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Abstract—The problem of correcting deletions and insertions
has recently received significantly increased attention due to
the DNA-based data storage technology, which suffers from
deletions and insertions with extremely high probability. In this
work, we study the problem of constructing non-binary burst-
deletion/insertion correcting codes. Particularly, for the quater-
nary alphabet, our designed codes are suited for correcting a
burst of deletions/insertions in DNA storage.

Non-binary codes correcting a single deletion or insertion were
introduced by Tenengolts [1984], and the results were extended to
correct a fixed-length burst of deletions or insertions by Schoeny et
al. [2017]. Recently, Wang et al. [2021] proposed constructions of
non-binary codes of length n, correcting a burst of length at most
two for q-ary alphabets with redundancy log n+O(log q log log n)
bits, for arbitrary even q. The common idea in those constructions
is to convert non-binary sequences into binary sequences, and the
error decoding algorithms for the q-ary sequences are mainly
based on the success of recovering the corresponding binary
sequences, respectively.

In this work, we look at a natural solution that the error
detection and correction algorithms are performed directly over
q-ary sequences, and for certain cases, our codes provide a more
efficient encoder with lower redundancy than the best-known
encoder in the literature. Particularly,

• (Single-error correction codes) We first present a new version
of non-binary VT codes that are capable of correcting a single
deletion or single insertion, providing an alternative simpler
and more efficient encoder of the construction by Tenengolts
[1984]. Our construction is based on the differential vector,
and the codes are referred to as the differential VT codes. In
addition, we provide linear-time algorithms that encode user
messages into these codes of length n over the q-ary alphabet
for q ⩾ 2 with at most ⌈logq n⌉+1 redundant symbols, while
the optimal redundancy required is at least logq n+logq(q−1)
symbols. Our designed encoder reduces the redundancy of
the best-known encoder of Tenengolts [1984] by at least 2
redundant symbols or equivalently 2 log2 q bits.
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• (Burst-error correction codes) We use the idea of the binary
shifted VT codes to define the q-ary differential shifted VT
codes, and propose non-binary codes correcting a burst of up
to two deletions (or two insertions) with redundancy log n+
3 log log n+O(log q) bits, which improves a recent result of
Wang et al. [2021] with redundancy log n+O(log q log log n)
bits for all q ⩾ 8. We then extend the construction to design
non-binary codes correcting a burst of either exactly or at
most t deletions (or insertions) for arbitrary t ⩾ 2.

I. INTRODUCTION

Codes correcting deletions and insertions are important for
many data storage systems such as the bit-patterned media
magnetic recording systems [2] and racetrack memory devices
[3]. Insertions and deletions may also occur due to the syn-
chronization errors in communication systems [4] and mobile
data [5]. Furthermore, the problem of correcting such errors
has recently received significantly increased attention due to
the DNA-based data storage technology, which suffers from
deletions and insertions with extremely high probability [6]–
[10]. Designing codes for correcting deletions and/or insertions
is well-known to be a challenging problem, even in the most
fundamental settings with only a single error. One of the
challenges that make deletions or insertions more destructive
than substitutions is that only a small number of errors can
cause the original data sequences and the received sequences
to be vastly different under the Hamming metric.

In this work, we focus on the design of non-binary codes
that are capable of correcting a burst of deletions (or inser-
tions), where a burst refers to a block of errors that occur in
consecutive symbols. This has been pointed out as a typical type
of error that arises in DNA-based data storage technology that
uses nanopore sequencing technologies [11], [12]. In addition,
in wireless communications, burst errors also occur with high
frequency due to multi-path fading [13], [14]. In this work,
not only are we interested in constructing large error-correction
codes, we desire efficient encoders and decoders that map arbi-
trary user data into these codes and vice versa. In general, code
design takes into account the lowest redundancy required to
correct such errors with fast encoding and decoding procedures.
In this work, we define Bt(x) to be the set of sequences that
can be obtained from x via a burst of either t deletions or t
insertions. Similarly, B⩽t(x) is the set of sequences that can



be obtained from x via a burst of at most t deletions or at most
t insertions.

Over the q-ary alphabet, q ⩾ 2, consider a channel model
with codewords of length n and a given error ball function B.
Suppose that the optimal redundancy required to correct such
errors is rn,q,B; then two crucial coding theory problems are:
P1: Code Construction. Can one construct the largest-size
code C of length n, whose redundancy, denoted by rC, should
satisfy that limn→∞(rC − rn,q,B) = 0?
P2: Encoder/Decoder Design. Can one design an efficient
encoder ENC (and a corresponding decoder DEC) that encodes
arbitrary user messages into codewords of length n in C such
that the redundancy of the encoder ENC, denoted by rENC,
should satisfy that limn→∞(rENC − rC) = 0?

In the literature, the problems of constructing codes (problem
P1) correcting a burst of exactly t deletions (or exactly t
insertions), also known as fixed-length burst, and a burst of
at most t deletions (or at most t insertions), also known as
variable-length burst have both been studied, with the latter
being the more complex problem [15]–[25]. On the other hand,
designing efficient encoders (problem P2) is crucial for practical
applications, however, in many settings, it remains an open
challenge, even in the most fundamental settings with only a
single error.
Non-binary single-error correction codes. The first challenge
comes from extending the coding solutions in binary codes
to non-binary codes. Particularly, while the problems of giv-
ing nearly-optimal explicit constructions of single-deletion (or
single-insertion) correction codes (P1) and designing nearly-
optimal encoders for such codes (P2) over the binary alphabet
have been settled for more than 50 years, the approach fails to
be extended to the case of q-ary alphabet for any fixed q > 2.
In particular, to correct a single deletion or single insertion, we
have the celebrated class of Varshamov-Tenengolts (VT) codes.
In 1965, Varshamov and Tenengolts introduced the binary
VT codes to correct asymmetric errors [19], and Levenshtein
subsequently showed that such codes can be used for correcting
a deletion or insertion with a simple linear-time decoding
algorithm [20]. For codewords of length n, the binary VT codes
incur log(n+1) redundant bits 1 , while the optimal redundancy,
provided in [20], is at least log n bits. Curiously, even though
the binary VT codes and efficient decoding algorithm were
known since 1965, a linear-time encoder for such codes was
only proposed by Abdel-Ghaffar and Ferriera in 1998 [21],
which used ⌈log(n+1)⌉ redundant bits. We observe that, over
the binary alphabet, (P1) and (P2) are solved asymptotically
optimal:

rn,2,B1
⩾ log n, rC = log(n+ 1), and rENC = ⌈log(n+ 1)⌉.

Here, we have

lim
n→∞

(rC − rn,2,B1) = lim
n→∞

(rENC − rC) = 0.

1In this work, for simplicity, we use the notation “log” without the base to
refer to the logarithm of base two.

For the non-binary alphabet, in 1984, a non-binary version
of the VT codes was proposed by Tenengolts [22], and the
constructed codes can correct a single deleted or inserted
symbol in the q-ary alphabet with a linear-time decoder for
any q > 2. The construction of Tenengolts retains the attractive
properties of the binary VT codes, such as the simple decoding
algorithm. For codewords of length n, such codes incur at most
logq n + 1 redundant symbols. In the same paper, Tenengolts
also provided an upper bound for the cardinality of any q-ary
codes of length n correcting a deletion or insertion, which is
at most qn/((q − 1)n), and hence, the minimum redundancy
required is at least logq n + logq(q − 1) symbols. Unlike the
binary case, designing an efficient encoder that encodes arbi-
trary user messages into Tenengolts’ code is a challenging task
(refer to Section III-A for detailed discussion). To overcome the
challenge, several attempts have been made in three variations:

• Targeting a specific value of q. When q = 4, Chee et
al. [26] presented a linear-time quaternary encoder that
corrects a single deletion or insertion with ⌈log4 n⌉ + 1
redundant symbols. The redundancy is asymptotically op-
timal. Unfortunately, the approach fails to be extended to
the case of q-ary alphabet for arbitrary q > 2.

• Using more redundancy. Abroshan et al. [27] presented a
systematic encoder that maps user messages into a single
q-ary VT code as constructed in [22] with complexity that
is linear in the code length. Unfortunately, the redundancy
of this encoder is more than logq n + log n symbols (see
Section II).

• Relaxing the condition for output codewords. In [22],
Tenengolts provided a systematic encoder that requires at
least ⌈logq n⌉ + 3 symbols, which is the best-known en-
coder for codes that correct a single deletion or insertion.
In terms of redundancy, a natural question is: can one
construct a linear-time encoder with at most r redundant
symbols, where logq n+ logq(q− 1) ⩽ r < ⌈logq n⌉+3?
In addition, The drawback of the encoder in [22] is
that the codewords obtained from this encoder are not
contained in a single q-ary VT code. Note that to correct
a single deletion or insertion, it is not necessary that all
the codewords must belong to the same coset of q-ary
VT codes. Nevertheless, when the words share the same
parameters, Abroshan et al. [27] demonstrated that these
codes can be adapted to correct multiple insertion/deletion
errors, in the context of segmented edits [28]–[30].

Our contribution for single-error correction codes. Motivated
by the code design problem above, we present a new version of
non-binary VT codes that give asymptotically optimal solutions
for (P1) and (P2), as follows:

rn,q,B1
⩾ logq n+ logq(q − 1), while

rC = logq n+ 1, and rENC = ⌈logq n⌉+ 1.

We observe that (P1) and (P2) are now solved asymptotically
optimal since

lim
n→∞

(rC − rn,q,B1
) = lim

n→∞
(rENC − rC) = 0.
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Our construction is based on the differential vector, and the
codes are referred to as the differential VT codes. Our con-
structed codes have the same cardinality and redundancy, as
compared to the best known q-ary single deletion/insertion
codes constructed by Tenengolts [22]. On the other hand, our
proposed code construction method supports more efficient
encoding and decoding procedures (in other words, it enables
an easier method to solve (P2)). Consequently, our best encoder
uses at most ⌈logq n⌉+1 redundant symbols, and hence, it re-
duces the redundancy of the best known encoder of Tenengolts
[22] by at least 2 redundant symbols, or equivalently 2 log q
redundant bits.

Non-binary burst-error correction codes. The earliest work
on the subject, proposed by Levenshtein in 1967 [15], provided
an efficient construction of binary codes capable of correcting
a burst at most two deletions (or two insertions) that had
redundancy log n+1 for codewords of length n. Binary codes
correcting a burst of deletions (or insertions) were later pro-
posed in [16], [18]. Particularly, for an arbitrary constant t > 1,
Schoeny et al. [16] proposed binary codes correcting a burst of
length exactly t, while the work of Lenz and Polyanskii in [18]
can correct a burst of variable length up to t. Note that, there is
a significant difference between codes that can correct a burst of
length at most t and a burst of length exactly t, as a code of the
earlier type can correct errors of the latter, but the converse is
not true in general. Over the general q-ary alphabet, recently,
Wang et al. [24] proposed constructions of codes of length
n, correcting a burst of length at most two with redundancy
log n+O(log q log log n) bits, for arbitrary even q. The results
were later extended to construct non-binary codes correcting
a burst of up to t deletions (or insertions) in [25]. However,
designing efficient encoders (problem P2) for such constructed
codes remains an open challenge, even in the case of t = 2.
Particularly, to correct a burst of at most 2 errors, the authors
[25] provided a systematic construction of encoder, however,
the redundancy is roughly log q log n+O(log q), which is much
larger than the constructed codes whose redundancy was only
log n+O(log q log log n) bits.

Our contribution for burst-error correction codes. We use
the idea of the binary shifted VT codes to define the q-ary
differential shifted VT codes, which is crucial to the construction
of q-ary codes correcting a burst of errors. Given t > 0, we
propose non-binary codes correcting a burst of either exactly or
at most t deletions/insertions. Particularly, for t = 2 and a given
q-ary alphabet, we construct non-binary codes of length n that
can correct a burst of at most two deletions or two insertions
with redundancy log n + 3 log log n + O(log q) bits, which
improves a recent result of Wang et al. [2021] with redundancy
log n + O(log q log log n) bits for all q ⩾ 8. In addition,
we present a linear-time encoder that encodes arbitrary user
messages into non-binary codes correcting a burst of at most
two deletions with redundancy log n + 3 log log n + O(log q)
bits, which improves the redundancy of the encoder in [25].
We then extend the coding method to correct a burst of exactly
t errors (or at most t errors) for an arbitrary value of t.

The remainder of this paper is organized as follows. We first
go through notations and some preliminary results in Section
II. In Section III-A, we focus on the single error correction
code, i.e. t = 1, and present a new version of non-binary VT
codes, which are referred to as the differential VT codes. In
addition, in Section III-B, we present a linear-time encoder that
encodes user messages into the codes, and for codewords of
length n over the q-ary alphabet, our designed encoder uses
at most ⌈logq n⌉ + 1 redundant symbols. The efficiency of
our proposed encoders, compared to previous works on single
error correction codes, is illustrated in Table II. In Section
IV, we introduce the differential shifted VT codes and propose
non-binary codes correcting a burst of exactly t errors with
redundancy log n + (t − 1) log log n + O(t log q) bits, and
design linear-time encoders for such codes. We then extend
the coding method to correct at most t deletions in Section
V. Finally, Section VI concludes the paper. A summary of our
contributions is illustrated in Table I.

II. PRELIMINARY

Let Σq denote an alphabet of size q, where Σq =
{0, 1, 2, . . . , q − 1}. For any positive integer m < n, we let
[m,n] denote the set {m,m+ 1, . . . , n} and [n] = [1, n].

Given two sequences x and y, we let xy denote the con-
catenation of the two sequences. In the special case where
x, y ∈ Σn

q , we use x||y to denote their interleaved sequence
x1y1x2y2 . . . xnyn. For a subset I = {i1, i2, . . . , ij} of co-
ordinates, we use x|I to denote the vector xi1xi2 . . . xij . A
sequence y is said to be a subsequence of x, if there exists a
subset of coordinates I such that y = x|I . We now introduce
the definition of a burst of deletions or insertions.

Definition 1. Given x = (x1, x2 . . . , xn) ∈ Σn
q . We say

that x suffers a burst of t deletions if exactly t consecutive
symbols have been deleted from x, resulting a subsequence
x′ = (x1, x2, . . . , xi, xi+t+1, xi+t+2, . . . , xn) ∈ Σn−t

q for
some i ∈ [n − t]. On the other hand, we say that x suf-
fers a burst of t insertions if exactly t consecutive inser-
tions have occurred from x, resulting a subsequence x′′ =
(x1, x2, . . . , xj , y1, y2, . . . , yt, xi+1, xi+2, . . . , xn) ∈ Σn+t

q for
some i ∈ [n]. Similarly, we say x suffers a burst of up to
t deletions if s1 consecutive symbols have been deleted for
some s1 ⩽ t, or x suffers a burst of up to t insertions if s2
consecutive insertions have occurred for some s2 ⩽ t.

In this work, we define Bt(x) to be the set of sequences that
can be obtained from x via a burst of either t deletions or t
insertions. Similarly, B⩽t(x) is the set of sequences that can
be obtained from x via a burst of at most t errors.

Definition 2. Let C ⊆ Σn
q . We say that C corrects a burst of

t deletions or t insertions if and only if Bt(x) ∩ Bt(y) = ∅
for all distinct x, y ∈ C. Similarly, we say that C can correct
a burst of up to t deletions or up to t insertions if and only if
B⩽t(x) ∩B⩽t(y) = ∅ for all distinct x, y ∈ C.

3



Size of burst (P1) Redundancy of the constructed
code C

(P2) Redundancy of the encoder for C

Tenengolts [22] = 1 logq n+ 1 (symbols) ⌈logq n⌉+ 3 (symbols)

This work = 1 logq n+ 1 (symbols) ⌈logq n⌉+ 1 (symbols)

Wang et al. [24] ⩽ 2 logn+O(log q log logn) (bits) log q logn+O(log q) (bits)

This work ⩽ 2 logn+ 3 log log n+O(log q) (bits) logn+ 3 log log n+O(log q) (bits)

Schoeny et al. [12] = t logn+ (t− 1) log log n+O(t log q)
(bits)

NA

This work = t logn+ (t− 1) log log n+O(t log q)
(bits)

logn+ (t− 1) log log n+O(t log q)
(bits)

Wang et al. [25] ⩽ t logn+O(log q log logn) (bits) NA

This work ⩽ t logn+O(t2 log logn) +O(t log q)
(bits)

NA

TABLE I: Related works for non-binary codes in the literature and the main contributions of this work.

For a code C ⊆ Σn
q , the redundancy is measured by the value

rC = n− logq |C| (in symbols) or n log q − log |C| (in bits). In
this work, not only are we interested in constructing large error-
correction codes (problem P1), we desire an efficient encoder
that maps arbitrary user data into these codes (problem P2).

Definition 3. The map ENC : Σk
q → Σn

q is a t-burst-encoder
if there exists a decoder map DEC : Σn+t

q ∪Σn
q ∪Σn−t

q → Σn
q

such that the following conditions hold:
• For all x ∈ Σk

q , we have DEC ◦ ENC(x) = x,
• If c = ENC(x) and c′ ∈ Bt(c), then DEC(c′) = x.

Hence, we have that the code C = {c : c = ENC(x), x ∈ Σk
q}

and |C| = qk. The message length is k while the codeword
length is n. The redundancy of the encoder is measured by the
value n−k (in symbols) or (n−k) log q (in bits). A ⩽t-burst-
encoder can be defined similarly.

Definition 4. For q ⩾ 2, the VT syndrome of a q-ary sequence
x ∈ Σn

q is defined to be Syn(x) =
∑n

i=1 ixi.

To correct a single deletion or single insertion, we have the
celebrated class of Varshamov-Tenengolts (VT) codes.

Construction 1 (Binary VT codes [19]). Given n > 0 and
q = 2. For a ∈ Zn+1, let

VTa(n) =
{

x ∈ {0, 1}n : Syn(x) = a (mod (n+ 1))
}
.

Theorem 1 (Levenshtein, 1965 [20]). For a ∈ Zn+1, VTa(n)
can correct a single deletion or a single insertion. There exists
a ∈ Zn+1 such that VTa(n) has at least 2n/(n+1) codewords,
and the redundancy of the code is at most log(n+ 1) bits.

Over the nonbinary alphabet, in 1984, Tenengolts [22] gen-
eralized the binary VT codes to q-ary VT codes for any fixed
q-ary alphabet. Crucial to the construction of Tenengolts in [22]
was the concept of the signature vector defined as follows.

Definition 5. The signature vector of a q-ary vector x of length
n is a binary vector α(x) of length n− 1, where α(x)i = 1 if
xi+1 ≥ xi, and 0 otherwise, for i ∈ [n− 1].

Construction 2 (q-ary VT codes as proposed in [22]). Given
n, q > 0, for a ∈ Zn and b ∈ Zq , set

Ta,b(n; q) ≜
{

x ∈ Zn
q : α(x) ∈ VTa(n− 1),

and
n∑

i=1

xi = b (mod q)
}
.

Theorem 2 (Tenengolts, 1984 [22]). The set Ta,b(n; q) forms a
q-ary single deletion/insertion correction code and there exists
a and b such that the size of Ta,b(n; q) is at least qn/(qn).
There exists a systematic encoder ENCT with redundancy
⌈log n⌉+ 3⌈log q⌉ (bits) or ⌈logq n⌉+ 3 (symbols).

On the other hand, the codewords obtained from the encoder
ENCT are not contained in a single q-ary VT code Ta,b(n; q).
Recently, Abroshan et al. [27] presented a systematic encoder
that maps binary messages into Ta,b(n; q). Unfortunately, the
redundancy of the encoder is as large as log n(log q + 1) +
2(log q−1) bits, and hence, more than log n+logq n symbols.

III. CORRECTING A SINGLE DELETION OR INSERTION: A
NEW VERSION OF q-ARY VT CODES

A Natural Idea from Binary VT Codes. Recall the design of
the binary VT codes VTa(n) from Construction 1 to correct a
single deletion or insertion. A natural question is whether there
exists a simple VT syndrome over q-ary codewords to correct
single deletion or insertion for arbitrary q > 2. Observe that,
in the construction of Tenengolts [22] (refer to Construction
2), the VT syndrome is enforced over the signature of each
codeword, which is a binary sequence. That is a drawback
leading to the difficulty of designing an efficient encoder as
in the binary case. Consequently, to encode arbitrary messages
into Ta,b(n; q) by enforcing the VT syndrome over the binary
signature sequences, Abroshan et al. [27] required more than
logq n + log n redundant symbols. A natural solution should
be obtained by enforcing a single VT syndrome over all q-
ary sequences, and consequently, the design of a corresponding
encoder would be simple as in the binary case. On the other
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hand, we observe that imposing VT syndrome directly over
every q-ary codeword is not sufficient to correct a deletion or
insertion. For example, it is easy to verify that the following
two sequences z1 = x213y and z2 = x132y, where x, y are
arbitrary sequences, have the same VT syndrome, however,
share a common sequence in the single error ball as z′ = x13y.
The first contribution of our work is to show that imposing
the VT syndrome over the differential vector of every q-ary
codeword allows us to correct a single error.

A. The Differential VT Codes

Definition 6. Given x ∈ Σn
q . The differential vector of x,

denoted by Diff(x), is a sequence y = Diff(x) ∈ Σn
q where:{

yi = xi − xi+1 (mod q), for 1 ⩽ i ⩽ n− 1,
yn = xn.

Clearly, Diff(x) is a one-to-one function. From y = Diff(x),
we can obtain x = Diff−1(y) as follows.{

xn = yn, and
xi =

∑n
j=i yj (mod q), for n− 1 ⩾ i ⩾ 1.

Construction 3 (The q-ary Differential VT codes). Given
n > 0. For q ⩾ 2, a ∈ Zqn, set

Diff VTa(n; q) ≜
{

x ∈ Σn
q : Syn(Diff(x)) = a (mod qn)

}
.

Our main contribution in this section is as follows.

Theorem 3. The code Diff VTa(n; q) can correct a single
deletion or single insertion in linear time. In other words, there
exists a linear-time decoder DECerror : Σn−1

q ∪ Σn+1
q → Σn

q

such that if x′ is obtained from x ∈ Diff VTa(n; q) after a
deletion or an insertion, we can recover x = DECerror(x′).
There exists a ∈ Zqn, such that

∣∣Diff VTa(n; q)
∣∣ ⩾ qn/(qn).

The following lemmas are crucial to prove Theorem 3.

Lemma 1. Given x ∈ Σn
q and let y = Diff(x) ∈ Σn

q . Suppose
that x′ is obtained via x by a deletion at symbol xi for some
1 ⩽ i ⩽ n. We then have y′ = Diff(x′) ∈ Σn−1

q and:
(i) If 2 ⩽ i ⩽ n, then yi−1yi in y are replaced by one symbol

(yi−1 + yi) (mod q).
(ii) If i = 1, then y1 is deleted in y. In other words, we have

y′ = y2y3 . . . yn.

Proof. We have y = Diff(x), where yi = xi − xi+1 (mod q)
for 1 ⩽ i ⩽ n− 1 and yn = xn.

If i = 1, we have x′ = x2x3 . . . xn. Clearly, Diff(x′) =
y2y3 . . . yn, or y1 is deleted in y.

If 2 ⩽ i ⩽ n, a deletion at xi affects yi−1, yi in Diff(x), as
yi−1 = xi−1 − xi (mod q) and yi = xi − xi+1 (mod q). We
observe that the change in Diff(x′) is then

Diff(x′)i−1 = xi−1 − xi+1 (mod q)

= (xi−1 − xi) + (xi − xi+1) (mod q)

= yi−1 + yi (mod q).

We conclude that yi−1yi is replaced by yi−1+yi (mod q). ■

Example 1. Consider Σ4 = {0, 1, 2, 3}, and x = 0211301. We
then have y = Diff(x) = 2102331. Suppose that the symbol 2
is deleted in x, resulting x′ = 011301, and Diff(x′) = 302331.
In this example, we observe that, x2 is deleted in x, and the
resulting y1y2 = 21 in Diff(x) is replaced by 3 = y1 + y2.

Lemma 2 (Parity check lemma). Given n > 0, q ⩾ 2, and a ∈
Zqn. Consider x ∈ Σn

q such that Syn(Diff(x)) = a (mod qn).
We then have

∑n
i=1 xi ≡ a (mod q).

Proof. Let y = Diff(x), where yi = xi − xi+1 (mod q) for
1 ⩽ i ⩽ n− 1 and yn = xn. Suppose that Syn(y) = a+ kqn
for some positive integer k. We have

Syn(y) =
n−1∑
i=1

iyi + nyn

≡
n∑

i=1

i(xi − xi+1) + nxn (mod q)

≡
n∑

i=1

xi (mod q).

Since Syn(y) = a+kqn, it implies
∑n

i=1 xi ≡ a (mod q). ■

We are now ready to show the correctness of Theorem 3.
Note that any code that corrects k deletions if and only if it
can correct k insertions, as established by Levenshtein [23].
Also, a code C can correct a deletion burst of size exactly (or
at most) k if and only if it can correct an insertion burst of
size exactly (or at most, respectively) k (refer to Theorem 2,
Theorem 3 in [16]). Therefore, for simplicity, throughout this
paper, we present the decoding algorithm to correct deletion
errors only.
Proof of Theorem 3. Observe that the lower bound is verified
by using the pigeonhole principle. It remains to show that the
code Diff VTa(n; q) can correct a single deletion.

For a codeword x ∈ Diff VTa(n; q), let x′ be obtained from
x after a deletion of symbol γ at index i, i.e. xi = γ. According
to Lemma 2, we can obtain the value of the deleted symbol as
follows: γ = a −

∑n−1
j=1 x′

j (mod q). It remains to determine
the value of i, i.e. the location of the deleted symbol. Let y =
Diff(x) and y′ = Diff(x′). We then compute:

∆ = Syn(y)− Syn(y′) = a− Syn(y′) (mod qn), and

s =
n−1∑
j=1

y′j , i.e. the sum of symbols in y′.

Observe that the code’s parameters such as a, q, n are known,
and the received sequence x′ and its differential vector y′ are
known, hence, the values of ∆ and s can be determined. Let
sR =

∑n
j=i yj . We show how y can be recovered from y′

and thus x can be recovered based on ∆ and s, which are
computable at the decoder. We now have the following cases.
Case 1. If i = 1, we consider a non-trivial case that y1 > 0.
Indeed, if y1 = 0, it implies x1 = x2, and such a deletion
in x1 is equivalent to a deletion in x2, which is considered in
Case 2. Thus, we obtain ∆ = y1 +

∑n−1
j=1 y′j = y1 + s > s and

∆ < q + s.
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Case 2. If 2 ⩽ i ⩽ n, according to Lemma 1, yi−1yi is replaced
by yi−1 + yi (mod q). In other words, in the sequence y′ =
Diff(x′), we have y′i−1 = yi−1 + yi (mod q).

• (2a) If yi−1 + yi ⩽ q − 1, then y′i−1 = yi−1 + yi, and

∆ = Syn(y)− Syn(y′) (mod qn)

=
(
(i− 1)yi−1 + iyi − (i− 1)y′

i−1

)
+

n−1∑
j=i

y′
j

=
(
(i− 1)yi−1 + iyi − (i− 1)yi−1 − (i− 1)yi

)
+

n−1∑
j=i

y′
j

= yi +

n−1∑
j=i

y′
j = sR ⩽ s.

• (2b) If q ⩽ yi−1 + yi ⩽ 2(q − 1), from the constraint
y′i−1 = yi−1+yi (mod q), it implies y′i−1+q = yi−1+yi.
We then have

∆ = Syn(y)− Syn(y′) (mod qn)

=
(
(i− 1)yi−1 + iyi − (i− 1)y′

i−1

)
+

n−1∑
j=i

y′
j

= (i− 1)q + yi +

n−1∑
j=i

y′
j

= (i− 1)q + (q − yi−1) + y′
i−1 +

n−1∑
j=i

y′
j

= (i− 1)q + (q − yi−1) + s−
i−2∑
j=1

y′
j

= q + s+ (q − yi−1) +
(
(i− 2)q −

i−2∑
j=1

y′
j

)
> q + s.

Therefore, given the computed values ∆ and s, we can
distinguish all three cases: case 1, case (2a) and case (2b).
Moreover, observe that both sR and iq + sR are monotonic
functions in the index i. Particularly, it is easy to verify that sR
is decreasing in the index i while iq+sR is increasing function
in the index i. For example, if the case (2a) happens, we can
show that if a sequence x1 is obtained from x via a deletion at
xi1 = γ and a sequence x2 is obtained from x via a deletion
at xi2 = γ for some i1 < i2 and x1 ̸= x2 then we must have
∆1 > ∆2, where ∆1 = Syn(y)−Syn(Diff(x1)) (mod qn) and
∆2 = Syn(y) − Syn(Diff(x2)) (mod qn). As shown earlier,
we observe that ∆1 =

∑n
j=i1

yj while ∆2 =
∑n

j=i2
yj . Thus,

∆1−∆2 =
∑i2−1

j=i1
yj ⩾ 0, or ∆1 ⩾ ∆2. Note that ∆1 = ∆2 if

and only if yj = 0 for all i1 ⩽ j ⩽ i2 − 1. In other words, we
have xi1 = xi1+1 = . . . = xi2−1 = xi2 , or x1 ≡ x2. We have a
contradiction. Therefore, given the value of xi = γ, there is a
unique value of i according to the value of ∆. Similarly, we can
show that iq + sR is an increasing function in the index i for
case (2b). Now, to locate the error in y, for (2a), the decoder
scans y′ and simply searches for the largest index h where∑n−1

j=h y′j > ∆, while for (2b), the decoder scans y′ and simply
searches for the largest index h where qh+

∑n−1
j=h y′j < ∆. The

error location in x is then i = h+ 1.

In conclusion, the code Diff VTa(n; q) can correct a single
deletion (or equivalently, a single insertion). ■

One may modify the decoding algorithm in the proof of
Theorem 3 to obtain a similar decoding algorithm to correct
an insertion. Particularly, from the received sequence, we can
identify the value of the inserted symbol by using Lemma 2
(the parity check lemma). One may develop a similar result as
in Lemma 1 to analyze the error behavior in the differential
vector after one insertion. On the other hand, since Theorem 3
is proven and given the knowledge that Diff VTa(n; q) can
correct a single deletion or single insertion, there is an alter-
native linear-time decoding algorithm that can be applied to
correct either a deletion or an insertion as follows. After using
Lemma 2, the value of the deleted symbol (or inserted symbol)
is known, and suppose that it is γ. The decoder then simply
inserts (or removes) a symbol γ into (or from) an arbitrary
position in the received sequence. Note that there is a unique
codeword that can be obtained so that the Syndrome constraint
is satisfied.

Remark 1. Recall the construction of a binary VT code from
Construction 1 for given n > 0 and an arbitrary integer a ∈
Zn+1, we have

VTa(n) =
{

x ∈ {0, 1}n : Syn(x) = a (mod (n+ 1))
}
.

In [20], Levenshtein showed that the construction can be
extended over an arbitrary modulo N ⩾ n + 1 as follows.
Given n > 0, N ⩾ n+ 1, and an arbitrary integer a ∈ ZN , we
have the set

VT∗
a(n,N) =

{
x ∈ {0, 1}n : Syn(x) = a (mod N)

}
,

that can correct a single deletion or single insertion (refer
to Theorem 1, [20]). Similarly, it is easy to show that our
construction can also be extended to over modulo qN for
arbitrary N ⩾ n. We formally state the result in Corollary 1.

Corollary 1 (The modified q-ary Differential VT codes).
Given n, q. For an arbitrary N ⩾ n, a ∈ ZqN , set

Diff VT∗
a(n,N ; q) ≜{

x ∈ Σn
q : Syn(Diff(x)) = a (mod qN)

}
.

We then have Diff VT∗
a(n,N ; q) is a single deletion/insertion

correcting code.

Remark 2. One may construct a code Diff VTa(n; q) using
different variations of the differential function Diff(x) as fol-
lows. For all values p, 1 ⩽ p ⩽ q − 1 and gcd(p, q) = 1, this
coding method works for all p-transformation vector Γp(x),
defined as yi = p(xi − xi+1) (mod q) for 1 ⩽ i ⩽ n− 1, and
yn = pxn. Another variation of the differential vector was used
in [15], [24] for binary codes to correct a burst of at most two
deletions.

We now illustrate the error-decoding procedure through the
following examples.
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Example 2. Given n = 10, q = 4, a = 0, Σ4 = {0, 1, 2, 3}.
Consider a codeword x = 0103112013 ∈ Diff VT0(10; 4). We
obtain y = Diff(x) = 3112032323. It is easy to verify that
Syn(y) = 120 ≡ 0 (mod 40) and

∑10
i=1 xi ≡ 0 (mod 4).

Suppose that we receive x′ = 013112013, i.e. a deletion
occurs at x3 = 0. We then obtain y′ = Diff(x′) = 322032323.
Now, to correct x and find out the value of i, we follow the
decoding procedure in Theorem 3 as follows.

• From x′, the decoder finds the value of the deleted symbol,
which is a−

∑n−1
i=1 x′

i = 0 (mod 4).
• From y′ = Diff(x′) = 322032323, the decoder computes:

∆ = a− Syn(y′) = 0− 104 = 16 (mod 40),

s =

n−1∑
i=1

y′
i = 3 + 2 + 2 + 3 + 2 + 3 + 2 + 3 = 20.

• Since ∆ < s, the decoder concludes that it belongs to the
case (2a) where the deletion is not at the first position, i.e.
i ̸= 1, and yi−1 + yi < q = 4.

• Find the error location in y. It can be observed that∑9
h=2 y

′
i = 17 > ∆ = 16 while

∑9
h=3 y

′
i = 15 < ∆. The

decoder then concludes that the error in y is at the h = 2
position, and hence, the error in x is at i = h+ 1 = 3.

• To correct x, it inserts the symbol 0 to the third position.
We now consider another case, where we receive a sequence

x′ = 010311213, i.e. a deletion occurs at x8 = 0. We then
obtain y′ = Diff(x′) = 311203123. We verify that y7y8 = 23
has been replaced to y′7 = y2+ y3 = 1 in y′. Now, to correct x
and find out the value of i, we follow the decoding procedure
in Theorem 3 as follows.

• From x′, the decoder finds the value of the deleted symbol,
which is a−

∑n−1
i=1 x′

i = 0− (0+ 1+0+3+1+1+2+
1 + 3) = 0 (mod 4).

• From y′ = Diff(x′) = 311203123, the decoder computes:

∆ = a− Syn(y′) = 0− 84 = 36 (mod 40),

s =
n−1∑
i=1

y′i = 3 + 1 + 1 + 2 + 3 + 1 + 2 + 3 = 16.

• Since ∆ > s+ q, the decoder concludes that it belongs to
the case (2b) where the deletion is not at the first position,
i.e. i ̸= 1, and yi−1 + yi > q = 4.

• Find the error location in y. It can be observed that 7 ×
4 +

∑9
h=7 y

′
i = 34 < ∆ = 36 while 8 × 4

∑9
h=8 y

′
i =

37 > ∆. The decoder then concludes that the error in y
is at the h = 7 position, and hence, the error in x is at
i = h+ 1 = 8.

• To correct x, it inserts the symbol 0 to the 8th position.

Example 3. We now consider a special case when the deleted
symbol belongs to a run of identical symbols. Given n =
10, q = 3, a = 7, and a codeword x = 0102122200 ∈
Diff VT7(10; 3). Suppose that we receive x′ = 010212200,
i.e. one can consider a deletion occurs at either x6, or x7,
or x8. We observe that y = Diff(x) = 2111200200 and
y′ = Diff(x′) = 211120200.

The decoding procedure is as follows.
• The decoder computes ∆ = a − Syn(y′) = 2 (mod 30)

and s =
∑9

j=1 y
′
j = 9. Since ∆ < s, the decoder

concludes that it belongs to the case (2a).
• Observe that

∑9
h=5 y

′
i = 4 > ∆ = 2 while

∑9
h=8 y

′
i =

0 < ∆ = 2 (*). The first index where
∑n−1

j=h y′j > ∆ is
then h = 5, i.e. the error in x is at i = h+ 1 = 6. On the
other hand, one may also select h = 6, 7 according to (*),
i.e. the error is at x7 or x8, respectively. Nevertheless, we
obtain the same codeword x = 0102122200.

Remark 3. It is easy to show that our constructed codes
Diff VTa(n; q), from Construction 3, also support a systematic
linear-time encoder. The design is similar to the construction
of the systematic encoder proposed by Tenengolts [22]. For
message x ∈ Σk

q , the encoder appends the information of
the VT syndrome of the differential vector of x (of length
m + 1 = ⌈logq n⌉ + 1) into its suffix. In addition, there is a
marker of length two, which serves as a separator between the
data part and the redundancy part (refer to [22]). We illustrate
the main idea of the encoder in Figure 1a.

B. More Efficient Encoder and Decoder of The Differential VT
codes

In this section, we present a linear-time encoder that en-
codes user data into the constructed differential VT codes
Diff VTa(n; q) with only ⌈logq n⌉+ 1 redundant symbols.
The differential VT encoder ENCDiff VT

INPUT: n, q, and a ∈ Zqn, a sequence x ∈ Σk
q , where k ≜

n− ⌈logq n⌉ − 1

OUTPUT: c ≜ ENCDiff VT(x) ∈ Diff VTa(n; q)

(I) Set m ≜ ⌈logq n⌉ and S ≜ {qj−1 : j ∈ [m]} ∪ {n} and
I ≜ [n] \ S. In other words, the set S includes the nth
index and all the indices that are powers of q.

(II) Set y = y1y2 . . . yn ∈ Σn
q , where y|I = x and y|S = 0. In

other words, the symbols in x are filled into y excluding
indices in S (refer to Figure 1 (b)) and yj = 0 for j ∈ S.

(III) Compute the difference a′ ≜ a− Syn(y) (mod qn).
In the next step, we modify y, by setting suitable values
for yj where j ∈ S, to obtain Syn(y) = a (mod qn).
Since 0 ⩽ a′ ⩽ qn− 1, we find β, 0 ⩽ β ⩽ q− 1, to be
the number such that βn ⩽ a′ < (β + 1)n.

(IV) The values for yj where j ∈ S are set as follows.
• Set yn = β, and a′′ = a′ − βn < n.
• Let zt−1 . . . z1z0 be the q-ary representation of a′′.

Clearly, since a′′ < n, the q-ary representation of
a′′ is of length at most m = ⌈logq n⌉. We then have
a′′ =

∑m−1
i=0 ziq

i.
• Set yqj−1 = zj−1 for j ∈ [m].

(V) Set c = Diff−1(y). In other words, we set cn = yn and
ci =

∑n
j=i yj (mod q) for 1 ⩽ i ⩽ n.

(VI) Output c.
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. . .x1 x2 x3 xk
Message x

xk−1

. . .x1 x2 x3 xkxk−1 pp
Marker

. . .z1 z2 zm+1zm
-ary representation 
of 

q
Syn(Diff(x))

Codeword c

RedundancyData

011

(a) A systematic encoder for non-binary codes correcting a single
deletion using the differential VT codes Diff VTa(n; q). Here m =
�logq n�. The combination 011 at the end of the code sequence plays
the role of the comma between transmitted sequences. The marker pp,
where p = xk +1 (mod q) serves as separators between the data part
and the redundancy part. Here, the output codewords do not belong to
the same coset of the differential VT codes.

y1 y2 y3 y4 y5 y6 y7 y8 y9 . . . yn−1 yn

. . .x1 x2 x3 x4 x5 xkx6

y10

x7

c1 c2 c3 c4 c5 c6 c7 c8 c9 . . . cn−1 cnc10

y3i, ynDetermine so that  Syn(y) = a ( mod 3n )

c = Diff−1(y) : cn = yn, ci =
n

∑
j=i

yj mod 3

Message x

Codeword c

(b) An example of our designed linear-time encoder to encode arbitrary messages
into the differential VT codes Diff VTa(n; q) when q = 3. In general, the VT
syndrome Syn(y) is computed in modulo qn while each symbol is computed
in modulo q. The set S includes index n and all powers of q. The message
is of length k = n − �logq n� − 1. Here, the output codewords belong to the
same coset of the differential VT codes, i.e. the information of a is known to
the decoder.

Fig. 1: Our proposed encoders for non-binary codes correcting a single deletion using the differential VT codes Diff VTa(n; q).
The construction of a systematic encoder is similar to the work proposed by Tenengolts [22], both incur �logq n�+3 redundant
symbols, while our best encoder (in Figure (b)) uses only �logq n�+ 1 redundant symbols.

Theorem 4. Our constructed encoder ENCDiff VT is correct
and has redundancy �logq n� + 1 symbols. In other words,

ENCDiff VT(x) ∈ VTa(n; q) for all x ∈ Σ
n−�logq n�−1
q .

Proof. We observe that the user message is of length k =
n− �logq n� − 1, and hence, the redundancy of the encoder is
�logq n�+1 symbols. It remains to show that ENCDiff VT(x) ∈
VTa(n; q) for all x ∈ Σk

q .
Suppose that c = ENCDiff VT(x) for some x ∈ Σk

q . It suffices
to show that Syn(Diff(c)) = a (mod qn). From Step (V) of
the encoder ENCDiff VT, c = Diff−1(y), in other words, y =
Diff(c). It remains to show that Syn(y) = a (mod qn).

Recall that from Step (I) of the encoder ENCDiff VT, S �
{qj−1 : j ∈ [m]} ∪ {n} and I � [n] \ S. Therefore,

Syn(y) =
∑
j∈S

jyj +
∑
j∈I

jyj (mod qn)

=
∑
j∈[m]

qj−1yj + nyn +
∑
j∈I

jyj (mod qn)

= a′′ + nβ + (a− a′) (mod qn)

= (a′ − βn) + nβ + a− a′ (mod qn)

= a (mod qn). �

We illustrate the encoder ENCDiff VT via an example.

Example 4. Consider n = 10, q = 3 and a = 0. Then m =
�log3 10� = 3 and k = 10 − 3 − 1 = 6. Suppose that the
message is x = 220011 and we compute c = ENCDiff VT(x) ∈
Diff VT0(10; 3).

(I) Set S = {1, 3, 9, 10} and I = {2, 4, 5, 6, 7, 8}.
(II) The encoder first sets y = y12y320011y9y10. It then sets

y1 = y3 = y9 = y10 = 0 to obtain y = 0202001100 and
computes a′ = a− Syn(y) = 0− 27 = 3 (mod 30).

(III) Since 0 < a′ = 3 < 10, the encoder sets β = 0 and
a′′ = a′ = 3. It then sets y10 = β = 0.

(IV) The 3-ary representation of 3 is then 010. Therefore, the
encoder sets y1 = 0, y3 = 1, and y9 = 0 to obtain y =
0212001100. We can verify that Syn(y) = 0 (mod 30).

(V) The encoder outputs c = Diff−1(y) = 1121222100.

For completeness, we state the corresponding decoder.
The differential VT decoder DECDiff VT. Given n, q, and
a ∈ Zqn, m � �logq n� and k � n − m − 1. Given
c = ENCDiff VT(x) for some message x ∈ Σk

q , and suppose
the decoder receives a sequence c′.

INPUT: c′ ∈ Σn−1
q ∪ Σn

q ∪ Σn+1
q

OUTPUT: x = DECDiff VT(c′) ∈ Σk
q

(I) The decoder follows the error-decoding procedure in
Theorem 3 to obtain c � DECerror(c′) ∈ Σn

q .
(II) Set y = Diff(c) ∈ Σn

q , yi = ci − ci+1 (mod q) for
1 � i � n− 1 and yn = cn.

(III) Set S � {qj−1 : j ∈ [m]} ∪ {n} and I � [n] \ S.
(IV) Output x = y|I ∈ Σk

q .

To conclude this section, the efficiency of our proposed
encoders, compared to previous works, is illustrated in Table II.

IV. CORRECTING A BURST OF FIXED LENGTH: THE
DIFFERENTIAL SHIFTED VT CODES

For arbitrary fixed t > 1, binary codes correcting a burst
of exactly t deletions were proposed in [16], [17]. Recently,
Schoeny et al. [12] extended the construction of binary codes
in [16] to the non-binary regime. To correct a burst of exactly t
deletions, for both the binary and non-binary cases, a common
idea is to represent the codewords of length n as a t × n/t
codeword array, where t divides n. Thus, for a codeword x, the
codeword array At(x) is formed by t rows and n/t columns.
When n/t is not an integer, one can append a sufficient number
of bits/symbols 0 into the suffix of each codeword (see [31]).
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Encoder Redundancy (in symbols) Encoding/Decoding
Complexity

Receiver Information
on Code’s Parameters

Encoder Output Remark

Encoder proposed by
Tenengolts [22] using

Ta,b(n; q)

⌈logq n⌉+ 3 + ⌈logq 3⌉ O(n) not available not in
Ta,b(n; q)

systematic

Encoder proposed by
Abroshan et al. [27]

using Ta,b(n; q)

> logq n+ log2 n O(n) VT Syndrome and
parity check

in Ta,b(n; q) systematic

Systematic encoder
proposed in this work
using Diff VTa(n; q)

(see Figure 1a)

⌈logq n⌉+ 3 + ⌈logq 3⌉ O(n) not available not in
Diff VTa(n; q)

systematic

Encoder ENCDiff VT

proposed in this work
using Diff VTa(n; q)

(see Theorem 4 and
Figure 1b)

⌈logq n⌉+ 1 O(n) VT Syndrome and
parity check

in
Diff VTa(n; q)

non-systematic

TABLE II: Efficient encoders for q-ary codes correcting single deletion or insertion proposed in this work and and those in
literature. For each design category, the most desirable option is highlighted in blue. Particularly, our proposed encoder ENC2

incurs the least redundancy of ⌈logq n⌉+1 symbols. Here, the receiver information on code’s parameters plays an important role
in error-detecting and error-correcting procedure. For example, it may provide more efficient basis for the design of segmented
deletion/insertion correcting codes (see [28]–[30]).

In this work, for simplicity, we assume that t divides n.
Observe that a burst of t deletions deletes in x exactly one bit
(in binary case) or one symbol (in a non-binary alphabet) from
each row of the array At(x).

At(x) =


x1 xt+1 · · · x(j−1)t+1 · · · x(n/t−1)t+1

x2 xt+2 · · · x(j−1)t+2 · · · x(n/t−1)t+2

...
...

. . .
...

. . .
...

xt x2t · · · xjt · · · xn

 .

Here, the ith row of the array is denoted by At(x)i, and the
jth column of the array is denoted by At(x)j. We now briefly
describe the coding methods in [12] to correct a burst of exactly
t deletions in the general q-ary alphabet, q ⩾ 2. The overall
coding strategy in [12] is split into two main parts.

• The first row in the array belongs to a q-ary VT code
Ta,b(n; q) (refer to Construction 2, Section II) that can
correct a single error. In addition, such a code has an
additional run-length-limited (RLL) property, that restricts
the longest run of identical symbols to be at most ℓ =
⌈logq n⌉ + O(1). The authors also showed that for suffi-
ciently large n, there exists a runlength-limited encoder
which uses only one redundancy symbol to enforce such
an RLL property. A similar design of such an encoder for
binary codes was proposed in [16], that enforces binary
codewords of maximum run length at most ⌈log n⌉ + 3
with only one redundant bit (see [16, Appendix B]). The
method is based on the sequence replacement technique.
The idea can be extended to non-binary codes whose
maximum runlength is at most ⌈logq n⌉+3 with only one
redundant symbol (for example, see [10]).

• Each of the remaining (t − 1) rows in the array is then
encoded using a modified version of the VT code, which
they refer as shifted VT (SVT) code. This code corrects a
single deletion in each row provided the location of the
error is known to be within P consecutive positions. To

obtain the desired redundancy, Schoeny et al. also set P =
ℓ+ 1 = ⌈logq n⌉+O(1).

Lemma 3 (Nguyen et al. [10]). Given n, q, ℓ = ⌈logq n⌉+ 3.
There exist a linear-time encoder ENCℓ RLL : Σn−1

q → Σn
q and

a corresponding decoder DECℓ RLL : Σn
q → Σn−1

q such that
the following conditions hold:

• For all x ∈ Σn−1
q , we have DECℓ RLL ◦ENCℓ RLL(x) = x,

• If c = ENCℓ RLL(x) then the maximum run of identical
symbols in c is at most ℓ.

The redundancy of ENCℓ RLL is one redundant symbol.

Definition 7 (Refer to [12], [16]). A P -bounded single-
deletion-correcting code is a code in which the decoder can
correct a single deletion given knowledge of the location of
the deleted symbol to within P consecutive positions, i.e. prior
knowledge that the index of the deletion error lies in an interval
[i, 1 + 1, ..., i+ P − 1], for a specified i ∈ [1, n− P + 1].

Formally, the following results were provided by Schoeny
et al. [12]. Recall that the signature vector of a q-ary vector
x of length n is a binary vector α(x) of length n − 1, where
α(x)i = 1 if xi+1 ≥ xi, and 0 otherwise, for i ∈ [n− 1].

Construction 4 (q-ary Shifted VT Codes [12]). For 0 ≤ a ⩽
P and 0 ⩽ b < q, c ∈ {0, 1}, the q-ary shifted VT code
SVTa,b,c(n, P, q) is defined as:

SVTa,b,c(n, P, q) ≜{
x ∈ Σn

q : Syn(α(x)) = a (mod (P + 1)), and

n∑
i=1

xi = b (mod q), and
n−1∑
i=1

α(x)i = c (mod 2)
}
.

Lemma 4 (Schoeny et al. [12]). The code SVTa,b,c(n, P, q) is
a P-bounded single deletion correcting code.
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Theorem 5 (Schoeny et al. [12]). There exists a q-ary code
correcting a burst of exactly t deletions whose number of
redundancy symbols is at most

logq(n/t) + (t− 1) logq(2(logq(n/t) + 6) + t+ 1.

In term of bits, the redundancy is log n + (t − 1) log log n +
O(t log q) bits.

As discussed in Section III, a drawback is the difficulty
of enforcing VT syndrome over the signature vectors of the
codewords. In this section, we extend the idea of the q-ary dif-
ferential VT codes to construct the q-ary differential shifted VT
codes, which are P -bounded single deletion correcting codes,
but more importantly, they support more efficient encoding and
decoding procedures.

A. The Differential Shifted VT Codes

A new version of the q-ary shifted VT codes is as follows.

Construction 5 (q-ary Differential Shifted VT Codes). For
0 ≤ a < q(P +1) and 0 ⩽ b ⩽ q, the q-ary differential shifted
VT code Diff SVTa,b(n; q, P ) is defined as:

Diff SVTa,b(n; q, P ) ≜
{

x ∈ Σn
q : if y = Diff(x) ∈ Σn

q then

Syn(y) = a (mod q(P + 1)) and
n∑

i=1

yi = b (mod (q + 1))
}
.

Lemma 5. The code Diff SVTa,b(n; q, P ) is a P-bounded
single deletion correcting code.

Proof. Similar to the proof of Lemma 2, we have that if
Syn(Diff(x)) = a (mod q(P+1)) then we also have the parity
check property, which consequently gives us the information of
the deleted symbol:

x1 + x2 + . . .+ xn−1 + xn = a (mod q).

Suppose that we receive the sequence x′ ∈ B(x) of length
n− 1, the deleted symbol is γ, which can be determined from
the parity check property, and the location of the error is within
L = [i, i+ 1, . . . , i+ P − 1] for some i ⩾ 1 and i+ P − 1 ⩽
n − 1. Recall that according to Lemma 1, for some j > 1,
a deletion at symbol xj replaces two symbols yj−1, yj with
yj−1 + yj (mod q). Consequently, given y′ = Diff(x′) and
the values of q and b, we can verify if yj−1 + yj ⩽ q − 1 or
yj−1 + yj ⩾ q as follows:

• If yj−1 + yj ⩽ q − 1 then when yj−1yj is replaced by
yj−1 + yj (mod q), there is no change in the sum of
symbols in the differential vector. We must have

n−1∑
h=1

y′h = b (mod (q + 1)). (1)

• On the other hand, if yj−1+yj ⩾ q we observe that yj−1yj
is replaced by the new symbol yj−1 + yj − q, and hence,

n−1∑
h=1

y′h = b− q (mod (q + 1)) ̸= b (mod (q + 1)). (2)

Now, assume that there are at least two locations in L to insert
the deleted symbol γ, i.e we obtain two different sequences x1

(by inserting γ at index j1) and x2 (by inserting γ at index
j2) for some i ⩽ j1 < j2 ⩽ i + P − 1 so that all the code’s
constraints are satisfied, i.e.

x1 = (x′
1, . . . , x

′
j1−1, γ, x

′
j1 , . . . x

′
j2−1, x

′
j2 , . . . , x

′
n−1), and

x2 = (x′
1, . . . , x

′
j1−1, x

′
j1 , . . . x

′
j2−1, γ, x

′
j2 , . . . , x

′
n−1).

Let u = Diff(x1) and v = Diff(x2). It is easy to see that
uj = vj for j ⩽ j1 − 2 or j ⩾ j2 +1. We consider two cases.
Case 1. If j1 > 1. As shown in (1) and (2), if x1 and x2 share the
same code’s constraints, we must have uj1−1 + uj1 = vj2−1 +
vj2 since the values of uj1−1 + uj1 and vj2−1 + vj2 can be
determined given the knowledge of y′, q and b. Consequently, it
implies that

∑j2
j=j1−1 uj =

∑j2
j=j1−1 vj . Next, from Syn(u) =

Syn(v) (mod q(P + 1)), we have
j1−2∑
j=1

juj +

j2∑
j=j1−1

juj +
n∑

j=j2+1

juj

=

j1−2∑
j=1

jvj +

j2∑
j=j1−1

jvj +

n∑
j=j2+1

jvj (mod q(P + 1)).

It implies that
j2∑

j=j1−1

juj =

j2∑
j=j1−1

jvj (mod q(P + 1)).

We then have

(j1 − 2)
( j2∑

j=j1−1

uj

)
+

j2−j1+2∑
j=1

juj+j1−2

= (j1 − 2)
( j2∑

j=j1−1

vj

)
+

j2−j1+2∑
j=1

jvj+j1−2 (mod q(P + 1)),

or
j2−j1+2∑

j=1

juj+j1−2 =

j2−j1+2∑
j=1

jvj+j1−2 (mod q(P + 1)).

Thus, we obtain two sequences x3, x4 such that
Syn(Diff(x3)) = Syn(Diff(x4)) (mod q(P + 1)), where

x3 = (x′
j1−1, γ, x

′
j1 , . . . x

′
j2−1, x

′
j2), and

x4 = (x′
j1−1, x

′
j1 , . . . x

′
j2−1, γ, x

′
j2).

Note that the length of x3 and x4 is j2 − j1 + 2. In addition,
we have j2 − j1 +2 ⩽ (i+P − 1)− i+2 = P +1, and hence
we conclude that x3, x4 ∈ Diff VT∗

a(j2 − j1 +2, P +1; q) for
some 0 ⩽ a < q(P + 1). Recall that such a code can correct
a single deletion (refer to Corollary 1). On the other hand, we
observe that x′′ = (x′

j1−1, x
′
j1
, . . . x′

j2−1, x
′
j2
) can be obtained

from both x3 and x4 by deleting the symbol γ. We have a
contradiction.

It remains to consider the case when j1 = 1.
Case 2. If j1 = 1 and 1 < j2 ⩽ P , i.e. i = 1 and L =
[1, 2, . . . P ]. Again, according to Lemma 1, if u = Diff(x1)
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then u1 is deleted for some u1 ⩽ q − 1. Consequently, if v =
Diff(x2), we also have vj2−1 + vj2 ≡ u1 ⩽ q − 1. Similarly,
we obtain two sequences x′

3, x′4 of length at most (P +1) such
that Syn(Diff(x′

3)) = Syn(Diff(x′4)) (mod q(P + 1)), where

x′3 = (γ, x′
1, . . . x

′
j2−1, x

′
j2), and

x′4 = (x′
1, . . . x

′
j2−1, γ, x

′
j2).

We have a contradiction. We conclude that there is at most one
location to insert the deleted symbol γ into x′, and thus, the
constructed q-ary differential VT code Diff SVTa,b(n; q, P ) is
a P -bounded single deletion correcting code. ■

Remark 4. We observe that our designed differential shifted
VT codes Diff SVTa,b(n; q, P ) incur at most one more re-
dundant symbol as compared to the q-ary shifted VT codes,
proposed by Schoeny et al. [12] (refer to Construction 4).
Particularly, the redundancy of a q-ary shifted VT code is
logq(P + 1) + 1 + logq 2 symbols while the redundancy
of a differential shifted VT code in Construction 5 is then
logq(P + 1) + 1 + logq(q + 1) symbols. On the other hand,
it provides an alternative simpler, and more efficient encoder
(with the improvement of at least two redundant symbols as
presented in Section III).

For completeness, we present an efficient encoder for the
differential shifted VT codes Diff SVTa,b(n; q, P ), given ar-
bitrary code parameters. Note that, in general, the value of P
is logq n+O(1) = o(n).

Differential SVT Encoder ENCDiff SVT. Given n, q, P , where
3q(P + 1) ⩽ n. Given 0 ≤ a < q(P + 1) and 0 ⩽ b ⩽ q.
Set m ≜ ⌈logq q(P + 1)⌉ and k ≜ n−m− 2. The message is
of length k, and hence, the redundancy of our encoder is then
m+ 2 = ⌈logq q(P + 1)⌉+ 2 ≈ ⌈logq P ⌉+ 3.

INPUT: a sequence x ∈ Σk
q , where k ≜ n−⌈logq q(P+1)⌉−2

OUTPUT: c ≜ ENCDiff SVT(x) ∈ Diff SVTa,b(n; q, P )

(I) Set index i0 = 2q(P + 1) and i1 = 3q(P + 1) where
i0, i1 ⩽ n. Set S ≜ {qj−1 : j ∈ [m]} ∪ {i0, i1} and
I ≜ [n] \ S.

(II) Consider y′ ∈ Σn
q , where y′|I = x and y′|S = 0. Com-

pute the difference a′ ≜ a − Syn(y′) (mod q(P + 1)).
In the next step, we modify y′ to obtain a codeword y
with Syn(y) = a (mod q(P + 1)).

(III) Let zm . . . z1z0 be the q-ary representation of a′. Here,
we note that any number less than q(P + 1) has a
representation of length at most ⌈logq q(P+1)⌉. Suppose
that a′ =

∑m
i=0 ziq

i. Then we set yqj−1 = zj−1 for
j ∈ [m].

(IV) Next, we set the symbols at the index i0 = 2q(P + 1)
and i1 = 3q(P + 1) so that

yi0 + yi1 = b−
∑

i∈[n]\{i0,i1}

yi (mod (q + 1)).

(V) Finally, we output c = Diff−1(y).

Theorem 6. Given n, q, P , where 3q(P + 1) ⩽ n, 0 ≤ a <
q(P +1) and 0 ⩽ b ⩽ q, the constructed encoder ENCDiff SVT

is correct and has redundancy ⌈logq q(P +1)⌉+2 symbols. In
other words, ENCDiff SVT(x) ∈ Diff SVTa,b(n; q, P ) for all
x ∈ Σk

q , where k = n− ⌈logq q(P + 1)⌉ − 2.

Proof. Suppose that c ≜ ENCDiff SVT(x) for some x ∈ Σk
q . It

suffices to show that

Syn(Diff(c)) = a (mod q(P + 1)) and
n∑

i=1

Diff(c)i = b (mod (q + 1)).

From Step (V), we have c = Diff−1(y), i.e. y = Diff(c), and
it remains to show that Syn(y) = a (mod q(P+1)). Recall that
from Step (I), S ≜ {qj−1 : j ∈ [m]} ∪ {i0 = 2q(P + 1), i1 =
3q(P + 1)} and I ≜ [n] \ S. Therefore,

Syn(y) =
∑
j∈S

jyj +
∑
j∈I

jyj (mod q(P + 1))

=
∑
j∈[m]

qj−1yj + 2q(P + 1)y2q(P+1)+

+ 3q(P + 1)y3q(P+1) +
∑
j∈I

jyj (mod q(P + 1))

= a′ + 0 + 0 + (a− a′) (mod q(P + 1))

= a (mod q(P + 1)).

In addition, from Step (IV), we have

yi0 + yi1 = b−
∑

i∈[n]\{i0,i1}

yi (mod (q + 1)),

and hence, it implies that
n∑

i=1

yi = b (mod (q + 1)), or

n∑
i=1

Diff(c)i = b (mod (q + 1)). ■

Remark 5. We observe that reserving only one redundant
symbol for the parity check constraint is not sufficient since the
constraint is over modulo (q+1). Similar to the construction of
the differential VT decoder DECDiff VT, one can easily obtain
a corresponding differential shifted VT decoder DECDiff SVT.
We skip the detailed construction of such a decoder.

B. Codes Correcting a Burst of t Deletions with Efficient
Encoder

We now present a construction of non-binary codes correct-
ing a burst of t deletions, and the coding method is based on
the differential VT codes and the differential shifted VT codes
as presented in earlier sections. Recall that we represent the
codewords of length n as t × n/t codeword arrays, where t
divides n. Given ℓ ⩾ 1, a code C is called ℓ-runlength limited
if the maximum run of identical symbols in every codeword in
C is at most ℓ.
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Construction 6 (q-ary t-burst-deletion correcting codes).
Given n, q. Set ℓ = ⌈logq n/t⌉ + 3, P = ℓ + 1. For 0 ⩽
a1 < q(n/t), 0 ≤ a2 < q(P + 1) and 0 ⩽ b ⩽ q, let
Ca1,a2,b(n, t; q) be a set of all sequences x ∈ Σn

q such that
the following constraints are satisfied:

• Constraints on the first row At(x)1:
(i) At(x)1 ∈ Diff VTa1(n/t; q), and

(ii) At(x)1 is ℓ-runlength limited,
• Constraints on the remaining rows:

At(x)i ∈ Diff SVTa2,b(n/t; q, P ) for 2 ⩽ i ⩽ t.

Theorem 7. The code Ca1,a2,b(n, t; q) from Construction 6 can
correct a burst of t deletions, and the redundancy is

logq(n/t) + (t− 1) logq logq(n/t) +O(t) (symbols).

In terms of bits, the redundancy is log n + (t − 1) log log n +
O(t log q) bits.

Proof. The error-decoding procedure is similar to the con-
struction of Schoeny et al. [12]. Suppose that a codeword
x ∈ Ca1,a2,b(n, t; q) suffers from a burst of t deletions and
the received sequence is x′ ∈ Σn−t

q . Observe that a burst
of t deletions deletes in x exactly one symbol from each
row of the array At(x). To recover the first row, the decoder
sets At(x′)1 = (x′

1, x
′
t+1, . . . x

′
(n/t−2)t+1). Since the first row

belongs to a differential VT code, the decoder can recover
the first row At(x)1 from At(x′)1. Note that, after recovering
the first row At(x)1, the decoder may not identify exactly the
location of the deletion since the deleted symbol would belong
to a run of identical symbols. Nevertheless, since the maximum
run of identical symbols in the first row is at most ℓ, we can
locate the error in each of the other rows to be within at most
P = ℓ+1 positions. Furthermore, since each of the remaining
rows belongs to a differential shifted VT code, the decoder can
recover each row accordingly.

It remains to compute the redundancy of our constructed
code. The redundancy used for the first row in the array At(x)
is

r1 = logq(qn/t) + 1 = logq(n/t) + 2 (symbols).

Here, logq(qn/t) symbols are used to encode the differen-
tial VT code while one additional symbol is to enforce the
runlength-limited constraint. On the other hand, the redundancy
used for each of the other (t− 1) rows in the array At(x) is

ri = logq(q(P + 1)) + logq(q + 1)

= logq(⌈logq n/t⌉+ 5) + 1 + logq(q + 1)

= logq logq(n/t) +O(1) (symbols) for 2 ⩽ i ⩽ t.

Thus, the total redundancy of such a code Ca1,a2,b(n, t; q) is
r1 +

∑t
i=2 ri = logq(n/t) + (t − 1) logq logq(n/t) + O(t)

symbols or log n+ (t− 1) log log n+O(t log q) bits. ■

To conclude this subsection, we provide a linear-time encoder
for such a code Ca1,a2,b(n, t; q) with given arbitrary code
parameters. Observe that for 2 ⩽ i ⩽ t, the ith row At(x)i
can be encoded/decoded independently by using the differential

SVT Encoder ENCDiff SVT, since there is no joint constraint
among these rows. The redundancy to encode each of these
rows is then ⌈logq q(P + 1)⌉ + 2 ≈ ⌈logq P ⌉ + 3 for any P .
On the other hand, to encode the first row At(x)1, we need
to enforce the runlength-limited constraint with the differential
VT syndrome property. Recall that the encoder ENCDiff VT for
a differential VT code of length n (as presented in Section
III-B) uses only ⌈logq n⌉+ 1 redundant symbols.

Lemma 6. Given n, q. Set ℓ′ = ⌈logq n⌉ + 3, and k =
n − ⌈logq n⌉ − 2. For an arbitrary sequence x ∈ Σk

q , suppose
that y = ENCℓ′ RLL(x) ∈ Σk+1

q and c = ENCDiff VT(y) ∈
Diff VTa(n; q). We then have the maximum run of identical
symbols in c is at most ℓ = 2⌈logq n⌉+ 5.

Proof. Note that the differential VT encoder ENCDiff VT of
a code of length n uses only ⌈logq n⌉ + 1 redundant sym-
bols at predetermined positions. Therefore, if the maximum
run of identical symbols in c = ENCDiff VT(y) is at least
ℓ + 1 = 2⌈logq n⌉ + 6, in other words, Diff(c) has at least
2⌈logq n⌉+ 5 consecutive zeros (by definition of a differential
vector), then the sequence y (before inserting ⌈logq n⌉ + 1
redundant symbols) has a run of at least 2⌈logq n⌉ + 5 −
⌈logq n⌉ − 1 = ⌈logq n⌉ + 4 zeros. We have a contradiction
since y is ℓ′-runlength limited. ■

According to Lemma 6, to construct a t-burst encoder, we can
set the value of P to be P = ℓ+1 = 2⌈logq n⌉+6, and amend
the differential shifted VT code in the last (t − 1) rows and
the corresponding encoder for such codes. For completeness,
we present the detailed construction of a t-burst encoder as
follows.
Input. Given q, n, ℓ′ = ⌈logq n⌉+ 3, ℓ = 2⌈logq n⌉+ 5, P =
ℓ + 1 = 2⌈logq n⌉ + 6, 0 ⩽ a1 < q(n/t), 0 ≤ a2 < q(P + 1)
and 0 ⩽ b ⩽ q. The message x ∈ Σk

q is of length

k =
(
n/t− ⌈logq n/t⌉ − 2︸ ︷︷ ︸

first row encoding

)
+

(t− 1)
(
n/t− ⌈logq q(P + 1)⌉ − 2︸ ︷︷ ︸

ith row encoding, 2⩽i⩽t

)
= n− ⌈logq n/t⌉ − (t− 1)

(
⌈logq q(P + 1)⌉+ 2

)
− 2.

We observe that for P = 2⌈logq n⌉+6, the total redundancy
is then logq(n/t) + (t − 1) logq logq(n/t) + O(t) symbols or
log n+(t−1) log log n+O(t log q) bits. The encoding procedure
is as follows.
t-Burst-Encoder ENCt burst.

INPUT: Given n, q, and a sequence x ∈ Σk
q , where k is

defined above
OUTPUT: y ≜ ENCt burst(x) ∈ Ca1,a2,b(n, t; q)

(I) Suppose that x = x1x2 . . . xt, where x1 includes the first
(n/t−⌈logq n/t⌉−2) symbols in x, and for 2 ⩽ i ⩽ t, the
sequence xi is of length exactly n/t−⌈logq q(P+1)⌉−2.
We then set k1 = n/t − ⌈logq n/t⌉ − 2, and set k2 =
n/t− ⌈logq q(P + 1)⌉ − 2.

12



(II) Encoding the first row in At(x):
• Obtain x′1 = ENCℓ′ RLL(x1) ∈ Σk1+1

q

• Obtain y1 = ENCDiff VT(x′1) ∈ Diff VTa1
(n/t; q)

(III) Encoding the ith row in At(x): for 2 ⩽ i ⩽ t, we use
the differential shifted VT encoder to obtain

yi = ENCDiff SVT(xi) ∈ Diff SVTa2,b(n/t; q, P ).

(IV) Finally, we output c = y1||y2|| . . . ||yt (the interleaved
sequence of y1, y2, . . . , yt).

The following result is then immediate.

Theorem 8. The encoder ENCt burst is correct. In other words,
the output codewords belong to Ca1,a2,b(n, t; q) that is capable
of correcting a burst of t deletions. The redundancy of the
encoder is logq(n/t) + (t − 1) logq logq(n/t) + O(t) symbols
or log n+ (t− 1) log log n+O(t log q) bits.

V. CORRECTING A BURST OF VARIABLE LENGTH

In this section, we focus on the case t = 2, i.e. when there
are at most two deletions. We first review the coding method
of Wang et al. [24]. To correct a burst of at most two deletions,
the authors represent the codewords of length n as a ⌈log q⌉×n
codeword array, where each symbol in Σq is converted to its
binary representation of length ⌈log q⌉. For a sequence u ∈ Σn

q ,

A(u) =


x1

x2

...
x⌈log q⌉

 =


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
...

. . .
...

x⌈log q⌉,1 x⌈log q⌉,2 · · · x⌈log q⌉,n

 .

Therefore, the q-ary sequence u is converted to a binary matrix
with ⌈log q⌉ rows and n columns. Observe that a burst of up to
two deletions in u spans at most two consecutive columns in
A(u) and there is a burst of up to two deletions in each binary
row. Similar to the case of correcting a burst of t deletions (as
discussed in Subsection IV-A), the overall coding strategy in
[24] is split into two main parts.

• The first row in the array belongs to a binary code that
can correct a burst of at most two deletions, proposed by
Levenshtein in 1967 in [15], that has redundancy log n+1
bits for codewords of length n. In addition, such a code has
an additional pattern length limited (PLL) property, that
restricts the maximum length of any substring with period
2 (refer to Definition 8) to be at most ℓ = ⌈log n⌉+O(1).
The authors also showed that the redundancy to enforce
both constraints in the first row is at most log n+3 (refer
to Construction 4, Lemma 2, [15]).

• Each of the remaining (⌈log q⌉ − 1) rows in the array
belongs to a modified version of the binary shifted VT
code, which can correct a burst of at most 2 deletions
with the positional knowledge (within P positions) after
recovering the first row. To obtain the desired redundancy,
Schoeny et al. also set P = ℓ+ 1 = ⌈log n⌉+O(1). The
redundancy used in each of the remaining (⌈log q⌉ − 1)
rows is at most log log n+O(1) bits.

The total redundancy of the coding scheme in [15] is
log n+ log q log log n+O(log q) bits. In this work, we use the

idea of the differential shifted VT codes to further reduce the
redundancy to construct a code correcting a burst of at most
two deletions. The major difference in our coding scheme is
that we view each q-ary sequence of length n as a matrix with
only two rows and n columns. The mapping is designed as
follows.

Given q > 2. Set q′ = ⌈q/2⌉. For each symbol x ∈ Σq ,
the decomposition of x in Σq′ is τ(x) = (x1, x2) where x1 ∈
{0, 1}, x2 ∈ Σq′ and x = x1q

′ + x2. For example, when q =
3, we have τ(0) = (0, 0), τ(1) = (0, 1), and τ(2) = (1, 0).
When q = 6, we have τ(0) = (0, 0), τ(1) = (0, 1), τ(2) =
(0, 2), τ(3) = (1, 0), τ(4) = (1, 1), τ(5) = (1, 2).

For a q-ary sequence x of length n where x =
(x1, x2, . . . xn), we view it as the following matrix:

D(x) =
[
τ(x1) τ(x2) · · · τ(xn)

]
=

[
x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

]
,

where the first row D(x)1 = (x1,1, x1,2, . . . , x1,n) ∈ {0, 1}n,
the second row D(x)2 = (x2,1, x2,2, . . . , x2,n) ∈ Σn

q′ , and
finally, the ith column τ(xi) = (xi,1, xi,2)

T for 1 ⩽ i ⩽ n.

Our overall coding scheme is as follows.
• For the first row, we also use the binary codes proposed

by Levenshtein in 1967 in [15] that can correct a burst of
at most two deletions with the PLL constraint as proposed
by Wang et al. [24].

• For the second row, which is a q′-ary sequence, where
q′ = ⌈q/2⌉, we then use the differential shifted VT codes
to correct the error given the positional knowledge of
the errors. Before presenting our main contribution, we
summarize the result of Wang et al. [24], which is used
in our construction for the first row.

Definition 8. A sequence x ∈ Σn
q is said to have period 2 if

xi = xi+2 for all 1 ⩽ i ⩽ n − 2. A substring u of x is a
subsequence of x consisting of consecutive symbols in x.

Lemma 7 (Lemma 1, Lemma 2, Wang et al. [24]). There exists
a linear-time encodable and decodable binary code correcting
a burst of at most two deletions such that the length of the
longest substring with period 2 is at most ⌈log n⌉+5, and the
code redundancy is at most log n+ 3 bits.

We now present our main construction of non-binary codes
correcting a burst of at most two deletions with only log n +
3 log log n + O(log q) redundant bits. For simplicity, suppose
that n is even.

Definition 9. For a sequence x = (x1, x2, . . . xn) ∈ Σn
q , given

i, s > 0, we define the (i; s)-subsequence of x, denoted by
x(i;s), as follows:

x(i;s) =
(
xi, xi+s, xi+2s, . . . , xi+s⌊(n−i)/s⌋

)
.

We observe that when i = s = 1, we have x(1;1) ≡ x =
(x1, x2, . . . xn).
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Construction 7 (q-ary codes correcting at most two dele-
tions). Given n, q. Let C1 be a code obtained from Lemma 7.
Set ℓ = ⌈log n⌉ + 5, P = ℓ + 1 and q′ = ⌈q/2⌉. For
a = (a1, a2, a3) and b = (b1, b2, b3), where 0 ⩽ a1, a2, a3 <
q′(P + 1), 0 ≤ b1, b2, b3 ⩽ q′, let Ca,b(n,⩽ 2; q) be a set of
all q-ary sequences of length n such that for each codeword c
the following conditions hold:

• For the first row D(c)1, we must have D(c)1 ∈ C1
• For the second row D(c)2, suppose that x = D(c)2 =

(x1, x2, . . . , xn), we must have:

x = (x1, x2, . . . , xn) ∈ Diff SVTa1,b1(n; q
′, P ) (3)

x(1;2) = (x1, x3, . . . , xn−1) ∈ Diff SVTa2,b2(n/2; q
′, P ),

(4)

x(2;2) = (x2, x4, . . . , xn) ∈ Diff SVTa3,b3(n/2; q
′, P ). (5)

Theorem 9. The code Ca,b(n,⩽ 2; q) from Construction 7 can
correct a burst of at most two deletions, and there exist sufficient
values of a1, a2, a3, b1, b2, b3 such that the redundancy of such
a code Ca,b(n,⩽ 2; q) is log n+ 3 log log n+O(log q) bits.

Proof. We first show that such a code from Construction 7
can correct a burst of at most two deletions by providing
an error-decoding algorithm. Suppose that from the codeword
c ∈ Ca,b(n,⩽ 2; q), the received sequence is c′. Clearly, from
the length of c′, we can conclude the number of errors that
occurred. If the length of c′ is n then there is no error.

If the length of c′ is n − 1, we conclude that there is a
single deletion. Consequently, both rows D(c)1 and D(c)2
suffer exactly one deletion. Since D(c)1 ∈ C1, which is a binary
code capable of correcting a burst of up to 2 deletions, we can
recover D(c)1 uniquely. Next, since the maximum length of
any substring with period 2 in D(c)1 is at most ⌈log n⌉ + 5,
the maximum run of identical bits in D(c)1 is also at most
ℓ = ⌈log n⌉ + 5. We then conclude the location of the other
error in D(c)2 to be within determined P positions where
P = ℓ+1. We then use the constraint (3) from the construction
that x = D(c)2 = (x1, x2, . . . , xn) ∈ Diff SVTa1,b1(n; q

′, P )
to correct the error in D(c)2.

If the length of x′ is n − 2, we conclude that there is
a burst of exactly two deletions. Consequently, both rows
D(c)1 and D(c)2 suffer exactly two consecutive deletions. In
addition, we conclude that each subsequence, x(1;2) or x(2;2),
suffers exactly a single deletion. Since D(c)1 ∈ C1, which
is a binary code capable of correcting a burst of up to 2
deletions, we can recover D(c)1 uniquely. Next, since the
maximum length of any substring with period 2 in D(c)1 is
at most ⌈log n⌉ + 5, we then conclude the location of the
other error in D(c)2 to be within determined P positions where
P = ℓ+1. We then use the constraint (4) from the construction
that x(1;2) = (x1, x3, . . . , xn−1) ∈ Diff SVTa2,b2(n/2; q

′, P )
to correct the error in x(1;2). Similarly, we use the constraint
(5) from the construction that x(2;2) = (x2, x4, . . . , xn) ∈
Diff SVTa3,b3(n/2; q

′, P ) to correct x(2;2).
Thus, the code Ca,b(n,⩽ 2; q) from Construction 7 can

correct a burst of at most two deletions. It remains to show
the redundancy of our designed codes. According to Lemma 7,

the redundancy used for the first row is at most log n+ 3 bits.
On the other hand, the redundancy for a differential shifted VT
code is ⌈logq′ q′(P +1)⌉+2 symbols, or logP +O(log q) bits
(see Theorem 6). In our construction, P = ℓ+1 = ⌈log n⌉+6,
and hence, the redundancy for the second row to enforce
three constraints (3), (4), and (5) is at most 3 log log n +
O(log q) bits. Consequently, there exist sufficient values of
a1, a2, a3, b1, b2, b3 such that the redundancy of Ca,b(n,⩽ 2; q)
is log n+ 3 log log n+O(log q) bits. ■

Remark 6. The idea of Construction 7 can be extended to con-
struct non-binary codes correcting a burst of up to t deletions.
We still view each q-ary sequence c of length n as a matrix with
exactly two rows and n columns D(c). Similar to the work of
Wang et al. [25], the first row belongs to a binary code that is
capable of correcting a burst of up to t deletions (for example,
refer to the work of Lenz et al. [18] for an efficient design of
such a code) with an additional constraint to restrict the location
of errors. Particularly, in [25], the authors show that it is
possible to locate the errors within O(log n) positions using the
concept of (w, δ)-dense string. We then design the constraints
for the second rows as in Construction 7 to handle every single
case of s deletions for any s ⩽ t. In general, we would need
t(t + 1)/2 such constraints, resulting in a redundancy of at
most t(t + 1) log log n + o(log q) = O(t2 log log n) bits (see
Example 5). However, the encoding and decoding procedures
are much more complicated than the case of a burst of at most
two errors. We defer the study of codes correcting a burst of
up to t deletions and the design of efficient encoders for such
codes to our future works.

Example 5. To correct a burst of at most three deletions,
for each codeword c, the first row D(c)1 belongs to a binary
code, which is capable of correcting a burst of at most three
deletions with an additional constraint to locate the errors
within O(log n) positions. On the other hand, the constraints for
the second row x = D(x)2 = (x1, x2, . . . , xn) are as follows:

x = (x1, x2, . . . , xn) ∈ Diff SVTa1,b1(n; q
′, P ) (6)

x(1;2) = (x1, x3, . . . , xn−1) ∈ Diff SVTa2,b2(n/2; q
′, P ), (7)

x(2;2) = (x2, x4, . . . , xn) ∈ Diff SVTa3,b3(n/2; q
′, P ), (8)

x(1;3) = (x1, x4, x7, . . .) ∈ Diff SVTa4,b4(n/3; q
′, P ), (9)

x(2;3) = (x2, x5, x8, . . .) ∈ Diff SVTa5,b5(n/3; q
′, P ), (10)

x(3;3) = (x3, x6, x9 . . .) ∈ Diff SVTa6,b6(n/3; q
′, P ). (11)

We observe that when there is exactly one deletion, the
constraint (6) is sufficient to correct the error in the second
row x = D(x)2. On the other hand, when there is a burst of
two deletions, the decoder uses the constraints (7) and (8) to
correct the errors in x(1;2) and x(2;2), accordingly. Similarly,
when there is a burst of three deletions, the decoder uses the
remaining constraints (9), (10), and (11) to correct the errors
in x(1;3), x(2;3) and x(3;3), when each of them suffers from a
single deletion.

To conclude this section, we present an efficient encoder for
non-binary codes correcting a burst of at most two deletions
with log n + 3 log log n + O(log q) redundant bits, which sig-

14



nificantly improves on the redundancy log q log n + O(log q)
bits of the encoder in [25]. Recall that in Construction 7,
for each codeword c, the rows D(c)1 and D(c)2 can be
encoded independently. While the construction for a binary
code satisfying the constraints required in the first row was
presented in [25], it remains to present an efficient encoding
algorithm for the second row D(c)2.

Note that the redundancy used in the differential shifted
VT encoder ENCDiff SVT is ⌈logq q(P + 1)⌉+ 2 symbols (see
Theorem 6), where ⌈logq q(P+1)⌉ symbols are used to enforce
the syndrome constraint and the other two symbols are used to
enforce the parity check constraint.

Construction 8. Given n, q, P , where q > 2. Set k = n −
3(⌈logq q(P +1)⌉+2)−7, m = ⌈logq q(P +1)⌉. We construct
an encoder ENC∗ : Σk

q → Σn
q as follows. Suppose that k is

even and for a sequence x = (x1, x2, . . . xk) ∈ Σk
q , we obtain:

a1 = Syn(Diff(x)) (mod q(P + 1)),

a2 = Syn(Diff(x(1;2))) (mod q(P + 1)),

a3 = Syn(Diff(x(2;2))) (mod q(P + 1)),

and

b1 =
k∑

i=1

Diff(x)i (mod (q + 1)),

b2 =

k/2∑
i=1

Diff(x(1;2))i (mod (q + 1)),

b3 =

k/2∑
i=1

Diff(x(2;2))i (mod (q + 1)).

Let u1, u2, u3 be the q-ary representation of length m =
⌈logq q(P + 1)⌉ of a1, a2, and a3, respectively. On the other
hand, let v1, v2, v3 be the q-ary representation of length 2 of
b1, b2, and b3, respectively. Recall the last symbol in x is xk and
suppose that the first symbol in u1 is β. Let γ be the smallest
symbol in Σq that is different from xk and β, and obtain a
marker M = (xk, xk, γ, γ, γ, β, β) of length 7. We then set
ENC∗(x) ≡ xMu1v1u2v2u3v3 ∈ Σn

q .

Theorem 10. Let C =
{

ENC∗(x) : x ∈ Σk
q

}
. We then have

that C can correct a burst of at most two deletions given the
knowledge of the location of the deleted symbols to be within
P consecutive positions.

Proof. Suppose that c = ENC∗(x) for some x ∈ Σk
q and the

decoder receives a sequence c′, which is obtained from c via
a burst of at most two deletions. Recall the construction of the
marker M = (xk, xk, γ, γ, γ, β, β) of length 7, hence, when
there is a burst of at most two deletions, we must have c′k =
xk, c′k+3 = γ and c′k+6 = β. Therefore, given the received
sequence c′, the decoder is able to get the information of xk,
the last symbol in x, the symbol γ, and finally β, which is the
first symbol in u1. Base on the information of the marker M ,
it is able to locate the burst of at most two deletions, whether
in x, or in the marker M , or in the suffix u1v1u2v2u3v3.

• If the errors occur at the marker M or in the suffix
u1v1u2v2u3v3, the decoder concludes that there is no
error in x and simply takes the prefix of k symbols as the
original sequence x. To recover the suffix u1v1u2v2u3v3,
it proceeds to recompute a1, a2, a3, b1, b2, b3 as in Con-
struction 8, and recover the suffix u1v1u2v2u3v3.

• On the other hand, if the errors occur within the first k
symbols in x, the decoder concludes that there is no error
in the suffix u1v1u2v2u3v3. Based on the information of
this suffix and given the knowledge of the location of the
deleted symbols to be within P consecutive positions, the
decoder follows the error-decoding procedure in Lemma
5 (refer to the q-ary differential shifted VT codes, Con-
struction 5) to correct the errors in x.

In conclusion, the code C =
{

ENC∗(x) : x ∈ Σk
q

}
can correct

a burst of at most two deletions given the knowledge of the
location of the deleted symbols to be within P consecutive
positions. ■

The following result is then immediate.

Corollary 2. There exists a linear-time encoder ENC and a
corresponding decoder DEC for non-binary codes correcting
a burst of at most two deletions (or two insertions) with
redundancy log n+ 3 log log n+O(log q) bits.

VI. CONCLUSION

We have presented a new version of non-binary VT codes
that are capable of correcting a single deletion or single inser-
tion, providing an alternative simpler and more efficient encoder
of the construction by Tenengolts [22]. Our construction is
based on the differential vector, and the codes are referred to as
the differential VT codes. In addition, we have provided linear-
time algorithms that encode user messages into these codes
of length n over the q-ary alphabet for q ⩾ 2 with at most
⌈logq n⌉+1 redundant symbols, while the optimal redundancy
required is at least logq n+logq(q− 1) symbols. Our designed
encoder reduces the redundancy of the best-known encoder of
Tenengolts [22] by at least 2 redundant symbols or equivalently
2 log2 q bits.

Moreover, we have introduced the q-ary differential shifted
VT codes to construct non-binary codes correcting a burst of
deletions (or insertions). Particularly, when there are at most
two errors, our designed codes incur log n + 3 log log n +
O(log q) redundant bits, which improves a recent result of
Wang et al. [24] with redundancy log n + O(log q log log n)
bits for all q ⩾ 8. We have also presented an efficient encoder
for codes correcting a burst of exactly t deletions (or insertions)
for arbitrary t ⩾ 1, while the design of the encoder for codes
correcting a burst of variable length (when the length is up to
t for arbitrary t > 3) is deferred to our future work.
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