denoted by rgyc,
should satisfy that lim,,_, o (rExe — re) = 0?

In the literature, the problems of constructing codes (problem
P1) correcting a burst of exactly ¢ deletions (or exactly ¢
insertions), also known as fixed-length burst, and a burst of
at most ¢ deletions (or at most ¢ insertions), also known as
variable-length burst have both been studied, with the latter
being the more complex problem [15]-[25]. On the other hand,
designing efficient encoders (problem P2) is crucial for practical
applications, however, in many settings, it remains an open
challenge, even in the most fundamental settings with only a
single error.

Non-binary single-error correction codes. The first challenge
comes from extending the coding solutions in binary codes
to non-binary codes. Particularly, while the problems of giv-
ing nearly-optimal explicit constructions of single-deletion (or
single-insertion) correction codes (P1) and designing nearly-
optimal encoders for such codes (P2) over the binary alphabet
have been settled for more than 50 years, the approach fails to
be extended to the case of g-ary alphabet for any fixed ¢ > 2.
In particular, to correct a single deletion or single insertion, we
have the celebrated class of Varshamov-Tenengolts (VT) codes.
In 1965, Varshamov and Tenengolts introduced the binary
VT codes to correct asymmetric errors [19], and Levenshtein
subsequently showed that such codes can be used for correcting
a deletion or insertion with a simple linear-time decoding
algorithm [20]. For codewords of length n, the binary VT codes
incur log(n-+1) redundant bits ! , while the optimal redundancy,
provided in [20], is at least logn bits. Curiously, even though
the binary VT codes and efficient decoding algorithm were
known since 1965, a linear-time encoder for such codes was
only proposed by Abdel-Ghaffar and Ferriera in 1998 [21],
which used [log(n + 1)] redundant bits. We observe that, over
the binary alphabet, (P1) and (P2) are solved asymptotically
optimal:

o, = logn, re =log(n+ 1), and rgne = [log(n +1)].
Here, we have

nh_glo(re - rn,Q,Bl) = nILH;O(TENC - r@) = 0.

"n this work, for simplicity, we use the notation “log” without the base to
refer to the logarithm of base two.

For the non-binary alphabet, in 1984, a non-binary version
of the VT codes was proposed by Tenengolts [22], and the
constructed codes can correct a single deleted or inserted
symbol in the g-ary alphabet with a linear-time decoder for
any g > 2. The construction of Tenengolts retains the attractive
properties of the binary VT codes, such as the simple decoding
algorithm. For codewords of length n, such codes incur at most
log, n + 1 redundant symbols. In the same paper, Tenengolts
also provided an upper bound for the cardinality of any g¢-ary
codes of length n correcting a deletion or insertion, which is
at most ¢"/((q¢ — 1)n), and hence, the minimum redundancy
required is at least log, n + log,(¢ — 1) symbols. Unlike the
binary case, designing an efficient encoder that encodes arbi-
trary user messages into Tenengolts’ code is a challenging task
(refer to Section III-A for detailed discussion). To overcome the
challenge, several attempts have been made in three variations:

o Targeting a specific value of q. When ¢ = 4, Chee et
al. [26] presented a linear-time quaternary encoder that
corrects a single deletion or insertion with [log, n] + 1
redundant symbols. The redundancy is asymptotically op-
timal. Unfortunately, the approach fails to be extended to
the case of g-ary alphabet for arbitrary g > 2.

e Using more redundancy. Abroshan et al. [27] presented a
systematic encoder that maps user messages into a single
g-ary VT code as constructed in [22] with complexity that
is linear in the code length. Unfortunately, the redundancy
of this encoder is more than log, n + logn symbols (see
Section II).

e Relaxing the condition for output codewords. In [22],
Tenengolts provided a systematic encoder that requires at
least [log, n] + 3 symbols, which is the best-known en-
coder for codes that correct a single deletion or insertion.
In terms of redundancy, a natural question is: can one
construct a linear-time encoder with at most 7 redundant
symbols, where log, n +log, (¢ —1) < r < [log, n]| + 3?
In addition, The drawback of the encoder in [22] is
that the codewords obtained from this encoder are not
contained in a single g-ary VT code. Note that to correct
a single deletion or insertion, it is not necessary that all
the codewords must belong to the same coset of g-ary
VT codes. Nevertheless, when the words share the same
parameters, Abroshan et al. [27] demonstrated that these
codes can be adapted to correct multiple insertion/deletion
errors, in the context of segmented edits [28]-[30].

Our contribution for single-error correction codes. Motivated
by the code design problem above, we present a new version of
non-binary VT codes that give asymptotically optimal solutions
for (P1) and (P2), as follows:

InqgB, = log,n+ logq(q — 1), while
re = log,n + 1,and rpne = [log,n] + 1.

We observe that (P1) and (P2) are now solved asymptotically
optimal since

nlgngo(re —TngBy) = T}LH;O(YENC —r1e) =0.



Our construction is based on the differential vector, and the
codes are referred to as the differential VT codes. Our con-
structed codes have the same cardinality and redundancy, as
compared to the best known g-ary single deletion/insertion
codes constructed by Tenengolts [22]. On the other hand, our
proposed code construction method supports more efficient
encoding and decoding procedures (in other words, it enables
an easier method to solve (P2)). Consequently, our best encoder
uses at most [log, ] + 1 redundant symbols, and hence, it re-
duces the redundancy of the best known encoder of Tenengolts
[22] by at least 2 redundant symbols, or equivalently 2log g
redundant bits.

Non-binary burst-error correction codes. The earliest work
on the subject, proposed by Levenshtein in 1967 [15], provided
an efficient construction of binary codes capable of correcting
a burst at most two deletions (or two insertions) that had
redundancy logn + 1 for codewords of length . Binary codes
correcting a burst of deletions (or insertions) were later pro-
posed in [16], [18]. Particularly, for an arbitrary constant £ > 1,
Schoeny et al. [16] proposed binary codes correcting a burst of
length exactly ¢, while the work of Lenz and Polyanskii in [18]
can correct a burst of variable length up to ¢. Note that, there is
a significant difference between codes that can correct a burst of
length at most ¢ and a burst of length exactly ¢, as a code of the
earlier type can correct errors of the latter, but the converse is
not true in general. Over the general g-ary alphabet, recently,
Wang et al. [24] proposed constructions of codes of length
n, correcting a burst of length at most two with redundancy
logn + O(log qlog logn) bits, for arbitrary even g. The results
were later extended to construct non-binary codes correcting
a burst of up to ¢ deletions (or insertions) in [25]. However,
designing efficient encoders (problem P2) for such constructed
codes remains an open challenge, even in the case of ¢t = 2.
Particularly, to correct a burst of at most 2 errors, the authors
[25] provided a systematic construction of encoder, however,
the redundancy is roughly log ¢ log n+O(log q), which is much
larger than the constructed codes whose redundancy was only
logn 4+ O(log qloglog n) bits.

Our contribution for burst-error correction codes. We use
the idea of the binary shifted VT codes to define the g-ary
differential shifted VT codes, which is crucial to the construction
of g-ary codes correcting a burst of errors. Given ¢ > 0, we
propose non-binary codes correcting a burst of either exactly or
at most ¢ deletions/insertions. Particularly, for ¢ = 2 and a given
g-ary alphabet, we construct non-binary codes of length n that
can correct a burst of at most two deletions or two insertions
with redundancy logn + 3loglogn + O(loggq) bits, which
improves a recent result of Wang et al. [2021] with redundancy
logn + O(logqloglogn) bits for all ¢ > 8. In addition,
we present a linear-time encoder that encodes arbitrary user
messages into non-binary codes correcting a burst of at most
two deletions with redundancy logn + 3loglogn + O(logq)
bits, which improves the redundancy of the encoder in [25].
We then extend the coding method to correct a burst of exactly
t errors (or at most ¢ errors) for an arbitrary value of ¢.

The remainder of this paper is organized as follows. We first
go through notations and some preliminary results in Section
II. In Section III-A, we focus on the single error correction
code, i.e. t = 1, and present a new version of non-binary VT
codes, which are referred to as the differential VT codes. In
addition, in Section III-B, we present a linear-time encoder that
encodes user messages into the codes, and for codewords of
length n over the g-ary alphabet, our designed encoder uses
at most [log,n] + 1 redundant symbols. The efficiency of
our proposed encoders, compared to previous works on single
error correction codes, is illustrated in Table II. In Section
IV, we introduce the differential shifted VT codes and propose
non-binary codes correcting a burst of exactly ¢ errors with
redundancy logn + (¢t — 1)loglogn + O(tlogq) bits, and
design linear-time encoders for such codes. We then extend
the coding method to correct at most ¢ deletions in Section
V. Finally, Section VI concludes the paper. A summary of our
contributions is illustrated in Table I.

II. PRELIMINARY

Let X, denote an alphabet of size g, where %, =
{0,1,2,...,q — 1}. For any positive integer m < n, we let
[m,n] denote the set {m,m +1,...,n} and [n] = [1,n].

Given two sequences x and y, we let xy denote the con-
catenation of the two sequences. In the special case where
x,y € X7, we use x||y to denote their interleaved sequence
T1Y1%2Y2 - - - TnYn. For a subset I = {iq,i2,...,4;} of co-
ordinates, we use x|; to denote the vector x; x;, e Ty A
sequence Y is said to be a subsequence of x, if there exists a
subset of coordinates I such that y = x|;. We now introduce
the definition of a burst of deletions or insertions.

Definition 1. Given x = (21,22...,2,) € ¥j. We say
that x suffers a burst of ¢ deletions if exactly ¢ consecutive
symbols have been deleted from x, resulting a subsequence
X = (fﬂl,xg, ey Ly Lty Lt 25 - -+ s Zn) € Egit for
some ¢ € [n — t]. On the other hand, we say that x suf-
fers a burst of ¢ insertions if exactly ¢ consecutive inser-
tions have occurred from x, resulting a subsequence x” =
(z1,2, .. L T,) € NPt for
some ¢ € [n]|. Similarly, we say x suffers a burst of up to
t deletions if s; consecutive symbols have been deleted for
some s; < t, or x suffers a burst of up to ¢ insertions if s
consecutive insertions have occurred for some so < t.

In this work, we define B;(x) to be the set of sequences that
can be obtained from x via a burst of either ¢ deletions or ¢
insertions. Similarly, B, (x) is the set of sequences that can
be obtained from x via a burst of at most ¢ errors.

Definition 2. Let C C Eg. We say that € corrects a burst of
t deletions or ¢ insertions if and only if B;(x) N Bi(y) = @
for all distinct x,y € C. Similarly, we say that C can correct
a burst of up to ¢ deletions or up to ¢ insertions if and only if
B<i(x) N B<i(y) = @ for all distinet x,y € C.



Size of burst

(P1) Redundancy of the constructed
code C

(P2) Redundancy of the encoder for C

Tenengolts [22]

log, n + 1 (symbols)

[log, n] + 3 (symbols)

(bits)

This work =1 log, n + 1 (symbols) [log, n] + 1 (symbols)
Wang et al. [24] 2 log n + O(log qlog logn) (bits) log glogn + O(log q) (bits)
This work <2 logn + 3loglogn + O(log q) (bits) logn + 3loglogn + O(log q) (bits)
Schoeny et al. [12] =t logn + (t — 1) loglog n + O(tlog q) NA
(bits)
This work =t logn + (t — 1) loglogn + O(tlogq) | logn + (¢t — 1) loglogn + O(tlogq)
(bits) (bits)
Wang et al. [25] <t log n + O(log qlog logn) (bits) NA
This work <t logn + O(t% loglogn) 4+ O(tlog q) NA

TABLE I: Related works for non-binary codes in the literature and the main contributions of this work.

For a code € C X7/, the redundancy is measured by the value
re =n —log, |C| (in symbols) or nlog g —log|C]| (in bits). In
this work, not only are we interested in constructing large error-
correction codes (problem P1), we desire an efficient encoder
that maps arbitrary user data into these codes (problem P2).

Definition 3. The map ENC : £f — X7 is a t-burst-encoder
if there exists a decoder map DEC : ¥ T U2 UXI—F — X7
such that the following conditions hold:

o For all x € £¥, we have DEC o ENC(x) = x,

e If ¢ = ENC(x) and ¢’ € B,(c), then DEC(c) = x.
Hence, we have that the code € = {c : ¢ = ENC(x), x € XF}
and |C| = ¢F. The message length is k while the codeword
length is n. The redundancy of the encoder is measured by the
value n — k (in symbols) or (n — k) log ¢ (in bits). A <t-burst-
encoder can be defined similarly.

Definition 4. For q > 2, the VT syndrome of a g-ary sequence
x € X7 is defined to be Syn(x) = 7" ixz;.

To correct a single deletion or single insertion, we have the
celebrated class of Varshamov-Tenengolts (VT) codes.

Construction 1 (Binary VT codes [19]). Given n > 0 and
q=2 Fora¢c Zpy, let

VT, (n) = {x € {0,1}" : Syn(x) = a (mod (n + 1))}.

Theorem 1 (Levenshtein, 1965 [20]). For a € Zyt1, VT, (n)
can correct a single deletion or a single insertion. There exists
@ € Zipy1 such that VT4 (n) has at least 2™ /(n+1) codewords,
and the redundancy of the code is at most log(n + 1) bits.

Over the nonbinary alphabet, in 1984, Tenengolts [22] gen-
eralized the binary VT codes to g-ary VT codes for any fixed
g-ary alphabet. Crucial to the construction of Tenengolts in [22]
was the concept of the signature vector defined as follows.

Definition 5. The signature vector of a g-ary vector x of length
n is a binary vector a(x) of length n — 1, where a(x); = 1 if
Zit1 > x4, and O otherwise, for ¢ € [n — 1].

Construction 2 (g-ary VT codes as proposed in [22]). Given
n,q >0, for a € Zy, and b € Zg, set

Tap(n;q) £ {x € Zy : ax) € VTy(n — 1),
and le =b (mod q)}
i=1

Theorem 2 (Tenengolts, 1984 [22]). The set Ty p(n;q) forms a
q-ary single deletion/insertion correction code and there exists
a and b such that the size of Tq(n;q) is at least ¢" /(qn).
There exists a systematic encoder ENCt with redundancy
[logn] + 3[logq] (bits) or [log, n] + 3 (symbols).

On the other hand, the codewords obtained from the encoder
ENCr are not contained in a single g-ary VT code T, ;(n; q).
Recently, Abroshan et al. [27] presented a systematic encoder
that maps binary messages into T, ;(n; q). Unfortunately, the
redundancy of the encoder is as large as logn(logg + 1) +
2(log ¢ — 1) bits, and hence, more than logn +log, n symbols.

III. CORRECTING A SINGLE DELETION OR INSERTION: A
NEW VERSION OF g-ARY VT CODES

A Natural Idea from Binary VT Codes. Recall the design of
the binary VT codes VT, (n) from Construction 1 to correct a
single deletion or insertion. A natural question is whether there
exists a simple VT syndrome over g-ary codewords to correct
single deletion or insertion for arbitrary g > 2. Observe that,
in the construction of Tenengolts [22] (refer to Construction
2), the VT syndrome is enforced over the signature of each
codeword, which is a binary sequence. That is a drawback
leading to the difficulty of designing an efficient encoder as
in the binary case. Consequently, to encode arbitrary messages
into T, ,(n; ¢) by enforcing the VT syndrome over the binary
signature sequences, Abroshan et al. [27] required more than
log, n + logn redundant symbols. A natural solution should
be obtained by enforcing a single VT syndrome over all g-
ary sequences, and consequently, the design of a corresponding
encoder would be simple as in the binary case. On the other



hand, we observe that imposing VT syndrome directly over
every g-ary codeword is not sufficient to correct a deletion or
insertion. For example, it is easy to verify that the following
two sequences z; = x213y and z; = x132y, where x,y are
arbitrary sequences, have the same VT syndrome, however,
share a common sequence in the single error ball as z’ = x13y.
The first contribution of our work is to show that imposing
the VT syndrome over the differential vector of every g-ary
codeword allows us to correct a single error.

A. The Differential VT Codes

Definition 6. Given x € XJ. The differential vector of x,
denoted by Diff(x), is a sequence y = Diff(x) € X} where:

Yi
Yn

Clearly, Diff (x) is a one-to-one function. From y = Diff (x),
we can obtain x = Diff "' (y) as follows.

Tn
T
Construction 3 (The g-ary Differential VT codes). Given

n>0. For q 2 2,a € Zgyn, set
Diff_VTq(n;q) £ {x € X7 : Syn(Diff(x)) = a (mod gn)}.

=x; — 241 (mod ¢q), for 1 <i<n—1,
= T,.

= Yn, and
= Z?:z yj (mod q), forn—1>i>1.

Our main contribution in this section is as follows.

Theorem 3. The code Diff_VT,(n;q) can correct a single
deletion or single insertion in linear time. In other words, there
exists a linear-time decoder DECgpyor 22*1 U Z’;H — X7
such that if x' is obtained from x € Diff_VT,(n;q) after a
deletion or an insertion, we can recover X = DECerror(x' ).
There exists a € Zgy, such that |Diff_VT,(n;q)| > ¢"/(qn).

The following lemmas are crucial to prove Theorem 3.

Lemma 1. Given x € X} and let y = Diff(x) € 2. Suppose
that x' is obtained via x by a deletion at symbol x; for some
1 < i < n. We then have y' = Diff(x') € X7~ and:

(i) If 2 <1 < n, then y;_1y; in y are replaced by one symbol

(Yi—1 +y:) (mod gq).
(ii) If i =1, then y; is deleted in y. In other words, we have

y’ = Y293 ---Yn.-
Proof. We have y = Diff(x), where y; = z; — z;11 (mod ¢)
for1 <i<n—1andy, =x,.
If i = 1, we have ¥ = wxox3...x,. Clearly, Diff(x') =
Y2U3 . .. Yn, OF Yy is deleted in y.

If 2 < i < n, a deletion at x; affects y;_1,y; in Diff (x), as
Yi—1 = Ti—1 — x; (mod ¢) and y; = x; — z;41 (mod q). We
observe that the change in Diff (x") is then

Diﬁ.(x/)i,1 =Ti—1 — Tij+1 (mod q)
= (zi—1 — ®i) + (z; — 2441) (mod q)
= yi—1 + ¥ (mod q).
We conclude that y;_1y; is replaced by y;_1 +vy; (mod ¢). H

Example 1. Consider ¥4 = {0,1,2,3}, and x = 0211301. We
then have y = Diff(x) = 2102331. Suppose that the symbol 2
is deleted in x, resulting x’ = 011301, and Diff (x") = 302331.
In this example, we observe that, z- is deleted in x, and the
resulting y1y> = 21 in Diff(x) is replaced by 3 = y1 + yo.

Lemma 2 (Parity check lemma). Givenn >0, ¢ > 2, and a €
Zgn. Consider x € ¥l such that Syn(Diff(x)) = a (mod gn).
We then have ., x; = a (mod q).

Proof. Let y = Diff (x), where y; = x; — x;41 (mod ¢) for

1<i<n-1andy, = x,. Suppose that Syn(y) = a + kqn
for some positive integer k. We have

n—1
Syn(y) = > iyi + nya
i=1
= Zz(ml — Ziy1) + nx, (mod q)
i=1

= iml (mod gq).
i=1

Since Syn(y) = a+kgn, itimplies Y, ; 2; = a (mod ¢). M

We are now ready to show the correctness of Theorem 3.
Note that any code that corrects k£ deletions if and only if it
can correct k insertions, as established by Levenshtein [23].
Also, a code € can correct a deletion burst of size exactly (or
at most) k if and only if it can correct an insertion burst of
size exactly (or at most, respectively) k (refer to Theorem 2,
Theorem 3 in [16]). Therefore, for simplicity, throughout this
paper, we present the decoding algorithm to correct deletion
errors only.

Proof of Theorem 3. Observe that the lower bound is verified
by using the pigeonhole principle. It remains to show that the
code Diff_VT,(n;¢q) can correct a single deletion.

For a codeword x € Diff_VT,(n;q), let ¥’ be obtained from
x after a deletion of symbol  at index i, i.e. x; = . According
to Lemma 2, we can obtain the value of the deleted symbol as
follows: v = a — Z?:_ll o’ (mod g). It remains to determine
the value of i, i.e. the location of the deleted symbol. Let y =
Diff (x) and y' = Diff (x). We then compute:

A = Syn(y) — Syn(y’) = a — Syn(y’) (mod ¢n), and
n—1
s = Z y;, i.e. the sum of symbols in y'.
j=1
Observe that the code’s parameters such as a, g, n are known,
and the received sequence x’ and its differential vector y’ are
known, hence, the values of A and s can be determined. Let
SR = ).j_;Yj- We show how y can be recovered from y’
and thus x can be recovered based on A and s, which are
computable at the decoder. We now have the following cases.

Case 1. If © = 1, we consider a non-trivial case that y; > 0.
Indeed, if y; = 0, it implies 1 = x5, and such a deletion
in x7 is equivalent to a deletion in x5, which is considered in
Case 2. Thus, we obtain A = y; + Z;:ll y; =y +s>sand
A<q+s.



Case 2. If 2 < ¢ < n, according to Lemma 1, y;_1y; is replaced
by yi_1 + y; (mod q). In other words, in the sequence y' =
Diff (x"), we have y,_; = y;—1 + y; (mod q).

° (221) If Yi—1 + Yi g q— 1, then ygfl = Yi—-1 + Yis and

A = Syn(y) -

= ((z — Dyi1 + iy — (i — Dy 1) Zyy

Syn(y') (mod gn)

:((z’fl)yi_1+iyi (t—=1Dyi1— (i —1)y ) Zyj

n—1
:yi+zy§':8R<5
=i

e« 2b) If ¢ < yi1 +yi < 2(q —.1), from the constraint
Yi_1 = yi—1+y; (mod g), it implies y;_,+q = yi—1+¥;.
We then have

A = Syn(y) -

= ((z — Dyicr + iy — (1 — Dy 1) Zy;

Syn(y") (mod gn)

n—1

=({-Dg+yi+ >y

j=i

n—1
=(i—Dg+@—yi1)+yioi+ >y
=i
1—2
=(i-1g+(q—yi1)+s— > v
j=1

i—2
—g+s+(g—y0)+ ((-20- Y 4)

j=1
>q+s.

Therefore, given the computed values A and s, we can
distinguish all three cases: case 1, case (2a) and case (2b).
Moreover, observe that both s and iq + sz are monotonic
functions in the index ¢. Particularly, it is easy to verify that sp
is decreasing in the index ¢ while 7q+ sg is increasing function
in the index i. For example, if the case (2a) happens, we can
show that if a sequence x; is obtained from x via a deletion at
x;, = v and a sequence xo is obtained from x via a deletion
at z;, = vy for some i; < 42 and x; # x5 then we must have
Ay > Ay, where Ay = Syn(y) —Syn(Diff (x;)) (mod gn) and
Ay = Syn(y) — Syn(Diff(x2)) (mod gn). As shown earlier,
we observe that Ay = 37, y; while Ag =377, y;. Thus,
Ayr—Do =32 y; >0, 0r Ay > Ay, Note that Aj = A, if
and only if y; = 0 for all ¢; < j <2 — 1. In other words, we
have z;, = i, 41 = ... = Ti,—1 = T4,, OF X1 = x2. We have a
contradiction. Therefore, given the value of z; = -, there is a
unique value of ¢ according to the value of A. Similarly, we can
show that 7q + sg is an increasing function in the index ¢ for
case (Zb) Now, to locate the error in y, for (2a), the decoder
scans y' and simply searches for the largest index h where
Z; ,1 y] > A, while for (2b), the decoder scans y and simply
searches for the largest index i where qh—l—z h yj < A. The
error location in x is then ¢ = h + 1.

In conclusion, the code Diff_VT,(n; ) can correct a single
deletion (or equivalently, a single insertion). |

One may modify the decoding algorithm in the proof of
Theorem 3 to obtain a similar decoding algorithm to correct
an insertion. Particularly, from the received sequence, we can
identify the value of the inserted symbol by using Lemma 2
(the parity check lemma). One may develop a similar result as
in Lemma 1 to analyze the error behavior in the differential
vector after one insertion. On the other hand, since Theorem 3
is proven and given the knowledge that Diff_VT,(n;q) can
correct a single deletion or single insertion, there is an alter-
native linear-time decoding algorithm that can be applied to
correct either a deletion or an insertion as follows. After using
Lemma 2, the value of the deleted symbol (or inserted symbol)
is known, and suppose that it is . The decoder then simply
inserts (or removes) a symbol 7 into (or from) an arbitrary
position in the received sequence. Note that there is a unique
codeword that can be obtained so that the Syndrome constraint
is satisfied.

Remark 1. Recall the construction of a binary VT code from
Construction 1 for given n > 0 and an arbitrary integer a €
Zn+1, We have

VT.(n) = {x € {0,1}" : Syn(x) = a (mod (n + 1))}

In [20], Levenshtein showed that the construction can be
extended over an arbitrary modulo N > n + 1 as follows.
Given n > 0, N > n+ 1, and an arbitrary integer a € Zy, we
have the set

VT* (n, N) = {x € {0,1}" : Syn(x) = a (mod N)},

that can correct a single deletion or single insertion (refer
to Theorem 1, [20]). Similarly, it is easy to show that our
construction can also be extended to over modulo ¢N for
arbitrary N > n. We formally state the result in Corollary 1.

Corollary 1 (The modified g-ary Differential VT codes).
Given n,q. For an arbitrary N 2 n,a € Zyn, set

Diff_VT#(n,N;q) =
{x € 3 : Syn(Diff(x)) = a (mod qN)}‘

We then have Diff_VT} (n, N;
correcting code.

q) is a single deletion/insertion

Remark 2. One may construct a code Diff_VT,(n;q) using
different variations of the differential function Diff(x) as fol-
lows. For all values p, 1 < p < ¢— 1 and ged(p, q) = 1, this
coding method works for all p-transformation vector T'p(x),
defined as y; = p(x; — 2;41) (mod ¢) for 1 < i< n—1, and
Yn = PTy. Another variation of the differential vector was used
in [15], [24] for binary codes to correct a burst of at most two
deletions.

We now illustrate the error-decoding procedure through the
following examples.



Example 2. Given n = 10,q = 4,a = 0, ¥4 = {0, 1,2, 3}.
Consider a codeword x = 0103112013 € Diff_VT((10;4). We
obtain y = Diff(x) = 3112032323. It is easy to verify that
Syn(y) = 120 = 0 (mod 40) and Zgl x; =0 (mod 4).

Suppose that we receive x’ = 013112013, i.e. a deletion
occurs at 3 = 0. We then obtain y’ = Diff (x") = 322032323.
Now, to correct x and find out the value of 7, we follow the
decoding procedure in Theorem 3 as follows.

o From x’/, the decoder finds the value of the deleted symbol,
which is @ — > ' 2/ = 0 (mod 4).

o From y’ = Diff(x') = 322032323, the decoder computes:
A =a—Syn(y') =0— 104 = 16 (mod 40),

n—1

S=» yi=3+2+2+3+2+3+2+3=20.
1=1

o Since A < s, the decoder concludes that it belongs to the
case (2a) where the deletion is not at the first position, i.e.
i#1,and y; 1 +y; <q=4.

o Find the error location in y. It can be observed that
S oyl =17> A =16 while 3, _,y/ = 15 < A. The
decoder then concludes that the error in y is at the h = 2
position, and hence, the error in x is att = h+ 1 = 3.

o To correct x, it inserts the symbol O to the third position.

We now consider another case, where we receive a sequence
x’ = 010311213, i.e. a deletion occurs at zg = 0. We then
obtain y' = Diff (x') = 311203123. We verify that y7ys = 23
has been replaced to ¥, = y2 +ys = 1 in y’. Now, to correct x
and find out the value of ¢, we follow the decoding procedure
in Theorem 3 as follows.

o From x/, the decoder finds the value of the deleted symbol,
whichisa —> "'l =0 (0+1+0+3+1+1+2+
1+ 3) =0 (mod 4).

o From y’ = Diff(x’) = 311203123, the decoder computes:

A =a—Syn(y') =0—84 =36 (mod 40),
n—1

s=> yi=3+1+1+2+3+1+2+3=16.
i=1

o Since A > s+ ¢, the decoder concludes that it belongs to
the case (2b) where the deletion is not at the first position,
ie.i#1l,and y; 1 +y; >q=4.

« Find the error location in y. It can be observed that 7 x
44+ 30yl =34 < A =36 while 8 x 43, _cy) =
37 > A. The decoder then concludes that the error in y
is at the h = 7 position, and hence, the error in x is at
i=h+1=8.

« To correct x, it inserts the symbol O to the 8th position.

Example 3. We now consider a special case when the deleted
symbol belongs to a run of identical symbols. Given n =
10,g = 3,a = 7, and a codeword x = 0102122200 €
Diff_VT7(10;3). Suppose that we receive x’ = 010212200,
i.e. one can consider a deletion occurs at either xg, or x7,
or xg. We observe that y = Diff(x) = 2111200200 and
y’ = Diff (x") = 211120200.

The decoding procedure is as follows.

o The decoder computes A = a — Syn(y’) = 2 (mod 30)
and s = 22:1 y; = 9. Since A < s, the decoder
concludes that it belongs to the case (2a).

« Observe that 3 .y} = 4 > A = 2 while 3 _. ¢/ =
0 < A = 2 (¥). The first index where Z?;}} y; > As
then h = 5, i.e. the error in x is at ¢ = h + 1 = 6. On the
other hand, one may also select h = 6,7 according to (*),
i.e. the error is at x; or xg, respectively. Nevertheless, we
obtain the same codeword x = 0102122200.

Remark 3. It is easy to show that our constructed codes
Diff_VT,(n;q), from Construction 3, also support a systematic
linear-time encoder. The design is similar to the construction
of the systematic encoder proposed by Tenengolts [22]. For
message x € E’;, the encoder appends the information of
the VT syndrome of the differential vector of x (of length
m + 1 = [log,n] + 1) into its suffix. In addition, there is a
marker of length two, which serves as a separator between the
data part and the redundancy part (refer to [22]). We illustrate
the main idea of the encoder in Figure la.

B. More Efficient Encoder and Decoder of The Differential VT
codes

In this section, we present a linear-time encoder that en-
codes user data into the constructed differential VT codes
Diff_VT,(n;q) with only [log, n] + 1 redundant symbols.

The differential VT encoder ENCpig v

INPUT: n,q, and a € Zg,, a sequence x € ¥F where k £
n — [log,n] —1

OUTPUT: ¢ = ENCpig vt (x) € Diff_VT,(n;q)

(I) Set m £ [log,n] and S = {¢/~* : j € [m]} U {n} and
I 2 [n]\ S. In other words, the set S includes the nth
index and all the indices that are powers of gq.

D) Sety = y1y2...yn € X7, where ylr =xandy|g =0.In
other words, the symbols in x are filled into y excluding
indices in .S (refer to Figure 1 (b)) and y; = 0 for j € S.

(IlT) Compute the difference a’ = a — Syn(y) (mod gn).
In the next step, we modify y, by setting suitable values
for y; where j € S, to obtain Syn(y) = a (mod gn).
Since 0 <a’ <gn—1,wefind 5,0 <5< qg—1, to be
the number such that Sn < d’ < (8 + 1)n.
(IV) The values for y; where j € S are set as follows.
e Sety, =0, and "’ =d' — Bn < n.
e Let z;_1...2129 be the g-ary representation of a”.
Clearly, since a” < n, the g-ary representation of
a’ is of length at most m = [log, n]. We then have
o =" 2
o Set ygi-1 = 2z for j € [m].

(V) Set ¢ = Difffl(y). In other words, we set ¢, = y,, and

c; = Z;L:Z y; (mod ¢) for 1 <i < n.
(VD) Output c.
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(a) A systematic encoder for non-binary codes correcting a single
deletion using the differential VT codes Diff_VT,(n; g). Here m =
[1ogq n]. The combination 011 at the end of the code sequence plays
the role of the comma between transmitted sequences. The marker pp,
where p = xx + 1 (mod q) serves as separators between the data part
and the redundancy part. Here, the output codewords do not belong to
the same coset of the differential VT codes.

Fig. 1: Our proposed encoders for non-binary codes correcting
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(b) An example of our designed linear-time encoder to encode arbitrary messages
into the differential VT codes Diff_V'T,(n; q) when ¢ = 3. In general, the VT
syndrome Syn(y) is computed in modulo gn while each symbol is computed
in modulo g. The set S includes index n and all powers of ¢g. The message
is of length k = n — ]'logq n] — 1. Here, the output codewords belong to the
same coset of the differential VT codes, i.e. the information of a is known to
the decoder.

a single deletion using the differential VT codes Diff_VT,(n;q).

The construction of a systematic encoder is similar to the work proposed by Tenengolts [22], both incur [log, n] + 3 redundant
symbols, while our best encoder (in Figure (b)) uses only [log, n] + 1 redundant symbols.

Theorem 4. Our constructed encoder ENCpig vt is correct
and has redundancy flogq n] + 1 symbols. In other words,

ENCpig vr(x) € VT4 (n;q) for all x € EZ*“qu -1

Proof. We observe that the user message is of length k =
n — [log, n| — 1, and hence, the redundancy of the encoder is
[log, n]+1 symbols. It remains to show that ENCpig_vT(x) €
VT, (n;q) for all x € EZ.

Suppose that ¢ = ENCp;g_ v (x) for some x € Z’;. It suffices
to show that Syn(Diff(c)) = a (mod ¢n). From Step (V) of
the encoder ENCp;g v, € = Diff_l(y), in other words, y =
Diff(c). It remains to show that Syn(y) = a (mod ¢n).

Recall that from Step (I) of the encoder ENCpig v, S £
{¢=t:je[m]}u{n} and I £ [n]\ S. Therefore,

Syn(y) = > jy; + > jy; (mod gn)

jeSs Jel
=Y ¢yt nyn+ > jy; (mod gn)
j€[m] jeI

=a" +nB+ (a—ad') (mod gn)
(' — Bn) +nB+a—a (mod gn)
a (mod gn).

We illustrate the encoder ENCp;g v via an example.

Example 4. Consider n = 10,¢ = 3 and a = 0. Then m =
[logs10] = 3 and k& = 10 —3 — 1 = 6. Suppose that the
message is x = 220011 and we compute ¢ = ENCpig_yr(x) €
Diff_VTy(10; 3).

(@ Set S={1,3,9,10} and I = {2,4,5,6,7,8}.

(II) The encoder first sets y = y12y320011y9y1¢. It then sets
Y1 = Y3 = Yo = Y10 = 0 to obtain y = 0202001100 and
computes a’ = a — Syn(y) = 0 — 27 = 3 (mod 30).

(II) Since 0 < @’ = 3 < 10, the encoder sets S = 0 and
a’ =a' = 3. It then sets y;0 = 5 =0.

(IV) The 3-ary representation of 3 is then 010. Therefore, the
encoder sets y; = 0, y3 = 1, and y9 = 0 to obtain y =
0212001100. We can verify that Syn(y) = 0 (mod 30).

(V) The encoder outputs ¢ = Diff ~*(y) = 1121222100.

For completeness, we state the corresponding decoder.
The differential VT decoder DECpig vr. Given n,q, and
a € Zgn, m £ [log,n] and k n — m — 1. Given
¢ = ENCpig_vr(x) for some message x € ¥, and suppose
the decoder receives a sequence c’.

INPUT: ¢/ € 01 UBP U Bt
OUTPUT: x = DECp;g_yr(c’) € XF

(I) The decoder follows the error-decoding procedure in
Theorem 3 to obtain ¢ £ DECerror(c’) € X0
(D Set y = Diff(c) € XY, yi = ¢; — cit1 (mod g) for
1<i<n—-1and y, = c,.
() Set S =& {7 ':j€[m]}u{n}and I £ [n]\S.
(IV) Output x = y|; € X%

To conclude this section, the efficiency of our proposed
encoders, compared to previous works, is illustrated in Table II.

IV. CORRECTING A BURST OF FIXED LENGTH: THE
DIFFERENTIAL SHIFTED VT CODES

For arbitrary fixed ¢ > 1, binary codes correcting a burst
of exactly ¢ deletions were proposed in [16], [17]. Recently,
Schoeny et al. [12] extended the construction of binary codes
in [16] to the non-binary regime. To correct a burst of exactly ¢
deletions, for both the binary and non-binary cases, a common
idea is to represent the codewords of length n as a ¢t X n/t
codeword array, where ¢ divides n. Thus, for a codeword x, the
codeword array A;(x) is formed by ¢ rows and n/t columns.
When n/t is not an integer, one can append a sufficient number
of bits/symbols 0 into the suffix of each codeword (see [31]).



Encoder Redundancy (in symbols) Encoding/Decoding Receiver Information Encoder Output Remark
Complexity on Code’s Parameters
Encoder proposed by . . .
Tenengolts [22] using [log, n] + 3 + [log, 3] O(n) not available not in systematic
Ta b(n; q) Ta,b(n; Q)
Encoder proposed by . .
Abroshan er al. [27] > log,n +logy n O(n) VT Syndrome and in Ty 5(n;q) systematic
using T p(n; q) parity check
Systematic encoder . . .
proposed in this work [log, n] + 3 + [log, 3] O(n) not available not in systematic
using Diff_VTq(n; q) Diff_VTa(n;q)
(see Figure la)
Encoder ENCpig_vT . .
proposed in this work [log,n] +1 O(n) VT Syndrome and in non-systematic
using Diff_VTq(n; q) parity check Diff_VTq(n;q)
(see Theorem 4 and
Figure 1b)

TABLE II: Efficient encoders for g-ary codes correcting single deletion or insertion proposed in this work and and those in
literature. For each design category, the most desirable option is highlighted in blue. Particularly, our proposed encoder ENCq
incurs the least redundancy of [log, ] +1 symbols. Here, the receiver information on code’s parameters plays an important role
in error-detecting and error-correcting procedure. For example, it may provide more efficient basis for the design of segmented

deletion/insertion correcting codes (see [28]-[30]).

In this work, for simplicity, we assume that ¢ divides n.
Observe that a burst of ¢ deletions deletes in x exactly one bit
(in binary case) or one symbol (in a non-binary alphabet) from
each row of the array A;(x).

T1 Tt T(j—-1)t+1 L(n/t—1)t+1

T2  Tt42 T(j—1)t+2 L(n/t—1)t+2
Ai(x) = . .

a:‘t Jth DY x]t e Jj/n/

Here, the ith row of the array is denoted by A;(x);, and the
jth column of the array is denoted by A;(x)}. We now briefly
describe the coding methods in [12] to correct a burst of exactly
t deletions in the general g-ary alphabet, ¢ > 2. The overall
coding strategy in [12] is split into two main parts.

o The first row in the array belongs to a g-ary VT code
Tos(n;q) (refer to Construction 2, Section IT) that can
correct a single error. In addition, such a code has an
additional run-length-limited (RLL) property, that restricts
the longest run of identical symbols to be at most ¢ =
[log,n] 4+ O(1). The authors also showed that for suffi-
ciently large n, there exists a runlength-limited encoder
which uses only one redundancy symbol to enforce such
an RLL property. A similar design of such an encoder for
binary codes was proposed in [16], that enforces binary
codewords of maximum run length at most [logn] + 3
with only one redundant bit (see [16, Appendix B]). The
method is based on the sequence replacement technique.
The idea can be extended to non-binary codes whose
maximum runlength is at most [log, | +3 with only one
redundant symbol (for example, see [10]).

o Each of the remaining (¢ — 1) rows in the array is then
encoded using a modified version of the VT code, which
they refer as shifted VT (SVT) code. This code corrects a
single deletion in each row provided the location of the
error is known to be within P consecutive positions. To

obtain the desired redundancy, Schoeny et al. also set P =
¢+ 1= [log,n] +O(1).

Lemma 3 (Nguyen et al. [10]). Given n,q, { = [log, n| + 3.
There exist a linear-time encoder ENCy Ry : 22’_1 — ZZ and
a corresponding decoder DECy Ry, : EZ — Z’;’l such that
the following conditions hold:

e Forallx € Eg_l, we have DEC; rrL, o ENCy i (x) = x,
o If ¢ = ENCy grLL(x) then the maximum run of identical
symbols in ¢ is at most /.

The redundancy of ENCy ry1, is one redundant symbol.

Definition 7 (Refer to [12], [16]). A P-bounded single-
deletion-correcting code is a code in which the decoder can
correct a single deletion given knowledge of the location of
the deleted symbol to within P consecutive positions, i.e. prior
knowledge that the index of the deletion error lies in an interval
[i,1+1,...,i+ P —1], for a specified i € [1,n — P + 1].

Formally, the following results were provided by Schoeny
et al. [12]. Recall that the signature vector of a g-ary vector
x of length n is a binary vector «(x) of length n — 1, where
a(x); = 1if z;41 > x;, and O otherwise, for i € [n — 1].

Construction 4 (g-ary Shifted VT Codes [12]). For 0 < a <
Pand 0 < b < q ¢ € {0,1}, the g-ary shifted VT code
SVTap.c(n, P, q) is defined as:

SVTmb,c(na P7 Q) £
{x € Xy : Syn(a(x)) = a (mod (P + 1)), and

n n—1
Zwi =b (mod q), and Z a(z); = ¢ (mod 2)}
i=1 i=1

Lemma 4 (Schoeny et al. [12]). The code SVT, o(n, P,q) is
a P-bounded single deletion correcting code.



Theorem S (Schoeny et al. [12]). There exists a q-ary code
correcting a burst of exactly t deletions whose number of
redundancy symbols is at most

log,(n/t) + (t — 1)log,(2(log,(n/t) +6) +t + 1.

In term of bits, the redundancy is logn + (t — 1) loglogn +
O(tlogq) bits.

As discussed in Section III, a drawback is the difficulty
of enforcing VT syndrome over the signature vectors of the
codewords. In this section, we extend the idea of the g-ary dif-
ferential VT codes to construct the g-ary differential shifted VT
codes, which are P-bounded single deletion correcting codes,
but more importantly, they support more efficient encoding and
decoding procedures.

A. The Differential Shifted VT Codes
A new version of the g-ary shifted VT codes is as follows.

Construction 5 (g-ary Differential Shifted VT Codes). For
0<a<q(P+1)and 0<b< q, the q-ary differential shifted
VT code Diff_SV'T, y(n; q, P) is defined as:

Diff_SVT, ,(n;q, P) 2 {x € ify = Diff(x) € X7 then

Syn(y) = a (mod ¢(P+1)) and Zyl =b (mod (¢ + 1))}

i=1
Lemma 5. The code Diff_SVT,(n;q, P) is a P-bounded
single deletion correcting code.

Proof. Similar to the proof of Lemma 2, we have that if
Syn(Diff (x)) = a (mod g(P+1)) then we also have the parity
check property, which consequently gives us the information of
the deleted symbol:

1+ x2+ ...+ Tp_1 + 2, = a (mod q).

Suppose that we receive the sequence x' € B(x) of length
n — 1, the deleted symbol is ~, which can be determined from
the parity check property, and the location of the error is within
L=Jii+1,....,i+P—1]forsomei>1landi+ P —1<
n — 1. Recall that according to Lemma 1, for some 7 > 1,
a deletion at symbol z; replaces two symbols y;_1,y; with
yj—1 + y; (mod ¢). Consequently, given y' = Diff(x’) and
the values of ¢ and b, we can verify if y;_; +y; < g¢—1 or
Yj—1 +y; = q as follows:
o If yj_1 +y; < q— 1 then when y;_,y; is replaced by
yj—1 + y; (mod g¢), there is no change in the sum of
symbols in the differential vector. We must have

n—1

>y =b (mod (g +1)).

h=1
¢ On the other hand, if y;_1 +y;
is replaced by the new symbol y;_1 + y;

(D

> q we observe that y;_1y;
— ¢, and hence,

n—1

Z y, =b—¢q (mod (¢+1)) #b (mod (¢ +1)). (2)
h=1
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Now, assume that there are at least two locations in L to insert
the deleted symbol ~, i.e we obtain two different sequences x;
(by inserting ~ at index j;) and x5 (by inserting vy at index
jo) for some i < j; < jo < ¢+ P — 1 so that all the code’s
constraints are satisfied, i.e.

/ / / / / /
X1 = (T, T Y Ty Ty 1, Ty, T ), and
R / ’ / / /
Xo = (T, G g, T T 1 Y Ty Ty )

Let u = Diff(x;) and v = Diff(x3). It is easy to see that
u; = v; for j < ji —2or j = jo+ 1. We consider two cases.
Case 1. If j;1 > 1. As shown in (1) and (2), if x; and x5 share the
same code’s constraints, we must have uj, 1 +u;, = vj,_1 +
vj, since the values of wu; _1 + uj1 and vj,_1 + vj, can be
determined given the knowledge of ¥, ¢ and b. Consequently, it
implies that Z” i = jzjl_l v;. Next, from Syn(u) =
Syn(v) (mod q(P + 1)) we have

Jj1—2 J2 n

Z Juj + Z Juj + Z Ju;j

Jj=1 j=j1—1 Jj=j2+1
J1—2

_ZJUJ+ Z Jju; + Z Jjvuj (mod g(P +1)).

Jj=j1—1 Jj=j2+1

It 1mphes that
] J2

Z Ju; = Z jv; (mod g(P +1)).

Jj=j1—1 Jj=ji—1
We then have
J2 J2—Jj1+2
(1 — 2)( > “;) + D Ui
j=5—1 =1
J2 J2—Jj1+2
= -2( Y w)+ D jurse (mod g(P+1)),
Jj=j1—1 Jj=1
or
J2—Jj1+2 J2—J1+2
> 2= Y, jvjsj-2 (mod g(P +1)).
j=1 j=1
Thus, we obtain two sequences x3,x4 such that
Syn(Diff (x3)) = Syn(Diff(x4)) (mod ¢(P + 1)), where
X3 = (37;‘1—1a%33/jl7~ . 'x32—17x_/7'2)’ and
xg = (@G g, @, 1)

Note that the length of x5 and x4 is j2 — 71 + 2. In addition,
we have jo —j1 +2 < (i +P—1)—i+2= P+1, and hence
we conclude that x3,x4 € Diff_VT}(jo — 51 +2, P+ 1;¢q) for
some 0 < a < ¢(P + 1). Recall that such a code can correct
a single deletion (refer to Corollary 1). On the other hand, we

observe that x”/ = (2, _,,2/ x’ _y,2% ) can be obtained

Ji=1rg10 e =105
from both x3 and x4 by deleting the symbol v. We have a

contradiction.
It remains to consider the case when j; = 1.

Case 2. If j;
[1,2,...P]. Again, according to Lemma 1, if u = Diff(x;

=land 1 < jo < P,ie.? =1and L =

)



then wu; is deleted for some u; < g — 1. Consequently, if v =
Diff(x2), we also have vj,_1 + v;, = u1 < ¢ — 1. Similarly,
we obtain two sequences x5, x}; of length at most (P +1) such
that Syn(Diff(x})) = Syn(Diff (x})) (mod ¢(P + 1)), where

/

/ / /
x3 = (v,2,...25,_q,2},), and

A / /
xy = (o], .., g, 7, 7).

We have a contradiction. We conclude that there is at most one
location to insert the deleted symbol « into x’, and thus, the
constructed g-ary differential VT code Diff_SVT, ;(n; g, P) is
a P-bounded single deletion correcting code. ]

Remark 4. We observe that our designed differential shifted
VT codes Diff SVT, ,(n;¢, P) incur at most one more re-
dundant symbol as compared to the g-ary shifted VT codes,
proposed by Schoeny et al. [12] (refer to Construction 4).
Particularly, the redundancy of a g-ary shifted VT code is
log,(P + 1) + 1 + log,2 symbols while the redundancy
of a differential shifted VT code in Construction 5 is then
log,(P + 1) + 1 +log,(¢q 4 1) symbols. On the other hand,
it provides an alternative simpler, and more efficient encoder
(with the improvement of at least two redundant symbols as
presented in Section III).

For completeness, we present an efficient encoder for the
differential shifted VT codes Diff_SVT, ;(n;q, P), given ar-
bitrary code parameters. Note that, in general, the value of P
is log, n + O(1) = o(n).

Differential SVT Encoder ENCpig_svr. Given n, g, P, where
3¢g(P+1) <n. Given0 <a<¢gP+1)and 0 < b < q.
Set m £ [log, q(P+1)] and k = n — m — 2. The message is
of length k, and hence, the redundancy of our encoder is then
m+ 2 = [log, q(P +1)] + 2 ~ [log, P| + 3.

INPUT: a sequence x € XF, where k £ n—[log, ¢(P+1)]—2
OUTPUT: ¢ = ENCpig_svr(x) € Diff_SVT, 4(n;q, P)

(D Set index ig = 2¢(P + 1) and i; = 3g(P + 1) where
ig,iy < n. Set S = {¢/~t : j € [m]} U {ip,i1} and
I2[n]\S.

Consider y' € X7, where y'|; = x and y'|g = 0. Com-
pute the difference a’ = a — Syn(y’) (mod ¢(P + 1)).
In the next step, we modify y’ to obtain a codeword y
with Syn(y) = a (mod ¢(P + 1)).

Let z,, ...z129 be the g-ary representation of a’. Here,
we note that any number less than g(P + 1) has a
representation of length at most [log, ¢(P+1)]. Suppose
that «’ = > z;¢". Then we set y,—1 = z;_1 for
j € [m].

Next, we set the symbols at the index ig = 2¢(P + 1)
and i1, = 3¢(P + 1) so that

D

i€[n]\{io,i1}

ey

(I1D)

av)
Yip + i, =b— y; (mod (¢ +1)).

(V) Finally, we output ¢ = Diff ! (y).
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Theorem 6. Given n,q, P, where 3g(P +1) < n, 0 <a <
g(P+1) and 0 < b < g, the constructed encoder ENCp;g_gyT
is correct and has redundancy [log, q(P +1)] + 2 symbols. In
other words, ENCpig_gvr(x) € Diff_SVT, ,(n;q, P) for all
x € XF, where k =n — [log, q(P +1)] — 2.

Proof. Suppose that ¢ £ ENCp;g sy (x) for some x € E’;. It
suffices to show that

Syn(Diff(c)) = a (mod ¢(P + 1)) and

> " Diff(c); = b (mod (g + 1)).

i=1
From Step (V), we have ¢ = Difffl(y), i.e. y = Diff(c), and
it remains to show that Syn(y) = a (mod ¢(P+1)). Recall that
from Step (I), S = {¢~1:j € [m]} U {io = 2¢(P + 1),i; =
3¢(P+1)} and I = [n]\ S. Therefore,
Syn(y) =>_jy; + > jy; (mod ¢(P+ 1))
J€S jel
= > @y 24P+ Dygpiny+
j€lm]
+3q(P + 1)ysq(p+1) + ijj (mod ¢(P + 1))
J€I
=a +0+0+ (a—a’) (mod q(P +1))
=a (mod ¢(P +1)).

In addition, from Step (IV), we have
i€[n]\{io,i1}
and hence, it implies that

Yip + Yi, =b— y; (mod (¢ + 1)),

Zyi =b (mod (¢+1)), or
i=1

> Diff(c); = b (mod (g +1)). [ |
i=1

Remark 5. We observe that reserving only one redundant
symbol for the parity check constraint is not sufficient since the
constraint is over modulo (¢+1). Similar to the construction of
the differential VT decoder DECp;g v, one can easily obtain
a corresponding differential shifted VT decoder DECpig svT-
We skip the detailed construction of such a decoder.

B. Codes Correcting a Burst of t Deletions with Efficient
Encoder

We now present a construction of non-binary codes correct-
ing a burst of ¢ deletions, and the coding method is based on
the differential VT codes and the differential shifted VT codes
as presented in earlier sections. Recall that we represent the
codewords of length n as t x n/t codeword arrays, where ¢
divides n. Given ¢ > 1, a code C is called ¢-runlength limited
if the maximum run of identical symbols in every codeword in
C is at most /.



Construction 6 (g-ary t-burst-deletion correcting codes).
Given n,q. Set { = [log,n/t] +3,P = {+ 1. For 0 <
ap < qn/t), 0 < ay < ¢q(P+1) and 0 < b < ¢ let
Cay,az.b(n,t5q) be a set of all sequences x € Xy such that
the following constraints are satisfied:

« Constraints on the first row A;(x);:

(i) Ai(x); € DIff_VT,,(n/t;q), and

(ii) At(x)y is C-runlength limited,

« Constraints on the remaining rows:

Ay(x); € Diff_SVT,, »(n/t;q, P) for 2 <i < t.

Theorem 7. The code Cy4, a0, (n,; q) from Construction 6 can
correct a burst of t deletions, and the redundancy is

log, (n/t) + (t — 1) log, log,(n/t) + O(t) (symbols).

In terms of bits, the redundancy is logn + (t — 1) loglogn +
O(tlog q) bits.

Proof. The error-decoding procedure is similar to the con-
struction of Schoeny et al. [12]. Suppose that a codeword
X € Cay as.b(n,t;q) suffers from a burst of ¢ deletions and
the received sequence is x' € Eg_t. Observe that a burst
of ¢t deletions deletes in x exactly one symbol from each
row of the array A;(x). To recover the first row, the decoder
sets A(x¥')1 = (21, Thy1,- -y, _9)041)- Since the first row
belongs to a differential VT code, the decoder can recover
the first row A;(x); from A;(x");. Note that, after recovering
the first row A;(x)1, the decoder may not identify exactly the
location of the deletion since the deleted symbol would belong
to a run of identical symbols. Nevertheless, since the maximum
run of identical symbols in the first row is at most ¢, we can
locate the error in each of the other rows to be within at most
P = ¢+ 1 positions. Furthermore, since each of the remaining
rows belongs to a differential shifted VT code, the decoder can
recover each row accordingly.

It remains to compute the redundancy of our constructed
code. The redundancy used for the first row in the array A:(x)
is

r1 = log,(qn/t) + 1 = log,(n/t) + 2 (symbols).

Here, log,(qn/t) symbols are used to encode the differen-
tial VT code while one additional symbol is to enforce the
runlength-limited constraint. On the other hand, the redundancy
used for each of the other (¢ — 1) rows in the array A;(x) is

ri = log,(¢(P +1)) +log,(q + 1)
= logq(ﬂogq n/t]+5)+1+ log,, (g + 1)
= log, log,(n/t) + O(1) (symbols) for 2 < i < t.

Thus, the total redundancy of such a code Cq, a,,5(n,t;q) is

r + ZZ:Q r = logq(n/t) + (t — 1)logq logq(n/t) + O()
symbols or logn + (t — 1) loglogn + O(tlog q) bits. |

To conclude this subsection, we provide a linear-time encoder
for such a code C,, 4,5(n,t;q) with given arbitrary code
parameters. Observe that for 2 < ¢ < ¢, the ith row A;(x);
can be encoded/decoded independently by using the differential
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SVT Encoder ENCpig sy, since there is no joint constraint
among these rows. The redundancy to encode each of these
rows is then [log, q(P + 1)] + 2 ~ [log, P] + 3 for any P.
On the other hand, to encode the first row A;(x);, we need
to enforce the runlength-limited constraint with the differential
VT syndrome property. Recall that the encoder ENCp;g v for
a differential VT code of length n (as presented in Section
II-B) uses only [log, n] + 1 redundant symbols.

Lemma 6. Given n,q. Set (' [log,n] + 3, and k
n — [log,n]| — 2. For an arbitrary sequence x € E’;, suppose
that y = ENC@/_RLL(X) S E’;+1 and ¢ = ENCDiH_VT(y) S
Diff_VT,(n;q). We then have the maximum run of identical
symbols in c is at most £ = 2[log, n| + 5.

Proof. Note that the differential VT encoder ENCpig vr of
a code of length n uses only [log,n| + 1 redundant sym-
bols at predetermined positions. Therefore, if the maximum
run of identical symbols in ¢ = ENCpig vr(y) is at least
¢+ 1 = 2[log,n] + 6, in other words, Diff(c) has at least
2[log, n] + 5 consecutive zeros (by definition of a differential
vector), then the sequence y (before inserting [log, n| + 1
redundant symbols) has a run of at least 2[log,n| + 5 —
[log,n] — 1 = [log, n] + 4 zeros. We have a contradiction
since y is ¢'-runlength limited. |

According to Lemma 6, to construct a ¢-burst encoder, we can
set the value of P to be P = (+1 = 2[log, n] +6, and amend
the differential shifted VT code in the last (¢ — 1) rows and
the corresponding encoder for such codes. For completeness,
we present the detailed construction of a t-burst encoder as
follows.

Input. Given ¢, n, ¢’ = [log, n] + 3, £ = 2[log, n] +5, P =
£+1=2[log,n] +6,0<a <q(n/t),0<ay <q(P+1)
and 0 < b < ¢g. The message x € EZ is of length

k= (n/t—nogqn/ﬂ—z)+

first row encoding

(t — 1)(n/t — log, q(P +1)] — 2)

ith row encoding, 2<i<t

=n — [log, n/t] — (t - 1)([logq g(P+1)] + 2) - 2.

We observe that for P = 2[log, ] +6, the total redundancy
is then log,(n/t) + (t — 1)log, log,(n/t) + O(t) symbols or
log n+(t—1) log log n+O(t log q) bits. The encoding procedure
is as follows.

t-Burst-Encoder ENCy st

INPUT: Given n,q, and a sequence x &€ Yk where k is
defined above
OUTPUT: ¥ £ ENC;_purst (%) € Cay.a0.6(n, 5 9)

(I Suppose that x = x1x5 ... x;, where x; includes the first
(n/t—[log, n/t]—2) symbols in x, and for 2 < i < ¢, the
sequence x; is of length exactly n/t—[log, q(P+1)]—2.
We then set k; = n/t — [log,n/t] — 2, and set ky
n/t — [log,q(P +1)] — 2.



(II) Encoding the first row in A;(x):
o Obtain x’l = ENC[/_RLL(xl) S 2731"!‘1
e Obtain Y1 = ENCDiH_VT (x’l) € Diff_VTal (n/t; q)
(IT) Encoding the ith row in A;(x): for 2 < i < ¢, we use
the differential shifted VT encoder to obtain

Y = ENCDig_SVT (xl) € Diff_SVTa%b(n/t; q, P)

(IV) Finally, we output ¢ = y1||yz2]|...||ly: (the interleaved
sequence of y1,y2,...,Y).
The following result is then immediate.

Theorem 8. The encoder ENCy_pyyst is correct. In other words,
the output codewords belong to Cq, o, p(n,t;q) that is capable
of correcting a burst of t deletions. The redundancy of the
encoder is log,(n/t) + (t — 1)log, log,(n/t) + O(t) symbols
or logn + (t — 1) loglogn + O(tlog q) bits.

V. CORRECTING A BURST OF VARIABLE LENGTH

In this section, we focus on the case ¢t = 2, i.e. when there
are at most two deletions. We first review the coding method
of Wang et al. [24]. To correct a burst of at most two deletions,
the authors represent the codewords of length n as a [log g] xn
codeword array, where each symbol in 3, is converted to its
binary representation of length [log ¢]. For a sequence u € X7,

X1 T1,1 X1,2 T1,n
X2 T2,1 x2,2 Z2,n
A(u) = . =
XTlog q] Tlogql,1  Tllogq],2 Llog q1,n

Therefore, the g-ary sequence u is converted to a binary matrix
with [log ¢] rows and n columns. Observe that a burst of up to
two deletions in u spans at most two consecutive columns in
A(u) and there is a burst of up to two deletions in each binary
row. Similar to the case of correcting a burst of ¢ deletions (as
discussed in Subsection IV-A), the overall coding strategy in
[24] is split into two main parts.

o The first row in the array belongs to a binary code that

can correct a burst of at most two deletions, proposed by
Levenshtein in 1967 in [15], that has redundancy logn+1
bits for codewords of length n. In addition, such a code has
an additional pattern length limited (PLL) property, that
restricts the maximum length of any substring with period
2 (refer to Definition 8) to be at most £ = [logn] + O(1).
The authors also showed that the redundancy to enforce
both constraints in the first row is at most logn + 3 (refer
to Construction 4, Lemma 2, [15]).
Each of the remaining ([logg| — 1) rows in the array
belongs to a modified version of the binary shifted VT
code, which can correct a burst of at most 2 deletions
with the positional knowledge (within P positions) after
recovering the first row. To obtain the desired redundancy,
Schoeny et al. also set P ={+ 1 = [logn]| + O(1). The
redundancy used in each of the remaining ([loggq| — 1)
rows is at most loglogn + O(1) bits.

The total redundancy of the coding scheme in [15] is
logn + log gloglog n + O(log q) bits. In this work, we use the
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idea of the differential shifted VT codes to further reduce the
redundancy to construct a code correcting a burst of at most
two deletions. The major difference in our coding scheme is
that we view each g-ary sequence of length n as a matrix with
only two rows and n columns. The mapping is designed as
follows.

Given ¢ > 2. Set ¢’ = [q/2]. For each symbol = € X,
the decomposition of = in Xy is 7(z) = (1, z2) where z1 €
{0,1}, 22 € £y and = z1¢' + z2. For example, when g =
3, we have 7(0) = (0,0),7(1) = (0,1), and 7(2) = (1,0).
When ¢ = 6, we have 7(0) = (0,0),7(1) = (0,1),7(2)
(0,2),7(3) = (1,0),7(4) = (1, 1),7(5) = (1,2).

For a g-ary

sequence x of length n where x

(z1,22,...Ty,), we view it as the following matrix:
D(x) = [ T(x1) T(22) T(Zn) ]

_ T1,1 T1,2 Tin

2,1 T22 T2,n

where the first row D(x); = (z1,1,21,2,...,%1,,) € {0,1}",
the second row D(x)y = (z21,%22,...,%2n) € Xy, and
finally, the ith column 7(x;) = (z;1,7;2)T for 1 < i < n.

Our overall coding scheme is as follows.

o For the first row, we also use the binary codes proposed
by Levenshtein in 1967 in [15] that can correct a burst of
at most two deletions with the PLL constraint as proposed
by Wang et al. [24].

For the second row, which is a ¢’-ary sequence, where
¢’ = [q/2], we then use the differential shifted VT codes
to correct the error given the positional knowledge of
the errors. Before presenting our main contribution, we
summarize the result of Wang et al. [24], which is used
in our construction for the first row.

Definition 8. A sequence x € Y is said to have period 2 if
T; = Tiqpo forall 1 < ¢ < n— 2. A substring u of x is a
subsequence of x consisting of consecutive symbols in x.

Lemma 7 (Lemma 1, Lemma 2, Wang et al. [24]). There exists
a linear-time encodable and decodable binary code correcting
a burst of at most two deletions such that the length of the
longest substring with period 2 is at most [logn| + 5, and the
code redundancy is at most logn + 3 bits.

We now present our main construction of non-binary codes
correcting a burst of at most two deletions with only logn +
3loglogn 4+ O(log q) redundant bits. For simplicity, suppose
that n is even.

Definition 9. For a sequence x = (z1,22,...2,) € E;‘, given
i,s > 0, we define the (;s)-subsequence of x, denoted by
X(i;s)> as follows:

X(izs) = (Ii, Lits; Tit+2ss-- - 7xi+s\_(n—i)/sj)'

We observe that when ¢ = s = 1, we have x(1;1) = x =
(x1,22,...Ty).



Construction 7 (g-ary codes correcting at most two dele-
tions). Given n,q. Let C1 be a code obtained from Lemma 7.
Set ¢ [logn] + 5,P = ¢+ 1 and ¢ = [q/2]. For
a = (a1, az2,a3) and b = (by,ba,bs), where 0 < ay,a2,a3 <
¢ (P+1), 0 <by,ba,bs < ¢, let Cap(n,< 2;q) be a set of
all g-ary sequences of length n such that for each codeword c
the following conditions hold:

e For the first row D(c)1, we must have D(c); € €y
e For the second row D(c)s, suppose that x = D(c)y =
(z1,22,...,%y), we must have:
x = (21,%2,...,2n) € Diff_SVT,, 4, (n;¢’, P) 3)
x(1;2> = (:Bl, T3y, In_l) S Diﬁ_SVTaz,bz (n/2; q/a P)7
“
X(2;2) = (T2, T4, ..., xn) € DIff_SVTa, 4,(n/2;¢', P). (5)

Theorem 9. The code C,p(n, < 2;q) from Construction 7 can
correct a burst of at most two deletions, and there exist sufficient
values of ai,as,as, by, ba, bs such that the redundancy of such
a code Cqp(n, < 2;q) is logn + 3loglogn + O(log q) bits.

Proof. We first show that such a code from Construction 7
can correct a burst of at most two deletions by providing
an error-decoding algorithm. Suppose that from the codeword
¢ € Cap(n, < 2;q), the received sequence is ¢’. Clearly, from
the length of ¢/, we can conclude the number of errors that
occurred. If the length of ¢’ is n then there is no error.

If the length of ¢’ is n — 1, we conclude that there is a
single deletion. Consequently, both rows D(c); and D(c)s
suffer exactly one deletion. Since D(c); € €1, which is a binary
code capable of correcting a burst of up to 2 deletions, we can
recover D(c); uniquely. Next, since the maximum length of
any substring with period 2 in D(c); is at most [logn]| + 5,
the maximum run of identical bits in D(c); is also at most
¢ = [logn] + 5. We then conclude the location of the other
error in D(c)z to be within determined P positions where
P = /+1. We then use the constraint (3) from the construction
that x = D(c)2 = (z1,%2,...,2y,) € Diff_SVT,, 4, (n;¢', P)
to correct the error in D(c)s.

If the length of x' is n — 2, we conclude that there is
a burst of exactly two deletions. Consequently, both rows
D(c); and D(c)2 suffer exactly two consecutive deletions. In
addition, we conclude that each subsequence, x(;;2) Or x(2;2),
suffers exactly a single deletion. Since D(c); € €;, which
is a binary code capable of correcting a burst of up to 2
deletions, we can recover D(c); uniquely. Next, since the
maximum length of any substring with period 2 in D(c); is
at most [logn| + 5, we then conclude the location of the
other error in D(c)s to be within determined P positions where
P = {+1. We then use the constraint (4) from the construction
that x(1,9) = (v1,23,...,2,1) € Diff_SVT,,,(n/2;¢', P)
to correct the error in x(y;2). Similarly, we use the constraint
(5) from the construction that x(2,0) = (72,24,...,2,) €
Diff_SVTq, 1,(n/2;¢', P) to correct x(2,9).

Thus, the code C,p(n,< 2;¢) from Construction 7 can
correct a burst of at most two deletions. It remains to show
the redundancy of our designed codes. According to Lemma 7,
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the redundancy used for the first row is at most logn + 3 bits.
On the other hand, the redundancy for a differential shifted VT
code is [log, ¢'(P+1)]+2 symbols, or log P+ O(log q) bits
(see Theorem 6). In our construction, P = ¢+ 1 = [logn] +6,
and hence, the redundancy for the second row to enforce
three constraints (3), (4), and (5) is at most 3loglogn +
O(log q) bits. Consequently, there exist sufficient values of
a1, as,as, by, ba, bs such that the redundancy of C, p(n, < 2;¢)
is logn + 3loglogn + O(log q) bits. |

Remark 6. The idea of Construction 7 can be extended to con-
struct non-binary codes correcting a burst of up to ¢ deletions.
We still view each g-ary sequence c of length n as a matrix with
exactly two rows and n columns D(c). Similar to the work of
Wang et al. [25], the first row belongs to a binary code that is
capable of correcting a burst of up to t deletions (for example,
refer to the work of Lenz et al. [18] for an efficient design of
such a code) with an additional constraint to restrict the location
of errors. Particularly, in [25], the authors show that it is
possible to locate the errors within O(log n) positions using the
concept of (w, d)-dense string. We then design the constraints
for the second rows as in Construction 7 to handle every single
case of s deletions for any s < ¢. In general, we would need
t(t + 1)/2 such constraints, resulting in a redundancy of at
most t(t + 1) loglogn + o(logq) = O(t?loglogn) bits (see
Example 5). However, the encoding and decoding procedures
are much more complicated than the case of a burst of at most
two errors. We defer the study of codes correcting a burst of
up to t deletions and the design of efficient encoders for such
codes to our future works.

Example 5. To correct a burst of at most three deletions,
for each codeword ¢, the first row D(c); belongs to a binary
code, which is capable of correcting a burst of at most three
deletions with an additional constraint to locate the errors
within O(log n) positions. On the other hand, the constraints for
the second row x = D(x)y = (21,2, ..,%,) are as follows:

= (21,%2,...,2n) € Diff_SVTa, 4, (n; ¢, P) (6)
X12) = (21,23,...,@n-1) € Diff_SVTa, 4, (n/2;¢', P), (1)
X(2.2) = (T2, %4, ...,2n) € Diff_SVTa, 4,(n/2;¢, P), )
x(1.3) = (z1,24,27,...) € Diff_SVTa, s, (n/3;¢, P), ©)
X(2;3) = (@2, 5,28, ...) € Diff_SVTy; »;(n/3; q, P), (10)
X(3.:3) = (T3, 26,29 ...) € Diff_SVTaq 4(n/3;¢, P). (11)

We observe that when there is exactly one deletion, the
constraint (6) is sufficient to correct the error in the second
row x = D(x)3. On the other hand, when there is a burst of
two deletions, the decoder uses the constraints (7) and (8) to
correct the errors in x(1;2) and X(2;2), accordingly. Similarly,
when there is a burst of three deletions, the decoder uses the
remaining constraints (9), (10), and (11) to correct the errors
in x(1;3), X(2;3) and x(3;3), when each of them suffers from a
single deletion.

To conclude this section, we present an efficient encoder for
non-binary codes correcting a burst of at most two deletions
with logn + 3loglogn + O(log ¢) redundant bits, which sig-



nificantly improves on the redundancy logqlogn + O(logq)
bits of the encoder in [25]. Recall that in Construction 7,
for each codeword ¢, the rows D(c); and D(c)2 can be
encoded independently. While the construction for a binary
code satisfying the constraints required in the first row was
presented in [25], it remains to present an efficient encoding
algorithm for the second row D(c¢)s.

Note that the redundancy used in the differential shifted
VT encoder ENCpig_sv is [log, ¢(P + 1)] 4 2 symbols (see
Theorem 6), where [log, ¢(P+1)| symbols are used to enforce
the syndrome constraint and the other two symbols are used to
enforce the parity check constraint.

Construction 8. Given n,q, P, where ¢ > 2. Set k = n —
3([log, q(P+1)]42)—7, m = [log, q(P+1)]. We construct
an encoder ENC* : E’q“ — Xy as follows. Suppose that k is
even and for a sequence x = (x1,Z2,...xx) € LF, we obtain:

a; = Syn(Diff (x)) (mod ¢(P + 1)),
ag = Syn(Diff (x(1,2))) (mod ¢(P + 1)),
az = Syn(Diff(x(2,2))) (mod ¢(P + 1)),

and

k
by =Y _Diff(x); (mod (¢ + 1)),

k/2
b2 = ZDIH(X(12))Z (mod (q + 1)),
i=1

k/2
by = ZDiﬁ(X(m))i (mod (¢ +1)).
i=1

Let uq,us,us be the q-ary representation of length m
[log, q(P + 1)] of a1,az, and a3, respectively. On the other
hand, let v1,v2,v3 be the q-ary representation of length 2 of
b1, ba, and bs, respectively. Recall the last symbol in x is x, and
suppose that the first symbol in uy is B. Let vy be the smallest
symbol in ¥, that is different from x), and 8, and obtain a
marker M = (i, xk,7,7,7,0,5) of length 7. We then set
ENC*(x) = xMu,v1u02u303 € X7,

Theorem 10. Let C = {ENC*(x) tx € E’;}. We then have
that C can correct a burst of at most two deletions given the
knowledge of the location of the deleted symbols to be within
P consecutive positions.

Proof. Suppose that ¢ = ENC*(x) for some x € X% and the
decoder receives a sequence ¢’, which is obtained from ¢ via
a burst of at most two deletions. Recall the construction of the
marker M = (x,xk,7,7,7,5,8) of length 7, hence, when
there is a burst of at most two deletions, we must have ¢}, =
Tk, Cyps = v and ¢ = B. Therefore, given the received
sequence ¢, the decoder is able to get the information of xy,
the last symbol in x, the symbol ~, and finally 3, which is the
first symbol in ;. Base on the information of the marker M,
it is able to locate the burst of at most two deletions, whether
in x, or in the marker M, or in the suffix u,vusv2u3V3.
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o If the errors occur at the marker M or in the suffix
u101U20u303, the decoder concludes that there is no
error in x and simply takes the prefix of k£ symbols as the
original sequence x. To recover the suffix u;vusv2u3v3,
it proceeds to recompute a1, as,as, b1, b, bz as in Con-
struction 8, and recover the suffix #,vu209u303.

On the other hand, if the errors occur within the first &
symbols in x, the decoder concludes that there is no error
in the suffix u;v,usv2u3v3. Based on the information of
this suffix and given the knowledge of the location of the
deleted symbols to be within P consecutive positions, the
decoder follows the error-decoding procedure in Lemma
5 (refer to the g-ary differential shifted VT codes, Con-
struction 5) to correct the errors in x.

In conclusion, the code € = {ENC*(x) :x € Xk can correct
a burst of at most two deletions given the knowledge of the
location of the deleted symbols to be within P consecutive
positions. |

The following result is then immediate.

Corollary 2. There exists a linear-time encoder ENC and a
corresponding decoder DEC for non-binary codes correcting
a burst of at most two deletions (or two insertions) with
redundancy logn + 3loglogn + O(log q) bits.

VI. CONCLUSION

We have presented a new version of non-binary VT codes
that are capable of correcting a single deletion or single inser-
tion, providing an alternative simpler and more efficient encoder
of the construction by Tenengolts [22]. Our construction is
based on the differential vector, and the codes are referred to as
the differential VT codes. In addition, we have provided linear-
time algorithms that encode user messages into these codes
of length n over the g-ary alphabet for ¢ > 2 with at most
[logq n]+ 1 redundant symbols, while the optimal redundancy
required is at least log, n +log,(q — 1) symbols. Our designed
encoder reduces the redundancy of the best-known encoder of
Tenengolts [22] by at least 2 redundant symbols or equivalently
2log, q bits.

Moreover, we have introduced the q-ary differential shifted
VT codes to construct non-binary codes correcting a burst of
deletions (or insertions). Particularly, when there are at most
two errors, our designed codes incur logn + 3loglogn +
O(log q) redundant bits, which improves a recent result of
Wang et al. [24] with redundancy logn + O(log gloglogn)
bits for all ¢ > 8. We have also presented an efficient encoder
for codes correcting a burst of exactly ¢ deletions (or insertions)
for arbitrary ¢ > 1, while the design of the encoder for codes
correcting a burst of variable length (when the length is up to
t for arbitrary ¢ > 3) is deferred to our future work.
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