
2023 IEEE International Conference on Big Data (BigData)

979-8-3503-2445-7/23/$31.00 ©2023 IEEE 4900

Deep Learning based Driving Posture Stability

Analysis for People with Mobility Challenges

Ruoqi Huang

Computer Science Department

Cal Poly Pomona

Pomona, CA, USA

ruoqihuang@cpp.edu

Mai Narasaki-Jara

Kinesiology & Health Promotion Department

Cal Poly Pomona

Pomona, CA, USA

mnjara@cpp.edu

Tingting Chen

Computer Science Department

Cal Poly Pomona

Pomona, CA, USA

tingtingchen@cpp.edu

Abstract—Mobility scooters are critical in facilitating social
participation of people with mobility challenges and thus improv-
ing their life quality. However, the safety issues of driving mobility
scooter are real concerns and may not be assessed in a timely
fashion for many patients. In this paper we enable driving posture
stability analysis at home or in the community setting for people
with mobility challenges by using only video recordings of their
driving. In particular, we design a system that extracts upper
body keypoints’ 2D coordinates from video frames and builds an
autoencoder model to perform stability analysis. We explore two
architectures of the autoencoder, with Long Short Term Memory
(LSTM) and Convolutional Neural Networks (CNN), respectively
emphasizing the temporal and spatial relationships of upper
body keypoints in driving movements. Evaluations using patients
driving posture data collected have shown that both architectures
have achieved over 0.99 Precision-Recall Area Under the Curve
(AUC), and 0.8 ROC AUC, indicating excellent model accuracy
levels.

Index Terms—Driving Stability Analysis, Pose Estimation,
Computer Vision, AutoEncoders, Deep Learning, Patient Driving
Data

I. INTRODUCTION

Mobility disability is the most common kind of disability

in the USA. According to Centers for Disease Control and

Prevention (CDC) statistics in 2018, 13.7 percent of U.S.

adults have a mobility disability [1]. Mobility scooters, a type

of electrically powered scooters, are an affordable and popular

type of assistive mobility technology. Mobility scooters are

critical in facilitating social participation of people with mo-

bility disability and thus improving their life quality. However,

A high number of mobility scooter accidents such as falling

and colliding with pedestrians or obstacles have been reported

[8]. According to data from the National Electronic Injury

Surveillance System [11], the number of accidents involving

mobility scooters were treated in American Emergency De-

partments has been increasing every year [4].

People with mobility challenges have various medical con-

ditions that affect their physical and cognition abilities to

drive (e.g., limited vision, lack of motion stability or slow

reaction time). These conditions are often progressive (such as

Parkinson’s disease) and thus drivers’ abilities change faster

than the healthy population. Therefore, it is critical to perform
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more frequent and convenient driving safety assessment of

people with mobility challenges when using the mobility

scooters.

In this paper, we focus on driving motion stability analysis

for patients based on their posture data. Motion stability is

an important metric for safety assessment, which indicates

muscle ability and associates with the risks of falling. To

assess patients’ motion stability, most studies have mainly

focused on the clinical setting, where patients are required to

perform certain tasks [7]. However, for patients who cannot

or are not willing to go to the clinics, these measurements

cannot be applied. Our work enables stability analysis for

patients’ driving motions when they are at home or in the

local community, which will increase the accessibility and

timeliness of driving safety assessment in the tele-health

setting.

Unlike existing works that rely on special sensors or devices

(e.g., [5]), our work is leveraging posture data of patients

which can be collected from the camera on a smart phone

when driving, to perform stability analysis. To the best of our

knowledge, there is no existing dataset of driving postures

for people with mobility disabilities/challenges riding mobility

scooters, for research or other purposes. Our work is the first

in collecting such patients’ data and using it to perform data-

driven intelligent stability analysis.

In order to generate reliable stability analysis results, we

build deep learning models which take sequences of video

frames as input, and produce a preliminary analysis result,

i.e., a loss value that reflects how unstable the postures are,

which can also be combined with a threshold to generate

the binary classification result of stable or unstable. The

reason we choose to use this coarse-grained result is that

the goal of the system is to monitor the driving safety of

patients outside of hospital and detect any conditions that need

further interventions or closer examinations by rehabilitation

experts, neurologist, or other medical experts. More fine-

grained stability scales can be measured at a later stage.

There are many existing works of gait analysis using deep

learning models [31]. Body deep representations based on

silhouettes and skeleton have been explored to perform tasks

such as action recognition and identity detection (e.g., [14],

[23]). Like gait analysis, we focus on the temporal features
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of body movements by time series analysis, and also the

spatial relationships among multiple body key points when

moving. However, our work is different than most gait analysis

works in that we focus on upper body movements instead

of the full body, which will result in different choices in

deep model architectures. Moreover, driving postures possess

distinct characteristics such as the unique angle and distance

that wrists and other key joints move during driving, yielding

unique spatial and temporal features.

In this paper, to perform preliminary stability analysis for

mobility scooter drivers with mobility challenges, we propose

a deep autoencoder based system which is driven by the pose

estimation result of driver’s upperbody video recordings. In

particular, we utilize MoveNet [18] to produce upper body

keypoints 2D coordinates for each video frame. The resulting

sequence of keypoints coordinates from the driving video

frames labeled as stable will be used to train the recurrent

neural network and convolutional neural network based au-

toencoder. Here the stability labels for driving video frames are

generated by Kinesiologists who possess the domain expertise

to distinguish between stable and unstable upper extremity

movements in driving. After the autoencoder is trained, se-

quences of new video frames can be processed and analyzed,

based on the loss values of the test sequences. In general,

unstable driving video frames will yield in much higher loss

because the input’s features are distant from the embedding

vector trained using the stable samples.

The contributions of this paper include the following:

• We design and develop a driving posture stability analysis

system for people with mobility challenges, which can

provide accessible safety assessment of the drivers at

home or in the communities.

• Our deep autoencoder based approach extracts the spatial

and temporal features of the movement of drivers’ upper

body key points which are generated by a pose estimation

module.

• We explore two different architectures of the deep au-

toencoder, one having an LSTM based encoder and the

other having a CNN based encoder, and implement the

two models separately.

• We collect six patients’ driving posture data on mobility

scooters to form a pilot dataset, and run the system

pipeline to test the system performance. The evaluation

results of ROC and precision-recall show that our system

has high levels of analysis accuracy.

The rest of the paper is organized as follows. In Section II,

we review the existing works related to this paper, including

car driving behavior analysis, time series analysis and pose

estimation and deep autoencoders. Then in Section III, we de-

scribe the details of our method. Section IV presents our data

collection procedure with patients’ demographic information,

data collection and preprocessing methods. After describing

the evaluation and results in Section V, we conclude the paper

in Section VII.

II. RELATED WORK

A. Driving Behavior Analysis and Classification

Safety-related mobility scooter driving behavior analysis has

mostly been conducted qualitatively in the Health research

communities of Geriatrics, Rehabilitation and Disability, in

the forms of participant reports and case studies [19], [29],

[30]. Research shows that compared to driving experience,

the physical cognitive and psychological factors of the drivers

are affecting the driving behaviors of mobility scooter users in

the longer term. Other contributing factors include distractions

from the environment, road hazards and interference from

pedestrians. There are very few works on quantitatively an-

alyzing the driving skills of mobility scooter users. In [24], a

driving operation logging system has been developed to collect

driving data of steering and speed adjustment in an indoor

environment, to assist in driving skill assessment. Our project

will fill up the gap of data-driven mobility scooter driving

behavior analysis based on recent advances in deep learning.

B. Time Series Analysis and Pose Estimation

To characterize driving behavior, time-series data analysis

is often used. Conventional recurrent neural networks such as

Long Short Term Memory (LSTM) [16] or Gated Recurrent

Unit (GRU) [36] have been widely applied to many domains

[15], [20], [33]. Pose estimation [13], [35], [38] has also been

successfully applied for driver behavior detection. In [6], a

Convolutional Neural Network (CNN) based framework was

proposed for car driver’s head localization and pose estimation

on depth images. Pose estimation based on 2D images, depth

data and 3D models [22], [25] have been applied to, for

example, pediatric population, athletes, to track development,

injury prevention and optimize performance [12], [17], [27].

However, validations of pose-estimation applied to people with

motor challenges are under-explored [32]. The learning tasks

in this paper leverage both pose estimation and time-series

data analysis. Our work explores the specific applications of

these models on real-world patient posture data, and validates

the appropriate parameter settings.

C. Deep AutoEncoders

Deep autoencoder is a type of deep neural networks that

generate an embedding vector that represents latent features of

the input data through encoder layers, and the decoder layers

transform the encoded features to the original input format,

trying to minimize the loss between the decoded data and the

input data [21], [34]. In autoencoders, layers are usually convo-

lutional or recurrent neural network layers, to extract the latent

spatial or temporal features. Most autoencoders’ architectures

are symmetrical (e.g., [39]), i.e., the decoder layers are the

inverse/transpose of the encoder layers, even with the weights

shared . There are also some works on autoencoders that yield

good results with asymmetrical architectures [9], [37]. In our

paper, we are going to study and compare the performance

of these two types of architectures in mobility scooter driving

behavior analysis, where input data is time series of upper

body skeleton keypoints coordinates.
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Fig. 1: Posture-based Mobility Scooter Driving Stability Analysis System Overview

III. MOBILITY SCOOTER DRIVING STABILITY ANALYSIS

In this section, we first discuss our system pipeline, which

takes video frames of patients’ driving behavior as input and

outputs a loss value for each frame. Then we will present in

details two components of the system, upper body keypoints

extraction and autoencoder-based stability analysis model.

A. System Pipeline

In this system, our goal is to analyze the mobility scooter

drivers’ upper body stability when driving. It is an important

safety metric for people with mobility challenges and/or dif-

ferent medical diagnosis. We focus on upper body movement

because unlike car driving, mobility scooters do not have

breaks or gas pedals. Change of speed is controlled by speed

potentio-meters which can be adjusted by hands.

To analyze drivers’ upper body movements while driving,

we rely on vision data, which is captured by cameras facing

drivers’ upper body. Videos frames in a sequence contain

rich information of drivers’ stability. We choose to apply

pose estimation to extract the sequential skeletons from the

video frames as the features we use for further analysis. The

skeleton includes upper body keypoints coordinates, which is

less sensitive to noisy variations such as the clothes that drivers

are wearing compared to other segmentation results like object

masks. Once a sequence of keypoint is extracted from a

sequence of video frames, we use the stable driving keypoint

coordinates as the input to the autoencoder structure for

training. The encoder will generate a compressed vector which

is a deep representation of the keypoint movement pattern

within a time frame. The decoder will reconstruct features

trying to minimize the loss between the output of decoder and

the original input of encoder in training. In testing, the loss

value of one given sequence’s reconstruction will be used to

determine the binary classification result, i.e., stable sequence

or non-stable sequence. In Section III-C, we are going to

introduce and compare two different architectures for this

autoencoder, one symmetric and the other asymmetric, which

include detailed descriptions of layer types and dimensions.

Figure 1 illustrates the complete pipeline of our posture-based

mobility scooter driving stability analysis system.

B. Upper Body Keypoints Extraction

To extract drivers’ upper body keypoint information, we

apply one open-source pose estimation model, MoveNet (light-

ning version) offered on Tensorflow Hub [18]. MoveNet

detects 17 keypoints of a body, but we only use 9 of them,

i.e., neck, left shoulder, right shoulder, left elbow, right elbow,

left wrist, right wrist, left hip, and right hip. 2D coordinates

of the 9 keypoints are generated for each input video frame

with 30 frames per second. In MoveNet, first a person body

heatmap is used to calculate the center. The initial prediction

of keypoints coordinates is produced by slicing the keypoint

regression output from the pixel corresponding to the center.

Then weights are used for each keypoint which are inversely

proportional to the distance to the center, so that the effect

of keypoints from distant other objects can be reduced. In the

last step of calculating the location of the maximum heatmap

value, the local 2D offset predictions are added to refine the

final 2D coordinate output for each keypoint.

C. Driving Behavior Stability Analysis Deep Models based on

AutoEncoders

To analyze the driving behavior stability, we need sequential

data which can capture the characteristics of the upper body

movement in a time frame when driving. To this end, we

take a sequence of keypoints’ coordinates at a time and make

one stable-or-not decision for that sequence. The decision is

enabled by a deep autoencoder model.

In this work, we study two different autoencoder architec-

tures, where both architectures have an LSTM based decoder

but the encoders incorporate different types of layers. In one

architecture, we utilize LSTM to extract the latent temporal

features of upper body driving among the sequence of key-

points coordinates, while in the other, the encoder is composed

of a CNN network with one-dimensional convolutional layers.

The second architecture leverages the spatial patterns in the

9 keypoints at different locations of the upper body when

generating the embeddings. For both models, the goal is to

minimize the distance between the reconstructed samples by

the decoder and the original input to the encoder. We use the

mean squared error (MSE) as the loss metrics for both models.

LSTM based symmetric AutoEncoder
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In this model, the autoencoder has a symmetric architecture

where an LSTM layer is deployed in the encoder part to

extract an embedding vector that contains the features of

upper body movements within the sequence of a certain time-

step, from the input with the dimension of time step ∗

number of features. Then the embedding vector is re-

peated for time step number of times, before passing into

the decoder LSTM layer. The output of the decoder is the

reconstructed sample from the embedding vector, having the

same dimension as the original input sample. Figure 2a illus-

trates a sample architecture of the LSTM based autoencoder,

where time step = 64 considering 64 frames at a time in a

sequence, and number of features = 18 with 9 joints’ x, y

coordinates. The embedding vector size is 10 in this example.

In Section V, we will vary the size of embedding vectors and

test their impact on the model accuracy.

(a) Sample LSTM based Au-
toEncoder Model Architecture

(b) Sample CNN-encoder -
LSTM-decoder Architecture

Fig. 2: Two different AutoEncoder Model Architectures

Asymmetrical Architecture -

To capture the spatial features in the 9 keypoints, an

asymmetrical model architecture is explored. In the encoder

part, the input sample with the dimension of time step ∗

number of features will be processed by two consecutive

1D convolutional layers with ReLU as the activation function.

Then a flatten layer is applied before a fully connected layer,

which produces the embedding vector. After the embedding

vector is repeated for time step number of times, for the

decoder, an LSTM layer is used to reconstruct the sample

to the same size as input. In the example configuration of

this architecture as shown in Figure 2b, time step = 64,

number of features = 18. The first Conv1D layer has 9

filters, and the second Conv1D layer has 4 filters, both with

filter size 3 and valid padding. The embedding vector size is

32.

IV. PATIENT DATA COLLECTION AND PREPOSSESSING

Our patient mobility scooter driving data collection is in col-

laboration with California State University Northridge (CSUN)

Center of Achievement (CPP IRB protocol #IRB-22-88). Six

Participants with mobility challenges have been recruited.

A. Patient Demographic Data

The demographic data details of the patients with mobility

challenges are shown in Table I.

TABLE I: Patient Demographic Information

Medical
ID Age Sex ht wt(lb) Condition Impairment

1 84 M 5’7” 145 Stroke Right upper extr.

2 87 F 5’8” 200 Neuropathy neck, trunk

3 53 M 6’1” 182 Brain Injury Lower extr.

4 85 F 5’6” 230 Sciatica Left lower extr.

5 90 F 5’7” 156 Arthritis Both hips

6 62 M 5’7” 180 back&shoulder Left upper extr.

B. Data Collection Methods

To collect the video recordings of patients’ upper-body

movements when driving, we mount an action camera on the

handle, facing the driver. All video frames only contains upper-

body parts below the neck, without face information being

recorded by the camera for privacy protection. Participants

are instructed to complete various driving tasks on a Drive

Medical Phoenix LT 4 Wheel Mobility Scooter [3] on the

CSUN campus after brief training. The list of driving tasks

for participants is included in Figure 3. A sample picture of

preparing the participants for driving on the mobility scooter

and the participants driving route and are shown in Figure 4a

and 4b respectively.

Fig. 3: Tasks that Participants Perform for Data Collection

C. Data Prepossessing

Each frame of the videos (30 fps) is labeled by Kinesi-

ologists into as Stable or Unstable based on the movement

patterns of drivers’ upperbody while driving. We have devel-

oped a video data annotation tool to accelerate the labeling

process [2], which allows to generate the stability label for

each video frame while playing the video only once.
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(a) Driver Train-
ing (b) Participants Driving Routes

Fig. 4: Mobility Scooter Driving Behavior Data Collection

V. IMPLEMENTATION AND EVALUATIONS

In this section, after explaining the details of system imple-

mentation, we focus on illustrating the evaluation results of

the system on analysis accuracy.

A. Implementation

The driving posture stability analysis system is developed

in Python. It contains the following components: a per-frame

stability labeling tool, MoveNet based pose estimation, deep

autoencoder training, and the test module. In implementation,

we have used the libraries: Tensorflow Keras [10], scikit-

learn [28], opencv [26], and MoveNet. All experiments are

performed on a high-performance computing cluster. The

cluster has 20 DL160 compute nodes, and four GPU nodes

with a total of 8 Tesla P100 GPUs. The cluster contains 3.3TB

of RAM in total.

In total, in addition to the patients’ driving data collected,

we also collected stable driving video recordings from a group

of healthy people (36 volunteers in the age range 18-36, with

30 males and 6 females), to enlarge the dataset of training

the autoencoders. there are about 10 hours and 9 minutes

of video footage in total and 128 minutes video footage of

patients on the mobility scooter have been collected. After data

cleaning by removing the frames without driving actions, in

total we have labeled 847036 stable frames and 8084 frames

as unstable, among which 606238 stable frames have been

used for training and 240798 stable frames and 8084 unstable

frames have been used for testing.

The pose estimation module produces a 2D-coordinate for

each of the 9 upper body keypoints, so the number of features

for the autoencoder input is 2∗9 = 18. We take a sequence of

64 frames at a time into the system. With fps being 30, each

sequence covers about 2 seconds information of upper body

movements in driving. For the CNN based encoder, the first 1D

convolutional layer input size is (64, 18), and with 9 filters of

size 3 and valid padding, the ouput size is (62, 9). The second

1D convultional layer has output size (60, 4) with 4 filters of

size 3. The dense layer following the flatten layer ouputs the

embedding vector. After the repeating vector layer, the LSTM

based decoder reconstructs the output of size (64, 16). The

loss function is MSE.

B. Experiment Metrics

Our driving posture stability analysis system produces the

loss value of each test video frame by calculating the distance

between reconstruction result based on the stable posture

feature vector and the input frame. The larger the loss value,

more unstable the driving posture is. To yield a binary clas-

sification result as either stable or unstable, a threshold is

needed to define the cutoff. If the loss value is greater than

the threshold, the input frame is tested as unstable; otherwise

stable. To determine the threshold, it highly depends on the

specification of system requirements. For different patients,

medical experts may suggest different threshold with more

background information of the patient being considered.

To evaluate the accuracy of our system, we apply the

receiver operating characteristic (ROC) and precision-recall

(PR) curve which show the performance of classification at all

thresholds. We will also use the area under the curve scores

(AUC) for the two autoencoder architectures we implement.

C. Evaluation Results

In our experiments, we would like to study the impact of

different embedding vector sizes generated by the encoders

on the system performance. We vary the embedding vector

size from 16 to 512 and test the AUC values correspondingly

for each of the two autoencoder architectures. The results

are shown in Table II. For the LSTM encoder architecture,

we can see that both the ROC AUC value and the PR AUC

value reach the highest (0.852 and 0.994 respectively) when

the embedding vector size is 128. For the CNN encoder, the

highest ROC AUC score and PR AUC score (0.807 and 0.992)

are both observed when the vector size is 256. This indicates

while both architectures achieve excellent accuracy levels

especially in terms of Precision-Recall, LSTM based encoder

outperforms CNN based encoder in the stability analysis task,

i.e., capturing the temporal features of keypoint coordinates is

slightly more effective than the spatial features. Moreover, for

both architectures, when the embedding vector size increases

it improves the model accuracy level, until the vector size

reaches 128 or 256. It means for this application and input size,

vector of size 128/256 is the best in representing the features

of upper body movements when driving mobility scooters.

TABLE II: ROC and PR Area Under the Curve Results

Vector Size 16 32 64 128 256 512

LSTM Encoder

ROC AUC 0.811 0.8361 0.837 0.852 0.850 0.854

PR AUC 0.991 0.992 0.993 0.994 0.994 0.993

CNN Encoder

ROC AUC 0.750 0.780 0.761 0.805 0.807 0.771

PR AUC 0.988 0.990 0.988 0.992 0.992 0.990

We also plot one ROC curve and one PR curve for each

of two models when vector size is 256. In Figure 5, we can

see that overall the LSTM encoder yields better results than

the CNN encoder when plotting the (false positive rate, true

positive rate) points for all possible thresholds. Figure 6 shows
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the Precision-Recall curves for both models. The precision

values remain very close to 1 in both curves. The difference

between the two models in this figure is minimum.

Fig. 5: ROC Curves of the Two Models when V ector Size =
256

Fig. 6: PR Curves of the Two Models when V ector Size =
256

VI. DISCUSSIONS

In this paper, the stability analysis test results of the input

driving videos are produced on a high performance computing

cluster. No system delay or time efficiency data has been

collected yet. In practical scenarios, real-time stability analysis

can be performed on user-end smart phones as an applica-

tion or on Raspberry Pi based embedded systems attached

to the vehicle, after the pre-trained autoencoder model is

loaded. With more driving video samples being collected, the

stability model can be continuously updated to yield more

representative feature vectors for the mobility scooter drivers.

In future works of system deployment, more experiments

and evaluations will be conducted on system delay and the

tradeoff between efficiency and accuracy will be studied in

this application.

VII. CONCLUSION

In conclusion, our stability analysis system for mobility

scooter drivers is the first effort in focusing on the upper-body

posture movement for people with mobility challenges. Our

system is easy to deploy as it only relies on videos collected

from cameras. Deep autoencoder models have been built

to extract the embedding features of upper-body movement

represented by the sequence of keypoints’ 2D coordinates in

stable driving. We have collected patients’ driving posture data

and evaluated the system’s accuracy for two different model

architectures, i.e., the LSTM encoder and the CNN encoder.

Test results are excellent in terms of ROC AUC score and

Precision-Recall AUC score.
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