Efficient Constrained Codes That Enable Page
Separation in Modern Flash Memories

Ahmed Hareedy, Member, IEEE, Simeng Zheng, Student Member, IEEE,
Paul Siegel, Life Fellow, IEEE, and Robert Calderbank, Life Fellow, IEEE

Abstract—The pivotal storage density win achieved by solid-
state devices over magnetic devices in 2015 is a result of multiple
innovations in physics, architecture, and signal processing. One
of the most important innovations in that regard is enabling the
storage of more than one bit per cell in the Flash device, i.e.,
having more than two charge levels per cell. Constrained coding
is used in Flash devices to increase reliability via mitigating inter-
cell interference that stems from charge propagation among cells.
Recently, capacity-achieving constrained codes were introduced
to serve that purpose in modern Flash devices, which have more
than two levels per cell. While these codes result in minimal
redundancy via exploiting the underlying physics, they result in
non-negligible complexity increase and access speed limitation
since pages cannot be read separately. In this paper, we suggest
new constrained coding schemes that have low-complexity and
preserve the desirable high access speed in modern Flash devices.
The idea is to eliminate error-prone patterns by coding data
either only on the left-most page (binary coding) or only on
the two left-most pages (4-ary coding) while leaving data on
all the remaining pages uncoded. Our coding schemes work for
any number of levels ¢ > 4 per cell, offer systematic encoding
and decoding, and are capacity-approaching. Since the proposed
schemes enable the separation of pages, except the two left-most
pages in the case of 4-ary coding, we refer to them as read-
and-run (RR) constrained coding schemes as opposed to schemes
adopting read-and-wait for other pages. The 4-ary RR coding
scheme is introduced in order to limit the rate loss incurred by
the binary RR coding schemes, and we show that our 4-ary RR
coding scheme is also competitive when it comes to complexity
and error propagation. We analyze the new RR coding schemes
and discuss their impact on the probability of occurrence of
different charge levels. We also demonstrate the performance
improvement achieved via RR coding on a practical triple-level
cell Flash device.

Index Terms—Constrained codes, lexicographic ordering,
LOCO codes, reconfigurable codes, data storage, Flash memories,
multi-level technology, reliability, access speed, read and run.

I. INTRODUCTION

The history of constrained coding dates back to 1948,
when Shannon represented a constrained sequence via a finite-
state transition diagram (FSTD) and derived the capacity

This work was supported in part by the TUBITAK 2232-B International
Fellowship for Early Stage Researchers and in part by the NSF under
Grant CCF-2212437. This article was presented in part at the 2022 IEEE
International Conference on Communications (ICC) [1].

Ahmed Hareedy is with the Department of Electrical and Electronics
Engineering, Middle East Technical University (METU), 06800 Ankara,
Turkey (e-mail: ahareedy @metu.edu.tr).

Simeng Zheng and Paul Siegel are with the Department of Electrical and
Computer Engineering, University of California, San Diego (UCSD), La Jolla,
CA 92093 USA (e-mail: sizheng@ucsd.edu; psiegel @ucsd.edu).

Robert Calderbank is with the Department of Electrical and Com-
puter Engineering, Duke University, Durham, NC 27708 USA (e-mail:
robert.calderbank @duke.edu).

under a constraint [2]. Run-length-limited (RLL) codes were
introduced by Tang and Bahl in 1970 to support the evolution
of magnetic recording at that time [3], and these codes were
based on lexicographic indexing. In 1973, Cover presented a
result about enumerative coding [4] that will prove fundamen-
tal for the design of constrained codes based on lexicographic
indexing decades later. Among other researchers, Franaszek
developed constrained codes based on finite-state machines
(FSMs) derived from FSTDs [5]. In 1983, Adler, Coppersmith,
and Hassner introduced a systematic method to develop con-
strained codes based on FSMs [6]. Details about the history
of constrained coding until 1998 are in [7].

Because of their ability to improve performance via elim-
inating error-prone data patterns and undesirable sequences,
constrained codes have a plethora of applications. They find
application in one-dimensional (1D) magnetic recording de-
vices, both the old ones, which are based on peak detection,
and the modern ones, which are based on sequence detection
[8], [9]. They can also be combined with robust signal detec-
tion using machine learning [10]. They find application in the
emerging two-dimensional (2D) magnetic recording devices
as well [11], [12]. Moreover, constrained codes are used to
achieve DC balance and self-calibration in optical recording
devices [13] in addition to many computer standards for data
transmission [14].

In Flash devices, charge propagation from cells programmed
to high charge levels into cells programmed to lower charge
levels is the main reason behind inter-cell interference (ICI)
[15]. This is correct for any number g of charge levels per cell.
Mitigating ICI results in remarkable lifetime gains in Flash as
demonstrated in [16] for multi-level cell (MLC) Flash (¢ = 4).
There are data patterns that are considered usual suspects for
contributing most to ICI. Coding to eliminate data patterns
resulting in consecutive levels (¢ —1)0(¢ — 1) was considered
in [17] and [18]. Coding to eliminate data patterns resulting in
consecutive levels (¢ — 1)u(g — 1), also called level patterns,
for all 4 < g — 1, was presented in [16], [18], and [19].

A number of recent results revisited [3] and [4] in order
to produce efficient constrained codes based on lexicographic
indexing, and one example is [22]. Another example is [8],
in which we introduced binary symmetric lexicographically-
ordered constrained (S-LOCO) codes and demonstrated den-
sity gains in a modern 1D magnetic recording system. We
extended our result to single-level cell (SLC) Flash memories
(g = 2) [23] then to Flash memories with any number g of
levels per cell [19]. Moreover, we devised a general method
to design LOCO codes for any finite set of patterns to forbid

[24], which will be useful in this paper. We studied the
power spectra of binary LOCO codes in [25]. LOCO codes
are capacity-achieving, simple to encode-decode, and easily
reconfigurable [19], [24].

While the constrained codes in [18] and [19] are quite
efficient in terms of rate, they require all Flash pages to be pro-
cessed together, which negatively affects the access speed. In
this paper, we propose binary read-and-run (RR) constrained
coding schemes that allow pages to be accessed separately in
modern Flash devices, thus preserving high access speed. Our
binary RR coding schemes incur small rate loss and work for
any Flash device with ¢ > 4 levels per cell. The key idea is
that the constrained code is applied only on one page, the left-
most page, while no coding is applied on the other log, ¢ — 1
pages. We present a 2D RR coding scheme as well as a ID RR
coding scheme that is based on LOCO codes, and we name
the latter binary RR-LOCO coding. Furthermore, we present
a 1D 4-ary RR coding scheme that is based on LOCO codes,
which we name 4-ary RR-LOCO coding, in order to further
reduce the rate loss without impacting the device reliability.
In particular, we apply constrained coding on two pages, the
two left-most pages, while no coding is applied on the other
log, ¢ — 2 pages. Therefore, all pages are separated except the
two left-most ones. Our 4-ary RR coding scheme works for
any Flash device with ¢ > 8 levels per cell.! We show that
our 4-ary RR coding scheme can even outperform the binary
RR coding schemes at capacity-approaching rates in terms of
both complexity and error propagation. There are techniques
in the literature that allow page separation; however, they are
either incurring notable rate loss [16] or designed for a specific
Flash setup [17]. We study various aspects about the proposed
RR coding schemes, including charge-level probabilities. We
introduce experimental results in a practical triple-level cell
(TLC) Flash device (¢ = 8) that demonstrate notable lifetime
gains achieved by our coding schemes.

Signal processing techniques have also been proposed to
mitigate ICI effects in Flash memory. Precompensation, or
predistortion, methods [20] attempt to predict the ICI that will
be experienced by a cell and modify the program level ac-
cordingly. Postcompensation, or postprocessing, methods [20],
[21] attempt to estimate the ICI distortion after sensing the cell
voltages and apply an appropriate correction to the cell read
voltage to offset the ICI effect. Both approaches require accu-
rate information about inter-cell coupling ratios over a range of
program/erase cycles. They must compute an estimate of the
expected ICI for every cell as a function of its program level
(or read voltage) and those of its neighboring cells. As pointed
out in [20], [21], this comes at a cost of additional processing
either during programming or after reading, resulting in extra
calculations, additional storage overhead, and added write
or read latency. Furthermore, the ICI compensation, whether
during programming or after reading, will not be exact, so
there may be some residual ICI. On the other hand, results of
modeling and simulation in [20], [21] give evidence that these
signal processing methods can be very effective in mitigating

'This 4-ary RR coding scheme works for ¢ = 4 as well, but with more
benign patterns forbidden and with no page separation.

ICI, and unlike constrained coding methods that introduce
redundant data, they do not incur any rate loss penalty.

Given the many issues involved, it is difficult to identify one
approach to ICI mitigation as universally superior to another
without a careful assessment of the engineering trade-offs.
However, further comparison of constrained coding methods
with signal processing methods is an interesting topic for
future research, as is the consideration of techniques that
combine both methods in a complementary fashion.

The rest of the paper is organized as follows. In Section II,
we discuss the detrimental patterns, the Flash mapping, and
our 2D binary RR coding scheme. In Section III, we introduce
our 1D binary RR-LOCO coding scheme. In Section IV, we
propose our 1D 4-ary RR-LOCO coding scheme. In Section V,
we study the rate, complexity, and error propagation of the new
schemes and make comparisons. In Section VI, we present
the experimental results on TLC Flash. In Section VII, we
conclude the paper.

II. PATTERNS, MAPPING, AND 2D RR CODING

As implied in the introduction, literature works do not
strictly agree on the set of forbidden patterns to operate
on. Additionally, as the Flash device ages, the set of error-
prone patterns is expected to expand [19]. According to our
recent experimental tests and a machine learning-based ICI
characterization [26] of TLC Flash memories, we decided to
focus on the set characterized as follows. Let
51»61€V0é{%7%"’1;-“’97_1}7 (])
where ¢ is the number of levels per Flash cell (a positive power
of 2) and V; = {0,1,...,g—1}\ V. Then, the set of interest
is the set resulting in the high-low-high level patterns in £,:*

Lq 2 BBy, V61, By | 0 < p<min(B1,58))}. (2

This set already subsumes all 3-tuple forbidden patterns
adopted in the literature for Flash. This set can be relaxed by
removing few patterns that have minimal impact on perfor-
mance as we shall see in Section IV. A block inside the Flash
device can be seen as a 2D grid of wordlines and bitlines, with
a cell being placed at each intersection [16]. Level patterns
in L, are detrimental whether they occur on 3 adjacent cells
along the same wordline or along the same bitline.

Example 1. Consider an MLC Flash device, i.e., ¢ = 4. In
this case, we have (1, 3, € {2,3}. Then, the set of interest is
the set resulting in:

L4 = {202,212,203, 213,302, 312,303,313,323}. (3)
The last three elements in L4 are quite known [16], [17], [19].

Next, we discuss how to map from data to charge levels in
Flash and vice versa. Since we are interested in page separation
throughout this work, the mapping here is from a charge level
out of g possible ones to log, ¢ binary bits, one for each page,
and vice versa. Gray mapping offers the advantage that there
is only one-bit difference between any two adjacent charge

2Levels are defined through their indices {0,1,...,q — 1} for simplicity.

Algorithm 1 Recursive Alternate Gray Mapping

1: Input: Number of levels per cell ¢, and p = log, q.

2: Define map, a binary array of dimensions ¢ X p.

3: Set map(0,:) = 1P. (a sequence of p 1’s)

4: for i € {0,1,...,p—1} do

5. for je€{0,1,...,2° -1} do

6: map(2° + j,:) = map(2® — 1 — j,:).

7: Flip the bit map(2¢ + j,i). (each sequence in map
is indexed from right to left by 0,1,...,p—1)

8: end for

9: end for

10: Output: Array map that maps each index to binary data.

levels, which is valuable for error performance. We adopt a
recursive alternate Gray mapping (RAGM), and Algorithm 1
shows how to produce it for any ¢ > 4. We highlight that
RAGM has already been used in the literature in MLC Flash
[16] and TLC Flash [17].

Example 2. Consider a TLC Flash device, i.e., ¢ = 8. In this
case, the output of Algorithm 1, which is RAGM, becomes:

0« 111, 1 +— 110,
2 +— 100, 3« 101,
4« 001, 5 «— 000,
6 < 010, 7+ 011. 4)

Now, we are ready to discuss binary coding schemes. Let
us first index the Flash pages the same way the bits in each
sequence in the array map are indexed (see Algorithm 1).
This means that the left-most page is the one indexed by p—1.
From (2) and Algorithm 1, the level patterns in £, correspond
to binary patterns where the left-most page (pages) always
has (have) two 0’s separated by some bit, i.e., 0x0. Based
on that, forbidding {000,010} on the left-most page (pages)
guarantees that no level pattern in £, would appear while
writing to a Flash device, with any ¢ > 4, at least in the
wordline (bitline) direction. This corresponds to an interleaved
RLL (d, k) = (0, 1) constraint [27]. Notably, no coding on any
other page is needed. Data will therefore be read from each
page independently, and immediately passed to the low-density
parity-check (LDPC) decoder to start its processing. This idea
is the key idea of our binary RR constrained coding schemes.?

RR coding can be performed in the wordline direction only
(1D), the bitline direction only (1D), or both directions (2D).
Observe that binary RR coding will also prevent some benign
level patterns, e.g., 474, 555, and 676 in TLC Flash, resulting
in inevitable rate loss. However, as we shall see in Section V,
this rate loss is small. Furthermore, some of these benign level
patterns will be allowed when we shift from binary to 4-
ary coding, which reduces this rate loss, as we shall see in
Section IV. RR-LOCO codes are capacity-approaching codes.

We start here with our scheme for 2D binary RR constrained
coding. As the name suggests, we want to prevent the patterns
in R? = {000,010} from appearing at the left-most pages
in both wordline and bitline directions in the Flash device

3An equivalent scheme was proposed for MLC Flash, i.e., ¢ = 4, in [27].

Wordline direction

\ 4

x|x|1|1|x|x |1 |1 |x|x|1]|1

£ x|x|1|1|lx|x|1|1]x|x|1|1

3 1|1 |x|x|1]|1|x|x|1]1]x]|x

% I {1x|x|1]|1|x|x|1]|1]x]|x

% x|x|[1|1fx|x|[1]|1]x|x]|1]|1

& x|x|1|1|x|x|1|1|x|x]|1]|1
Y

Fig. 1. The left-most pages of a 2D Flash grid with data encoded via the
proposed 2D binary RR coding scheme. Symbol z means bit can be 0 or 1
freely.

through simple encoding and decoding. The encoding follows
the rules:

1) On wordlines with indices congruent to 0 or 1 (mod
4), you are allowed to write 0’s and 1’s freely in bit
positions congruent to 0 or 1 (mod 4) at the left-most
pages.

2) On wordlines with indices congruent to 2 or 3 (mod
4), you are allowed to write 0’s and 1’s freely in bit
positions congruent to 2 or 3 (mod 4) at the left-most
pages.

3) In the other bit positions, you can only write 1’s on
wordlines at the left-most pages.

This 2D binary RR constrained coding scheme is depicted
in Fig. 1. It is clear from the figure that the patterns in
R? = {000,010} are eliminated on the left-most pages, which
forbids all level patterns in L, in both directions. Upon encod-
ing, input data bits are freely placed at the positions marked
by x for the left-most pages, and they are directly placed
(uncoded) at the other pages. Upon decoding, information at
the positions marked by 1 is omitted, and data bits at the
remaining positions are read with no additional processing and
with no correlation between different Flash pages.*

This 2D binary scheme is ideal in terms of complexity,
access speed, and error propagation (see Section V). It might
also seem notably better than any 1D scheme (binary or 4-ary)
in terms of performance. However, 1D schemes can achieve
almost the same performance with higher rates, which we will
discuss in more detail later.

III. RR-LOCO CODING OVER GF(2)

In order to design efficient constrained codes, LOCO codes,
we adopt the general method in [24]. The steps of this general
method are:

1) Use the forbidden patterns to determine a group struc-
ture (partition) for the code.

2) Derive the code cardinality (codebook size) formula us-
ing the inherent recursion of the groups and subgroups.

4An equivalent 2D scheme forbidding patterns {101,111} on the right-
most pages in both wordline and bitline directions in MLC Flash was proposed
in [27].

3) Specify the codeword patterns that represent special
cases given the forbidden patterns. Details about these
cases will be discussed shortly.

4) Find the contribution of a non-zero codeword symbol to
the codeword lexicographic index in each special/typical
case.

5) Merge the contributions for all cases in one codeword-
index equation, which is the (LOCO) encoding-decoding
rule.

6) Develop the encoding and decoding algorithms of the
code based on this rule.

In this section, we introduce a binary RR coding scheme
that forbids {000,010} on the left-most pages in either the
wordline direction or the bitline direction, while leaving all
other pages with no coding, which forbids the level patterns
in £, and achieves page separation. This scheme is the binary
RR-LOCO coding scheme. The constrained code we apply is
a binary LOCO code devised according to the aforementioned
general method. We start by defining the proposed binary
LOCO code.

Definition 1. A binary LOCO code RC%, where m > 1, that
forbids the patterns in R* = {000,010} is defined by the
following properties:

1) Codewords in RC2, are defined over GF(2) = {0,1}
and are of length m bits.

2) Codewords in RC2, are ordered lexicographically.

3) Codewords in RCfn do not have patterns in R2.

4) All codewords satisfying 1)-3) are included.

GF(q) denotes Galois field of order ¢ (the alphabet size).
Lexicographic ordering here is ordering codewords ascend-
ingly according to the rule “0O < 1”7, where bit significance
reduces from left to right [3], [19]. Table I shows the code-
books of RCZ, for all m in {1,2,...,5}. The first step to
devise the encoder-decoder of this binary LOCO code is to
specify the group structure. Codewords in RCfn, m > 2, can
be partitioned into the following groups:

e Group 1: Codewords starting with 0011 from the left.
e Group 2: Codewords starting with 011 from the left.
o Group 3: Codewords starting with 1 from the left.

The second step is to enumerate the codewords in RCfn,
which is done by Theorem 1. Let Ny(m) £ |RC2,|.

Theorem 1. The cardinality of a binary LOCO code RCiz is
given by the recursive formula:

Ny(m) = No(m—1)+Na(m—3)+ No(m—4), m > 2, (5)
where the defined cardinalities are:

Np(=3) £0, Na(=2) = No(—1) = N2(0) £ 1,

and N5(1) = 2. (6)

Proof: We compute the cardinalities of each group then
add them all. Let the cardinality of Group ¢ be N ;. As for
Group 3 in RCZ, there is a bijection between its codewords
and the codewords in RC2,_, (attach 1 from the left). Thus,

Ngyg(m) = Ng(m —].) (7)

As for Group 2 in RC?W, there is a bijection between its
codewords and the codewords starting with 1 from the left
in RC2,_, (attach 01 from the left). Thus using (7),

N272(m) = N273(m - 2) = Nz(m - 3) (8)

As for Group 1 in RCZ, there is a bijection between its
codewords and the codewords starting with 1 from the left
in RC72n73 (attach 001 from the left). Thus using (7),

Ng’l(m) = N2,3(m — 3) = Ng(m — 4) (9)
Adding (7), (8), and (9) gives (5). The defined cardinalities
(used for computing No(m) for 2 < m < 4), other than
N3(1), can be computed by observing that No(l) = 2,
N3(2) =4, N2(3) = 6, and N2(4) = 9, which sets up four
equations. This observation is immediate given the forbidden
patterns.]

Define a codeword c in R(an a8 C = Cp_1Cm_2...Co,
with ¢; £ ¢ for ¢ > m, where (represents “out of
codeword bounds”. This (is defined to characterize, only for
completeness, the symbols preceding c,,—1, which practically
do not exist. The integer equivalent of a LOCO codeword bit
¢i,0<1<m-—1,is a;, i.e., a; is 0 (1) when ¢; is 0 (1). Denote
the lexicographic index of a codeword c among all codewords
in the LOCO code RCZ, by g»(m, c), which is abbreviated to
g(c). In general, g(c) is in {0,1,..., Na(m) — 1}.

Before introducing the third step, we briefly introduce a
general definition for the terms “special case” and “typical
case”. Consider a general LOCO code CJ,, where the alphabet
is GF(q) and the length is m.

Definition 2. A special case of existence for symbol c; of
codeword c in Cl, is a case where not all codewords starting
with any c; < ¢;, according to the lexicographic ordering,
from the left in C "1 are allowed to be concatenated from the
right to the symbols preceding c;.

The typical case of existence for c; is the case where all
codewords starting with any ¢, < c; from the left in C} o
are allowed to be concatenated from the right to the symbols
preceding c;.

Intuitively, the special cases are the ones implying “jumps”
among the codewords of length ¢+ 1, while the typical case is
the one implying “no jumps” among the codewords of length
1+ 1. “Typicality” of the typical case follows from the lack
of these jumps.

The third step is to specify the special cases of occurence
for a 1 inside a codeword in RC?,. These cases are:

e Case 2: cjqacir1c; = 001.
e Case 3: Ci4+2Ci+1C; = 011.
o Case 4: Ci4+2Ci4+1C; = 101 or Ci4+2Ci+1C; = COl.

The typical or default case, Case 1, is simply the case of
“otherwise”. In particular, it is the case that ¢;y2c;41¢; = 111,
Ci4+2Ci+1C; = Cll, Or Cj4+1C; = Cl.

The fourth and fifth steps are to find the encoding-decoding
rule, which specifies the mapping from index to codeword and
vice versa. This rule for RC2, is given in Theorem 2.

TABLE I
ALL THE CODEWORDS OF FIVE BINARY (RR) LOCO CODES, RCfn, m € {1,2,...,5}. THE THREE DIFFERENT GROUPS OF CODEWORDS ARE
EXPLICITLY ILLUSTRATED FOR THE CODE RC2.

. Codewords of the code RC2,
Codeword index g(c) pres— preg— =3 P | pregee

0 0 00 001 0011 00110 Group 1
1 1 01 011 0110 00111 P
2 10 100 0111 01100
3 11 101 1001 01101 Group 2
1 110 1011 01110 P
5 111 1100 01111
6 1101 10011
7 1110 10110
8 1111 10111
9 11001
10 11011 Group 3
11 11100
12 11101
13 11110
14 11111

Code cardinality No(1)=2 | Na(2)=4 [N2(3)=6 | N2(4) =9 No(5) =15

Theorem 2. The relation between the lexicographic index

g(c), ¢ € RC%, and the binary codeword c itself is given
by:
m—1

9(e) = D as[(1 = i) Nali —2)

+ (1 = yiq — vi2)Na(i — 3)},

where y; 1 and y; o are specified as follows:

(10)

Yi1 = 1if ciyocipic; € {001,011}, and y; 1 = 0 otherwise,
Vi = Lifciric; =01 st y; 1 =0, and y; 2 = 0 otherwise.

(1)

Proof: We compute the contributions g; j(c;) of a bit
¢; under Case j, for all j € {1,2,3,4}, in a binary LOCO
codeword then merge them all. As for the typical case, which
we index by 1, this contribution is the number of codewords
starting with O from the left in RQ2 1. Thus using (8) and (9),

gi,l(ci) = Ngﬁg(i + 1) + N271(’L. + 1)
= No(i — 2) + No(i — 3). (12)

As for Case 2 (Case 3), this contribution is the number of
codewords starting with 000 (010) from the left in RC? |3
Note that 000 and 010 are forbidden patterns. Thus,

gm(ci) =0 and
giyg(ci) = 0 (13)

As for Case 4, this contribution is the number of codewords
starting with 00 from the left in RC? 2. Thus using (9),

gia(ci) = No1(i +2) = Na(i — 2).

Using y; 1 (for Cases 2 and 3) and y; » (for Case 4) from (11)
along with a; to merge (12), (13), and (14) gives:

gi(c)) = a; (1= ya1)Nali — 2)

+ (1 = yi1 — yi2)Na(i = 3)].

(14)

5)

Substituting (15) in g(c) = Z:;Bl gi(c;) gives (10). [|

For brevity, we skip the sixth step, which is to assemble
the encoding and decoding algorithms. These algorithms are a
direct consequence of the rule in (10), and we refer the reader
to [3], [19], [24], and [28] for details. Note that we sometimes
refer to RCZ, as a 1D binary RR-LOCO code. The encoding-
decoding rule of a LOCO code is the reason behind its low
complexity algorithms, where reconfiguration becomes as easy
as reprogramming an adder [8], [24].

Example 3. Consider the binary LOCO code RC?) (m = 9).
Using (5) and (6), we get No(—3) =0, Na(—2) = Na(—1) =
N2 (0) £ 1, No(1) =2, No(2) = 4, No(3) = 6, and No(4) =
9. Consider the codeword ¢ = cyc3cocico = 11011 in RC%.
The case indexed by i. = 1 (the typical case) applies to cq4
and c3, which means ys 1 = Ya2 = Y31 = y3,2 = 0. The case
indexed by i. = 4 applies to ci, which means y11 = 0 and
Yy1,2 = 1. The case indexed by i. = 3 applies to co, which
means Yo = 1 and yo2 = 0. Consequently, and using (10),
we get:

g(c =11011) = [Na(2) + Na(1)] + [N2(1) + N2(0)]
+ [N2o(=1)] + [0]
=[4+2]+2+1]+[1]

10,

which is consistent with the codeword index in Table I. In
practice, only 8 = 23 codewords will be used from ch.

Remark 1. If the coded bits are complemented before writing
to pages, the set of forbidden patterns on the left-most pages
becomes {101,111} instead, which appears in [16] as well.
In this case, the cardinality of the binary LOCO code remains
as in (5), while the encoding-decoding rule becomes exactly
that of a binary asymmetric LOCO code in [23] for x = 1:

m—1
g(c) = a;iNa(i — ait1). (16)
i=0
Encoding and decoding on the left-most pages are just
subtractions and additions. As for the remaining pages, data is
written and read directly (uncoded). This guarantees simplicity
and maintains high access speed via our 1D binary RR-LOCO
coding scheme.

IV. RR-LOCO CODING OVER GF(4)

In this section, we propose a 1D RR coding scheme over
GF(4), which is also based on LOCO codes. This scheme
is our 4-ary RR-LOCO coding scheme. The goal is to limit
the rate loss resulting from binary RR coding schemes via
coding on the two left-most pages. Finer classification of error-
prone patterns, stemming from characterizing them via two
bits instead of one, results in allowing some benign or less
detrimental patterns, and therefore increasing the rate with
negligible effect on performance.

We start by modifying the set of error-prone patterns. Let

= 3q 3q
01,0 O e |
1, IGWO {474+a ,q }7
= q q 3q
0,0 O - S |
25 QEWI {272+a 74 }7
05 € Wy UWS, Wgé{%,%Jrl,...,g—l},
W3é{071,...,%—1}, (17)

where ¢ is the number of levels per Flash cell (a positive power
of 2). While mathematically ¢ > 4, we focus here on the case
of ¢ > 8. Then, the set of interest is the set resulting in the
high-low-high level patterns in £} C L,:

L, 2 {61001,¥61,01 | 0 < n < min(6;,0)}
U {019392,V91,92,93} U

{020501,Y01,05,05} U {020502,Y02,02,05}. (18)

This set also subsumes all 3-tuple forbidden patterns adopted
in the literature for Flash. The only difference between the set
ﬁ; and the set £, is that in the former, if either the left level is
or the right level is or both levels are in W, the middle level
is always in W5 U Ws. Our experimental results show that the
level patterns in £, \ sz have very limited contribution to the
errors occurring upon reading from the Flash device.

Example 4. Consider a TLC Flash device, ie., ¢ = 8. In
this case, we have 01,0, € {6,7}, 0,0, € {4,5}, and
05 € {0,1,2,3}. Then, the difference between the two sets
of interest is only one level pattern:

Ls\ L§ = {545,546, 547,645, 745} (19)

For mapping from charge levels to binary bits, we adopt the
RAGM of Algorithm 1. Moreover, we index the Flash pages
the same way the bits in each sequence in the array map
are indexed using Algorithm 1. Therefore, we are interested
here in the data on the two left-most pages indexed by
p— 1 and p — 2. We adopt the following binary to 4-ary
mapping-demapping, where GF(4) = {0, 1, o, &%}, for these
two specific Flash pages:

11 +— 0 (Ws),
00 «— a W),

10 +— 1 W),

01 <— a® (Wp). (20)

The set of level patterns corresponding to each GF(4) symbol
is given between parenthesis.

We can see from (17), (18), and (20) that the set of level
patterns in £, can be forbidden in the wordline or the bitline

direction by forbidding the 4-ary patterns in the following set
R* from being written on the two left-most pages indexed by
p—1and p—2:

R = {a0a, ala, a0a?, ala?, a?0a, o?la,

2002, a*102, o*a®

,aa?a?}. (1)
Once again, no coding on any other page is needed. Data
will therefore be read from each page independently, except
the two left-most pages, and immediately passed to the low-
density parity-check (LDPC) decoder to start its processing.
This idea is the key idea of our 4-ary RR constrained coding
scheme.

Consider a TLC Flash device (¢ = 8) once again. Forbid-
ding the patterns in R* on the two left-most pages instead of
the patterns in R? on the left-most page results in allowing
many benign patterns that are forbidden if binary RR coding
is adopted, e.g., 444, 474, and 555.

Now, we introduce our 4-ary RR coding scheme that forbids
the patterns in R* on the two left-most pages in either the
wordline direction or the bitline direction, while leaving all
other pages with no coding. The constrained code we apply is
a 4-ary LOCO code devised according to the general method
in [24]. We start by defining the proposed 4-ary LOCO code.

Definition 3. A 4-ary LOCO code R(,’fn, where m > 1,
that forbids the patterns in R* is defined by the following
properties:
1) Codewords in RCY are defined over GF(4) =
{0,1,,a®} and are of length m symbols.
2) Codewords in RC?,L are ordered lexicographically.

3) Codewords in RC5, do not have patterns in R*.
4) All codewords satisfying 1)-3) are included.

Lexicographic ordering here is ordering codewords ascend-
ingly according to the rule “0 < 1 < a < a?”, where
symbol significance reduces from left to right [3], [19]. The
first step to devise the encoder-decoder of this 4-ary LOCO
code is to specify the group structure. Let v; and 7 be in
{0,1}. Codewords in RC?%, m > 3, can be partitioned into
the following groups:

e Group 1: Codewords starting with ~;, V1, from the left.

e Group 2: Codewords starting with ay;v2, V71,72, from
the left.

o Group 3: Codewords starting with ax or aa® from the
left.

o Group 4: Codewords starting with a?v;72, V71, 72, from
the left.

o Group 5: Codewords starting with a2a7y;v2, V1,72,
from the left.

« Group 6: Codewords starting with a?aa from the left.

e Group 7: Codewords starting with a0y, V71, Vo,
from the left.

o Group 8: Codewords starting with a>a?a from the left.

The second step is to enumerate the codewords in RCfn,
which is done by Theorem 3. Let Ny(m) £ |RC3,|.

Theorem 3. The cardinality of a 4-ary LOCO code RC?,L is
given by the recursive formula:

N4(m) = 3N4(m — 1) — 2N4(m — 2)
+9N4(m — 3) + TNy(m — 4)

+6N4(m —5)+4Ng(m —6), m >3, (22)
where the defined cardinalities are:
1 1
Ny(=5) & —, Ny(—4) & ——, Ny(-3) &
1 1
Ny(-2) = 7k Ny(-1) £ > Ny(0) =1
and Ny4(1) =4, N4(2) = 16. 23)

Proof: We compute the cardinalities of each group then
add them all. Let the cardinality of Group 7 be N4 ;. As for
Group 1 in RCfn, there is a surjection between its codewords
and the codewords in RCz,_, (attach 0 or 1 from the left).
Thus,

N4,1(m) = 2N4(m - 1)

As for Group 2 in RCfn, there is a surjection between its
codewords and the codewords in RC? .. Thus,

Nyo(m) = (2)(2)Na(m — 3) = ANy (m — 3).

As for Group 3 in RC#, there is a bijection between its

codewords and the codewords starting with a or o from the
left in RC*,_,. Thus using (24),

N473(m) = N4(m - 1) - N4,1(m - 1)

= N4(m - 1) - 2N4(m - 2)

(24)

(25)

(26)

As for Group 4 in RCfn,
Group 2. Thus,

N474(m) = (2)(2)N4(m - 3) == 4N4(m - 3)

As for Group 5 in RC%,,
of Groups 2 and 4. Thus,

N4 5(m) = (2)(2)N4(m — 4) = 4N4(m — 4)

As for Group 6 in RCm, there is a bijection between its
codewords and the codewords starting with o from the left
in RC? . Thus using (25) and (26),
N4,6(m) = N472(m — 2) + N473(m — 2)
= Ny(m — 3) — 2N4(m — 4) + 4N4(m — 5). (29)

the cardinality is the same as that of

27)

it is handled in a way similar to that

(28)

As for Group 7 in RCﬁT,
Group 5. Thus,

N4 7(m) =

As for Group 8 in RC m» there is a bijection between its

codewords and the codewords starting with o2c from the left
in RCilfl. Thus using (28) and (29),

N4,8(m) = N475(m - 1) + N4,6(m — 1)

= Ny(m —4) + 2N4(m — 5) + 4Ng(m — 6). (31)

Adding (24), (25), (26), (27), (28), (29), (30), and (31) gives

(22). The defined cardinalities (used for computing Ny (m) for

3 < m < 6), other than Ny (1) and Ny(2), can be computed

from the cardinalities at small values of m, which set up six
equations.]

the cardinality is the same as that of

(2)(2)Na(m — 4) = 4Ns(m — 4). (30)

Define a codeword ¢ in RC: as ¢ £ ¢ 16m_2...co,
with ¢; £ ¢ for i > m, where ¢ represents “out of codeword
bounds”. The integer equivalent of a LOCO codeword symbol
¢, 0<i<m-—1,1is a4, ie., a; is 0, 1, 2, or 3 when ¢; is
0, 1, a, or a2, respectively. Denote the lexicographic index of
a codeword ¢ among all codewords in the LOCO code RCy,
by g4(m,c), which is abbreviated to g(c). In general, g(c) is
in {0,1,..., Ng(m) — 1}.

Recall Definition 2 of special and typical cases. The third
step is to specify the typical/special cases of occurence for a
symbol in GF(4) \ {0} inside a codeword in RC2,. Let y be
in {¢,0,1} and y be in {c, @}. These cases are:

e Case l.a: ¢;41¢; =1 or ¢jy1¢; = ya, for all .
e Case 1.b: ¢;y1¢; = ya?, for all v.
e Case 2: ¢;11¢; = x1 or ¢j41¢; = xa, for all x.

o Case 3: ¢;11¢; = .

o Case 4: ¢;1¢; = a?a’.
The typical or default case is Case 1 (Case 1.a and Case 1.b
combined).

The fourth and fifth steps are to find the encoding-decoding
rule, which specifies the mapping from index to codeword and
vice versa. This rule for RC}, is given in Theorem 4.

Theorem 4. The relation between the lexicographic index
g(c), ¢ € RCY, and the 4-ary codeword c itself is given
by:

H

m—

[Yin + Yi1)ai + i3 Na(i)
1=0

+ [2(yi20i + Yi3 — Yi1) + 5yi.a) Na(i — 1)
+ [4(yiq +vi,3) + 2yi.a) Na(i — 2)

+ dy; aNa(i — 3)] , (32)

where y; 1, yg’l, Yi,2, Yi,3, and y; q are specified as follows:

yi1 =1 if ciyrci € {y1,va | Yy}, and y;1 = 0 otherwise,
Yin = 1if ciprci € {ya® | ¥}, and y;, = 0 otherwise,
Yiz =1if ciyic; € {x1,xa | Vx}, and y; 2 = 0 otherwise,

Yiz=1lifciric; = ozaQ, and y; 3 = 0 otherwise,

Yid =1 if ciyic = a20z27 and y; ¢ = 0 otherwise. (33)

Proof: We compute the contributions g; ;(c;) of a symbol
¢; under Case j, for all j in {1,2,3,4}, in a 4-ary LOCO
codeword then merge them all. As for the typical case,
Situation a, which we index by l.a, this contribution is the
number of codewords starting with cg < ¢, where ¢; € {1,a},
from the left in RC} 1. Thus using (24),

Gina(c) =a;Na(i +1—1) = a; Ny(3). (34)

As for the typical case, Situation b, which we index by 1.5, this
contribution is the number of codewords starting with ¢} < ¢;,
where ¢; = o, from the left in 7?,C;1 1. Thus using (24), (25),
and (26),

= N4’1(7; +].) + N4,2(Z. + 1) + N473(i +].)
= 3N, (i) — 2Ny (i — 1) + 4Ny (i — 2).

91‘,1.1;(02')
(35)

As for Case 2, this contribution is the number of codewords
starting with ¢}v1, ¢} < ¢;, where ¢; € {1,a} and v, € {0,1},
from the left in RC;1 1. Thus using (24),

gi,2(ci) = aiN4,1(i) = QaiN4(i — 1). (36)

As for Case 3, this contribution is the number of codewords
starting with ac}, ¢, < ¢;, where ¢; = o2, from the left in
RC;1 +o. Those are all the codewords starting with -2, for
all v, and -5, from the left in RC?} 1 plus all the codewords
starting with « from the left in ’RC;1 1. Thus using (24), (25),
and (26),

gi3(ci) =2N41(4) + Nyo(i+1) + Nys(i + 1)

= Ny(i) + 2Ny (i — 1) + 4Ny (i — 2). (37)

As for Case 4, this contribution is the number of codewords
starting with o?c}, ¢; < c¢;, where ¢; = o2, from the left in
RC} 1o. Those are all the codewords starting with ~y;72, for
all v, and -5, from the left in RC?} 1 plus all the codewords
starting with o?a from the left in RC; 2. Thus using (24),
(28), and (29),

Gia(ci) = 2N41 (i) + Nys(i +2) + Nyg(i + 2)

= 5Ny (i — 1)+ 2N4(i — 2) + AN, (i — 3). (38)

We use ¥;,1, 92,1 (for Case 1), y; o (for Case 2), y; 3 (for Case
3), and y; 4 (for Case 4) from (33) along with a; to merge (34),
(35), (36), (37), and (38). We adopt the following merging
functions, where f}"'(-) is associated with Ny(i + 1 — ¢):

) = (Yin + ¥i1)ai + Yis,

5 (1) = 2(yi2ai + Yiz — i) + 5Yia,
3 (1) = 4y 1 +yi3) + 2via,

10 () = 4yia.

Therefore, the general form of the symbol contribution g;(c;)
is:

(39)

4
gi(c:) =Y P ()Na(i+ 1 - 0). (40)
=1

Substituting (39) and (40) in g(c) = 21161 gi(c;) gives (32).
|]

Remark 2. Observe that the number of linearly independent
merging variables is always less than the number of final cases
[24]. Here, y; q is dependent on the other merging variables
as it can be written as y; g = 1(a;)(1—yi1—Y) 1 —Yi2—Yi,3),
where 1(a;) =1 if a; > 0 and 1(a;) = 0 if a; = 0.

For brevity, we again skip the sixth step, which is to assem-
ble the encoding and decoding algorithms. These algorithms
are a direct consequence of the rule in (32), and we refer the
reader to [3], [19], [24], and [28] for details. Note that we
sometimes refer to RC, as a 1D 4-ary RR-LOCO code.

V. RATE, COMPLEXITY, AND ERROR PROPAGATION

We start by calculating asymptotic rates. Unfortunately,
deriving the capacity for 2D constrained codes is known to be
notoriously hard. Therefore, we will derive the capacity C 2
only under the 1D constrained coding setup, which is already

Fig. 2. An FSTD of a 1D constrained sequence forbidding level patterns in
Ly, for any g. Here, we operate directly on level patterns for simplicity. The
same state could represent multiple 2-tuples, depending on the previous state.
Ilustrative example: To arrive at S, we can a) receive two consecutive levels
< % then % to transition to S1 via Sg, b) receive two consecutive levels %

then % to self-transition to S, or ¢) receive two consecutive levels % then

% to transition to S1 via Sz,.

higher than the capacity under the 2D setup. Thus, C 2 serves
as a ceiling for the highest achievable rate in a device where
patterns in £, are forbidden at least in one direction. We will
shortly show that 1D constrained coding suffices in terms of
performance.

A finite-state transition diagram (FSTD) of a sequence
where level patterns in £, are forbidden is shown in Fig. 2.
This FSTD is designed to have a reduced number of states.
Based on this FSTD, the general adjacency matrix is (vectors
are row vectors):

2 041
04,
0t U} 417 It
2 2 2 a_1q
A, = z
q 5
. 04 0 05,
0
T T 5—1
oT I. , \ 0} a1
-1 | 72 g—1 1 2741 ng_z 0%,

(1)
where U} (L}) is an upper (lower) only-ones triangular matrix
of size § x 4. Thus and from [2], the normalized capacity of
a 1D constrained code forbidding the level patterns in £ is:

1ogs (Amax(A1))
log, ¢
where Apmax(A) is the maximum real positive eigenvalue of
the matrix A.
The capacity of a 2D binary code preventing {000,010} is
the capacity of a 2D (0, 1) RLL code, which is ~ 0.5879 [30].
Thus, the normalized capacity of our 2D RR coding scheme is:

P = : (42)

SFor positive integers a + b < g, the set H of the a largest levels, and the
set L of the b smallest levels in {0,1,...,¢q — 1}, a formula for the (count-
constrained) capacity of the constrained system forbidding all level patterns
in {81828, | B1,B8, € H,B2 € L} was derived in [29].

TABLE 11
CAPACITY COMPARISON BETWEEN C'EZ, 1D BINARY RR CAPACITY

1D 1D
CRRra» AND 1D 4-ARY RR CAPACITY Cppy

q cP CI2, | Capacity gap % | CLB,
4 0. 8941 0.8471 5.257% 0.8859
8 0.9235 | 0.8981 2.750% 0.9239
16 0.9401 0.9235 1.766% 0.9429
32 0.9509 0.9388 1.272% 0.9544

oD 0.5879 +logo g —1 logy g —0.4121
RR2 log, q ~ logyg

As mentioned above, the 1D constrained system where
patterns in R? = {000,010} are forbidden can be interpreted
as an interleaved RLL (d,k) = (0,1) constrained system,
whose capacity is known to be log,((1 + v/5)/2) &~ 0.6942.
Thus, the normalized capacity of our 1D RR-LOCO coding
scheme is:

logy((1+v/5)/2) +loga g —1
log, q

(43)

log, ¢ — 0.3058
log, q .

Crra =

(44

The capacity gap between C[° and CgR, for different values

of ¢ is given in Table II. The table shows that the capacity gap
is small, and it gets even smaller as g increases.

The capacity Cl[,; of a 1D constrained system where the

level patterns in L], are forbidden is slightly higher than cP .
since L], C L. We skip the derivation of C’B,) for brevity.

An FSTD of a 1D 4-ary constrained system where patterns
in R* are forbidden is given in Fig. 3. This FSTD is also
designed to have a reduced number of states. The adjacency
matrix is:

Ay

I
CoNO oW
O =R OO - =
cCoOO0 O R~
O NN O
—FooOROO
coor oo

The characteristic polynomial is:

det(2T — Ay) = 28 — 32° +22* — 92 — 72® — 62 — 4. (45)

We can see that if x is replaced by A = Amax(Az), we get:

A= BN T =20 TR AT TR R TAT T 6N T AN,

(46)
which is consistent with the cardinality recursion in (22). The
capacity of this 4-ary constrained system is 10g (Amax(Az2)) =
log,(3.4147) = 1.7718 bits/symbol. Thus, the normalized

capacity of our 1D 4-ary RR-LOCO coding scheme is:

1.7718 + logy g — 2 log, g — 0.2282
log, ¢ logog

Table II shows the capacity gain achieved by the 1D 4-ary
RR scheme over the 1D binary RR schemes, and we will show
that the performance, i.e., the Flash device protection, is nearly
the same. An interesting observation is that for ¢ € {8, 16, 32},
the capamty of our 1D 4-ary RR scheme CY, is slightly higher
than C L, . The reason is that the 1D 4-ary RR scheme is a

Chny = (47)

Fig. 3. An FSTD of a 1D 4-ary constrained sequence forbidding patterns
in R*. The same state could represent multiple 2-tuples, depending on the
previous state. Illustrative example: To arrive at S1, we can a) receive two
consecutive symbols 0 or 1 then « to transition to Si via Sp, b) receive
two consecutive symbols « then « to self-transition to S, or c) receive two
consecutive symbols « then « to transition to S1 via Sa.

capacity-approaching constrained coding scheme that forbids
the level patterns in £ C L,.

Next, we discuss the finite-length rates. First, the normalized
rate of our 2D binary RR constrained coding scheme is:

logy ¢ — 0.5
log, q

0.5+1logyqg—1
log, q

R, = (48)
since the rate of our left-most page coding is 0.5.

There are two differences between the capacity C' and
the finite-length rate R of a 1D RR-LOCO coding scheme.
First, R is characterized by a specific length m of the
LOCO code applied on the left-most (two left-most) page(s).
Second, bridging bits or symbols are taken into account while
computing R.

Regarding our 1D binary RR-LOCO coding scheme, we
bridge with the pattern 11 between consecutive codewords in
RCil on the left-most page, and we remove the codeword 1™
for self-clocking [19], [24]. Thus, the rate on the left-most
page is |logy(Na(m) —1)|/(m + 2), and the normalized rate
of our 1D binary RR-LOCO coding scheme is:

[logy(N2(m) —1)]
m+ 2

D _ 1
RR2 log, q

1D binary RR-LOCO coding schemes are capacity-
achieving schemes in the sense that the limit as m — oo of
RIR, is CiR, (see also [19]). Another capacity-achieving 1D
RR constrained coding scheme, implementable using enumer-
ative coding without the need for bridging bits, can be obtained
by interleaving codewords from an optimal block code for the
RLL (d,k) = (0,1) constraint [31] on the left-most pages.
LOCO codes, however, offer simplicity and reconfigurability,
which is important as the device ages [19].

Regarding our 1D 4-ary RR-LOCO coding scheme, we
cannot bridge with a single GF(4) symbol between consecutive
codewords in RCi1 on the two left-most pages since any
symbol separating o? and «? generates a forbidden pattern.
We propose a novel two-symbol bridging in which we can

+logy,q—1 (49)

encode input information bits within the bridging interval as
follows:

« For input information bits 00 € GF(2), bridge with 00 €
GF(4).
« For input information bits 01 € GF(2), bridge with 01 €
GF(4).
« For input information bits 10 € GF(2), bridge with 10 €
GF(4).
« For input information bits 11 € GF(2), bridge with 11 €
GF(4).
While it has no effect on the asymptotic rate, this bridging
scheme remarkably reduces the code length at which a specific
rate is achieved, significantly reducing the complexity and
error propagation in consequence.

To achieve self-clocking, we remove the two codewords 0™
and 1™, which is expected given the bridging above [19], [24].
Thus, the rate on the two left-most pages is (|log,(N4(m) —
2)| +2)/(m+2) bits/symbol, and the normalized rate of our
1D 4-ary RR-LOCO coding scheme is:

1 logy(Ny(m) — 2 2
B = foara Logs 477(1422 NH2 | ogyq 2]
(50)
1D 4-ary RR-LOCO coding schemes are capacity-achieving
schemes in the sense that the limit as m — oo of RD, is CLR,.
RR-LOCO codes offer simplicity and reconfigurability, which
is important as the device ages [19].

Remark 3. The removal of the two codewords 0™ and 1™
from ’RCfn to achieve self-clocking is addressed in the en-
coding algorithm by adding to the decimal integer equivalent
of the binary message, and in the decoding algorithm by
subtracting from the codeword index. This allows avoiding the
codewords O™ and 1™ while covering all possible messages.

The 2D binary RR constrained coding scheme we propose
requires no additional complexity for encoding and decoding
since data is written/read directly to/from specific positions on
the left-most page and directly to/from all positions on other
pages. As for the 1D binary RR-LOCO coding scheme, the
complexity is governed by the size of the adder that executes
the encoding-decoding rule, which is:

$2 = [logy(Na(m) — 1)] (51)

bits. Similarly and as for the 1D 4-ary RR-LOCO coding
scheme, the complexity is governed by the adder size, which
is:

s4 = [logy(Na(m) —2)]

bits. For ease of implementation and to avoid affecting the
access speed, we prefer to apply the 1D RR-LOCO coding
schemes along wordlines instead of bitlines since the per-
formance is very close, as demonstrated by the experimental
results in Section VL.

Error propagation is the phenomenon that a single writing
error results in multiple errors while reading. The 2D binary
RR coding scheme does not incur any error propagation. Thus,
the error propagation factor of it is E3R, = 1. As for the
1D binary RR-LOCO coding scheme, there is no codeword-
to-codeword error propagation. However, there exists limited

(52)

error propagation resulting from the codeword-to-message
conversion [8], [19] on the left-most page only. This error
propagation reaches s,/2 bits on average, where s, is the
message length as well from (51). Consequently, the error
propagation factor averaged over log, g pages is:
oo _ 1 [2
RR2 = Jooq 12
As for the 1D 4-ary RR-LOCO coding scheme, again
there exists limited error propagation resulting solely from
the LOCO codeword-to-message conversion [8], [19] on the
two left-most pages. This error propagation reaches s4/2 bits
on average, where s, is the message length as well from
(52). Observe that there is no error propagation for the two
additional bits encoded at each bridging interval to specify
the two 4-ary bridging symbols. Therefore, the average error
propagation on any of these two left-most pages is:
S4 m 1 2 sam + 4
> mt2 mt2 2mi2)
Consequently, the error propagation factor averaged over
log, q pages is:

+logyq—1|. (53)

(54)

1 sqam + 4
B, = 2. 1 -2
RR4 long{ 2(m+2)+0g2q]
1 sqm + 4
= — 41 — 2. 55
loggq{m—i—Q tio824q } (55)

Another metric to compare 1D binary with 1D 4-ary RR-
LOCO coding schemes is the amount of coded data at a given
rate. As this amount decreases, the code allows achieving the
desired rate at a smaller length m, which is an advantage.
Since for our 1D binary and 1D 4-ary RR-LOCO coding
schemes we use two bits and two symbols for bridging,
respectively, these amounts of coded data, DR, (binary) and
DR, (4-ary) are:

DéDRZ = (m + 2)log, q, m is the length of RCfn, (56)
D2, = (m +2)log, q, m is the length of RC: . (57)

m*

Table III gives the normalized rates, adder sizes, and er-
ror propagation factors of the proposed binary RR schemes
under various parameters. The 1D binary RR-LOCO coding
scheme has a remarkable rate advantage that reaches 10.147%,
6.096%, and 4.343% for ¢ = 4, ¢ = 8, and ¢ = 16, respec-
tively, over the 2D binary RR constrained coding scheme. The
2D binary RR scheme has a clear advantage in terms of both
complexity and error propagation as it requires no processing
to encode and decode. Having said that, the error propagation
factor of the 1D binary RR scheme decreases notably as g
increases. For example, EXR, = 2.625 for ¢ = 16 and m = 21,
which is remarkably small given the code length.

In Table IV, we compare 1D binary with 1D 4-ary RR-
LOCO coding schemes in a different way. In particular, we
fix the normalized rate, and find the minimum amount of
coded data and the minimum complexity (adder size) required
to achieve this desired rate for the two coding schemes, in
addition to the minimum error propagation associated with
them.® The sign is used in the table whenever the

[T

6Achieving a desired rate here means reaching a normalized rate greater
than or equal to this desired rate.

TABLE III
COMPARISONS OF RATE, COMPLEXITY, AND ERROR PROPAGATION AT THE SAME LENGTH BETWEEN 2D RR AND 1D BINARY RR CONSTRAINED
CODING SCHEMES — THE CAPACITY IS ALSO SHOWN

[[B [R, [O [O o [B [ED
4 7 0.7500 | 0.7778 | 0.7939 | 0.8471 5 1.000 | 1.750
4 11 | 0.7500 | 0.8077 | 0.7939 | 0.8471 8 1.000 | 2.500
4 21 | 0.7500 | 0.8261 | 0.7939 | 0.8471 | 15 | 1.000 | 4.250
8 7 0.8333 | 0.8519 | 0.8626 | 0.8981 5 1.000 | 1.500
8 11 | 0.8333 | 0.8718 | 0.8626 | 0.8981 8 1.000 | 2.000
8 21 | 0.8333 | 0.8841 | 0.8626 | 0.8981 | 15 | 1.000 | 3.167
16 7 0.8750 | 0.8889 | 0.8970 | 0.9235 5 1.000 | 1.375
16 | 11 | 0.8750 | 0.9038 | 0.8970 | 0.9235 8 1.000 | 1.750
16 | 21 | 0.8750 | 0.9130 | 0.8970 | 0.9235 | 15 | 1.000 | 2.625

binary coding scheme cannot achieve such a rate. The main TABLE IV

conclusions from Table IV are:

e For ¢ = 8 and ¢ = 16, the 4-ary coding scheme requires
less coded data (smaller lengths) than the binary coding
scheme does for all desired rates. The difference in favor
of the 4-ary coding scheme increases as the rate increases.

o At lower rates, the complexity of the binary coding
scheme is lower than that of the 4-ary coding scheme.
However, at rates > 0.8900 for ¢ = 8 and > 0.9150 for
q = 16, the 4-ary coding scheme wins the complexity
competition.

o As expected, the binary coding scheme incurs less er-
ror propagation in general because LOCO coding is
performed on one page only. However, at higher rates
and higher ¢, the 4-ary coding scheme becomes quite
competitive to the intriguing extent that it already incurs
less error propagation at rate 0.9200 and g = 16.

The 1D and 2D RR coding schemes can be used in the
same device, but at different lifetime stages. A 1D RR-LOCO
coding scheme, binary or 4-ary, can be used when the device
is relatively fresh or until a moderate number of program/erase
(P/E) cycles, while the 2D RR constrained coding scheme can
be used when the device ages, where preventing the error-
prone patterns in both directions could make a difference and
the associated rate loss could be acceptable. However, this
performance difference is shown to be small in Section VI,
at least for the TLC Flash device we used. The section also
shows that the performance difference between 1D binary and
1D 4-ary RR-LOCO coding schemes is negligible.

Remark 4. An idea that allows page separation for MLC
Flash was introduced in [16]. However, the rate offered is
only 0.7500, which is significantly below the rates offered via
our 1D binary RR coding scheme for MLC. Another idea that
allows page separation for TLC Flash was introduced in [17].
However; it only heuristically addresses the level pattern 707.

VI. EXPERIMENTAL RESULTS ON TLC FLASH

To characterize the performance of the proposed RR con-
strained coding schemes, we conducted program/erase (P/E)
cycling experiments on several blocks of a commercial 1X-
nm TLC Flash chip, as follows:

1) Erase Flash memory block under test.

2) Program all pages of block under test with data. For

uncoded experiments, program pseudo-random data at

COMPARISONS OF MINIMUM CODED DATA, COMPLEXITY, AND ERROR
PROPAGATION TO ACHIEVE CERTAIN RATE BETWEEN 1D BINARY RR
AND 1D 4-ARY RR CONSTRAINED CODING SCHEMES

q Rate DII<DR2 DII{%4 Sn S4 Ellkgz EIIQE 4

8 0.8500 27 21 5 9 1.500 2.667
8 0.8750 48 24 10 | 11 | 2.333 3.250
8 0.8900 138 48 31 | 25 | 5.833 7.708
8 0.9000 — 60 — 32 — 10.000
16 | 0.8900 48 28 7 9 1.625 2.250
16 | 0.9050 64 32 10 | 11 | 2.000 2.688
16 | 0.9150 144 48 24 | 18 | 3.750 4.333
16 | 0.9200 288 64 49 | 25 | 6.875 6.031

16 | 0.9300 — 100 — | 41 — 9.970

each P/E cycle. For RR experiments, program prepared
data satisfying RR constraints at each P/E cycle.

3) For each successive P/E cycle of RR experiments, “ro-
tate” the data, so the data that was written on the page ¢
is written on the page (i + 1), wrapping around the last
page to the first page.

4) Record bit errors and compute channel bit error rate
(BER) every 100 P/E cycles.

The PE cycling experiments were performed at room temper-
ature in a continuous manner with no wait time between the
erase-program-read operations.

Gray mappings used in Flash devices may vary between
manufacturers and product generations. In our preliminary
work [1], we modified the forbidden binary patterns in ac-
cordance with the device mapping so that RR coding on one
page per wordline would eliminate most of the patterns in £,
that induce the most severe ICI (see Remark 1).

In this work, the 8-ary encoded level sequences generated by
the RR encoders described herein using the RAGM mapping
were translated according to the device Gray mapping into
the corresponding binary sequences for the lower, middle,
and upper pages in the TLC Flash memory. Thus, the 8-ary
level sequences stored in the memory are precisely the RR-
encoded level sequences (each cell is programmed to a level
in {0,1,...,g—1}).

The left subfigure in Fig. 4 shows the channel BER from P/E
cycle 0 to P/E cycle 10,000 using pseudo-random data, a rate
24:36 1D binary RR-LOCO code along wordlines or bitlines,
and a rate 20:12 bits/symbol 1D 4-ary RR-LOCO code along
wordlines or bitlines. The right subfigure in Fig. 4 shows the
channel BER from P/E cycle 4,000 to P/E cycle 10,000 for
these cases in more detail. Note that the binary RR code and 4-

—— Random
—— 1D Binary RR-LOCO code (wordlines)

— 1D 4-ary RR-LOCO code (wordlines) ~ ------- 1D 4-ary RR-LOCO code (bitlines)

"""" 1D Binary RR-LOCO code (bitlines)

4x10°

Channel Bit Error Rate

3x10°

2x10°

2000 4000 6000

8000 10000 4000 5000 6000 7000 8000 9000
Program/Erase (P/E) Cycle Count

Fig. 4. (Left) Measured average channel BER comparison when all pages are programmed with random data (green curve), 1D binary RR-LOCO coded
data (red curves) along wordlines (solid curve) or bitlines (dashed curve), and 1D 4-ary RR-LOCO coded data (blue curves) along wordlines (solid curve) or
bitlines (dashed curve) from P/E cycle 0 to P/E cycle 10,000. (Right) Measured average channel BER excluding random data from P/E cycle 4,000 to P/E

cycle 10,000.

4x10°

3x10°

2x10°

Channel Bit Error Rate

DTt e —

—_———
e ——

1D Binary RR-LOCO code (wordlines)

1D Binary RR-Interleave-RLL code (wordlines)
------ 1D Binary RR-LOCO code (bitlines)

***** 1D Binary RR-Interleave-RLL code (bitlines)
———- 2D Binary RR code

-3
104000 5000

6000 7000 8000 9000
Program/Erase (P/E) Cycle Count

10000

Fig. 5. Measured average channel BER comparison of 1D binary RR-LOCO coded data (red curves) along wordlines (solid curve) or bitlines (dashed curve),

1D binary interleaved RLL-(0, 1) coded data (cyan curves) along wordlines (solid curve) or bitlines (dashed curve), and 2D binary RR coded data (black

curve) from P/E cycle 4,000 to P/E cycle 10,000.

ary RR code have the same overall rate: R2, = 8/9 ~ 0.8889
using (49) and R]%)u = 8/9 ~ 0.8889 using (50). Therefore,
the 1D binary coding scheme achieves about 99% (96%) of the
capacity Cyg, (C/°) and the 1D 4-ary coding scheme achieves
about 96% of the capacity CxR,.

As shown in Fig. 4, the uncoded performance is better than
that of both binary and 4-ary RR codes up to around 1,200
P/E cycles and is notably worse thereafter. At the later stages
of P/E cycling, ICI becomes severe and RR codes outperform
the uncoded setting. Specifically, 1D binary RR-LOCO codes
along wordlines increase device lifetime by about 1,800 P/E
cycles when channel BER is 2 x 1073, representing a 57%
lifetime gain, and achieve about 3,700 P/E cycles gain when
channel BER is 3 x 1072, corresponding to a 79% lifetime
gain. As shown in the right subfigure of Fig. 4, the BER of
1D binary RR code along wordlines is almost the same as that
of the 4-ary RR code between 2,000 and 8,000 P/E cycles.
When the P/E cycle count is larger than 8,000, the BER of

1D binary RR code along wordlines is slightly better than that
of the 1D 4-ary RR code. In particular, when channel BER is
3 x 1073, the 1D binary RR code along wordlines provides a
lifetime that is about 300 P/E cycles larger that than obtained
with the 1D 4-ary RR code along wordlines. Along the bitline
direction, quite intriguingly, the performance of the 1D 4-ary
RR-LOCO code is generally better than, though close to, that
of the 1D binary RR-LOCO code. The advantage of the 1D
4-ary RR-LOCO is most pronounced from P/E cycle 6,300 to
P/E cycle 8,300. For both binary and 4-ary schemes, coding
along bitlines generally offers slightly better performance than
coding along wordlines.

Fig. 5 compares the BER performance of different im-
plementations of binary RR codes at high P/E cycles: the
24:36 1D binary RR-LOCO code along the wordline or bitline
direction, the 1D binary interleaved 12:18 RLL (d, k) = (0,1)
code (which has an overall block length 36 after interleaving)
along the wordline or bitline direction, and the 2D binary

RR code. Using (48), we obtain Rz, = 5/6 ~ 0.8333.
Therefore, the 2D coding scheme achieves about 93% (90%)
of the capacity CZR, (C'P).

Referring to Fig. 5, we make the following observations at
all P/E cycles. Each 1D RR coding scheme along the bitline
direction achieves a slightly better channel BER performance
than along the wordline direction; the 1D RR coding schemes
along the same direction have similar performance; and the
performance of the 2D RR constrained code is better than that
of the 1D RR codes along any one direction. For example,
when channel BER is 2 x 1072, the 2D binary RR coding
increases lifetime by 100 P/E cycles over the 1D binary RR-
LOCO coding along bitlines and 300 P/E cycles over the 1D
binary RR-LOCO coding along wordlines. When channel BER
is 3 x 1072 and the wear condition of the Flash device is
severe, the 2D binary RR coding outperforms the 1D binary
RR-LOCO coding along bitlines by about 200 P/E cycles and
the 1D binary RR-LOCO coding along wordlines by about
600 P/E cycles.

These measurements confirm some of the claimed practical
advantages of 4-ary RR codes. The performance results of the
1D binary RR-LOCO code and the 1D 4-ary RR-LOCO code
along both wordline and bitline directions are very similar,
and the designed codes have the same overall rate (including
bridging symbols). The 1D 4-ary RR-LOCO code has a shorter
overall block length corresponding to 12 bits per coded page
(10 symbols plus 2 bridging symbols) in comparison to the 1D
binary RR-LOCO code which has overall block length of 36
bits on the coded page. Moreover, in the code design, the 1D
4-ary RR-LOCO code requires an adder size of 18 bits, while
the 1D binary RR-LOCO code requires an adder size of 24
bits. Recall that the adder size governs the LOCO encoding-
decoding complexity.

An examination of level probabilities induced by 1D binary
and 1D 4-ary RR constraints provides some intuitive insight
into the experimental results in Figs. 4 and 5. The probabilities
of binary symbols 0 and 1 under the RLL (d,k) = (0,1)
constraint are approximately 0.2764 and 0.7236, respectively
[27]. Asymptotically, this leads to probabilities of individual
symbols corresponding to levels in Vo = {4,5,6,7} and V; =
{0,1,2, 3} of about 0.0691 and 0.1809, respectively. From the
FSTD of the 4-ary constraint forbidding patterns in R4, shown
in Fig. 3, we find that the probabilities of individual symbols
corresponding to levels in Wy = {6,7}, Wy = {4,5},
Wy = {2,3}, and W3 = {0,1} are about 0.0787, 0.1030,
0.1591, and 0.1591, respectively. Bridging symbols change
these probabilities slightly, further increasing the probabilities
of symbols corresponding to levels in {0, 1,2, 3} relative to
symbols corresponding to levels in {4,5,6,7}. These prob-
abilities contrast with those of uncoded random data, where
each symbol/level has the same probability of 1/8 = 0.125.

The modified symbol probabilities help to explain the
observed relative performances of the 1D binary RR codes
in the wordline and bitline directions along with the 2D
RR code. Applying 1D binary RR coding in the wordline
direction also indirectly reduces the probability of detrimental
patterns in the bitline direction, and vice versa. This reduces
the expected advantage of bitline coding over wordline coding

in the presence of more severe ICI in the bitline direction.
Similarly, the advantage of 2D coding over 1D coding in
either direction is less than expected (even without taking into
account the rate penalty associated with 2D coding).

We remark that the designed codes are efficient, with
rates fairly close to capacity, and the symbol and pattern
probabilities observed in the data written to the Flash memory
are close to the theoretical values mentioned above.

The cross-over behavior observed in Fig. 4 can be explained
if the level patterns eliminated by the code, especially ICI-
prone patterns, are not the only significant contributors to
error early in the device lifetime. The RR coding signifi-
cantly changes level probabilities compared with the uncoded
setting, possibly increasing the probability of some of the
remaining level patterns that cause errors due to other effects,
and accordingly increasing their contribution to the BER at
low P/E cycles. One way to address this issue is to delay
the introduction of coding until later P/E cycles when ICI
affects performance. Alternatively, one might apply different
constraints at different P/E cycles before and after the cross-
over point, much as adaptive error-correction code designs
have been proposed to achieve different degrees of protection
at various stages of the Flash device lifetime [32], [33]. The
reconfigurability feature of LOCO code designs could be
exploited, and a machine learning module could be used to
identify the device status and direct the transition from one
code to another at the appropriate time based on that status.
In this regard, we also note that machine learning modeling,
as proposed in [34], can be used to characterize the spatio-
temporal ICI effects of the Flash memory device and provide
a tool for optimizing the offline design of RR-LOCO codes.
Another possible approach is to optimize system performance
through a combination of signal processing methods [20], [21]
and RR coding. These ideas represent intriguing directions for
future research.

VII. CONCLUSION

We introduced read-and-run (RR) constrained coding
schemes for modern Flash devices. RR coding schemes elim-
inate patterns prone to ICI-induced errors while allowing
systematic encoder and decoder implementations, high overall
rates, and page separation in data recovery. We analyzed
properties of 1D binary RR-LOCO codes, 1D 4-ary RR-
LOCO codes, and a 2D binary RR code. The three RR
coding schemes offer different advantages, and we suggest that
system requirements at different stages of the device lifetime
should determine the most suitable scheme or schemes to
use. Experimental results reveal significant P/E-cycle lifetime
gains in a commercial Flash device. Future work includes the
incorporation of LDPC codes [35] with RR coding schemes
and the development of machine learning-aided, reconfigurable
RR coding schemes to maximize Flash device lifetime.

REFERENCES

[1] A. Hareedy, S. Zheng, P. Siegel, and R. Calderbank, ‘“Read-and-run
constrained coding for modern Flash devices,” in Proc. IEEE Int. Conf.
Commun. (ICC), Seoul, South Korea, May 2022, pp. 1-6.

[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. E. Shannon, “A mathematical theory of communication,” Bell Sys.
Tech. J., vol. 27, Oct. 1948.

D. T. Tang and R. L. Bahl, “Block codes for a class of constrained
noiseless channels,” Inf. and Control, vol. 17, no. 5, pp. 436—461, 1970.
T. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory, vol.
19, no. 1, pp. 73-77, Jan. 1973.

P. A. Franaszek, “Sequence-state methods for run-length-limited cod-
ing,” IBM J. Res. Dev., vol. 14, no. 4, pp. 376-383, Jul. 1970.

R. Adler, D. Coppersmith, and M. Hassner, “Algorithms for sliding block
codes—An application of symbolic dynamics to information theory,”
IEEE Trans. Inf. Theory, vol. 29, no. 1, pp. 5-22, Jan. 1983.

K. A. S. Immink, P. H. Siegel, and J. K. Wolf, “Codes for digital
recorders,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2260-2299, Oct.
1998.

A. Hareedy and R. Calderbank, “LOCO codes: Lexicographically-
ordered constrained codes,” IEEE Trans. Inf. Theory, vol. 66, no. 6,
pp. 3572-3589, Jun. 2020.

B. Vasic and E. Kurtas, Coding and Signal Processing for Magnetic
Recording Systems. CRC Press, 2005.

S. Zheng, Y. Liu, and P. H. Siegel, “PR-NN: RNN-based detection for
coded partial-response channels,” IEEE J. Sel. Areas Commun., vol. 39,
no. 7, pp. 1967-1982, Jul. 2021.

B. Dabak, A. Hareedy, and R. Calderbank, “Non-binary constrained
codes for two-dimensional magnetic recording,” IEEE Trans. Magn.,
vol. 56, no. 11, pp. 1-10, Nov. 2020.

R. Wood, M. Williams, A. Kavcic, and J. Miles, “The feasibility of
magnetic recording at 10 terabits per square inch on conventional
media,” IEEE Trans. Magn., vol. 45, no. 2, pp. 917-923, Feb. 2009.
K. A. S. Immink, “Modulation systems for digital audio discs with
optical readout,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), Atlanta, Georgia, USA, Mar—Apr. 1981, pp. 587-
589.

J. Saadé, A. Goulahsen, A. Picco, J. Huloux, and F. Pétrot, “Low
overhead, DC-balanced and run length limited line coding,” in Proc.
IEEE 19th Workshop on Signal and Power Integrity (SPI), Berlin,
Germany, May 2015, pp. 1-4.

J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of floating-gate interfer-
ence on NAND flash memory cell operation,” IEEE Electron Device
Lett., vol. 23, no. 5, pp. 264-266, May 2002.

V. Taranalli, H. Uchikawa, and P. H. Siegel, “Error analysis and inter-
cell interference mitigation in multi-level cell flash memories,” in Proc.
IEEE Int. Conf. Commun. (ICC), London, UK, Jun. 2015, pp. 271-276.
R. Motwani, “Hierarchical constrained coding for floating-gate to
floating-gate coupling mitigation in Flash memory,” in Proc. IEEE
Global Telecommun. Conf. (GLOBECOM), Houston, TX, USA, Dec.
2011, pp. 1-5.

Y. M. Chee, J. Chrisnata, H. M. Kiah, S. Ling, T. T. Nguyen, and V. K.
Vu, “Capacity-achieving codes that mitigate intercell interference and
charge leakage in Flash memories,” IEEE Trans. Inf. Theory, vol. 65,
no. 6, pp. 3702-3712, Jun. 2019.

A. Hareedy, B. Dabak, and R. Calderbank, “Managing device lifecycle:
Reconfigurable constrained codes for M/T/Q/P-LC Flash memories,”
IEEE Trans. Inf. Theory, vol. 67, no. 1, pp. 282-295, Jan. 2021.

G. Dong, S. Li, and T. Zhang, “Using data postcompensation and
predistortion to tolerate cell-to-cell interference in MLC NAND flash
memory,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 10, pp.
2718-2728, Oct. 2010.

C. A. Aslam, Y. L. Guan, and K. Cai, “Detector for MLC NAND flash
memory using neighbor-a-priori information,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 24, no. 9, pp. 2827-2836, Sep. 2016.
V. Braun and K. A. S. Immink, “An enumerative coding technique for
DC-free runlength-limited sequences,” IEEE Trans. Commun., vol. 48,
no. 12, pp. 2024-2031, Dec. 2000.

A. Hareedy and R. Calderbank, “Asymmetric LOCO codes: Constrained
codes for Flash memories,” in Proc. 57th Annual Allerton Conf. Com-
mun., Control, and Computing, Monticello, IL, USA, Sep. 2019, pp.
124-131.

A. Hareedy, B. Dabak, and R. Calderbank, “The secret arithmetic of
patterns: A general method for designing constrained codes based on
lexicographic indexing,” IEEE Trans. Inf. Theory, vol. 68, no. 9, pp.
5747-5778, Sep. 2022.

J. Centers, X. Tan, A. Hareedy, and R. Calderbank, “Power spectra of
constrained codes with level-based signaling: Overcoming finite-length
challenges,” IEEE Trans. Commun., vol. 69, no. 8, pp. 4971-4986, Aug.
2021.

S. Zheng, C. -H. Ho, W. Peng, and P. H. Siegel, “Spatio-temporal
modeling for flash memory channels using conditional generative nets,”

Proc. 2023 Design, Automation & Test in Europe Conf. & Exhib.
(DATE), Antwerp, Belgium, 2023, pp. 1-6.

P. H. Siegel, “Constrained Codes for Multilevel Flash Memory,”
presented at North American School of Information Theory (Padovani
Lecture), La Jolla, California, Aug. 12, 2015. Available: http://cmrr-
star.ucsd.edu/static/presentations/Padovani_Lecture_NASIT_Website.pdf.
Video: https://www.youtube.com/watch?v=FCv2PJryUr4.

R. Laroia, N. Farvardin, and S. A. Tretter, “On optimal shaping of
multidimensional constellations,” IEEE Trans. Inf. Theory, vol. 40, no.
4, pp. 1044-1056, Jul. 1994.

N. Kashyap, R. M. Roth and P. H. Siegel, “The capacity of count-
constrained ICI-free systems,” in IEEE Int. Symp. Inf. Theory, Paris,
France, Jul. 2019, pp. 1592-1596.

A. Kato and K. Zeger, “On the capacity of two-dimensional run-length
constrained channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1527-
1540, Jul. 1999.

B. H. Marcus, P. H. Siegel and J. K. Wolf, “Finite-state modulation
codes for data storage,” in IEEE J. Sel. Areas Commun., vol. 10, no. 1,
pp. 5-37, Jan. 1992.

P. Chen, K. Cai and S. Zheng, “Rate-adaptive protograph LDPC codes
for multi-level-cell NAND flash memory," IEEE Commun. Lett., vol. 22,
no. 6, pp. 1112-1115, Jun. 2018

S.-H. Lim, J.-B. Lee, G.-M. Kim and W. H. Ahn, “A stepwise rate-
compatible LDPC and parity management in NAND flash memory-based
storage devices,” IEEE Access, vol. 8, pp. 162491-162506, 2020.

S. Zheng and P. H. Siegel, “Code-aware storage channel modeling via
machine learning,” in Proc. IEEE Inf. Theory Workshop (ITW), Mumbai,
India, Nov. 2022, pp. 196-201.

A. Hareedy, R. Kuditipudi, and R. Calderbank, “Minimizing the number
of detrimental objects in multi-dimensional graph-based codes,” IEEE
Trans. Commun., vol. 68, no. 9, pp. 5299-5312, Sep. 2020.

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

Ahmed Hareedy (Member, IEEE) is an Assistant Professor with the Depart-
ment of Electrical and Electronics Engineering at Middle East Technical Uni-
versity (METU), Turkey. He is interested in questions in coding/information
theory that are fundamental to opportunities created by the current, unparal-
leled access to data and computing. He received the Bachelor and M.S. degrees
in Electronics and Communications Engineering from Cairo University, Egypt,
in 2006 and 2011, respectively. He received the Ph.D. degree in Electrical
and Computer Engineering from the University of California, Los Angeles
(UCLA), USA, in 2018. He was a Postdoctoral Associate with the Department
of Electrical and Computer Engineering at Duke University, USA, between
2018 and 2021. He worked with Mentor Graphics Corporation (currently,
Siemens EDA) between 2006 and 2014. He worked as an Error-Correction
Coding Architect with Intel Corporation in the summers of 2015 and 2017.

Dr. Hareedy won the 2018-2019 Distinguished Ph.D. Dissertation Award
in Signals and Systems from the Department of Electrical and Computer
Engineering at UCLA. He is a recipient of the Best Paper Award from the 2015
IEEE Global Communications Conference (GLOBECOM), Selected Areas in
Communications, Data Storage Track. He won the 2017-2018 Dissertation
Year Fellowship (DYF) at UCLA. He won the 2016-2017 Electrical Engi-
neering Henry Samueli Excellence in Teaching Award for teaching Probability
and Statistics at UCLA. He is a recipient of the Memorable Paper Award
from the 2018 Non-Volatile Memories Workshop (NVMW) in the area of
devices, coding, and information theory. He is a recipient of the 2018-2019
Best Student Paper Award from the IEEE Data Storage Technical Committee
(DSTC). He has been awarded the TUBITAK 2232-B International Fellowship
for Early Stage Researchers in 2022. He is currently a Guest Editor of
the Special Issue on Data Storage of the IEEE BITS THE INFORMATION
THEORY MAGAZINE.

Simeng Zheng (Student Member, IEEE) received the B.E. degree in Elec-
tronic and Information Engineering from Beihang University, Beijing, China,
in 2018 and the M.S. degree in Electrical and Computer Engineering from
the University of California, San Diego (UCSD), CA, USA, in 2020. He is
currently working towards the Ph.D. degree with the Department of Electrical
and Computer Engineering, UCSD, where he is also affiliated with the Center
for Memory and Recording Research. His current research interests are in data
storage and machine learning.

Paul Siegel (Life Fellow, IEEE) received the S.B. and Ph.D. degrees in
Mathematics from the Massachusetts Institute of Technology, Cambridge,
MA, USA, in 1975 and 1979, respectively. He held a Chaim Weizmann
Postdoctoral Fellowship with the Courant Institute, New York University, New
York, NY, USA. He was with the IBM Research Division, San Jose, CA, USA,
from 1980 to 1995. He joined the faculty at the University of California
San Diego (UCSD), La Jolla, CA, USA, in 1995, where he is currently
a Distinguished Professor of Electrical and Computer Engineering with the
Jacobs School of Engineering. He is affiliated with the Center for Memory
and Recording Research where he holds an Endowed Chair and served as
Director from 2000 to 2011. His research interests include information theory,
coding techniques, and machine learning, with applications to digital data
storage and transmission. He is a Member of the National Academy of
Engineering. He was a Member of the Board of Governors of the IEEE
Information Theory Society from 1991 to 1996 and from 2009 to 2014. He
was the 2015 Padovani Lecturer of the IEEE Information Theory Society.
He was a co-recipient of the 1992 IEEE Information Theory Society Paper
Award, the 1993 IEEE Communications Society Leonard G. Abraham Prize
Paper Award, and the 2007 Best Paper Award in Signal Processing and
Coding for Data Storage from the Data Storage Technical Committee of the
IEEE Communications Society. He served as an Associate Editor of Coding
Techniques of the IEEE TRANSACTIONS ON INFORMATION THEORY from
1992 to 1995, and as the Editor-in-Chief from 2001 to 2004. He served as a
Co-Guest Editor of the 1991 Special Issue on Coding for Storage Devices of
the IEEE TRANSACTIONS ON INFORMATION THEORY. He was also a Co-
Guest Editor of the 2001 two-part issue on The Turbo Principle: From Theory
to Practice and the 2016 issue on Recent Advances in Capacity Approaching
Codes of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS.
He is currently the Lead Guest Editor of the Special Issue on Data Storage
of the IEEE BITS THE INFORMATION THEORY MAGAZINE.

Robert Calderbank (Life Fellow, IEEE) received the B.S. degree in 1975
from Warwick University, England, the M.S. degree in 1976 from Oxford
University, England, and the Ph.D. degree in 1980 from the California Institute
of Technology, USA, all in Mathematics.

Dr. Calderbank is a Professor of Electrical and Computer Engineering at
Duke University where he directs the Rhodes Information Initiative at Duke
(iiD). Prior to joining Duke in 2010, he was a Professor of Electrical Engineer-
ing and Mathematics at Princeton University where he directed the Program in
Applied and Computational Mathematics. Prior to joining Princeton in 2004,
he was the Vice President for Research at AT&T, responsible for directing
the first industrial research lab in the world where the primary focus is data
at scale. At the start of his career at Bell Labs, innovations by him were
incorporated in a progression of voiceband modem standards that moved
communications practice close to the Shannon limit. Together with Peter Shor
and colleagues at AT&T Labs he developed the mathematical framework for
quantum error correction. He is a co-inventor of space-time codes for wireless
communication, where correlation of signals across different transmit antennas
is the key to reliable transmission.

Dr. Calderbank served as the Editor in Chief of the IEEE TRANSACTIONS
ON INFORMATION THEORY from 1995 to 1998, and as an Associate Editor
for Coding Techniques from 1986 to 1989. He has recently served as the
Editor in Chief of the IEEE BITS THE INFORMATION THEORY MAGAZINE.
He was a member of the Board of Governors of the IEEE Information Theory
Society from 1991 to 1996 and from 2006 to 2008. He was honored by the
IEEE Information Theory Prize Paper Award in 1995 for his work on the Z4
linearity of Kerdock and Preparata Codes (joint with A.R. Hammons Jr., P.V.
Kumar, N.J.A. Sloane, and P. Sole), and again in 1999 for the invention of
space-time codes (joint with V. Tarokh and N. Seshadri). He has received the
2006 IEEE Donald G. Fink Prize Paper Award, the IEEE Millennium Medal,
the 2013 IEEE Richard W. Hamming Medal, and the 2015 Shannon Award.
He was elected to the US National Academy of Engineering in 2005.

https://www.researchgate.net/publication/373372146

