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Abstract—Mobility scooters are critical in facilitating social
participation of people with mobility challenges and thus improv-
ing their life quality. However, the safety issues of driving mobility
scooter are real concerns and may not be assessed in a timely
fashion for many patients. In this paper we enable driving posture
stability analysis at home or in the community setting for people
with mobility challenges by using only video recordings of their
driving. In particular, we design a system that extracts upper
body keypoints’ 2D coordinates from video frames and builds an
autoencoder model to perform stability analysis. We explore two
architectures of the autoencoder, with Long Short Term Memory
(LSTM) and Convolutional Neural Networks (CNN), respectively
emphasizing the temporal and spatial relationships of upper
body keypoints in driving movements. Evaluations using patients
driving posture data collected have shown that both architectures
have achieved over 0.99 Precision-Recall Area Under the Curve
(AUC), and 0.8 ROC AUC, indicating excellent model accuracy
levels.

Index Terms—Driving Stability Analysis, Pose Estimation,
Computer Vision, AutoEncoders, Deep Learning, Patient Driving
Data

I. INTRODUCTION

Mobility disability is the most common kind of disability
in the USA. According to Centers for Disease Control and
Prevention (CDC) statistics in 2018, 13.7 percent of U.S.
adults have a mobility disability [1]. Mobility scooters, a type
of electrically powered scooters, are an affordable and popular
type of assistive mobility technology. Mobility scooters are
critical in facilitating social participation of people with mo-
bility disability and thus improving their life quality. However,
A high number of mobility scooter accidents such as falling
and colliding with pedestrians or obstacles have been reported
[8]. According to data from the National Electronic Injury
Surveillance System [11], the number of accidents involving
mobility scooters were treated in American Emergency De-
partments has been increasing every year [4].

People with mobility challenges have various medical con-
ditions that affect their physical and cognition abilities to
drive (e.g., limited vision, lack of motion stability or slow
reaction time). These conditions are often progressive (such as
Parkinson’s disease) and thus drivers’ abilities change faster
than the healthy population. Therefore, it is critical to perform
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more frequent and convenient driving safety assessment of
people with mobility challenges when using the mobility
scooters.

In this paper, we focus on driving motion stability analysis
for patients based on their posture data. Motion stability is
an important metric for safety assessment, which indicates
muscle ability and associates with the risks of falling. To
assess patients’ motion stability, most studies have mainly
focused on the clinical setting, where patients are required to
perform certain tasks [7]. However, for patients who cannot
or are not willing to go to the clinics, these measurements
cannot be applied. Our work enables stability analysis for
patients’ driving motions when they are at home or in the
local community, which will increase the accessibility and
timeliness of driving safety assessment in the tele-health
setting.

Unlike existing works that rely on special sensors or devices
(e.g., [5]), our work is leveraging posture data of patients
which can be collected from the camera on a smart phone
when driving, to perform stability analysis. To the best of our
knowledge, there is no existing dataset of driving postures
for people with mobility disabilities/challenges riding mobility
scooters, for research or other purposes. Our work is the first
in collecting such patients’ data and using it to perform data-
driven intelligent stability analysis.

In order to generate reliable stability analysis results, we
build deep learning models which take sequences of video
frames as input, and produce a preliminary analysis result,
i.e., a loss value that reflects how unstable the postures are,
which can also be combined with a threshold to generate
the binary classification result of stable or unstable. The
reason we choose to use this coarse-grained result is that
the goal of the system is to monitor the driving safety of
patients outside of hospital and detect any conditions that need
further interventions or closer examinations by rehabilitation
experts, neurologist, or other medical experts. More fine-
grained stability scales can be measured at a later stage.

There are many existing works of gait analysis using deep
learning models [31]. Body deep representations based on
silhouettes and skeleton have been explored to perform tasks
such as action recognition and identity detection (e.g., [14],
[23]). Like gait analysis, we focus on the temporal features
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of body movements by time series analysis, and also the
spatial relationships among multiple body key points when
moving. However, our work is different than most gait analysis
works in that we focus on upper body movements instead
of the full body, which will result in different choices in
deep model architectures. Moreover, driving postures possess
distinct characteristics such as the unique angle and distance
that wrists and other key joints move during driving, yielding
unique spatial and temporal features.

In this paper, to perform preliminary stability analysis for
mobility scooter drivers with mobility challenges, we propose
a deep autoencoder based system which is driven by the pose
estimation result of driver’s upperbody video recordings. In
particular, we utilize MoveNet [18] to produce upper body
keypoints 2D coordinates for each video frame. The resulting
sequence of keypoints coordinates from the driving video
frames labeled as stable will be used to train the recurrent
neural network and convolutional neural network based au-
toencoder. Here the stability labels for driving video frames are
generated by Kinesiologists who possess the domain expertise
to distinguish between stable and unstable upper extremity
movements in driving. After the autoencoder is trained, se-
quences of new video frames can be processed and analyzed,
based on the loss values of the test sequences. In general,
unstable driving video frames will yield in much higher loss
because the input’s features are distant from the embedding
vector trained using the stable samples.

The contributions of this paper include the following:

o We design and develop a driving posture stability analysis
system for people with mobility challenges, which can
provide accessible safety assessment of the drivers at
home or in the communities.

o Our deep autoencoder based approach extracts the spatial
and temporal features of the movement of drivers’ upper
body key points which are generated by a pose estimation
module.

o« We explore two different architectures of the deep au-
toencoder, one having an LSTM based encoder and the
other having a CNN based encoder, and implement the
two models separately.

o We collect six patients’ driving posture data on mobility
scooters to form a pilot dataset, and run the system
pipeline to test the system performance. The evaluation
results of ROC and precision-recall show that our system
has high levels of analysis accuracy.

The rest of the paper is organized as follows. In Section II,
we review the existing works related to this paper, including
car driving behavior analysis, time series analysis and pose
estimation and deep autoencoders. Then in Section III, we de-
scribe the details of our method. Section IV presents our data
collection procedure with patients’ demographic information,
data collection and preprocessing methods. After describing
the evaluation and results in Section V, we conclude the paper
in Section VIIL.
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II. RELATED WORK
A. Driving Behavior Analysis and Classification

Safety-related mobility scooter driving behavior analysis has
mostly been conducted qualitatively in the Health research
communities of Geriatrics, Rehabilitation and Disability, in
the forms of participant reports and case studies [19], [29],
[30]. Research shows that compared to driving experience,
the physical cognitive and psychological factors of the drivers
are affecting the driving behaviors of mobility scooter users in
the longer term. Other contributing factors include distractions
from the environment, road hazards and interference from
pedestrians. There are very few works on quantitatively an-
alyzing the driving skills of mobility scooter users. In [24], a
driving operation logging system has been developed to collect
driving data of steering and speed adjustment in an indoor
environment, to assist in driving skill assessment. Our project
will fill up the gap of data-driven mobility scooter driving
behavior analysis based on recent advances in deep learning.

B. Time Series Analysis and Pose Estimation

To characterize driving behavior, time-series data analysis
is often used. Conventional recurrent neural networks such as
Long Short Term Memory (LSTM) [16] or Gated Recurrent
Unit (GRU) [36] have been widely applied to many domains
[15], [20], [33]. Pose estimation [13], [35], [38] has also been
successfully applied for driver behavior detection. In [6], a
Convolutional Neural Network (CNN) based framework was
proposed for car driver’s head localization and pose estimation
on depth images. Pose estimation based on 2D images, depth
data and 3D models [22], [25] have been applied to, for
example, pediatric population, athletes, to track development,
injury prevention and optimize performance [12], [17], [27].
However, validations of pose-estimation applied to people with
motor challenges are under-explored [32]. The learning tasks
in this paper leverage both pose estimation and time-series
data analysis. Our work explores the specific applications of
these models on real-world patient posture data, and validates
the appropriate parameter settings.

C. Deep AutoEncoders

Deep autoencoder is a type of deep neural networks that
generate an embedding vector that represents latent features of
the input data through encoder layers, and the decoder layers
transform the encoded features to the original input format,
trying to minimize the loss between the decoded data and the
input data [21], [34]. In autoencoders, layers are usually convo-
lutional or recurrent neural network layers, to extract the latent
spatial or temporal features. Most autoencoders’ architectures
are symmetrical (e.g., [39]), i.e., the decoder layers are the
inverse/transpose of the encoder layers, even with the weights
shared . There are also some works on autoencoders that yield
good results with asymmetrical architectures [9], [37]. In our
paper, we are going to study and compare the performance
of these two types of architectures in mobility scooter driving
behavior analysis, where input data is time series of upper
body skeleton keypoints coordinates.
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Fig. 1: Posture-based Mobility Scooter Driving Stability Analysis System Overview

III. MOBILITY SCOOTER DRIVING STABILITY ANALYSIS

In this section, we first discuss our system pipeline, which
takes video frames of patients’ driving behavior as input and
outputs a loss value for each frame. Then we will present in
details two components of the system, upper body keypoints
extraction and autoencoder-based stability analysis model.

A. System Pipeline

In this system, our goal is to analyze the mobility scooter
drivers’ upper body stability when driving. It is an important
safety metric for people with mobility challenges and/or dif-
ferent medical diagnosis. We focus on upper body movement
because unlike car driving, mobility scooters do not have
breaks or gas pedals. Change of speed is controlled by speed
potentio-meters which can be adjusted by hands.

To analyze drivers’ upper body movements while driving,
we rely on vision data, which is captured by cameras facing
drivers’ upper body. Videos frames in a sequence contain
rich information of drivers’ stability. We choose to apply
pose estimation to extract the sequential skeletons from the
video frames as the features we use for further analysis. The
skeleton includes upper body keypoints coordinates, which is
less sensitive to noisy variations such as the clothes that drivers
are wearing compared to other segmentation results like object
masks. Once a sequence of keypoint is extracted from a
sequence of video frames, we use the stable driving keypoint
coordinates as the input to the autoencoder structure for
training. The encoder will generate a compressed vector which
is a deep representation of the keypoint movement pattern
within a time frame. The decoder will reconstruct features
trying to minimize the loss between the output of decoder and
the original input of encoder in training. In testing, the loss
value of one given sequence’s reconstruction will be used to
determine the binary classification result, i.e., stable sequence
or non-stable sequence. In Section III-C, we are going to
introduce and compare two different architectures for this
autoencoder, one symmetric and the other asymmetric, which
include detailed descriptions of layer types and dimensions.
Figure 1 illustrates the complete pipeline of our posture-based
mobility scooter driving stability analysis system.
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B. Upper Body Keypoints Extraction

To extract drivers’ upper body keypoint information, we
apply one open-source pose estimation model, MoveNet (light-
ning version) offered on Tensorflow Hub [18]. MoveNet
detects 17 keypoints of a body, but we only use 9 of them,
i.e., neck, left shoulder, right shoulder, left elbow, right elbow,
left wrist, right wrist, left hip, and right hip. 2D coordinates
of the 9 keypoints are generated for each input video frame
with 30 frames per second. In MoveNet, first a person body
heatmap is used to calculate the center. The initial prediction
of keypoints coordinates is produced by slicing the keypoint
regression output from the pixel corresponding to the center.
Then weights are used for each keypoint which are inversely
proportional to the distance to the center, so that the effect
of keypoints from distant other objects can be reduced. In the
last step of calculating the location of the maximum heatmap
value, the local 2D offset predictions are added to refine the
final 2D coordinate output for each keypoint.

C. Driving Behavior Stability Analysis Deep Models based on
AutoEncoders

To analyze the driving behavior stability, we need sequential
data which can capture the characteristics of the upper body
movement in a time frame when driving. To this end, we
take a sequence of keypoints’ coordinates at a time and make
one stable-or-not decision for that sequence. The decision is
enabled by a deep autoencoder model.

In this work, we study two different autoencoder architec-
tures, where both architectures have an LSTM based decoder
but the encoders incorporate different types of layers. In one
architecture, we utilize LSTM to extract the latent temporal
features of upper body driving among the sequence of key-
points coordinates, while in the other, the encoder is composed
of a CNN network with one-dimensional convolutional layers.
The second architecture leverages the spatial patterns in the
9 keypoints at different locations of the upper body when
generating the embeddings. For both models, the goal is to
minimize the distance between the reconstructed samples by
the decoder and the original input to the encoder. We use the
mean squared error (MSE) as the loss metrics for both models.

LSTM based symmetric AutoEncoder
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In this model, the autoencoder has a symmetric architecture
where an LSTM layer is deployed in the encoder part to
extract an embedding vector that contains the features of
upper body movements within the sequence of a certain time-
step, from the input with the dimension of t¢me_step x*
number_of_features. Then the embedding vector is re-
peated for time_step number of times, before passing into
the decoder LSTM layer. The output of the decoder is the
reconstructed sample from the embedding vector, having the
same dimension as the original input sample. Figure 2a illus-
trates a sample architecture of the LSTM based autoencoder,
where time_step = 64 considering 64 frames at a time in a
sequence, and number_of_features = 18 with 9 joints’ x, y
coordinates. The embedding vector size is 10 in this example.
In Section V, we will vary the size of embedding vectors and
test their impact on the model accuracy.

input_1 input: | [(None, 64, 18)]
InputLayer | output: | [(None, 64, 18)]
convld | input: | (None, 64, 18)
ConvlD | output: | (None, 62, 9)
convlid 1 | input: | (None, 62, 9)
ConvlD | output: | (None, 60, 4)
flatten | input: | (None, 60, 4)
Input 2 input: | [(Nome, 64, 18)] Flatten | output: | (None, 240)
InputLayer | output: | [(None, 64, 18)]
- l dense | input: | (None, 240)
Istm 2 | input: | (None, 64, 18) D N %
It
LSTM | output: | (None, 10) s | ouput: | (Hone 55
repeat_vector_1 | input: (None, 10) repeat_vector | input: (None, 32)
RepeatVector | output: | (None, 64, 10) RepeatVector | output: | (None, 64, 32)
Istm_3 | input: | (None, 64, 10) Istm | input: | (None, 64, 32)
LSTM | output: | (None, 64, 18) LSTM | output: | (None, 64, 18)
(a) Sample LSTM based Au- (b) Sample CNN-encoder -

toEncoder Model Architecture LSTM-decoder Architecture

Fig. 2: Two different AutoEncoder Model Architectures

Asymmetrical Architecture -

To capture the spatial features in the 9 keypoints, an
asymmetrical model architecture is explored. In the encoder
part, the input sample with the dimension of time_step *
number_of_features will be processed by two consecutive
1D convolutional layers with ReLU as the activation function.
Then a flatten layer is applied before a fully connected layer,
which produces the embedding vector. After the embedding
vector is repeated for time_step number of times, for the
decoder, an LSTM layer is used to reconstruct the sample
to the same size as input. In the example configuration of
this architecture as shown in Figure 2b, time_step = 64,
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number_of_features = 18. The first ConvlD layer has 9
filters, and the second Conv1D layer has 4 filters, both with
filter size 3 and valid padding. The embedding vector size is
32.

IV. PATIENT DATA COLLECTION AND PREPOSSESSING

Our patient mobility scooter driving data collection is in col-
laboration with California State University Northridge (CSUN)
Center of Achievement (CPP IRB protocol #IRB-22-88). Six
Participants with mobility challenges have been recruited.

A. Patient Demographic Data

The demographic data details of the patients with mobility
challenges are shown in Table 1.

TABLE I: Patient Demographic Information

Medical

ID | Age | Sex ht wt(lb) Condition Impairment

1 84 M 57 145 Stroke Right upper extr.
2 87 F 5’8 200 Neuropathy neck, trunk

3 53 M 6’1" 182 Brain Injury Lower extr.

4 85 F 5°6” 230 Sciatica Left lower extr.
5 90 F 57 156 Arthritis Both hips

6 62 M 57 180 back&shoulder | Left upper extr.

B. Data Collection Methods

To collect the video recordings of patients’ upper-body
movements when driving, we mount an action camera on the
handle, facing the driver. All video frames only contains upper-
body parts below the neck, without face information being
recorded by the camera for privacy protection. Participants
are instructed to complete various driving tasks on a Drive
Medical Phoenix LT 4 Wheel Mobility Scooter [3] on the
CSUN campus after brief training. The list of driving tasks
for participants is included in Figure 3. A sample picture of
preparing the participants for driving on the mobility scooter
and the participants driving route and are shown in Figure 4a
and 4b respectively.

Descends 5-degree incline
Ascends 10-degree incline
Descends 10-degree incline

Rolls across side-slope (5 degree)
Rolls on soft surface (2 m)

Gets over gap (15 cm)

Gets over threshold (2 cm)
Ascends low curb (5 cm)
Descends low curb (5 cm)

Rolls forwards (10 m)

Rolls backwards (2 m)

Turns while moving forwards (90 degree)
Turns while moving backwards (90 degree)
Turns in place (180 degree)

Gets through hinged door

Rolls 100 m

Avoids moving obstacles

Ascends 5degree incline

Fig. 3: Tasks that Participants Perform for Data Collection

C. Data Prepossessing

Each frame of the videos (30 fps) is labeled by Kinesi-
ologists into as Stable or Unstable based on the movement
patterns of drivers’ upperbody while driving. We have devel-
oped a video data annotation tool to accelerate the labeling
process [2], which allows to generate the stability label for
each video frame while playing the video only once.
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Fig. 4: Mobility Scooter Driving Behavior Data Collection

V. IMPLEMENTATION AND EVALUATIONS

In this section, after explaining the details of system imple-
mentation, we focus on illustrating the evaluation results of
the system on analysis accuracy.

A. Implementation

The driving posture stability analysis system is developed
in Python. It contains the following components: a per-frame
stability labeling tool, MoveNet based pose estimation, deep
autoencoder training, and the test module. In implementation,
we have used the libraries: Tensorflow Keras [10], scikit-
learn [28], opencv [26], and MoveNet. All experiments are
performed on a high-performance computing cluster. The
cluster has 20 DL160 compute nodes, and four GPU nodes
with a total of 8 Tesla P100 GPUs. The cluster contains 3.3TB
of RAM in total.

In total, in addition to the patients’ driving data collected,
we also collected stable driving video recordings from a group
of healthy people (36 volunteers in the age range 18-36, with
30 males and 6 females), to enlarge the dataset of training
the autoencoders. there are about 10 hours and 9 minutes
of video footage in total and 128 minutes video footage of
patients on the mobility scooter have been collected. After data
cleaning by removing the frames without driving actions, in
total we have labeled 847036 stable frames and 8084 frames
as unstable, among which 606238 stable frames have been
used for training and 240798 stable frames and 8084 unstable
frames have been used for testing.

The pose estimation module produces a 2D-coordinate for
each of the 9 upper body keypoints, so the number of features
for the autoencoder input is 2% 9 = 18. We take a sequence of
64 frames at a time into the system. With fps being 30, each
sequence covers about 2 seconds information of upper body
movements in driving. For the CNN based encoder, the first 1D
convolutional layer input size is (64, 18), and with 9 filters of
size 3 and valid padding, the ouput size is (62,9). The second
1D convultional layer has output size (60,4) with 4 filters of
size 3. The dense layer following the flatten layer ouputs the
embedding vector. After the repeating vector layer, the LSTM
based decoder reconstructs the output of size (64,16). The
loss function is M SE.
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B. Experiment Metrics

Our driving posture stability analysis system produces the
loss value of each test video frame by calculating the distance
between reconstruction result based on the stable posture
feature vector and the input frame. The larger the loss value,
more unstable the driving posture is. To yield a binary clas-
sification result as either stable or unstable, a threshold is
needed to define the cutoff. If the loss value is greater than
the threshold, the input frame is tested as unstable; otherwise
stable. To determine the threshold, it highly depends on the
specification of system requirements. For different patients,
medical experts may suggest different threshold with more
background information of the patient being considered.

To evaluate the accuracy of our system, we apply the
receiver operating characteristic (ROC) and precision-recall
(PR) curve which show the performance of classification at all
thresholds. We will also use the area under the curve scores
(AUC) for the two autoencoder architectures we implement.

C. Evaluation Results

In our experiments, we would like to study the impact of
different embedding vector sizes generated by the encoders
on the system performance. We vary the embedding vector
size from 16 to 512 and test the AUC values correspondingly
for each of the two autoencoder architectures. The results
are shown in Table II. For the LSTM encoder architecture,
we can see that both the ROC AUC value and the PR AUC
value reach the highest (0.852 and 0.994 respectively) when
the embedding vector size is 128. For the CNN encoder, the
highest ROC AUC score and PR AUC score (0.807 and 0.992)
are both observed when the vector size is 256. This indicates
while both architectures achieve excellent accuracy levels
especially in terms of Precision-Recall, LSTM based encoder
outperforms CNN based encoder in the stability analysis task,
i.e., capturing the temporal features of keypoint coordinates is
slightly more effective than the spatial features. Moreover, for
both architectures, when the embedding vector size increases
it improves the model accuracy level, until the vector size
reaches 128 or 256. It means for this application and input size,
vector of size 128/256 is the best in representing the features
of upper body movements when driving mobility scooters.

TABLE II: ROC and PR Area Under the Curve Results

Vector Size [ 16 [ 32 [ 64 [ 128 [ 256 [ 512
LSTM Encoder

ROC AUC | 0.811 | 0.8361 | 0.837 | 0.852 | 0.850 | 0.854

PR AUC 0.991 0.992 0.993 | 0.994 | 0.994 | 0.993
CNN Encoder

ROC AUC | 0.750 0.780 0.761 | 0.805 | 0.807 | 0.771

PR AUC 0.988 0.990 0.988 | 0.992 | 0.992 | 0.990

We also plot one ROC curve and one PR curve for each
of two models when vector size is 256. In Figure 5, we can
see that overall the LSTM encoder yields better results than
the CNN encoder when plotting the (false positive rate, true
positive rate) points for all possible thresholds. Figure 6 shows
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the Precision-Recall curves for both models. The precision
values remain very close to 1 in both curves. The difference
between the two models in this figure is minimum.

Receiver Operating Characteristic (ROC) Curve

True Positive Rate

7 —— LSTM Encoder ROC (AUC = 0.85)
o7 —— CNN Encoder ROC (AUC = 0.81)
0.0 : : : .
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 5: ROC Curves of the Two Models when Vector_Size =
256

Precision-Recall (PR) Curve

1.0
0.8
c 0.6
o
0
S
()
T
0.4
0.2
—— LSTM Encoder PR (AUC = 0.99)
—— CNN Encoder PR (AUC = 0.99)
0.0 : r . :
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Fig. 6: PR Curves of the Two Models when Vector_Size =
256

VI. DISCUSSIONS

In this paper, the stability analysis test results of the input
driving videos are produced on a high performance computing
cluster. No system delay or time efficiency data has been
collected yet. In practical scenarios, real-time stability analysis
can be performed on user-end smart phones as an applica-
tion or on Raspberry Pi based embedded systems attached
to the vehicle, after the pre-trained autoencoder model is
loaded. With more driving video samples being collected, the
stability model can be continuously updated to yield more
representative feature vectors for the mobility scooter drivers.
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In future works of system deployment, more experiments
and evaluations will be conducted on system delay and the
tradeoff between efficiency and accuracy will be studied in
this application.

VII. CONCLUSION

In conclusion, our stability analysis system for mobility
scooter drivers is the first effort in focusing on the upper-body
posture movement for people with mobility challenges. Our
system is easy to deploy as it only relies on videos collected
from cameras. Deep autoencoder models have been built
to extract the embedding features of upper-body movement
represented by the sequence of keypoints’ 2D coordinates in
stable driving. We have collected patients’ driving posture data
and evaluated the system’s accuracy for two different model
architectures, i.e., the LSTM encoder and the CNN encoder.
Test results are excellent in terms of ROC AUC score and
Precision-Recall AUC score.
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