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Twisted cubics on cubic fourfolds

and stability conditions

Chunyi Li, Laura Pertusi and Xiaolei Zhao

Abstract

We give an interpretation of the Fano variety of lines on a cubic fourfold and of the
hyperkähler eightfold, constructed by Lehn, Lehn, Sorger and van Straten from twisted
cubic curves in a cubic fourfold not containing a plane, as moduli spaces of Bridgeland
stable objects in the Kuznetsov component. As a consequence, we obtain the identi-
fication of the period point of the LLSvS eightfold with that of the Fano variety. We
discuss the derived Torelli theorem for cubic fourfolds.

1. Introduction

Hyperkähler geometry is a central research area in differential geometry and algebraic geome-
try. Although much effort has been made, it is still difficult to construct compact hyperkähler
varieties. The first known examples are Hilbert schemes of points on K3 surfaces (see [Bea83])
or, more generally, moduli spaces of stable sheaves on K3 surfaces (see [Muk87]). Note that this
construction only provides codimension 1 loci in the polarized moduli spaces.

Another way to construct compact hyperkähler manifolds is via classical algebraic geometry.
Let Y be a cubic fourfold, and consider the Fano variety FY of lines on Y . It was shown in [Bea83]
that FY is a smooth projective hyperkähler fourfold, deformation equivalent to the Hilbert square
of a K3 surface. More recently, in [LLSvS17] the authors constructed a hyperkähler eightfold MY

from the irreducible component of the Hilbert scheme of twisted cubic curves on Y . One advantage
of this approach is that it provides locally complete families of (polarized) projective hyperkähler
manifolds.

On the other hand, the geometry of cubic fourfolds has a deep connection with K3 surfaces.
The Hodge-theoretic interaction has been fully explored in the literature, for example in [Has00].
From a categorical viewpoint, in [Kuz10] it is proved that the bounded derived category of
coherent sheaves on a cubic fourfold Y admits a semiorthogonal decomposition of the form

Db(Y ) = ⟨Ku(Y ),OY ,OY (H),OY (2H)⟩ .
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Twisted cubics and stability conditions

In particular, the Kuznetsov component Ku(Y ) is a K3 category; that is, its Serre functor is equal
to the homological shift [2]. In the celebrated work [BLMS23], the authors provide a construction
of Bridgeland stability conditions on Ku(Y ) (see Section 2.2 for a summary of this construction).
In the following, we will denote these stability conditions by σ. As a consequence, it is possible
to study moduli spaces of stable objects in the Kuznetsov component.

The aim of this paper is to give a description of FY and MY in terms of moduli spaces of
stable objects in the Kuznetsov component, with respect to the Bridgeland stability conditions
constructed in [BLMS23].

Recall that the algebraic Mukai lattice of Ku(Y ) always contains an A2 lattice spanned by
two classes λ1 and λ2 (see Section 2.2). We denote by Mσ(v) the moduli space of σ-stable
objects in Ku(Y ) with Mukai vector v. With each line ℓ on Y , we can associate an object
Pℓ ∈ Ku(Y ), of Mukai vector λ1 + λ2 (see Section 4). Our first result gives a reconstruction of
FY as follows.

Theorem 1.1. For any line ℓ in a cubic fourfold Y , the object Pℓ is σ-stable, and the moduli

space Mσ(λ1 + λ2) is isomorphic to the Fano variety FY .

As Ku(Y ) is a K3 category, the space Mσ(λ1 +λ2) is naturally equipped with a holomorphic
symplectic form, constructed as in [Muk87]. This gives a more conceptual explanation of the
existence of the holomorphic symplectic structure.

The case of twisted cubics on Y is even more interesting from many perspectives. Assume
that Y does not contain a plane. It was shown in [LLSvS17] that the irreducible component M3

of the Hilbert scheme parametrizing twisted cubic curves on Y is a smooth projective variety
of dimension 10. Moreover, they proved that the morphism sending C to the 3-dimensional
projective space spanned by C factorizes through a P

2-fibration M3 → M ′
Y . Here the variety M ′

Y ,
constructed by studying determinantal representations of cubic surfaces in Y , is smooth and
projective of dimension 8. Finally, they proved that the divisor in M ′

Y determined by non-CM
twisted cubics on Y can be contracted and the resulting variety MY is a smooth projective
hyperkähler eightfold. In addition, the cubic fourfold Y is contained in MY as a Lagrangian
submanifold, and M ′

Y is the blow-up of MY in Y .

From the categorical point of view, every twisted cubic curve C in Y has an associated
object F ′

C in Ku(Y ) with Mukai vector 2λ1 + λ2 (see Section 2.3). Note that the moduli space
Mσ(2λ1+λ2) is a projective hyperkähler eightfold by [BLM+21]. Our main result is the following.

Theorem 1.2 (Theorems 3.8 and 3.9). Let Y be a smooth cubic fourfold not containing a plane.

If C is a twisted cubic on Y , then the object F ′
C is σ-stable. Moreover, the projective hyperkähler

eightfold Mσ(2λ1 + λ2) parametrizes only objects of the form F ′
C , and it is isomorphic to the

LLSvS eightfold MY .

Applications. A direct consequence of Theorem 1.2 is the identification of the period point
of MY with that of FY .

Proposition 1.3 (Proposition 5.1). For a cubic fourfold Y not containing a plane, the period

point of MY is identified with the period point of the Fano variety FY .

A second application of Theorem 1.2 is the characterization of when MY is birational to
a Hilbert scheme of points on a K3 surface (Proposition 5.2).

The derived Torelli theorem has been proved in [Huy17] for very general cubic fourfolds, for
cubic fourfolds with an associated K3 surface and for general cubic fourfolds. Section 5.3 is an

621



C. Li, L. Pertusi and X. Zhao

attempt to extend this result for every cubic fourfold. In particular, we show that our strategy
works in the simple case of the identity on Ku(Y ), as explained below.

Proposition 1.4 (Proposition 5.6). Let Y be a cubic fourfold not containing a plane. Then

the composition of the projection functor on the Kuznetsov component of Y with the embed-

ding Ku(Y ) ↪→ Db(Y ) is a Fourier–Mukai functor with kernel given by the restriction of the

(quasi-)universal family on Mσ(2λ1 + λ2)× Y to Y × Y .

Related works. The hyperkähler structure on the Fano variety FY was firstly observed in
[BD85], by a deformation argument. Later in [KM09], another construction was provided using
Atiyah classes.

In the case of twisted cubics, the variety MY appeared for the first time in the beautiful work
[LLSvS17]. Their strategy relies on a detailed analysis of the singularities and the determinantal
representations of the twisted cubics and the cubic surfaces in Y . One feature of our approach
is that it only involves homological properties of twisted cubic curves; this simplifies a lot the
argument.

In [LLMS18] the authors gave an interpretation of the geometric picture of [LLSvS17] in the
categorical setting. In particular, they described M ′

Y and MY as components of moduli spaces of
Gieseker stable sheaves on Y . For very general cubic fourfolds, they also realized the contraction
from M ′

Y to MY via wall crossing in tilt stability.

We point out that Theorems 1.1 and 1.2 were proved for very general cubic fourfolds in
[BLMS23, Appendix] and [LLMS18], respectively. In this situation, the algebraic Mukai lattice
of Ku(Y ) is exactly the A2 lattice. This property rules out most of the potential walls, allowing
one to prove the theorems without going through the construction of the stability conditions.
It was made clear in [AL17] and [LLMS18] that for each twisted cubic C, the object F ′

C is the
correct one to consider.

Update. Section 5.2 was added in a version of this paper submitted in July 2019. Shortly
after that, we learnt that this was proved independently in an upcoming paper by A. Bayer,
A. Bertram and E. Macr̀ı by a similar method. In [AG23], the authors give an independent
proof of Proposition 5.1 using classical techniques. They also show the analogous statement of
Proposition 5.2.

Plan of the paper. In Section 2 we recall the definition of (weak) stability conditions on
triangulated categories and the construction of Bridgeland stability conditions on Ku(Y ) in
[BLMS23]. Roughly speaking, they are obtained by tilting a second time the weak stability
conditions σα,−1 and, then, restricting to Ku(Y ). Finally, we introduce the objects associated
with twisted cubics, whose stability is studied in this context. Section 3 is the main part of
the paper. Firstly, we compute walls and the Chern character up to degree 2 of possible desta-
bilizing objects with respect to σα,−1. Secondly, we prove that the first wall can be crossed
by preserving stability in the aCM case, while for non-CM curves, we need to consider the
projection of these objects in Ku(Y ) (see Proposition 3.4). In fact, their projection remains sta-
ble after every wall, as we show in Section 3.4. Finally, in Section 3.5 we prove Theorem 1.2.
Section 4 is devoted to the proof of Theorem 1.1, and in Section 5 we discuss some applica-
tions.
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2. Kuznetsov component and stability conditions

In this section we introduce some notation and results we will use in the rest of the paper.
Firstly, we recall some basic definitions about (weak) stability conditions and the construction
of stability conditions on the Kuznetsov component of a cubic fourfold, introduced in [BLMS23].
In particular, we show that these stability conditions do not depend on the line fixed at the
very beginning of the construction in [BLMS23] (see Proposition 2.6). Finally, we define the
objects F ′

C associated with twisted cubics which we will study in this work.

2.1. (Weak) stability conditions. In this subsection we briefly recall the definition of (weak)
stability conditions for a C-linear triangulated category T , following the summary in [BLMS23,
Section 2]. Essentially, a (weak) stability condition is the data of the heart of a bounded t-
structure and of a (weak) stability function, satisfying certain conditions.

Definition 2.1. The heart of a bounded t-structure is a full subcategory A of T such that

(i) for E, F in A and n < 0, we have Hom(E,F [n]) = 0, and

(ii) for every E in T , there exists a sequence of morphisms

0 = E0
ϕ1−→ E1

ϕ2−→ . . .
ϕm−1−−−→ Em−1

ϕm−−→ Em = E

such that the cone of ϕi is of the form Ai[ki] for some sequence k1 > k2 > · · · > km of
integers and Ai in A.

Recall that the heart of a bounded t-structure is an abelian category by [BBD82].

Definition 2.2. Let A be an abelian category. A group homomorphism Z : K(A) → C is a weak

stability function (respectively, a stability function) on A if for E ∈ A, we have ℑZ(E) ⩾ 0, and
in the case that ℑZ(E) = 0, we have ℜZ(E) ⩽ 0 (respectively, ℜZ(E) < 0 when E ̸= 0).

We denote by K(T ) the numerical Grothendieck group of T . Let Λ be a finite-rank lattice
with a surjective homomorphism v : K(T ) ↠ Λ.

Definition 2.3. A weak stability condition on T is the data of a pair σ = (A, Z), where A is the
heart of a bounded t-structure on T and Z is a weak stability function, satisfying the following
properties:

(i) The composition K(A) = K(T )
v−→ Λ

Z−→ C is a weak stability function on A. We will
write Z(−) instead of Z(v(−)) for simplicity. For any E ∈ A, the slope with respect to Z
is given by

µσ(E) =







−ℜZ(E)

ℑZ(E)
if ℑZ(E) > 0 ,

+∞ otherwise .

An object E ∈ A is σ-semistable (respectively, σ-stable) if for every proper subobject F
of E, we have µσ(F ) ⩽ µσ(E) (respectively, µσ(F ) < µσ(E/F )).

(ii) Any object of A has a Harder–Narasimhan filtration with σ-semistable factors.

(iii) (Support property) There exists a quadratic form Q on Λ⊗R such that the restriction of Q
to kerZ is negative definite and Q(E) ⩾ 0 for all σ-semistable objects E in A.

In addition, if Z is a stability function, then σ is a Bridgeland stability condition.
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2.2. Construction of stability conditions. Let Y be a smooth cubic fourfold. The bounded
derived category of coherent sheaves on Y admits a semiorthogonal decomposition of the form

Db(Y ) = ⟨Ku(Y ),OY ,OY (H),OY (2H)⟩ ,
where H is a hyperplane in Y (see [Kuz10, Corollary 2.6]). In this subsection we briefly recall
the construction of Bridgeland stability conditions on Ku(Y ) introduced in [BLMS23].

The algebraic Mukai lattice of Ku(Y ) was introduced in [BLMS23, Proposition and Defini-
tion 9.5]. Roughly speaking, it consists of algebraic cohomology classes of Y which are orthogonal
to the classes of OY , OY (H), OY (2H) with respect to the Euler pairing. This lattice always con-
tains two special classes

λ1 = [pr(OL(H))] and λ2 = [pr(OL(2H))] ,

where L is a line on Y and pr: Db(Y ) → Ku(Y ) is the natural projection functor.

The key idea for the construction of stability conditions on Ku(Y ) is to embed the Kuznetsov
component into a “3-dimensional” category, where it is easier to define weak stability conditions
by tilting. More concretely, let us fix a line L ⊂ Y which is not on a plane in Y and denote by

σ : Ỹ → Y

the blow-up of L in Y . The projection from L to a disjoint P
3 equips Ỹ with a natural conic

fibration structure

π : Ỹ → P
3 .

In particular, we have an associated sheaf of Clifford algebras over P3, whose even part (respec-
tively, odd part) is denoted by B0 (respectively, B1). Let h be the hyperplane class on P

3; we use
the same notation for its pullback to Ỹ . We consider the B0-bimodules

B2j := B0 ⊗OP3(jh) and B2j+1 := B1 ⊗OP3(jh) for j ∈ Z .

By [BLMS23, Proposition 7.7], there is a semiorthogonal decomposition of the form

Db
(

P
3,B0

)

= ⟨Ψ(σ∗Ku(Y )),B1,B2,B3⟩ , (2.1)

where Ψ: Db
(

Ỹ
)

→ Db
(

P
3,B0

)

is a fully faithful functor defined by

Ψ(−) = π∗(−⊗OỸ (h)⊗ E [1]) .

Here E is a sheaf of right π∗B0-modules on Ỹ , constructed in [BLMS23, Section 7]. Use Forg:
Db

(

P
3,B0

)

→ Db
(

P
3
)

to denote the forgetful functor; it is known that Forg(E) is a vector bundle
of rank 2.

Now the first step is to construct weak stability conditions on the derived category Db
(

P
3,B0

)

:= Db
(

Coh
(

P
3,B0

))

, where Coh
(

P
3,B0

)

is the category of coherent sheaves on P
3 with a right

B0-modules structure. We remark that the Serre functor on Db
(

P
3,B0

)

is

S(−) = (−)⊗B0
B−3[3] ,

as shown in [BLMS23].

It turns out that, in order to obtain a suitable Bogomolov inequality for Db
(

P
3,B0

)

, it is
necessary to modify the usual Chern character. More precisely, for F ∈ Db

(

P
3,B0

)

, the modified
Chern character is defined as

chB0
(F) = ch(Forg(F))

(

1− 11

32
l

)

,
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where l denotes the class of a line in P
3. Moreover, the twisted Chern character is given by

chβB0
= e−βh chB0

=
(

rk, chB0,1− rkβh, chB0,2−βh · chB0,1+rk 1
2β

2h2, . . .
)

.

Next we will identify the Chern characters on P
3 with rational numbers.

One useful property of chB0
is that its image lattice is spanned by the modified Chern char-

acters of λ1, λ2 and chB0,⩽2(Bi) for i = 1, 2, 3. See the proof of [BLMS23, Proposition 9.10] for
details.

We denote by Cohβ
(

P
3,B0

)

the heart of a bounded t-structure obtained by tilting Coh
(

P
3,B0

)

with respect to the slope stability at slope β. Furthermore, the discriminant can be defined as

∆B0
(F) = (chB0,1(F))2 − 2 rk(F) chB0,2(F) =

(

chβB0,1
(F)

)2−2 rk(F) chβB0,2
(F) .

Having this notation, we can state the following result.

Proposition 2.4 ([BLMS23, Proposition 9.3]). Given α > 0 and β ∈ R, the pair σα,β =
(

Cohβ
(

P
3,B0

)

, Zα,β

)

with

Zα,β(F) = i chβB0,1
(F) + 1

2α
2 chβB0,0

(F)− chβB0,2
(F)

defines a weak stability condition on Db
(

P
3,B0

)

. The quadratic form can be given by the dis-

criminant ∆B0
. In particular, for a σα,β-semistable object F , we have

∆B0
(F) ⩾ 0 .

Remark 2.5. We observe that the last part of Proposition 2.4 follows easily from [BLMS23,
Theorem 8.3], arguing as in [BMS16, Section 3].

We recall that when chβB0,1
(F) ̸= 0, the slope of F associated with σα,β is defined as

µα,β(F) =
−ℜ(Zα,β(F))

ℑ(Zα,β(F))
=

chB0,2(F)− 1
2

(

α2 + β2
)

rk(F)

chB0,1(F)− β rk(F)
− β .

The second step is to induce stability conditions on Ku(Y ) from the weak stability conditions
on Db

(

P
3,B0

)

. We only sketch this part as details will not be used. We fix α < 1
4 and β = −1,

and we consider the tilting of Coh−1
(

P
3,B0

)

with respect to µα,β = 0. This new heart is denoted
by Coh0α,−1

(

P
3,B0

)

. Note that Ku(Y ) embeds into Db
(

P
3,B0

)

. As shown in [BLMS23, Section 9],
the pair

σα =
(

Coh0α,−1

(

P
3,B0

)

∩Ku(Y ),−iZα,−1

)

(2.2)

defines a Bridgeland stability condition on Ku(Y ).

One subtle issue is that the Clifford structure and the embedding of Ku(Y ) in Db
(

P
3,B0

)

depend on the choice of the line L to blow up. However, for the induced stability conditions on
the Kuznetsov component, we are able to prove the following result.

Proposition 2.6. For a fixed α > 0, the induced stability condition σα defined in (2.2) is

independent of the choice of L.

Proof. For simplicity, we denote the stability condition by the pair σL = (AL, ZL). The central

charge ZL factors via chβB0
, which is independent of the choice of L. We need to show that the

heart AL is constant.

Let FY be the Fano variety of lines on Y . It is shown in [BLM+21, Proposition 30.4] that σL
is a family of stability conditions over FY satisfying the openness of heart property. In particular,
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if an object F is σL0
-semistable for a line L0 ∈ FY , then there exists an open set U0 ⊂ FY such

that F is σL-semistable for any line L ∈ U0.

Now we show that in our case, this implies that F is σL-semistable for any L ∈ FY . If not,
assume that there exists a line L1 such that F is not σL1

-semistable. Then we consider the
Harder–Narasimhan filtration of F with respect to the slicing of σL1

:

F1 ⊂ F2 ⊂ · · · ⊂ Fn = F .

By our assumption, F1 is σL1
-semistable, and its phase satisfies ϕ(F1) > ϕ(F).

Using the openness of heart property again, we know that there exists an open set U1 ⊂ FY

such that for any L ∈ U1, the object F1 is σL-semistable. In particular, if we take a line L ∈
U0 ∩U1, then F and F1 are both σL-semistable. Since the central charge is independent of L, we
still have ϕ(F1) > ϕ(F). On the other hand, by our construction there is a non-trivial morphism
F1 → F , giving a contradiction. This concludes the proof of the statement.

2.3. Twisted cubics and objects. Let Y be a smooth cubic fourfold not containing a plane.
As in [LLMS18], given a twisted cubic curve C contained in a cubic surface S ⊂ Y , we denote
by FC the kernel of the evaluation map

H0(Y, IC/S(2H))⊗OY ↠ IC/S(2H) ,

where IC/S is the ideal sheaf of C in S. Let F ′
C be the projection of FC in the Kuznetsov category

Ku(Y ). Explicitly, as the projection is the composition of the mutations ROY (−H)LOY
LOY (H)

(see for example [BLMS23, Section 3] for the definitions of mutation functors), it is possible to
compute that

F ′
C := ROY (−H)FC .

We recall that by [LLMS18, Lemma 2.3], if C is an aCM twisted cubic curve, then FC is in Ku(Y );
in this case, FC and F ′

C are identified. If C is a non-CM curve, by the definition of F ′
C , we have

the triangle

F ′
C → FC → OY (−H)[1]⊕OY (−H)[2] .

Using the notation introduced in the previous section, we set

EC := Ψ(σ∗FC) and E′
C := Ψ(σ∗F ′

C) .

By (2.1), we have that E′
C is in ⟨B1,B2,B3⟩⊥. Applying σ∗ and Ψ, for a non-CM curve C, we get

the triangle

E′
C → EC → B−1[1]⊕ B−1[2] ; (2.3)

here we have used [BLMS23, Proposition 7.7]. In particular, we note that

ch−1
B0,⩽2(E

′
C) = ch−1

B0,⩽2(EC) = ch−1
B0,⩽2(Ψσ∗(2λ1 + λ2)) = (0, 6, 0) .

3. Wall crossing and stability for twisted cubic curves

The aim of this section is to prove Theorem 1.2. Firstly, we compute the walls and the twisted
Chern character up to degree 2 of possible destabilizing objects for EC with respect to σα,−1.
Secondly, we characterize semistable objects in the heart with negative rank and zero discrimi-
nant. This is fundamental to recover the destabilizing objects by their Chern character. In the
third part, we show that EC is stable with respect to σα,−1 for α large (Proposition 3.3). This
gives us the starting point for wall crossing. To cross the first wall, we need to consider the
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projection E′
C in the Kuznetsov component in order to preserve the stability. Then, we prove

that E′
C remains stable after the other walls. Finally, we discuss the stability after the sec-

ond tilt, and we relate the moduli space which parametrizes these stable objects to the LLSvS
eightfold.

3.1. Computation of the walls with respect to σα,−1. Having the stability of EC for
α large from Proposition 3.3, we are now interested in computing explicitly the walls where
the object could potentially become strictly semistable. In this subsection we list the character
ch−1

B0,⩽2 of all possible destabilizing objects of EC and E′
C with respect to the weak stability

conditions σα,−1.

We recall that by [BLMS23, Remark 8.4], the rank of B0-modules on P
3 is always a multiple

of 4. Thus, we write the characters of the destabilizing subobjects and quotient objects as

(0, 6, 0) =
(

4a, b,
c

8

)

+
(

−4a, 6− b,− c

8

)

(3.1)

for a, b, c ∈ Z. These characters have to satisfy several additional conditions:

(i) The two characters have non-negative discriminant ∆B0
as recalled in Proposition 2.4.

(ii) There exists an α > 0 such that the two characters have the same slope with respect to
σα,−1.

(iii) The two characters should be integral combinations of the characters of λ1 and λ2, and of
ch−1

B0,⩽2(Bi) for i = 1, 2, 3.

(iv) The ordinary Chern character of objects in Db
(

P
3
)

truncated to degree 2 is represented
by a triple (R,C,D/2), where C and D are integers of the same parity. Thus, the two
characters have the form

(

R,C,
D

2

)(

1, 0,−11

32

)(

1, 1,
1

2

)

=

(

R,C +R,
D

2
+ C − 5

16
R

)

.

These conditions reduce the possible destabilizing characters to finitely many cases, which we
list below. The computation is rather elementary, and we omit the details.

Proposition 3.1. The possible solutions of (3.1) are:

(1) for α = 3/4: a = 1, b = 3, c = 9;

(2) for α = 1/4:

(a) a = ±1, b = 1, c = ±1;
(b) a = ±2, b = 2, c = ±2;
(c) a = ±3, b = 3, c = ±3;
(d) a = 1, b = 3, c = 1;

(3) for α = 1/12: a = 9, b = 3, c = 1.

Note that the stability condition σα is constructed from σα,−1 with α < 1/4. In the rest of
this section we will study the stability of EC . We will first prove that if C is an aCM curve,
then EC remains stable with respect to σα,−1 after the first wall. On the other hand, if C is non-
CM, then EC is destabilized. In particular, we need to consider the mutation E′

C of EC , which
instead becomes stable. Then we prove that the second wall can be crossed without changing the
stability of E′

C . The third wall also does not change the stability of E′
C ; this fact can be directly

proved without using specific information about the destabilizing objects.
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3.2. Stable objects of discriminant zero. The following general lemma will be crucial in
order to study the destabilizing objects by their Chern characters. The basic idea is that a
stable object E of zero discriminant and negative rank has to be stable with respect to any
weak stability condition σα,β . Then, comparing the slopes of E and Bi with respect to different
stability conditions, we get strong restrictions on Hom(Bi, E[j]), which can be used to show that
E = B⊕n

i [1].

Lemma 3.2 (Stable objects of discriminant zero). Let E be a σα0,β0
-semistable object in

Cohβ0
(

P
3,B0

)

for some α0 > 0 and β0 ∈ R. Assume ∆B0
(E) = 0 and rk(E) < 0. Then

E = B⊕n
i [1] for some i ∈ Z and n ∈ N .

Proof. In order to simplify the notation, we set

µE =
ch−1

B0,1
(E)

rk(E)
.

As we will compare the slopes of E with those of Bi, it is helpful to keep in mind that

ch−1
B0,1

(Bi)

rk(Bi)
=

i

2
− 1

4
.

Without loss of generality, by considering E ⊗B0
Bk for suitable k ∈ Z, we may assume that

µE ∈
[

−1
4 ,

1
4

)

.

By choosing a stable factor of E, we may first assume that E is actually σα0,β0
-stable. By

[BMS16, Lemma 3.9], when β > µE − 1, the object E can become strictly semistable only when
each stable factor Ei satisfies ∆B0

(Ei) < ∆B0
(E) = 0, which is not possible. Therefore, we deduce

that E is σα,β-stable for β > µE − 1. In particular, we have that E is σ0+,β1
stable for

µE < β1 + 1 < 1
4 ,

where the notation σ0+,β1
means that it is possible to find suitable values of α > 0 realizing this

relation between the slopes. We denote the slope function of this stability by µ0+,β1
.

Since rk(E) < 0, we have (see Figure 1)

µ0+,β1
(B−2[1]) < µ0+,β1

(E) < µ0+,β1
(B1) .

By comparing the slope and applying Serre duality, it follows that Hom(B1, E[j]) = 0 for
j ̸= 1. Therefore, χ(B1, E) ⩽ 0.

Now we study the vertical wall. Suppose that E is strictly semistable when β2 = µE − 1.
Then each stable factor Ei satisfies one of the two conditions

rk(Ei) < 0 and ch−1
B0,⩽2(Ei) = (0, 0, 0) .

We study these two cases separately. Given a stable factor Ei with negative rank, by [BMS16,
Lemma 3.9] we have that Ei[−1] is in the heart Cohβ

(

P
3,B0

)

, and it is σα,β-stable for any
β + 1 < µE . In particular, Ei[−1] is σ0+,β3

-stable for

−3
4 < β3 + 1 < µE .

Since rk(Ei) < 0, we can compute (see also Figure 11)

µ0+,β3
(B−2[1]) < µ0+,β3

(Ei[−1]) < µ0+,β3
(B1) .

1Instead of computing the µ0+,β1
for each object explicitly, one may also compare their slopes by visualizing them

on the figure. A point above the parabola represents the kernel of the central charge, while a point below the
parabola represents a stable character. We refer to [LZ19, Section 1.5] for details of this set-up.
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•
E

•
B−2

•
B−1

•B0 •B1

•B3

•B2

•kerZ0+,β3

•

kerZ0+,β′
1

•

kerZ0+,β1

5
4µ0+,β1

(E)

µ0+,β1
(B1)

slope∼ µ0+,β1
(B−2[1])

ch−1

B0,1

rk

ch−1

B0,2

rk

∆B0
= 0

Figure 1. Comparing slopes with respect to µ0+,β1
.

As a consequence, we get

Hom(B1, Ei[1]) = Hom(Ei[−1],B−2[1])
∗ = 0 .

Since Ei is also σα,β-stable for β > µE − 1 (by the same argument used for E), we deduce that
Hom(B1, Ei[j]) = 0 for any j ∈ Z; in other words, Ei ∈ B⊥

1 . In particular, χ(B1, Ei) = 0.

In the second case we show that such a torsion stable factor cannot exist. Assume that Ei is
a stable factor with ch−1

B0,⩽2(Ei) = (0, 0, 0); note that

HomB0
(B1, Ei[j]) = HomO

P3
(OP3 ,Forg(Ei ⊗B0

B−1)[j]) = 0

if and only if j ̸= 0. This implies that χ(B1, Ei) > 0. Since χ(B1, Ei) is also non-positive by
the previous computation, we conclude that Ei has to be zero. Hence we may assume that each
stable factor Ei satisfies rk(Ei) < 0.

Now we want to show that ch−1
B0,⩽2(Ei[−1]) = c ch−1

B0,⩽2(B0) for some positive integer c. It

suffices to show that ch−1
B0,1

(Ei)/rk(Ei) = −1
4 . Assume that this does not hold; then we may

consider the tilt stability condition σ0+,β′
1
for some β′

1 with

ch−1
B0,1

(B0)

rk(B0)
< β′

1 + 1 <
ch−1

B0,1
(Ei)

rk(Ei)
.

In this case, we have

µ0+,β′
1
(B−1[1]) < µ0+,β′

1
(B0[1]) < µ0+,β′

1
(Ei[−1]) < µ0+,β′

1
(B2) < µ0+,β′

1
(B3)

and

µ0+,β1
(B−1[1]) < µ0+,β1

(B0[1]) < µ0+,β1
(Ei) < µ0+,β1

(B2) < µ0+,β1
(B3) .
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Hence

Hom(B2, Ei[j]) = Hom(B3, Ei[j]) = 0

for any j ∈ Z. This shows that Ei belongs to Ψ(σ∗Ku(Y )). In particular, the twisted Chern
character of Ei satisfies ch

−1
B0,⩽2(Ei) = aλ1 + bλ2 for some (a, b) ̸= (0, 0). Note that any Ei with

such truncated twisted Chern character satisfies ∆B0
(Ei) ⩾ 7. This leads to a contradiction with

the assumption that E has zero discriminant.

We may now assume ch−1
B0,⩽2(Ei[−1]) = c ch−1

B0,⩽2(B0) for some positive integer c. Since

µ0+,β3
(B−3[1]) < µ0+,β3

(B−1[1]) < µ0+,β3
(Ei[−1]) < µ0+,β3

(B2)

and

µ0+,β1
(B−1[1]) < µ0+,β1

(Ei) < µ0+,β1
(B2) ,

we have the vanishings Hom(B2, Ei[j]) = 0 for any j ∈ Z and Hom(B0, Ei[j]) = 0 for any j ̸= 0
or −1. Therefore, we have that

0 = χ(B2, Ei) = χO
P3
(OP3 ,Forg(Ei)(−h))

= ch3(Forg(Ei)(−h)) + 2 ch2(Forg(Ei)(−h)) +
11

6
ch1(Forg(Ei)(−h)) + rk(Ei)

= χO
P3
(OP3 ,Forg(Ei))− ch2(Forg(Ei))−

3

2
ch1(Forg(Ei))− rk(Ei)

= χO
P3
(OP3 ,Forg(Ei))− ch−1

B0,2
(Ei)−

1

2
ch−1

B0,1
(Ei)−

13

16
rk(Ei)

= χO
P3
(OP3 ,Forg(Ei))−

1

32
rk(Ei) +

1

8
rk(Ei)−

13

16
rk(Ei)

> χO
P3
(OP3 ,Forg(Ei)) = − hom(B0, Ei[−1]) + hom(B0, Ei)x .

In particular, it follows that Hom(B0, Ei[−1]) ̸= 0. As both B0 and Ei[−1] are σ0+,β3
-stable with

the same slope, we must have Ei = B0[1]. Since this condition holds for every stable factor and
Ext1(B0,B0) = 0, we deduce that E = B⊕n

0 [1], as desired.

3.3. First wall: α = 3

4
. Let us come back to twisted cubic curves in Y . Since Y does not

contain a plane, it follows that the cubic surface S, which is cut out by the P
3 spanned by C, is

irreducible. We will assume that the line L, which is blown up in the cubic fourfold, is disjoint
from this P3. For such a choice of L, the blow-up σ and the projection π map S isomorphically
to a cubic surface S′ in the base P

3. In this subsection and next subsection, for a fixed twisted
cubic C, we will work with such a line L. By Proposition 2.6, this will not change the stability
condition induced on Ku(Y ).

Let σα,β be the weak stability condition on Db
(

P
3,B0

)

introduced in Proposition 2.4. In the
next proposition we prove that EC is σα,−1-stable for α large enough.

Proposition 3.3. The torsion sheaf EC on P
3 is slope-stable. In particular, EC is σα,−1-stable

for α ≫ 0.

Proof. Now we want to compute EC with respect to L. We have

EC = Ψσ∗FC = π∗(σ
∗FC ⊗OỸ (h)⊗ E [1]) = π∗(σ

∗IC/S(2H)⊗OỸ (h)⊗ E) ,
where the first two equalities follow from the definitions. The last equality is a consequence of
applying the functor Ψσ∗ to the defining sequence

0 → FC → H0(Y, IC/S(2H))⊗OY → IC/S(2H) → 0
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and the fact that Ψσ∗OY = 0. It follows that the sheaf EC is torsion-free, supported over the
irreducible cubic surface S′ in P

3.

Note that ch−1
B0,⩽2(EC) = (0, 6, 0). Let F be a torsion sheaf destabilizing EC . Then we have

that F has the same support of EC , and it has rank 1 as a sheaf over S′. It follows that
ch−1

B0,⩽1(F ) = (0, 3). However, such an object cannot exist in Coh
(

P
3,B0

)

because this character
is not in the lattice spanned by the characters of λ1, λ2 and Bi for i = 1, 2, 3. It follows that
EC is slope-stable in the sense that any proper B0-subsheaf of EC has a smaller slope ch−1

B0,1
/ rk.

Since for α → ∞, the weak stability σα,−1 converges to the slope stability, we deduce the desired
statement.

By Propositions 3.3 and 3.1, we have that EC is σα,−1-stable for α > 3/4. In this subsection
we study the stability of EC after the first wall.

Proposition 3.4 (First wall for twisted cubics). For 1/4 < α < 3/4, we have that E′
C is

σα,−1-stable. More precisely:

– If C is an aCM twisted cubic curve in Y , then E′
C = EC is σα,−1-stable.

– If C is a non-CM cubic curve, then EC becomes strictly σα,−1-semistable at the wall α = 3/4.
Instead, for 1/4 < α < 3/4, the object E′

C is σα,−1-stable.

Proof. Let us consider the destabilizing quotient object given by Proposition 3.1 with ch−1
B0,⩽2 =

(−4, 3,−9/8). By Lemma 3.2, we know that this object is B−1[1]. Recall that the Serre functor
on Db

(

P
3,B0

)

is S(−) = (−)⊗B0
B−3[3]. By (2.1) we have that

HomB0
(E′

C ,B−1[1]) = HomB0
(B2, E

′
C [2])

∨ = 0 .

The first claim follows easily from the fact that EC
∼= E′

C in the aCM case.

Now assume that C is a non-CM twisted cubic curve. Then using the sequence (2.3) and the
fact that

HomB0
(B2,B−1[3]) = HomB0

(B−1,B−1)
∨ ∼= C ,

we get HomB0
(EC ,B−1[1]) ∼= C. In particular, for α = 3/4, it follows that EC is strictly σα,−1-

semistable, and the Jordan–Hölder filtration in Coh−1
(

P
3,B0

)

is given by

0 → MC → EC → B−1[1] → 0 .

Finally, for 1/4 < α < 3/4, using again the sequence (2.3), it is easy to see that the new stable
object is E′

C , which fits into the sequence

0 → B−1[1] → E′
C → MC → 0 .

3.4. Second wall: α = 1

4
. The aim of this subsection is to prove the following result.

Proposition 3.5. Let 0 < α < 1/4. If C is a twisted cubic curve in Y , then E′
C is σα,−1-stable.

This proposition is a consequence of Lemmas 3.6 and 3.7 below.

We firstly consider the objects given by the second part of Proposition 3.1, and we show
that they cannot destabilize E′

C . The key observation is that if E′
C is destabilized, then a slope

comparison argument implies that its stable factors have to be in Ψ(σ∗Ku(Y )). This will lead
to a contradiction as such stable factors do not exist for the wall α = 1/4.

Lemma 3.6 (Second wall for twisted cubics). Let E be a σ 1

4
+ϵ,−1-stable object in Ψ(σ∗Ku(Y ))

with ch−1
B0,⩽2(E) = (0, 6, 0). Then E is σ 1

4
−ϵ,−1-stable.
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Proof. Suppose that E is not σ 1

4
−ϵ,−1-stable; we consider the Harder–Narasimham filtration of E

with respect to σ 1

4
−ϵ,−1:

0 → E1 → · · · → Ek = E .

Here each factor Ei+1/Ei is σ 1

4
−ϵ,−1-semistable with strictly decreasing slopes.

Assume Hom(Ek/Ek−1,B0[1]) ̸= 0. Note that Ek/Ek−1 is a quotient object of E in the heart
Coh−1

(

P
3,B0

)

. Since B0[1] is also an object in Coh−1
(

P
3,B0

)

, the assumption above implies
Hom(E,B0[1]) ̸= 0. By Serre duality, we obtain

Hom(B3, E[2]) = (Hom(E,B0[1]))
∗ ̸= 0 ,

which contradicts the condition that E ∈ Ψ(σ∗Ku(Y )). Therefore, it follows that

Hom(B3, Ek/Ek−1[2]) = 0 .

By a similar argument, we get Hom(B1, Ek−1) = 0.

Note that we have the following inequalities (see Figure 2):

µ 1

4
,−1(B−2[1]) < µ 1

4
,−1(B−1[1]) < µ 1

4
,−1(Ek/Ek−1) ;

µ 1

4
,−1(Ek−1) < µ 1

4
,−1(B2) < µ 1

4
,−1(B3) ;

µ 1

4
−ϵ,−1(Ek/Ek−1) < µ 1

4
−ϵ,−1(B1) ;

µ 1

4
−ϵ,−1(B0[1]) < µ 1

4
−ϵ,−1(Ei/Ei−1) for every 1 ⩽ i < k .

Note that Ek−1 is semistable at a closed subset on the space of tilt-stability conditions; we may
choose ϵ small enough so that Ek−1 is µ 1

4
,−1-semistable and each Ei/Ei−1 is µ 1

4
−ϵ,−1-semistable.

By Serre duality, we have

Hom(Bs, Ek/Ek−1[j]) = Hom(Bs, Ek−1[j]) = 0

for s = 1, 2, 3 and every j ̸= 1. Here Hom(B3, Ek−1[2]) = Hom(Ek−1,B0[1]) = 0 since we have
Hom(B3, Ei/Ei−1[2]) = Hom(Ei/Ei−1,B0[1]) = 0 for every factor. Since E ∈ Ψ(σ∗Ku(Y )), we
have

χ(Bs, Ek/Ek−1) + χ(Bs, Ek−1) = χ(Bs, E) = 0

for s = 1, 2, 3. Therefore,

Hom(Bs, Ek/Ek−1[1]) = Hom(Bs, Ek−1[1]) = 0

for s = 1, 2, 3. In particular, we deduce that Ek−1 and Ek/Ek−1 are in Ψ(σ∗Ku(Y )). As a con-
sequence, the twisted Chern character of Ek−1 satisfies

ch−1
B0,⩽2(Ek−1) = cλ1 + dλ2 ∈

{(

x, y,− 7

32
x

)}

.

By the classification of potential destabilizing factors as that in Proposition 3.1(2), we also have
that the character of Ek−1 should be of the form

ch−1
B0,⩽2(Ek−1) = a ch−1

B0,⩽2(B1) + b(0, 6, 0) ∈
{(

x, y,
1

32
x

)}

.

We conclude that ch−1
B0,⩽2(Ek−1) must be of the form (0, y, 0). However, it would destabilize E

with respect to σ 1

4
+ϵ,−1, which gives a contradiction. This proves the stability of E as in the

statement.

632



Twisted cubics and stability conditions

•
B−1

•B0 •B1

•B2

•
Ei/Ei−1•

Ek/Ek−1

•

kerZ 1

4
−ϵ,−1

•

kerZ 1

4
,−1

−3
4

µ−(B0[1])
µ−(Ek/Ek−1)

µ−(B1)
µ−(Ei/Ei−1)

µ 1

4
,−1(E)

µ 1

4
,−1(B−1[1])

ch−1

B0,2

rk

∆B0
= 0

Figure 2. Comparing the slopes of Bj and Ei/Ei−1 at µ 1

4
,−1 and µ− = µ 1

4
−ϵ,−1.

Now we consider the third wall in Proposition 3.1. In this case we obtain a slightly general
result, showing that for α < 1/4, the only stable objects are in Ψ(σ∗Ku(Y )), and they cannot
be destabilized. The argument is similar to the proof of Lemma 3.6.

Lemma 3.7 (After the second wall). For 0 < α0 < 1
4 , let E be a σα0,−1 stable object such that

[E] = [E′
C ] in the numerical Grothendieck group. Then E is in Ψ(σ∗Ku(Y )), and it is σα,−1-stable

for any 0 < α ⩽ α0.

Proof. We set µ = µα0,−1 for simplicity. As [E] = [E′
C ] in the numerical Grothendieck group, we

observe that

µ(B−2[1]) < µ(B−1[1]) < µ(B0[1]) < µ(E) < µ(B1) < µ(B2) < µ(B3) .

By Serre duality, we have that Hom(Bs, E[j]) = 0 for any s = 1, 2, 3 and j ̸= 1. Again, since [E] =
[E′

C ] in the numerical Grothendieck group, we have χ(Bs, E) = χ(Bs, E
′
C) = 0 for s = 1, 2, 3. It

follows that Hom(Bs, E[1]) = 0 for any s = 1, 2, 3, proving that E belongs to Ψ(σ∗Ku(Y )).

Suppose that E becomes strictly σα,−1-semistable for some α < α0 < 1
4 . We may consider
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the Harder–Narasimhan filtration of E with respect to σα−ϵ,−1:

0 ⊂ E1 ⊂ · · · ⊂ Ek = E .

By comparing µα−ϵ,−1 of Ek/Ek−1, Ek−1, B−2[1], B−1[1], B0[1], B1, B2 and B3, using the same
argument applied in the proof of Lemma 3.6, we get the conclusion that both Ek/Ek−1 and Ek−1

are in Ψ(σ∗Ku(Y )). But this implies that

ch−1
B0,⩽2(Ek−1) = aλ1 + bλ2 ∈

{(

x, y,− 7

32
x

)}

.

Note that µα,−1(Ek−1) = µα,−1(E); we have ch−1
B0,⩽2(Ek−1) ∈

{(

x, y, 12α
2x

)}

. Hence we must

have ch−1
B0,⩽2(Ek−1) = (0, y, 0), which leads to a contradiction. This proves the stability of E, as

we wanted.

3.5. Stability after second tilt and the moduli space. This subsection is devoted to the
proof of Theorem 1.2. Firstly, we show that E′

C is σ0
α,−1-stable, where σ

0
α,−1 is the weak stability

condition on Db
(

P
3,B0

)

obtained by tilting σα,−1 (see [BLMS23, proof of Theorem 1.2]). In
particular, this implies the stability of F ′

C with respect to the stability condition σ := σα on
Ku(Y ), defined in (2.2) and constructed in [BLMS23].

Theorem 3.8. Let Y be a smooth cubic fourfold not containing a plane. If C is a twisted cubic

curve on Y , then the object F ′
C is σ-stable with respect to σ := σα given in (2.2).

Proof. Note that by definition, the stability function for σ0
α,−1 is Zα,−1 multiplied by −

√
−1. In

particular, the new heart obtained through the second tilt is just the previous heart rotated by 90
degrees. It follows that the walls would correspond to those we have computed for σα,−1, and the
previous argument proves that these can be crossed preserving the stability of E′

C . This implies
the stability of E′

C with respect to σ0
α,−1. As the stability conditions σ on Ku(Y ) are induced

from σ0
α,−1 for α < 1/4 and F ′

C is in the Kuznetsov component, we get the desired statement.

Now we are able to describe the moduli space Mσ(2λ1 + λ2) of σ-stable objects with Mukai
vector 2λ1 + λ2 and, in particular, its identification with the LLSvS eightfold MY constructed
in [LLSvS17]. We use a standard argument, which is very similar to [LLMS18, Section 5.3].
We point out that the results in [BLM+21] imply that Mσ(2λ1 + λ2) is a smooth, projective,
irreducible hyperkähler eightfold.

Theorem 3.9. The moduli space Mσ(2λ1 + λ2) parametrizes only objects of the form F ′
C .

Moreover, Mσ(2λ1 + λ2) is isomorphic to the LLSvS eightfold MY .

Proof. Let M3 be the irreducible component of the Hilbert scheme parameterizing twisted cu-
bic curves on Y . Then there exists a quasi-universal family F on Y × M3 parameterizing the
sheaves IC/Y (2H). By [Kuz11, Theorem 5.8], we have a semiorthogonal decomposition of the
form

Db(Y ×M3) =
〈

Ku(Y ×M3),OY ⊠Db(M3),OY (H)⊠Db(M3),OY (2H)⊠Db(M3)
〉

.

Now consider the relative projection F ′ of F in Ku(Y ×M3). As in [AL17], it is possible to verify
that the projection of IC/Y (2H) in the Kuznetsov component is exactly F ′

C (see Section 5.3 for the
computation in the non-CM case). So, Theorem 3.8 implies that F ′ is a quasi-universal family of
σ-stable objects F ′

C in Ku(Y ). Then there is an induced dominant morphismM3 → Mσ(2λ1+λ2).
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As M3 is projective, we know that this morphism is surjective. This concludes the proof of the
first statement.

For the second statement, we just need to show that for two twisted cubic curves C1 and C2,
we have F ′

C1
= F ′

C2
if and only if C1 and C2 are contained in the same fibre of the morphism

M3 → MY constructed in [LLSvS17]. This is exactly proved in [AL17, Proposition 2]. Indeed,
they consider the projection in the K3 subcategory ⟨OY (−H),OY ,OY (H)⟩⊥, which is equivalent
to Ku(Y ). This ends the proof of the theorem.

4. Fano varieties of lines and stability conditions

In this section, we use a similar argument to that applied in the case of twisted cubic curves
in order to describe the Fano variety FY parametrizing lines in a cubic fourfold Y as a moduli
space of Bridgeland stable objects.

Recall that given a line ℓ in Y , we can associate an object Pℓ in Ku(Y ), which sits in the
distinguished triangle

OY (−H)[1] → Pℓ → Iℓ ,
where Iℓ denotes the ideal sheaf of ℓ in Y (see [LLMS18, Section 6.3]). It is easy to compute that
the Mukai vector of Pℓ is λ1 + λ2.

By Proposition 2.6, we can assume that the line L used in the construction of stability
conditions is disjoint from ℓ. Let us compute explicitly the image Mℓ = Ψ(σ∗Pℓ) in Db

(

P
3,B0

)

.
By [BLMS23, Proposition 7.7], we have that

Ψ(OỸ (−H)) = B−1 .

On the other hand, we consider the sequence Iℓ → OY → Oℓ. We recall that Ψ(OỸ ) = 0. By our
assumption, we know that ℓ maps isomorphically to a line in P

3; hence we have that

Ψ(σ∗Iℓ) = Ψ(σ∗Oℓ)[−1] = π∗(E(h)|σ−1(ℓ))

is a torsion sheaf supported over the image of ℓ in P
3. We denote it by Eℓ. So we have the

distinguished triangle

B−1[1] → Mℓ → Eℓ (4.1)

in Db
(

P
3,B0

)

.

Note that

ch−1
B0,⩽2(Mℓ) =

(

−4, 3,
7

8

)

.

The following lemma gives us the starting point of the wall crossing argument.

Lemma 4.1. The object Mℓ is σα,−1-stable for α ≫ 0.

Proof. Assume thatMℓ is not stable with respect to σα,−1 for α ≫ 0. Then there is a destabilizing
sequence of Mℓ, of the form P → Mℓ → Q, in the heart Coh−1

(

P
3,B0

)

, where P , Q are σα,−1-
semistable for α ≫ 0 and µα,−1(P ) > µα,−1(Q). We have two possibilities for P : either it is
torsion, or it has rank equal to −4. If we are in the first case, then for α going to infinity, the
slope µα,−1(P ) is a finite number, while µα,−1(Q) = +∞. Thus such a P cannot destabilize Mℓ.

In the case rk(P ) = −4, let us consider the cohomology sequence

0 → H−1(P ) → H−1(Mℓ) → H−1(Q) → H0(P ) → H0(Mℓ) → H0(Q) → 0 .
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By (4.1), we have that H−1(Mℓ) = B−1 and H0(Mℓ) = Eℓ. Also, we know that H−1(Q) = 0
because Q is a torsion element in the heart. It follows that H−1(P ) = B−1, and we have the
sequence

0 → H0(P ) → Eℓ → H0(Q) → 0 .

We recall that Eℓ is a rank 2 torsion-free sheaf over its support. Since H0(P ) is a subsheaf
of Eℓ, it has the same support. There are three cases: If H0(P ) has the same rank of Eℓ as a sheaf
on its support, then

ch−1
B0,⩽2(P ) = ch−1

B0,⩽2(Mℓ)

and µα,−1(Q) = +∞, so it is not a destabilizing sequence. The second possibility is that H0(P )
has rank 1 and it is torsion-free as a sheaf over a line. In this case, we have ch−1

B0,⩽2(P ) =

(−4, 3,−1/8), whose slope µα,−1 is less than that of Mℓ. The third case when H0(P ) = 0 is
similar. This proves the stability of Mℓ for α big enough.

Now an easy computation using the four conditions listed at the beginning of Section 3.1
shows that the only potential wall for Mℓ is given by α0 =

1
4

√
5. In the following lemma we prove

that Mℓ remains stable after crossing this wall.

Lemma 4.2 (The wall for a line). Let α0 ⩾ 1
4

√
5. If E is a σα0,−1-stable object in Ψ(σ∗Ku(Y ))

such that ch−1
B0,⩽2(E) =

(

−4, 3, 78
)

, then E is σα,−1-stable for any α > 0.

Proof. A direct computation and [BMS16, Lemma 3.9] imply that the object E can be strictly
semistable only with respect to σ 1

4

√
5,−1. If this happens, the Harder–Narasimham filtration

of E with respect to σ 1

4

√
5−ϵ,−1 is of the form 0 ⊂ E1 ⊂ E with ch−1

B0,⩽2(E1) = (0, 2, 1) and

ch−1
B0,⩽2(E/E1) =

(

−4, 1,−1
8

)

. By Lemma 3.2, we have that E/E1 ≃ B0[1]. In particular, we get

Hom(B3, E[3]) = (Hom(E,B0))
∗ ̸= 0 ,

which contradicts to the assumption that E is in Ψ(σ∗Ku(Y )). This proves the stability of E as
claimed.

Proof of Theorem 1.1. The first part is a consequence of Lemmas 4.1 and 4.2. The second part
follows from the same argument explained in Section 3.5 for twisted cubics. We point out that
by projecting the universal family, we get an isomorphism from FY to Mσ(λ1 + λ2). Hence the
projectivity of Mσ(λ1 + λ2) follows from that of FY , without using the result in [BLM+21].

5. Applications

In this section we discuss some applications of Theorems 1.1 and 1.2, concerning the identification
of the period point of MY with that of FY , the characterization of when MY is birational to
a Hilbert scheme of points on a K3 surface and the derived Torelli theorem for cubic fourfolds.

5.1. Period point of MY . In this subsection we discuss the relation between the period point
of the LLSvS eightfold MY associated with a cubic fourfold Y and the period point of Y .

As observed in [DM19, Example 6.4], the period point of Y is identified with the period

point of the Fano variety FY . More precisely, let 2M(2)
6 be the moduli space of smooth projective

hyperkähler fourfolds with a fixed polarization class of degree 6 and divisibility 2, deformation
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equivalent to the Hilbert square of a K3 surface. The Fano variety FY with the Plücker polar-

ization is an element in 2M(2)
6 . Let

2p
(2)
6 : 2M(2)

6 → 2P(2)
6

be the period map, which is an open embedding by Verbitsky’s Torelli theorem (see [Ver13]).

Let H∗(Ku(Y ),Z) be the Mukai lattice of Y , which is the orthogonal complement of the
lattice spanned by the classes of OY , OY (H) and OY (2H) in the topological K-theory of Y , with
respect to the Euler pairing. We recall that the embedding of Hodge structures

H2(FY ,Z) → ⟨λ1⟩⊥ ⊂ H∗(Ku(Y ),Z)

identifies the polarization class with λ1+2λ2, and H2(FY ,Z)prim is Hodge isometric to ⟨λ1, λ1+
2λ2⟩⊥ (see [Add16, Proposition 7]).

Using the same notation as [DM19], let 4M(2)
2 be the moduli space of smooth projective

hyperkähler eightfolds with a fixed polarization class of degree 2 and divisibility 2, deformation
equivalent to the Hilbert scheme of points of length 4 on a K3 surface. Let

4p
(2)
2 : 4M(2)

2 → 4P(2)
2

be the period map of these eightfolds.

By a direct computation, it is possible to show that MY carries a natural polarization class
of degree 2 and divisibility 2. Actually, as observed in [LLMS18, Lemma 3.7], the eightfold MY

admits a natural antisymplectic involution τ whose fixed locus contains the cubic fourfold Y .

Thus, MY with the fixed polarization is an element of 4M(2)
2 .

Proposition 5.1. Given a cubic fourfold Y , we have

2p
(2)
6 (FY ) =

4p
(2)
2 (MY ) ,

and these points coincide with the period point of Y .

Proof. In [BLM+21] the authors prove that if M is a moduli space of Bridgeland stable objects in
Ku(Y ) with Mukai vector v of dimension 2+ v2, then there is an embedding of Hodge structures

H2(M,Z) → H∗(Ku(Y ),Z) .

More precisely, the image of H2(M,Z) is identified with the orthogonal complement v⊥ of v in
the Mukai lattice. Thus, by Theorem 1.2, we have the Hodge isometry

H2(MY ,Z) ∼= ⟨λ1 + 2λ2⟩⊥ .

In particular, we can identify the polarization class on MY with λ1. Then, the primitive degree 2
lattice H2(MY ,Z)prim is Hodge isometric to ⟨λ1 + 2λ2, λ1⟩⊥. It follows that

H2(MY ,Z)prim ∼= ⟨λ1, λ2⟩⊥ ∼= H2(FY ,Z)prim ,

which implies the statement.

As explained in [Deb22], Proposition 5.1 can be used to re-prove in a more direct way the
result by Laza and Looijenga (see [Laz10]) about the image of the period map of cubic fourfolds,
excluding the divisor of cubic fourfolds containing a plane. This is a work in progress of Bayer
and Mongardi.
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5.2. Birational equivalence of MY to a Hilbert scheme of points on a K3 surface.
Recall that by [AL17], the eightfold MY is deformation equivalent to a Hilbert scheme of points
on a K3 surface. The next application of Theorem 1.2 is a characterization of when MY is
birational to a Hilbert scheme of points on a K3 surface.

Proposition 5.2. The hyperkähler eightfold MY is birational to a Hilbert scheme S[4] on a K3

surface S if and only if Y is a special cubic fourfold of discriminant d satisfying the condition

a2d = 6n2 − 6n+ 2 for a, n ∈ Z . (5.1)

Proof. By Theorem 1.2, the eightfold MY is a moduli space of stable objects in the Kuznetsov
component of Y with Mukai vector 2λ1 + λ2. As a consequence, by [BLM+21] the degree 2
cohomology H2(MY ,Z) embeds in the Mukai lattice H̃(Ku(Y ),Z), and

H2(MY ,Z) ∼= ⟨2λ1 + λ2⟩⊥ ⊂ H̃(Ku(Y ),Z) .

Now, assume that MY is birational to S[4]. By [Add16, Proposition 5], there is an element
w ∈ N(Ku(Y )) such that

χ(w,w) = 0 and χ(w, 2λ1 + λ2) = 1 . (5.2)

Here χ is the Euler pairing, and N(Ku(Y )) is the algebraic part of the Mukai lattice of Ku(Y ).
Set n := χ(w, λ1); by the second equation, we have χ(w, λ2) = 1− 2n. The lattice ⟨λ1, λ2, w⟩ has
intersection form given by the matrix





−2 1 n
1 −2 1− 2n
n 1− 2n 0



 ,

whose determinant is 6n2−6n+2. Then the saturation of this lattice has discriminant d satisfying
a2d = 6n2 − 6n+ 2, as we wanted.

Conversely, assume that Y has a discriminant d satisfying (5.1); then a2d ≡ 2 (mod 6). It fol-
lows that d ≡ 2 (mod 6). In particular, by [Add16, Lemma 9], there is an element τ ∈ N(Ku(Y ))
such that ⟨λ1, λ2, τ⟩ has intersection form given by





−2 1 0
1 −2 1
0 1 2k





with d = 2 + 6k. Moreover, we have a2 ≡ 1 (mod 3) and thus a ≡ 1 or 2 (mod 3).

Assume a = 1 + 3t for t ∈ Z; we define

w := tλ1 + (2t+ n)λ2 + aτ .

It is possible to check that w satisfies conditions (5.2). By [Add16, Proposition 5], we conclude
that MY is birational to a Hilbert scheme over a K3 surface.

Assume a ≡ 2 (mod 3) ≡ −1 (mod 3); then a = −1 + 3t. We set

w := −tλ1 + (n− 2t)λ2 − aτ .

Again by [Add16, Proposition 5], we deduce the statement.

Remark 5.3. Note that for d = 14, equation (5.1) is satisfied with a = 1 and n = −1. This is
consistent with [AL17], where the authors prove the result in the case of Pfaffian cubic fourfolds.
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5.3. Derived Torelli theorem for cubic fourfolds. In this subsection we apply Theorem 1.2
to answer a question raised to us by Emanuele Macr̀ı. We start with the general motivation.

Question 5.4 (Derived Torelli theorem). Let Y and Y ′ be two cubic fourfolds. Is it true that
there is a Fourier–Mukai equivalence between Ku(Y ) and Ku(Y ′) if and only if there is a Hodge
isometry H∗(Ku(Y ),Z) ∼= H∗(Ku(Y ′),Z)?

The question has a positive answer for very general cubic fourfolds and cubic fourfolds with
associated K3 surface by [Huy17, Theorem 1.5] and [BLM+21, Corollary 29.7]. Here we suggest
a possible strategy to prove this statement, making use of the description of the eightfold MY

given by Theorem 3.8. For this reason, we need to assume that Y does not contain a plane (in
this case, the derived Torelli theorem holds as recalled above).

Assume that there is a Hodge isometry ϕ : H∗(Ku(Y ),Z) ∼=H∗(Ku(Y ′),Z). Let v := 2λ1 + λ2,
and set v′ := ϕ(v). By [BLM+21], the moduli space Mσ′(v′) for σ′ ∈ Stab(Ku(Y ′)) is non-empty
and in particular is a hyperkähler eightfold. By the birational Torelli theorem for hyperkähler
varieties (see [Ver13]), we have that Mσ(v) is birational to Mσ′(v′). Thus, by [BM14], we can
find a stability condition σ′′ such that Mσ(v) is isomorphic to Mσ′′(v′). By the construction
in [LLSvS17], the cubic fourfold Y is embedded in Mσ(v) as a Lagrangian submanifold. Thus,
we can see Y inside Mσ′′(v′). We denote by F the restriction of the universal family E ′

C on
Mσ′′(v′) × Y ′ to Y × Y ′. We remark that the definition of F is up to a twist by a line bundle
pulled back from Y . The reason will be clear in the proof of Proposition 5.6.

Question 5.5 (Macr̀ı). Does the Fourier–Mukai functor ΦF : Db(Y ) → Db(Y ′), defined by ΦF (−)
= q∗(p∗(−) ⊗ F), factorizes through an equivalence Ku(Y ) ∼= Ku(Y ′) of the Kuznetsov compo-
nents?

Although this question remains open, in the simple case where Y = Y ′ and we have ϕ ∈
O(H∗(Ku(Y ),Z)), we can obtain an interesting result, which was originally suggested by Macr̀ı.
Namely, we show that the Fourier–Mukai functor ΦF commutes with the identity over Ku(Y ).

Denote by i the natural inclusion of Ku(Y ) in Db(Y ) and by

i ◦ i∗ := ROY (−1)LOY
LOY (1) : Db(Y ) → Ku(Y )

i−→ Db(Y )

the projection functor into the Kuznetsov component, changing the notation of the previous
sections. Note that we refer to the projection functor in Ku(Y ) with respect to the semiorthogonal
decomposition

Db(Y ) = ⟨OY (−1),Ku(Y ),OY ,OY (1)⟩ .
Proposition 5.6. Let Y be a cubic fourfold which does not contain a plane. Then ΦF = i ◦ i∗.
Proof. By [Kuz09, Theorem 3.7 and Proposition 3.8], the composition i ◦ i∗ is a Fourier–Mukai
functor with kernel given by G := pr(O∆). Here O∆ denotes the structure sheaf of the diagonal
in Y × Y , and pr : Db(Y × Y ) → Db(Y ) ⊠ Ku(Y ) is the projection functor with respect to the
semiorthogonal decomposition

Db(Y × Y ) =
〈

Db(Y )⊠OY (−1),Db(Y )⊠Ku(Y ),Db(Y )⊠OY ,D
b(Y )⊠OY (1)

〉

.

We claim that ΦG(Oy) = Gy is σ-stable for every y ∈ Y . Indeed, given a point y on the cubic
fourfold, there is a non-CM twisted cubic curve C on Y which has y as embedded point. In
particular, we have the sequence

0 → IC/Y (2) → IC0/Y (2) → Oy → 0 , (5.3)
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where C0 is the plane cubic curve, singular in y, defined by C. The ideal sheaf of C0 in Y has
the following resolution:

0 → OY (−1) → O⊕3
Y → OY (1)

⊕3 → IC0/Y (2) → 0 . (5.4)

We recall that i∗ := ROY (−1)LOY
LOY (1). We observe that i∗(IC0/Y (2)) = 0. Indeed, we split

sequence (5.4) in two exact sequences

0 → K → OY (1)
⊕3 → IC0/Y (2) → 0

0 → OY (−1) → O⊕3
Y → K → 0 .

From the first sequence, we get LOY (1)(IC0/Y (2))
∼= LOY (1)(K)[1]. On the other hand, LOY (1) has

no effect on the second sequence because the objects are in ⟨OY (1)⟩⊥. Applying LOY
, we obtain

LOY
LOY (1)(K) ∼= LOY

(OY (−1)) = OY (−1)[1] .

It follows that LOY
LOY (1)(IC0/Y (2))

∼= OY (−1)[2]. Since ROY (−1)(OY (−1)) = 0, we deduce that
i∗(IC0/Y (2)) = 0. Thus by sequence (5.3), we deduce that i∗(IC/Y (2)) ∼= i∗(Oy)[−1].

Now, note that i∗(IC/Y (2)) ∼= i∗(IC/S(2)), where S is the cubic surface containing C. Indeed,
by the resolution

0 → OY → OY (1)
⊕2 → IS/Y (2) → 0 ,

we see that IS/Y (2) is in ⟨OY ,OY (1)⟩. Hence i∗(IS/Y (2)) = 0. Using the exact sequence

0 → IS/Y (2) → IC/Y (2) → IC/S(2) → 0 ,

we get i∗(IC/Y (2)) ∼= i∗(IC/S(2)) = F ′
C . By the previous computation, we deduce that i∗(Oy) ∼=

F ′
C [1], which is σ-stable by Theorem 1.2.

It follows that G defines an inclusion of Y in the eightfold Mσ(v) by y 7→ ΦG(Oy). Thus G
has to be isomorphic to the restriction of the universal family E ′

C of Mσ(v) × Y to Y × Y . Up
to a twist of a line bundle on Y pulled back via p, we conclude that G ∼= F , which gives the
statement.

In the general case, it is expected that the Fourier–Mukai functor ΦF factorizes through
an equivalence between the Kuznetsov categories. This would give a positive answer to Ques-
tion 5.4.
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were visiting the Department of Mathematics of Northeastern University. It is a pleasure to
thank these institutions for their hospitality.

References

Add16 N. Addington, On two rationality conjectures for cubic fourfolds, Math. Res. Lett. 23 (2016),
no. 1, 1–13; doi:10.4310/MRL.2016.v23.n1.a1.

640



Twisted cubics and stability conditions

AG23 N. Addington and F. Giovenzana, On the period of Lehn, Lehn, Sorger, and van Straten’s

symplectic eightfold, Kyoto J. Math. 63 (2023), no. 1, 71–86; doi:10.1215/21562261-2022-
0033.

AL17 N. Addington and M. Lehn, On the symplectic eightfold associated to a Pfaffian cubic fourfold,
J. reine angew. Math. 731 (2017), 129–137; doi:10.1515/crelle-2014-0145.

BLM+21 A. Bayer, M. Lahoz, E. Macr̀ı, H. Nuer, A. Perry and P. Stellari, Stability conditions in fam-

ilies, Publ. Math. Inst. Hautes Études Sci. 133 (2021), 157–325; doi:10.1007/s10240-021-
00124-6.
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50, 20133 Milano, Italy

Xiaolei Zhao xlzhao@ucsb.edu

Department of Mathematics, University of California, Santa Barbara, South Hall 6705, Santa
Barbara, CA 93106, USA

642


	Introduction
	Kuznetsov component and stability conditions
	(Weak) stability conditions
	Construction of stability conditions
	Twisted cubics and objects

	Wall crossing and stability for twisted cubic curves
	Computation of the walls with respect to sigma_{alpha,-1}
	Stable objects of discriminant zero
	First wall: alpha=3/4
	Second wall: alpha=1/4
	Stability after second tilt and the moduli space

	Fano varieties of lines and stability conditions
	Applications
	Period point of M_Y
	Birational equivalence of M_Y to a Hilbert scheme of points on a K3 surface
	Derived Torelli theorem for cubic fourfolds

	References

