This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435679

Tri-HD: Energy-efficient On-chip Learning with
In-memory Hyperdimensional Computing

Weihong Xu*, Saransh Gupta®*, Justin Morris, Xincheng Shen, Mohsen Imani, Baris Aksanli Member, IEEE,
and Tajana Rosing, Fellow, IEEE

Abstract—The Internet of Things (IoT) has led to the emergence
of big data. Processing this data, specially in learning algorithms,
poses a challenge for current embedded computing systems.
Brain-inspired hyperdimensional (HD) computing reduces several
complex learning operations to simpler bitwise and arithmetic
operations. However, it requires the use of large dimensional
vectors, hypervectors, further increasing the amount of data
to be processed. Processing in-memory (PIM) enables in-place
computation which reduces data movement, a major latency
bottleneck in conventional systems. In this paper, we propose
Tri-HD, an in-memory HD computing architecture that performs
HD classification in memory. To the best of authors’ knowledge,
Tri-HD is the first ReRAM PIM architecture to implement the
complete HD computing-based classification pipeline including
encoding, training, re-training, and inference for non-binary data.
We also propose a novel distance metric that is PIM-friendly and
provides similar application accuracy as the more complex baseline
metric. Our proposed architecture is enabled in PIM by fast and
energy-efficient in-memory logic operations. We exploit the voltage
threshold-based memristors to enable single cycle operations. We
also increase the amount of in-memory parallelism in our design
by segmenting bitlines using switches. Our evaluation shows that
for all applications tested using HD, Tri-HD provides on average
434 x (2170x) speedup and consumes 4114 x (26019 x) less energy
as compared to the CPU while running end-to-end HD training
(inference). Tri-HD also achieves at least 2.2% higher classification
accuracy than the existing PIM-based HD designs.

Index Terms—Processing in-memory, non-volatile memories,
hyperdimensional computing, machine learning, classification,
memristors, RRAM

I. INTRODUCTION
The recent surge in interconnected devices and intelligent
systems has led to the emergence of the big data phenomenon.
In general, sophisticated learning methodologies are required
to extract significant insights from this vast amount of data,
entailing intricate computational processes. Consequently, these
processes are typically executed on local systems equipped
with multiple processor cores or transferred to the cloud
for processing on large server infrastructures [1], [2]. On
the contrary, the brain-inspired hyperdimensional (HD) com-
puting paradigm reduces the complexity of operations by
representing data in high-dimension space. Previous works
have widely applied HD computing to various tasks such as

* Authors contribute equally.

S. Gupta is with IBM Research.

W. Xu, X. Shen, and T. Rosing are with the Department of Computer
Science and Engineering, University of California San Diego, La Jolla, CA,
92093 USA (email: {wexu, xis143, tajana} @ucsd.edu).

J. Morris and B. Aksanli are with the Department of Electrical and
Computer Engineering at San Diego State University, San Diego, CA, 92182
USA. J. Morris is also with the Department of Electrical and Computer
Engineering at University of California San Diego, La Jolla, CA, 92093 USA.
(email: justinmorris @ucsd.edu, baksanli @sdsu.edu).

M. Imani is with the Department of Computer Science, University of
California Irvine, CA, 92697 USA (email: m.imani@uci.edu).

image classification, language recognition, activity recognition,
and bio applications [3]-[8]. These works have demonstrated
the advantages of HD in terms of error reslience [3], [7] and
energy efficiency [4], [5].

Even though HD computing is a type of efficient and general
processing paradigm that exposes high data parallelism to low-
level hardware, it still suffers from large energy and latency
overheads when run on conventional von Neumann architecture.
As discussed in previous studies [9], [10], the issue arises
from the intensive data transfer between processing units and
memory, attributed to the constraints of cache capacity and on-
chip bandwidth. Processing in-memory (PIM) aims to mitigate
this challenge by enabling the processing of a portion of the
data directly within the memory, thus reducing the necessity
to move all the data between the processing units and memory.
Research interest in PIM has surged recently, largely due to the
development of advanced non-volatile memory (NVM). Among
the emerging NVMs, the memristor is regarded as one of the
processing solutions to resolve the memory wall issue. Their
rapid switch-over rate, minimal energy consumption during
switching, and considerable scalability render them ideal for
creating dense and swift PIM applications [11]-[14].

Several recent studies have utilized memristors to enhance
PIM capabilities, as evidenced in [15]-[19]. There are two main
streams to enhance the PIM capabilities for memristors. A type
of common approaches involve modifying the sense amplifiers
to support wider ranges of computational functionalities or to
improve computing efficiency [16], [18], [20]. This method
requires reading data from the memory, processing it using
transistor-based circuits, and then storing the processed data
back into the memory. However, a notable limitation of these
designs is that the achievable data parallelism is restricted by
the available quantity and capacity of the peripheral sensing
circuitry around the memory. The other main stream exploits the
bipolar switching behavior of memristors to implement logic in-
memory [15], [17], [21]-[23]. Some of them implement logic
purely in memory such as stateful implication logic [22], [24],
and Memristor Aided 10GIC (MAGIC) [21]. These designs
apply various voltage levels to memory cells to represent multi-
bit data while requiring no change in the peripheral circuits.
They are purely in-memory operations which do not need to
read out data but are restricted by the limited functionality
they can implement. For example, MAGIC [21] only supports
NOR directly in crossbar memory. All other functions are
implemented by repeating multiple NOR cycles, which incurs
significant runtime overhead.

Logic execution with MAGIC is fully compatible with the
usual crossbar design, requires a lower number of voltages, and
supports NOR which can be used to implement any Boolean

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:00:47 UTC from IEEE Xplore. Restrictions apply.

© 2024 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435679

logic. Unlike implication logic based designs like IMPLY [22]
which destroy one of the inputs, it is non-destructive. These
properties of MAGIC make it a preferred logic family for
resistive crossbar memories. MAGIC uses voltage threshold
based memristors which switch whenever the voltage difference
between the two terminals of the memory device exceeds a
threshold. However, they don’t fully utilize the threshold based
switching of memristors and only implement NOR in crossbar
memory. All other functions are derived using NOR, which
results in unnecessary latency overheads. In our previous paper,
FELIX [25], we proposed a purely in-memory implementation
of fast and energy efficient logic. It extended the functionality of
in-memory operations by implementing single cycle NOR, NOT,
NAND, minority (Min), and OR directly in crossbar memory.
We used these low-latency functions to implement functions
like XOR and addition 2x faster than MAGIC [21]. Our design
further increased the amount of in-memory parallelism by using
in-block switches.

In this paper, we exploit single cycle operations to present
a detailed PIM implementation of hyperdimensional (HD)
computing, called Tri-HD. We, for the first time, design a
ReRAM PIM architecture that can accelerate all the phases
of HD pipeline namely, encoding, training, retraining, and
inference. We present a new approximate distance metric, which
is PIM-compatible unlike the traditionally used metrics. While
this metric enables us to complete the HD pipeline in PIM, it
comes at no loss in accuracy. We also discuss our proposed
low latency functions from the perspective of vector operations.
Apart from the typical data movement reductions that PIM
designs achieve, we show how our PIM functions can provide
large vector-wide parallelism. Moreover, in contrast to GPUs
which are limited to some 1000s of cores, our PIM designs
can offer much greater compute capability by making every
memory array in the PIM chip a computing core.

We demonstrate the efficiency of our design, Tri-HD, by
designing a HD computing accelerator with RRAM-based
memory blocks. Our evaluation shows that for all applications
tested using HD, Tri-HD provides on average 434x (2170x)
speedup and consumes 4114x (26019x) less energy as
compared to the CPU while running end-to-end HD training
(inference). Tri-HD HD also achieves at least 2.2% higher
classification accuracy than the existing PIM-based HD designs.

II. BACKGROUND AND MOTIVATIONS

A. Basics of Hyperdimensional (HD) Computing

Brain-inspired Hyperdimensional (HD) computing is a comput-
ing paradigm which works based on understanding the fact that
brains compute with patterns of neural activity [26]-[28], where
such neural activity patterns can only be modeled with points of
high-dimensional space (e.g., D=10,000). Classification is one
of the most important supervised learning algorithms. Fig. 1-
(a) shows the overview of HD computing architecture for a
classification problem consisting of an encoder module and
an associative memory. The goal of the encoder is to map an
input data to a single hypervector with D dimensions and then
combine these hypervectors for all of the images in a class to
generate a unique hypervector representing each class. Each
class hypervector is a long vector with D dimension, where

each dimension can have binary values {0, 1}. Associative
memory stores the trained hypervectors for all classes. In test
mode, HD classifies an unknown input by encoding the input
image to a hypervector using the same encoder used for training.
The query hypervector has binary elements and the same D
dimension as the class hypervectors. Next, associative memory
checks the similarity of the query hypervector to all classes
and classifies it to a class which has the closest similarity.

1) HD Encoding for Feature Vector

Fig. 1-(b) depicts the encoding module utilized in HD comput-
ing. Consider that every data point in the original space can
be denoted by a features vector {vj,...,v,}. The objective of
the encoding module is to transform this feature vector into a
high-dimensional space, while preserving all the information
within a high-dimensional vector. Each feature vector contains
two types of information: the signal value and the index of
each feature.

Feature values: To consider the impact of feature values,
our design first identifies the minimum (v,,;,) and maximum
value vy, that signal can take in all dimensions. Then, it
quantizes the feature values into Q levels were vy, and
vmay are the first and last levels respectively. HD assigns a
single hypervector with D dimension to each of the quantized
levels L = {Ly,Ly,...,Lo} where L; € {0,1}” and L; and Lg
correspond to the vy, and vy, respectively. The generation of
the level hypervectors is similar to work [27], where the level
hypervectors have similar values if the corresponding original
data are closer, while L; and Ly will be nearly orthogonal.

Feature index: To specify the impact of each feature index
on encoded hypervector, HD generates a set of random identi-
fication hypervector ID = {IDy,...,ID,}, where ID; € {0,1}P
represents a hypervector corresponding to i’ feature index. Due
to random generation, the ID hypervectors are semi-orthogonal,
meaning that:

O(ID;, IDj) ~D/2, for i# j. (1)

Depending on feature values, each feature maps to one of the
Q generated hypervectors. Hypervectors are combined together
using element-wise XOR of the level and ID hypervector, and
then summing the resulting hypervectors over all features:

H=L, ®ID; + Ly, ®ID> +---+ L, ®ID,, (2

where L,, and ID; denote the (binary) hypervector and feature
index corresponding to the i-th feature of vector v.

2) HD Training and Retraining

The simplicity of HD training makes it distinguished from
conventional learning algorithms. Consider hypervector H; as
the encoded hypervector of input i with the procedure explained
above. Each input i belongs to a class j, so we further annotate
HiJ to show the class j of input i, as well. HD training simply
adds all hypervectors of the same class to generate the final
model hypervector. Therefore, the class hypervector of label j,
denoted by C/, is:

C'=Hj+H{+ =Y H 3)

Meaning that we simply accumulate the encoded hypervectors
for which their original input belongs to class j.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:00:47 UTC from IEEE Xplore. Restrictions apply.

© 2024 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435679

Training Dataset Images Trained HD Model

ﬁ

L [ch] Le'r H
Class 1 hypervector N

£
=

T2 z =
{4 ek] [HE
Class 2 hypervector @
£

£

£

s

l All Training Data in Class 1 l

l All Training Data in Class 2 l Encoder

l All Training Data in Class N [—— M| [" H
Class N hypervector ()

Similarity
Check
TR — AR —
Query hypervector

|
\orooo Lih] !
| | [e — [_Lihypervector |
e ion b Level hypervector !
R Y] 0 levels)P |
| | | L; hEervecmr |
} | | ID; hypervector |
| | I
I3 p
| S [weretmuon | | [sfuperector] |
| g 1| V2 0 levels [Level hypervector |
[| Lo hypervector @ -B |
! =1 | ID; hypervector |
(-t [. . |
- : : ‘
=y ! g |
o | ¢ [
| | | P L, hypervector |
iscretization
| | | Lo hypervector +) !
| [E— IDy hypervector }
|
|
|
Index hypervector: {ID,, ID,, ..., ID,} _ |
| N e
| Level Item Memory: {L;, L, ..., Lo} Query hypervector }

Fig. 1: (a) The overview of HD computing architecture for classification task. (b) The encoding module of HD computing
mapping a feature vector with n elements to high dimensional space using pre-generated identity and level hypervectors.

Another advantage of HD over DNNs is HD supports
efficient one-pass training, i.e., visiting each input just once and
adding the H;s to create the model yields acceptable accuracy,
while DNN training requires hundreds of iterations over the
whole data set to converge to the final accuracy. HD accuracy
can also be improved by retraining the model. During retraining,
the encoded hypervector of each input is created again, and
its similarity with the existing class (model) hypervectors is
checked. If a misprediction is observed, say that encoded H/
belonging to class C/ is predicted as class C*, the model
is updated as follows, which means the information of HI
causing (mis)-similarity to C¥ is discarded. The parameter «
is the learning rate of the model.

Cl=C/+Hia

. 4
Ck=C"—Hia @

3) HD Inference

The inference step as well as the retraining step need to find
out the most similar class hypervector to the encoded one.
Most commonly, this is performed by cosine similarity while
other metrics (e.g. Hamming distance) could be appropriate
depending on the problem.

argmax cos(H,C’) = argmax_,.icj_,_

j i IH -

Eq. (5) shows the similarity checking of encoded hypervector

H with class hypervector C/. Since classes are constant, ||/ ||

can be pre-calculated. ||H || can be factored out as it is common

for all candidate classes to be compared with H. Hence, cosine

similarity reduces to a simple dot-product between H and

CJs. These vectors are not in binary, they are the results of
accumulating several other binary vectors.

B. Related Work and Challenges

1) Existing PIM-based HD Computing Work

Recent work has proposed ways to use PIM to accelerate
HD computing. The associative memory data structure of HD
computing is generally regarded as the most suitable candidate
for acceleration by PIM. The work in [29] was the first to
recognize this, and proposed an HD computing accelerator

(&)

based on resistive CAMs. The design achieved 746 reduction
in energy-delay product (EDP) as compared to the CMOS-
based ASIC proposed in [3]. The authors in [30] tried to
alleviate the thermal challenges related to PIM implementation
of associative memory. They proposed memory block selection
and activation schemes to reduce the overall chip temperature,
resulting 57.2% memory lifetime improvement and 17.6%
performance gain.

The design in [31] extended the idea of the work in [29]
and supplemented it with a digital HD mapper and encoder
to accelerate complete HD algorithm. However, the encoding
schemes used by them do not provide state-of-the-art results.
The work in [32] presented an HD-chip which implemented
both encoding and search operations using a combination of
carbon nanotube field-effect transistors (CNFETs) and ReRAM
cells to achieve low EDP. However, they implement only
inference and supported only few specialized applications.
The work in [33] proposed crossbar memory based encoding
and associative search. The encoding module used analog
computing primitives to perform bitwise logical AND of
hypervector dimensions. The demonstrated chip provided 6.6x
energy and 3.8 x area improvement. However, approximately
92% of the area and 89% of energy were consumed by memory
peripherals.

Another set of designs in [34], [35] take a different approach
where instead of implementing associative memory using
PIM, they used large ReRAM PIM-based XOR operations
to compare different hypervectors. In both the implementa-
tions, HD encoder used ReRAM PIM bitwise operations to
generate hypervectors. A similar work in [36] breaks down
all HD operations into dot product and bitwise operations and
implements them using analog computing techniques. Finally,
recent research in [37] presented a PIM implementation of
both HD training and inference. To maintain high training
accuracy while achieving the efficient bitwise computation, the
work proposed the use of stochastic training, which generated
multiple binary hypervectors for each class. It increased the
baseline accuracy, which was still 4-9% less than what HD
could achieve.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:00:47 UTC from IEEE Xplore. Restrictions apply.

© 2024 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435679

2) Challenges of Existing Work

Most of prior work tried to accelerate HD by speeding up
the computation in associative memory [29]. In this work,
we use HD computing for practical classification problems
such as speech recognition [38], face recognition [39], activity
recognition [40], and physical monitoring [41]. We observe
that in most tested applications, the data point in original data
is a long feature vector. Encoding such feature vector to high
dimensional space is extremely costly.

TABLE I: Energy consumption of HD encoding module and
associative memory for different applications

Encoding Module | Associative Memory
Speech Recognition 8.18 mJ 8.78 mJ
Face Recognition 7.85 mJ 1.43 mJ
Activity Recognition 7.01 mJ 3.87 mJ
Physical Monitoring 0.23 mJ 225 mJ

Table I compares the energy consumption and execution time
of HD computing for several applications including language
recognition, speech recognition, face recognition, and activity
recognition. The experiments have been performed on the Intel
i7 CPU with 16GB memory. Our evaluation shows that for
practical problems, the encoding module is a dominant part of
energy consumption and execution time. For example, for four
tested applications the encoding module takes around 60% of
total energy.

III. PIM LOGICAL IMPLEMENTATION IN TRI-HD

In this section, we present how Tri-HD utilizes the ReRAM
crossbar array to realize in-memory Boolean and logical
computations.

A. Overview

The HD algorithm in Section II is lightweight but memory
intensive because it only requires simple XOR and addition
operations. The bottleneck is the expensive data movement
to fetch hypervector from the memory. The majority of the
energy in Table I is consumed by data movement instead of
arithmetic operations. To address these challenges, Tri-HD
leverages the PIM techniques that have been demonstrated
energy-efficient for memory-intensive workloads [18], [25],
[42], [43]. The PIM-based computation reduces most of the
data movement overhead during computation, which improves
the overall efficiency.

Tri-HD computes vector-wide logical operations, meaning
that the entire hypervector is processed in parallel across the
crossbar row or column. Specifically, Tri-HD employs a variable
voltage-based execution scheme, where the operation to be
performed is determined by the applied voltage. Furthermore,
instead of solely relying on the resetting behavior of memristors,
we leverage their two-way switching to enhance the capabilities
of PIM. When the voltage V},, > v,,, 2 memristor transitions
from a high resistive state (Rorp) to a low resistive state
(Ron). Conversely, when V,,, > vy pp, it switches from Roy to
Rorr. Here, v,, and v, s represent the device-specific voltage
thresholds, while V), denotes the voltage difference between
terminals p and n. Tri-HD extensively supports various types
of logical operations. These operations are divided into two
categories: single-cycle and multi-cycle operations, based on
the number of computing cycles needed. The single-cycle

. Ié . P
m m;

GND—

Vo_ﬂg_

(a) . (b)
Fig. 2: n-input NOR implementation in (a) a row and (b) a
column.

operations include: NOR, OR, NAND, and Min. The multi-
cycle operations include: Maj, AND, XOR, and addition.

B. Single-Cycle Operations

NOR: Fig. 2 illustrates the implementation of NOR in a
memristor crossbar array. Initially, the output memristor is
set to Rpy. To perform NOR operation in a row, an execution
voltage Vj is applied to the p terminals of the inputs, and the
p terminal of the output memristor is grounded as in Fig. 2-(a).
On the other hand, when NOR is executed in a column, the n
terminals of the inputs are grounded, while Vj is applied to the
n terminal of the output, as shown in Fig. 2-(b). The purpose
of both executions is to switch the output memristor from Roy
to Rorr whenever the NOR output is ‘0’.

Assume two vectors A and B with 100 1-bit elements each
are stored in the memory such that ith element of a vector is
present in the ith row of the memory. Moreover, all elements of
the vector A (B) occupy the ath (bth) column. We call this way
of storing vectors column-wise storage. To perform a NOR over
the ith element of the two vectors, we implement the 2-input
row implementation of NOR. As discussed before, we apply
voltage Vj to the bitlines a and b, while grounding the output
bitline, say c. However, we notice that this voltage application
remains the same regardless of the value of i. Hence, the NOR
operation discussed above provides vector-wide parallelism,
where an operation over all the elements of a vector takes the
same time as the operation over a single element of the vector.
This discussion can be similarly extended to the case where
the vectors are stored row-wise and we use NOR in a column
implementation.

NAND and Min: Tri-HD arithmetic operations do not depend
on the specific inputs, but rather on the voltage across the n
and p terminals of the output device. This allows to implement
minority and NAND operations in memory. For example, let’s
consider a 3-input NOR gate with a voltage of Vy =1V and
an offset voltage of v,¢r = 0.5V. When the inputs are ‘000,
‘001,” ‘011, and ‘111, the voltage across the output memristor
is OV, 0.5V, 0.67V, and 0.75V, respectively. In this case, the
output memristor switches in all cases except the first one.
Now, if we change the value of Vj to 0.75V, the voltage
across the output memristor changes to 0V, 0.38V, 0.5V, and
0.56V for the same inputs. In this case, the output switches
to Rorr only when there are at least two ‘1’s in the input.
This configuration effectively implements the 3-bit minority
function (Min3). Furthermore, if we decrease V;y to 0.67V, the
output changes only when the inputs are ‘111, resulting in an
output of ‘0’ only when all the inputs are ‘1.” This operation is

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:00:47 UTC from IEEE Xplore. Restrictions apply.

© 2024 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435679

GII\ID Vo

ol g

EE B EE E

(b) (c)
Fig. 3: Voltage d1v1s10n for Tri-HD OR. (a) Application of
voltage for OR, (b) output memristor remains Rorr when all
the inputs are Rporr (red), and (c) output memristor switches
to Roy when one or more inputs are Roy (green).

(a)

)

equivalent to a 3-bit NAND operation. The above logic can be
extended to implement N-bit minority and NAND functions.
The execution voltage Vp required to implement these functions
can be calculated using Equation (1), where N is the number
of inputs.

Rorp

) () <3< (1) {Ron = (820)1 (). (69)

(6b)

() {rov+ (=

(553) -vorr < Vo < (1) -vory

The value of n is defined by the operation to be executed.
For Min, n = [N/2] and for NAND, n = N. Eq. (6b) is an
approximation of Eq. (6a) under the assumption that Ropr >>
Ron.

Therefore, apart from NOR and NOT, the Tri-HD also

supports a single cycle MinN and NAND. In theory, this
technique can be expanded to any value of n. However, the
practical feasibility of implementing large values of n is
challenged by the unavailability of different voltage levels.
For instance, to implement a 6-bit NAND, Tri-HD requires
a Vp of 0.58V. This value changes to 0.57V and 0.56V for a
7-bit and 8-bit NAND, respectively. Generating these distinct
and closely valued voltage levels reliably is a difficult task.
Therefore, to ensure practicality, we limit the Tri-HD to 2-
bit and 3-bit NAND and Min operations. The vector-wide
parallelism provided by these and future operations can be
inferred from the discussion on NOR operations.
OR: Tri-HD exploits the behavior of the memristor device
to reduce the latency of the OR operation to one cycle. As
explained in Section I, a device can be switched from Ropp
to Ron by applying a voltage greater than the threshold, v,,.
In contrast, when using MAGIC to implement OR in crossbar
memory, it requires two NOR cycles since it relies solely on
the resetting behavior of memristors. The voltage division for
different possible inputs is shown in Fig. 3. The ground and
Vo terminals are used in the opposite manner compared to
MinN. When all the input and output memristors are Rorr,
the voltage across the output memristor is significantly lower
than Vy. However, if one or more inputs are Rpy, the voltage
across the output is approximately Vp. If Vp exceeds v,,, then
the output memristor switches to Rop.

The aforementioned behavior is utilized to implement the OR
operation in memristive memory. Initially, the output memristor

VSET
o 9] 191w = 9l]]

J
GND GND Vo,or n
Cycle 2: W ﬁ &1 &1 &‘m@t
Vonana Vonana GND 7
o 9])il =] sl
T T T T T

Fig. 4: Different stages in implementing 2-bit XOR using Tri-
HD

is set to Rorr. To perform the OR operation in a row, the
p terminals of the input memristors are connected to ground
while Vj is applied to the p terminal of the output. In the case
of OR operation in a column, Vj is applied to the n terminals
of the inputs and the n terminal of the output is connected to
ground (refer to the figure illustrating the p and n terminals).
If the states Roy and Rppr of the memristor represent the
logical ‘high’ and ‘low’ states, respectively, the result of the
OR operation corresponds to Rorpr when all the input bits are
low, and Rpy otherwise. The execution voltage, Vj, required
to implement OR is given by,

fee) 1, (Ta)

R {Rorr + (Ro) | (565) | < vo < et
(7b)

: {ROFF + (

Rorr Rorr

R,
(14 222) - anl < Yo < (54) - van,

where N is the number of inputs. Eq. (7b) is an approximation
of Eq. (7a) under the assumption that Rorr >> Roy.

C. Multi-Cycle Operations

The in-memory operations proposed in the above section can
be combined to extend the functionality of the memory to
realize multi-cycle operations.

Maj and AND: Majority (MajN) and AND can be implemented
by inverting MinN and NAND respectively. This results in
2-cycle MajN and AND in Tri-HD in contrast to four cycles
in MAGIC.

XOR: XOR (b) can be expressed in terms of OR (+), AND
(), and NAND ((.)) as follows:

A®B=(A+B).(AB) 8)

Fig. 4 shows the in-memory implementation of Eq. (8). Instead
of calculating OR and NAND separately and then ANDing
them, we first calculate OR and then use its output cell to
implement NAND. In this way, we eliminate separate execution
of AND operation. This logic just requires 2 Tri-HD cycles and
three memristor cells. Two of the cells work as the input cells
to store operands A and B, respectively. The third cell works as
the output cell. In contrast, the state-of-the-art PIM technique
proposed in [17] uses 5 cycles and 5 memristors for the
fastest XOR implementation, while the most area conservative
approach takes 7 cycles and 3 memristors. Hence, the proposed
XOR implementation is 1.4x faster and 1.7x smaller.
Addition: Tri-HD implements addition by combining XOR
and MajN operations. A 1-bit adder can be represented by,

S=A®&B&Cy,

; 9)
Cou =A-B+B.C+C.A=MajN(A.B,Cin),

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:00:47 UTC from IEEE Xplore. Restrictions apply.

© 2024 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435679

Tri-HD ReRAM Accelerator D dimension
| Input Buffer | Controller | I Hypervector ¥
i l II

I Global Column Driver |

| Drk|-dim
Partial Hypervector

I e T

JSimiIan'ty
Pred. ; ; IAdd/ S
|Output Buffer FL{ Max Finder | In-situ Partial XOR/Add/Dot N
oL Product 2t
(@ (b)

.

.

1024 (Qlumns

Column Decoder

Partial ID Hypervectors

1024x1024 Partial Level Hypervectors

ReRAM Crossbar

Partial Class Hypervectors

L

18podeq Moy

sleubis Joy UWn|oD

1024 rows

L T T T T T T 01
Column Gater

Sense Amplifier Data Processing Rows

Accumulator

(d)

Fig. 5: Tri-HD design overview: (a) Overall architecture of ReRAM-based Tri-HD accelerator, (b) Distribution of partial
hypervectors, (c) Internal architecture of pHD ReRAM crossbar, and (d) data organization in each ReRAM crossbar.

TABLE II: PIM performance improvements of Tri-HD over

Property Design NOR3 | NAND3 Min3 OR3 Maj3 | AND3 XOR2 1-bit ADD
Latency | MAGIC 1 56 5(6) 2 4 7 5 12 (14)
(© '('lesj) Tri-HD 1 1 1 1 2 2 2 6
thas Improv. 1x 5(6)x 5(6)x 2x 2x I 2509 2 (2.33)x
Memory I-}lAg:)C } 5 54) 5 54) ? ‘21 ‘21 5 53) 124(6)
i
@ of Cells) | 4 prov. | 1x s@x | 5@x | 2x 2x 2x 503)x 3 (15)x
_— MAGIC 24.11 120.17 120.38 | 48.12 96.17 96.15 120.29 288.82
([.J’g" Tri-HD 24.11 49.24 41.64 953 65.65 73.26 3497 135.60
Improv. 1x 2.44x 2.89x 5.05x 1.47x 1.31x 3.44x 2.13x

where A, B, and Cj, are 1-bit inputs while S and C,, are
the generated sum and carry bits respectively. Here, S is
implemented as two serial in-memory XOR operations. C,,s, on
the other hand, can be executed by inverting the output of MinN.
Hence, S takes a total of 4 cycles and 2 additional memristors,
while C,,; needs 2 cycles and 2 additional memristors.

The in-memory processing techniques previously proposed
also support addition within the crossbar memory [17]. These
approaches break down an operation into a series of NOR
operations. A typical addition implementation requires 12
NOR operations, resulting in 12 MAGIC NOR cycles [17]
as compared to 6 in Tri-HD and 12 additional memristors
compared to 4 in Tri-HD.

D. Performance Comparison

Table II compares the execution of different Boolean logic
functions in Tri-HD with previously proposed PIM techniques.
The latencies in the table and the discussion exclude the
first initialization cycle which is common to all designs.
The numbers in brackets represent the properties of the area
conservative designs [17]. It shows that Tri-HD performs the
same as or significantly better than the fastest state-of-the-
art technique [17], [21]. For example, for addition, Tri-HD
is 2x faster, has 2x better energy efficiency, and 3x lower
memory size. In the following subsections, we outline the
implementation of basic boolean operations in Tri-HD and how
they can be used to perform vector-wide operations that form
the basis of Tri-HD architecture.

IV. TRI-HD ACCELERATION IN RERAM

In this section, we present the ReRAM-based PIM accelerator,
Tri-HD, to accelerate HD computing pipeline. Tri-HD leverages
the PIM logical operations introduced in Section III to avoid
data movement due to the memory-intensive HD operations.

A. Overview

Fig. 5-(a) shows the overall architecture of Tri-HD accelerator
based on ReRAM. Tri-HD is composed of input/output buffers,
k partial HD (pHD) modules, global column driver, and a

max finder. The acceleration of HD encoding, inference, and
training/retraining is achieved by utilizing the PIM logical
operations in Section III. The storage and computation of
hypervectors are performed in the pHD module, thus avoiding
the overhead of hypervector data movement. As shown in
Fig. 5-(c), each pHD module consists of a 1024 x 1024 ReRAM
crossbar, row/column decoders used to activate wordline (WL)
and bitline (BL). The sense amplifier converts data from
ReRAM cells to digital signals that can be processed by the
accumulator. The column gater is used to deactivate unused
rows and cooperate with the approximate similarity search as
explained in Section V-A.

B. Inter-crossbar Parallelism with Partial Hypervector

The HD algorithm requires a high dimension D (2,000 to
10,000) to achieve satisfactory classification accuracy. This
dimension is much larger than the size of the crossbar array
(1024) used in this work, which means that a single BL is
unable to accommodate the D-dimensional hypervector. One
design choice is to segment hypervectors in each crossbar.
However, this requires sequential processing for each segment
of the hypervector, increasing the overall latency.

We observe that the HD algorithm in Section 1I-A exposes
high data parallelism to hardware: XOR and addition oper-
ations over D dimensions during encoding, inference, and
training/retraining can be performed in parallel. In Fig. 5-
(b), Tri-HD achieves inter-crossbar parallelism by uniformly
partitioning each D-dimensional hypervector into k smaller
partitions, called partial hypervectors. In this case, each pHD
module receives one [D/k|-dimensional partial hypervector.
All partial hypervectors in different crossbar arrays can be
calculated in parallel.

Fig. 5-(d) illustrates the hypervector and data organization in
each crossbar array. Assume a HD algorithm with n ID, Q level,
and C class hypervectors, all partial hypervectors (ID, level, and
class) are horizontally organized on rows, consuming a total of
n—+ Q+ C rows. Meanwhile, the rest of the rows are reserved
for storing the intermediate data. This data organization is
compatible with the requirements of PIM logical operations.
The row address space is managed by the controller, where
associated addresses are loaded into the row decoder to perform
different arithmetic functions.

C. Tri-HD Encoding
For a HD configuration composed of n elements and Q levels
hypervectors, we have n+ Q hypervectors and each one has D

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:00:47 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435679

Lo & ID, 1D, Ly®IDy Ly&IDy Sum
1]1]of1]0]1]0 11010101D11101010 1]1]of1jo|1]o
oJof1foj1fofn ojof1jof1]of1 00101011D20010101
of1]of1]o]1]o ol1jof1]of1]o of1jof1]oj1]o ofj1jof1jo]1]o
1]0jof1]1]o]o 1]10]of1]1]o]o 1]10jof1]1]oJo 1]0jof1|1]o]o
0110101[2 of1]1]of1]of1 0110101L(] ofj1J1]of1fjo]1
ojof1fojof1]o 0010010L1 ojof1jojof1]o ofjoj1JojoJ1]o
0101100GB oj1jof1]1]o]o ofrjoJ1]1]o]o ofj1joJrj1jojo
1]1]1]1]0]0]0 11110009) 111|1]1]o]o]o 1]1]1(1]oo]o

ol1]ojojojofo 0100000@ ofj1]joJojojojo
1]11]oJoJ1|1]0 1]1]ojoj1|1]0
01111103
1]1]o]Jojojo]o
(a) Encoding
Hy Hy+ Hy Hy+ Hy + Ho
o111]1]o o111 1|0 o111 |1]1]0
1]1]ofoJo]ofo 1]1]0]oJo]ojo 1]1]0joJo]o|o
1]0jofojojof1 1]0jojojojof1 1]0]ojojofo |1
of1]1f1]o]ofo of1J1|1]o]ofo of1J1|1]oJo|o
1]0jof1]o]1]0 1]o0jof1]o[1]o 1]o0(of1]o]1]0
1]0jof1]o0]1]0 1]0jof1]o]1]o 1]o0]of1]o 1|0
111 |1]1]1]0 o111 1j1[1joJ1]o|1
1]1]o0foJo]ofo ojoJ1f1]o]ojo 1]o[1|1]o]o|o
1]1]0]oJo]o|o 1]1]o|1]o]1]0
(b) Training

Fig. 6: Illustration of in-memory Tri-HD encoding and training
with n =3 and Q =4.

dimension. All these vectors are generated once and pre-stored
in n+ Q rows of the crossbar subarray. Fig. 6-(a) shows an
example of HD encoding using the PIM-enabled crossbar in
Tri-HD. Here, the feature vector is [2,1,0], where n =3 and
Q = 4. The encoding consists of 2n —2 steps, where the first
n steps perform n PIM XORs while the remaining n — 2 steps
sum up the XORed results. During the XOR step, each ID
hypervector /D; is XORed with one of the level hypervector
L; based on the feature values. For a pair of ID and L, Tri-HD
XOR can be computed in parallel for all dimensions since
all dimensions of a vector are stored in the same row. Each
XOR operation requires one additional memory row to store
the output.

The results of the XOR operations are then summed up
dimension-wise. Tri-HD counts the number of Is in all XOR
results for each dimension by executing the PIM addition
operation. In order to perform addition for all the dimensions
in parallel, we store the output of addition vertically in a
column, instead of a row, as shown in Fig. 6-(a). We add n
elements serially, three bits at a time. If X, X»,... X,, are the
vectors to be added together, we first add X;, X, and X3 to
generate S| and C;. We then add X4, X5, and {C;, S;} to
generate S and C,, and so on till we have added all XOR
results. The addition of n 1-bit elements results in an output
with p = [logyn] bits, requiring p rows to store the output
of addition. In addition, Tri-HD also requires p+ 1 rows to
store the intermediate results of addition like C;,S;,S52,Cs,
etc. Instead of computing all XOR results and then summing,
we limit the addition of XOR results to a maximum of three
at a time. Therefore, three XORed results are computed in
pairs,where we compute three and add them together. This
approach reduces the memory needed for XOR results from n
rows to only 3. In addition to the 3 rows for XOR results and
p rows for the addition results, p+ 1 rows are needed to store
the intermediate results.

D. Tri-HD Training

The HD training in Tri-HD involves class-wise addition of the
hypervectors generated by encoding. This addition is similar to
the addition in encoding. The difference is: instead of summing

up 1-bit hypervectors, the training process adds multiple integer
or binary hypervectors. HD training is highly parallel and allows
us to split training into multiple modules, where each module
independently performs (partial) training over a subset of the
data and then the partially trained class hypervectors are added
together. To implement this, we fuse the HD encoding and
training for partial hypervectors in each pHD module. For
each input feature vector, the encoding is first performed as
explained in Section IV-C. Then, instead of generating a new
encoded hypervector for each input, we keep on accumulating
the encoding outputs to a single hypervector as in Fig. 6-(b).
Hence, at any point during the computation, only one partially
trained class hypervector is stored in each pHD module. This
scheme saves the required memory space during training.

E. Tri-HD Inference

Tri-HD inference involves 2 steps: 1. Tri-HD encoding and
dot product-based similarity search. First, the encoding step
converts the input feature into the corresponding hypervector.
The encoded vectors are then multiplied with class hypervectors
to find the best match. In Section V-A, we present an efficient
approximation to implement the similarity search. The output of
the similarity search is the closest class, and the corresponding
label is regarded as the prediction label.

F. Tri-HD Re-training

The re-training is the combination of inference and training.
First, the input feature is encoded and passing through inference
step. The prediction output of the inference is compared to the
true label. If the inference output matches the label, we bypass
the remaining stages of retraining. Otherwise, the encoded
hypervector is used to update the corresponding class hyper-
vector. In addition, the hypervector is also used to update the
inferred class. However, for the inferred class, pHD performs
hypervector subtraction instead of addition. This process is
carried out for a maximum number of iterations provided by
the application parameters, and the model corresponding to
the best accuracy is chosen as the final trained model.

V. TRI-HD OPTIMIZATION

In this section, we present several optimization schemes to
reduce energy consumption while improving memory utilization
for Tri-HD accelerator.

A. Efficient Approximate Similarity Search
A key operation of HD pipeline is the dot product-based
similarity search, which is used during retraining and inference.
The dot product of two vectors can be broken down into
their element-wise multiplication and the accumulation of
the generated product vector. To implement element-wise
multiplication, the two hypervectors are stored row-wise so
that a column of the memory contains the element from each
vector with the same index. Then, row-parallel in-memory
multiplication is executed to obtain the element-wise product
using the switching techniques in [23], [25]. However, this
process is expensive because the vector accumulation involves
adding D elements together, which is a slow and serial operation
due to the large dimensionality.

To improve the speed and efficiency of the similarity search,
we take advantage of the error resilience of HD algorithm [6],

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:00:47 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435679

Query Hypervector I:l Class Hypervector I:l

11001 f1]1]0 1]0 1111110 1]ojo 11|10 :I
LsB|1|1]1]0]|1]O]1 LsBf1|1]1]o]1]o]1 LsBf1f1]1]o]1]0|1
1]10]1[1]ofofO 1]0]1]1]ofo O 1]o]1]1]ofofo
MsBf1f1]o]1]0]1]O0 MsB|1]1]0]1]o1]0 MsB|1]1]0]1]of1]0
Column Gater Column Gater Column Gater
Accumulator Accumulator Accumulator

51=3
Fig. 7: Approximate search with power-of-2 search in Tri-HD.

S9=(81<<2)+0 S3=(8y<<2)+1

[44] to compute the approximate version of exact dot product
at the cost of negligible accuracy loss. Tri-HD first quantizes
all elements in hypervector to the maximum power of 2 that
is less than each element’s value, which can be expressed as:

(10)

There are two possible ways of applying this approximation:
before or after the dot product accumulation. We call them the
pre-DP approximation and post-DP approximation, respectively.
The post-DP approximation, in theory, leads to the least quality
loss. However, this would still require fixed-point multiplication
over thousands of dimensions, which is still slow and energy-
consuming. Hence, we evaluate and compare the accuracy
loss caused by the pre-DP and post-DP approximations in
Fig. 11. It shows that both two approximation schemes are
robust to computational errors, resulting acceptable accuracy
loss compared to the exact dot product computation. This
robustness to noise scales with dimensionality: the accuracy gap
between approximation and baseline reduces as D increases.
Therefore, Tri-HD uses a dimensionality of D = 10,000 to
achieve the highest robustness and minimal accuracy loss.

Both pre-DP and post-DP approximations described above
involve quantizing the hypervector to the maximum power of
2 less than the original value (see Eq. (10)). In hardware, this
is equivalent to finding the leading (trailing) one for positive
(negative) numbers [45]. We utilize exact search operations
to implement this power-of-2 (P-of-2) search shown in Fig. 7.
In this example, the quantized class hypervector (C*) is used
to shift the query hypervector. The shifting is equivalent to
multiplication of input with C*. The output of this shift is
again quantized with P-of-2 to perform the final accumulation.
The P-of-2 search starts from the most significant bit (MSB)
to the least significant bit (LSB). Meanwhile, it is performed
in a row-parallel manner. For each column, whenever a ‘1’ is
detected, the column gater controls corresponding rows to be
deactivated from further search operations. We implement a
counter in the column gater which counts the number of rows
that are selected for each bit-column. At the end, the values
in the counter are multiplied by the corresponding power of 2
and added to generate the approximation similarity.

We evaluate the performance and energy consumption for the
pre-DP and post-DP approximation in Section VI-E. The results
show that the pre-DP approximation is 3.4 x faster and 2.3 X
more energy efficient compared to the post-DP approximation
while providing on average 0.16% better accuracy. In this work,
we mainly focus on the pre-DP approximation scheme.

Quantize(x) = |log, x].

B. Intra-crossbar Parallelism
To enhance the level of parallelism within the pHD module,
we divide the array into smaller partitions, where the degree of

'— - \(Z Opl&—l & </ Q_\

T | eéi I

: v _;lji/ Pl

} H 3&‘ & _ 4@‘ Q_:

““'\\ :(%_ S8 & |

l& S SA &)

§ e g o o &)

|
|
|
|
\

(a) Limitation of the memory in implementing operations in a row and
column simultaneously. The crossbar structure does not distinguish the
currents from different operations.

V. " .
MEREUE e@} & y} R
e :‘_% g_?é; é'
T T |
L (.24 o 70l o |
|1..< S &
. NV & g

(b) Tri-HD with transistors and the resultant memory crossbar. The
currents for the four operations do not interfere with each other.

Fig. 8: Intra-crossbar parallelism with isolation transistors

100 T—=
[Utilization (%) 4
9 —_
= 95 I Overhead (%) o=
5 3
£ %0 28
- I H "
" — o l 0

1 2
Parallellsm

Fig. 9: The relationship between memory utilization and area
overhead due to isolation transistors with increased parallelism
in Tri-HD.

parallelism achievable is directly proportional to the number
of partitions within the memory block. These partitions are
created using isolation transistors that separate BLs into smaller
segments. This allows Tri-HD to perform multiple operations
independently at the same time. Consider a subarray with 64-
bit WL and a capacity of 1024 words. We need to perform
a bitwise OR operation between 10 pairs of words and store
the output in the memory. All these steps are independent
of each other and can occur simultaneously if the memory
supports it. If the memory has 10 or more partitions, Tri-HD
can execute this task in a single cycle. In comparison, the
baseline requires 10 steps to complete the task, with each step
implementing 64 parallel single-cycle OR operations between
a pair of words [17].

Fig. 8-(a) illustrates the behavior of Tri-HD in a memory
without partitioning when parallelizing operations across rows
and columns concurrently. Currents from different operations
interfere with each other, as depicted by {Opl Op3} and {Op2
Op4} in Fig. 8-(a). Consequently, it effectively results in a
single operation with increased inputs and multiple copies of
output. To address this, transistors are used to divide the BLs
while maintaining their logical equivalence, shown in Fig. 8-(b).

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:00:47 UTC from |IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435679

By switching off the transistors, the currents associated with
different operations are prevented from merging. This capability
allows Tri-HD to parallelize operations simultaneously. Ideally,
our goal is to maximize the number of partitions. However,
there are drawbacks associated with increasing the number
of partitions. Firstly, a higher number of partitions results in
reduced memory utilization. Since each partition requires its
own processing elements, increasing the number of partitions
also increases the number of devices needed. Consequently,
when the memory size is fixed, increasing the number of
processing elements directly decreases the amount of memory
available for storage. Secondly, a larger number of partitions
require a higher number of transistors to segment the bitlines,
resulting in increased area overhead. Fig. 9 illustrates the
variations in memory utilization and area overhead for a
102464 memory block as the number of partitions increases.

C. Endurance Management

A comparatively lower endurance of ReRAM cell is the main
factor limiting the life of Tri-HD. This problem worsens when
memristors are used for PIM as it requires frequent switches.
Table II shows that Tri-HD’s PIM operations reduce the number
of switches compared to the previous work, helping to extend
the lifetime of the memory. However, having such a memory
is still less feasible without an endurance management policy.

The most frequently switching area is the data processing
rows in Fig. 5-(d) because all operations use these rows to
store and process intermediate data. This results in differential
degradation where some part of the memory becomes unusable
before the other. To alleviate this issue, Tri-HD adopts a simple
and effective endurance management policy that ensures even
memory degradation. Tri-HD changes the row allocation for
data processing over time. In hardware, this is achieved by
adding a simple linear feedback shift register (LFSR) [46]
to the controller. The addresses sent to the row decoder will
first pass through LFSR to distribute the accessed addresses.
As a result, the endurance management policy distributes the
degradation across different rows, effectively extending the
lifetime of the device.

The adoption of endurance management policy can increase
the device life time by 2.8 to 1.7x for tasks in Table III. We
also estimate the lifetime of Tri-HD in terms of the number of
classifications that can be performed. Each Tri-HD inference
requires n XOR and n addition operations, where n denotes the
number of ID hypervectors. Each inference requires Sn writing
operations. Under the assumption of 10° ReRAM life time, the
estimated number of classifications is 3.3 x 10® to 7.6 x 10°.
Moreover, we also observed that some ReRAM devices [47]
provide even longer write endurance at the level of 10'2. The
life time of Tri-HD accelerator can be further extended by
using these devices.

VI. EVALUATION
A. Experimental Setup
We compare Tri-HD performance and energy efficiency with
Intel 17-8700K CPU @ 3.7GHz (12 cores) with 16GB memory
and 256GB SSD. All software support for application level
evaluation including training and testing of HD model have
been performed in CPU using Python implementation. For

9
[CPU Latency 1 Tri-HD Latency BEE CPU Energy Bl Tri-HD Energy
5 6
10 10 S
10° 10" §
7”\ Qo
> 10’ 10° E
S -
g0 10§
-3 23
10 10 5
107° 407
ISOLET FACE UCIHAR PAMAP
Dataset
(a) Encoding
2 S
10 102 =
0 S
z 10 10’ &
-2
10 1073
9 4 4 O
© 10 10O
-6 -6 5
10-5 10_8 §
f}
10 ISOLET FACE UCIHAR PAMAP 10
Dataset
(b) Training
10* 10 §
3 o
@ 102 ‘103 E‘
z 10 10 2
s 10' 10°§
i‘“ 0 1 2
10 10 3
5 02
10 ISOLET FACE UCIHAR PAMAP 10w
Dataset
(c) Retraining
10° 10° 2
s
% 10° 10’ 5
3,0 132
c 10 10 2
2 3
& -2 19
10 10 5
107 10° 2
ISOLET FACE UCIHAR PAMAP w
Dataset

(d) Inference
Fig. 10: Latency and energy consumption of HD on CPU and
the proposed Tri-HD accelerator.

hardware level evaluation, we have developed a cycle accurate
simulator which emulates the behaviors of Tri-HD. Our
simulator pre-stores the randomly generated level and index
hypervectors in memory and performs the encoding, training,
retraining, and inference operations in-memory using the
controller signals.

We extracted the circuit level characteristic of Tri-HD
performing basic bitwise operations and give them as input to
simulator. Performance and energy consumption of proposed
hardware are obtained from circuit level simulations for a
45nm CMOS process using Cadence Virtuoso. We use VTEAM
memristor model [48] for our memory design simulation with
Ron and Ropp of 10kQ and 10MQ respectively.

TABLE III: Specifications of evaluated datasets.

Dataset Class | Feature | Train Size | Test Size
ISOLET [38] 26 617 6,238 1,559
FACE [39] 2 608 522,441 2,494
UCIHAR [40] 12 561 6,213 1,554

PAMAP [41] 5 27 122,218 101,582

B. Workloads

We consider the following four types of real-world datasets to
evaluate the efficiency of proposed Tri-HD: 1. ISOLET [38]

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:00:47 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435679

for speech recognition; 2. FACE [39] for face detection;
3. UCIHAR [40] for activity recognition; 4. PAMAP [41]
for physical activity monitoring. The specifications for these
datasets are summarized in Table III.

TABLE IV: The energy efficiency, speedup and memory
efficiency of Tri-HD compared to MAGIC.

ISOLET | FACE | UCIHAR | PAMAP
Energy Improv. 2.20x 2.20x 2.21x 2.26x
Speedup 1.86x% 1.86% 1.88x% 1.87x
Memory Efficiency 1.61x 1.61x 1.61x 1.82x

C. Tri-HD Results

We first compare the efficiency of HD computing with dimen-
sion D = 10,000 for three different platforms: CPU, proposed
in-memory Tri-HD architecture, and MAGIC [17]. Table TV
compares the energy efficiency, speedup and memory efficiency
of Tri-HD with MAGIC [17] while running different HD
classification applications. The memory efficiency is defined
as the number of processing cells required to execute in-
memory operations. For a fair comparison, we use the proposed
architecture to evaluate both Tri-HD and MAGIC. The results
show that Tri-HD HD can achieve on an average 2.21X
higher energy efficiency, 1.86x speedup, and 1.68x lower
memory requirement as compared to MAGIC. Moreover, both
FELIX [25] and MAGIC [21] enable dot product with parallel
multiplication followed by a series of addition operations.
In contrast, Tri-HD uses an approximate version of dot
product which does not cause any inference accuracy loss for
HD applications. Tri-HD’s dot product with rounding before
multiplication is 858 faster and 1.8x more energy efficient
than dot product in FELIX. This is a direct result of replacing
multiplication and serial addition operations with faster parallel
in memory search operations.

Fig. 10 shows the energy consumption and execution time of
HD encoding, training, retraining, and inference for different
application on CPU and Tri-HD. Our evaluation shows that
for all the applications tested, Tri-HD provides on average
434x and 2170x speedup and 4114x and 26019x lower
energy consumption as compared to the CPU while running
end-to-end HD training and inference respectively. End-to-end
HD training involves encoding and training, followed by 64
iterations of retraining to achieve maximum accuracy. The
latency does not depend much on the number of classes in a
dataset in Tri-HD. Tri-HD exploits the fact that computation
for each class is independent and executes them in parallel.
This is specifically evident in the case of ISOLET and FACE
datasets, where Tri-HD latency of end-to-end training mainly
depends upon the number of training samples. Moreover, the
iterative nature of retraining makes it the slowest operation in
the HD pipeline for both Tri-HD and CPU. But the extensive
parallelism offered by Tri-HD makes in-memory retraining
276x faster than CPU. Here, we report the result for Tri-HD
with single memory partition. The higher efficiency of the
Tri-HD comes from: 1. memory compatible operations of HD
which enables Tri-HD to parallelize the operations in different
dimensions and, 2. lower data movement and higher locality
of the data in-memory for Tri-HD computation. Applications
with large number of features require more resources in order
to perform the computation. Similarly, for each application

Tri-HD efficiency can change depending on the number of
partitions that each memory uses as shown in Section V-B.

D. Tri-HD vs Previous Work

Here, we compare Tri-HD with existing PIM-based design
for HD computing. It should be noted that Tri-HD is the first
works that uses 32-bit dimensions for hypervector, in contrast
with just 1-bit dimensions used by all other approaches. This
increase both the algorithmic and hardware complexity in Tri-
HD. However, owing to the higher bitwidth, Tri-HD is able to
achieve much higher classification accuracy as compared to the
existing work. For example, the model obtained from Tri-HD
is 2.2% more accurate (Fig. 11) as compared to RRAM-based
design in [35]. At the same time, our end-to-end training with
20 retraining iterations is 48 x faster and 3.4x more energy
efficient. The speedup is a result of highly parallel and memory-
compatible operations implemented in Tri-HD, whereas the
approximate similarity metric of Tri-HD reduces the otherwise
high energy consumed by more complex operations. While
comparing both designs without retraining, Tri-HD is 289 x
faster and 5.2x more energy efficient.

Other PIM accelerators for HD [29], [31]-[33], [37] im-
plement fundamentally different encoding schemes. Due to
the simplicity of encoders, these designs are faster and more
energy-efficient. However, they suffer significantly in accuracy.
For HDC inference, the accelerators [31], [37] are on average
57x and 24 x faster and consume 3x and 731X less energy
than Tri-HD respectively. However, they achieve 12.7-18.2%
and 4.9-9.1% less accuracy respectively as compared to Tri-
HD. The remaining work [29], [32], [33] do not support the
classification tasks discussed in this paper. Hence, a comparison
with these work is beyond the scope of the paper.

We also compare Tri-HD with DNN running on Float-
PIM [42] for ISOLET dataset. We observe that Tri-HD is
221x (2132x) faster and 1.9x (3.6x) more energy-efficient
than FloatPIM with 32-bit fixed point (16-bit bfloat) data
representation, while providing 1.7% inference accuracy loss.
The speedup is the result of simpler operations in Tri-HD as
compared to vector-matrix multiplications in FloatPIM.

E. Tri-HD with Approximate Similarity

Fig. 11 shows the impact of quantization in Tri-HD on the
classification accuracy. We show three different policies: the
full-precision baseline, round before (pre-round), and round
after (post-round), as explained in Section V-A.

1) Accuracy

Fig. 11 shows that the prediction accuracy increases at a
diminishing rate as the number of dimension increases. This
is true for all five datasets, and for all three rounding policies
we used. It is noticeable that both the post-round policy and
pre-round policy perform no worse than the reference policy.
In fact, on average, Tri-HD using the pre (post) policy, is
able to achieve 0.52% (0.36%) better accuracy when using
D =10,000.

Fig. 12 shows the impact of the number of retrain iterations
and learning rate on the classification accuracy. The plot on
the left shows the change in accuracy during retraining on the
UCIHAR dataset. This demonstrates that even in the presence
of inaccurate computations from quantizing the accumulation

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:00:47 UTC from IEEE Xplore. Restrictions apply.

© 2024 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication.

Citation information: DOI 10.1109/TCAD.2024.3435679

—s=— Baseline —=— Pre-round —=— Post-round

95 96 97 95
— ___—— —"
) 35l —_— o = % =
R 94 _/=6 T Ros /E%- 296 _/:é=/- R4 . /=6:/
oy /'/' oy = 3 / =) / =
o - e = e e
§93'/ §g4/ §95./ §93'/
<. <. <. <.
» - l 1)
u
92 93 94 92
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Dimension (D) Dimension (D) Dimension (D) Dimension (D)
(a) ISOLET (a) FACE (a) UCIHAR (a) PAMAP

Fig. 11: Impact of HD dimension reduction and rounding approaches on the classification accuracy for different datasets.

100 97
—~ — l\./.
o o /
= —1 T 96—
B | Bl B
5 = B 595 —s— LR=8
3 901 _—~—=— —s=— D=2000 3 .
£ :/ —e— D=10000 2 . -/./ \./n

85

4 8 16 32 64 2500 5000 7500 10000
Iteration Dimension (D)

(a) Retrain Iterations (b) Learning Rate
Fig. 12: Impact of number of (a) retraining iterations and (b)
learning rate on the application’s classification accuracy on

data set UCIHAR without rounding.

10° 10°

=

E}

[=

— o
2 g
£ -
g10 10' 2
Q o
] (@]
- >
)

[}

| =4

10° 100"

ISOLET FACE UCIHAR PAMAP
Dataset

[RAlLatency T RB Latency BEE RAEnergy Bl RB Energy

Fig. 13: Latency and energy consumption per similarity check
in Tri-HD with different rounding approaches. RA stands for
rounding after multiplication and RB stands for rounding before
multiplication.

to powers of 2, HD is still able to improve accuracy by a
significant amount during retraining. This shows that HD is
robust to noise. This property can further be exploited to
increase the efficiency of the design as discussed in Section
VI-F. The plot on the right demonstrates the difference in
accuracy after retraining utilizing different learning rates with
varying dimensionality. The optimal learning rate may be
different for each dataset. Here we experimentally observed
that, as shown by this graph, a learning rate of 8.0 gave close
to the best results on average. The learning rate determines
how strongly each misprediction during retraining effects the
model being trained.

2) Performance and Energy

Fig. 13 shows the latency and energy consumption of a simi-
larity check (dot product) for the two rounding approaches. As
expected, similarity metric with rounding before multiplication
is on average 3.4x faster and 2.3 x more energy-efficient than
similarity with rounding after multiplication because it avoids
the comparatively slow and high energy consuming in-memory
multiplication. For rounding before multiplication, in-memory

search happens twice, once for the input and the other for the
shifted output. While in the case of rounding after, in-memory
search is performed only for the output. We also observe that
the number of classes has negligible effect on the latency of
similarity check. Whereas, the energy consumption increases
almost linearly with the number of classes because Tri-HD
needs to check the similarity of an input vector with all the
class hypervectors.

F. Tri-HD Energy-Accuracy Trade-off

HD computing works based on the pattern of neural activity
which are in high-dimensional space. In theory, the dimensional
of the hypervector should be large enough (e.g., D = 10,000)
to ensure the randomly generated base hypervectors are nearly
orthogonal. However, HD computing shows robustness to
scaling the hypervector dimensions. Fig. 11 shows the HD
accuracy when the hypervector dimension scales from 2000
to 10,000. The result shows that for all applications the
HD can provide the similar accuracy as 10,000 when the
hypervector dimension scales to 8000. In addition, in reducing
the hypervector dimensions from 10000 to 2000, HD loses on
average only 1.6% in accuracy.

Tri-HD can exploit the robustness of HD to dimensionality
in order to reduce the computation cost. Fig. 14 shows the
latency and energy consumption of running HD classification
in memory. Our evaluation shows that reducing the hypervector
dimension reduces Tri-HD energy consumption. This efficiency
comes from the less number of class elements and operations
that HD needs to store and process in lower dimension.
Our result shows that Tri-HD memory requirement decreases
linearly with the hypervector dimensions. For example, HD
with D=2000 dimensions consumes 78% lower energy. Note
that the latency of Tri-HD does not change with the hypervector
dimensions. In fact, Tri-HD is designed to perform bit parallel
operations where all computations can be parallelized across
different dimensions.

There is a trade-off between the accuracy and efficiency when
the hypervector dimension reduces. The results are relative
to Tri-HD architecture running the baseline HD with D =
10,000 dimensions. Let the quality loss, AE, be defined as
the difference between the HD classification accuracy in low
dimension and D = 10,000. When our design ensures 0.5%
quality loss (AE = 0.5%), the Tri-HD can provide 25% energy
efficiency compared to the baseline model. Similarly, ensuring
quality loss of less than 1% (2%), Tri-HD energy and memory

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:00:47 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435679

[D=10000 D=8000 1 D=6000 EEE D=4000 HEE D=2000

3 = 4
o EAL
2 c
5 10 £10°
1
S0 £
§ 0 2 10°
3 10 5
3, - 210"
10 o
107 5o’
ISOLET FACE UCIHAR PAMAP w ISOLET FACE UCIHAR PAMAP
(a) Encoding
10’ 2 0’
§ 1
0 g 10
> 0 0
g 10 210
2 S .
3 510 !
10" g10”
ISOLET FACE UCIHAR PAMAP uw ISOLET FACE UCIHAR PAMAP
(b) Training
10° S 10°
c
S
— 10 2
L g 10’ -
3 0 B
c 10 c
3 3 1¢°
10" 5
107 & 107
ISOLET FACE UCIHAR PAMAP . ISOLET FACE UCIHAR PAMAP
(c) Retraining
10° £10°
= 5 []
@ =
E10® g 10°
> 3
2 e
S A1 S 521
% 10 o 10
- 5
10° 2 4
ISOLET FACE UCIHAR PAMAP u ISOLET FACE UCIHAR PAMAP
d) Inference
Fig. 14: Latency and energy consumptlon of Tri-HD for different dimensions.
B Execution Time M Energy Consumption level hypervectors in a single memory partition and perform
210 210 XOR operation between each ID and corresponding level in
EO.S ;:\;08 series. This method serially processes the features and its
206 306 performance is directly related to the number of features. Our
304 5 04 desi llelizes th di dule b itioning th
5 5 esign parallelizes the encoding module by partitioning the
‘<ng'§ g 8(2) memory block as discussed in Section IV. For instance, HD
1 2 4 8 16 32 16 32 using two memory partitions can process two features at the
of Partitions #of Partltlons § . § § L.
(a) ISOLET (b) FACE same time. In the best case, the number of memory partitions
210 210 can be equal to the number of features that exist in application.
§o,s 508 For example, for ISOLET with 617 features, the encoding
506 © 06 operation can be fully parallelized by dividing the memory
S04 S04 block into 617 partitions. Each memory partition computes
E 02 §02 the XOR operation of ID and one of the level hypervectors,
Z00 Z00 S .
1 2 4 8 16 32 16 32 which is selected depending on the feature value. There are
of Partitions #of Parmlons . o : stiane (i
(c) UCIHAR (d) PAMPA two overheads of using multiple memory partitions (i) The

Fig. 15: Impact of number of partitions on the energy consump-
tion and execution time of Tri-HD encoding running different
HD applications.

efficiency further improve by 65% and 78% receptively.

G. Tri-HD Parallelism

The HD efficiency depends on the amount of parallelism
which we can apply to different modules. The most area
efficient method for HD encoding is to store all ID and

effective memory requirement increases, since each partition
needs to replicate the level hypervectors and assign rows to
perform computation and store the XOR result. (ii) All XOR
results need to be written in a single memory in order to add
together and generate an encoded data. This write operation
needs to perform sequentially and degrades the efficiency of
using multiple memory block.

Fig. 15 compares the impact of number of memory parti-
tions on the energy efficiency, execution time and memory

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:00:47 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435679

requirement of HD computing. It shows that increasing the
number of partitions at first improves the performance and
energy efficiency of the computation. However, it results in
less efficiency when the number of partitions surpasses 8. For
example, encoding ISOLET with 16 partitions is 10% slower
than encoding with 8 partitions. For more than 8 partitions, the
cost of combining the results from different partitions exceeds
the benefits provided by parallelism due to partitions.

VII. CONCLUSION

In this paper, we proposed Tri-HD, the first ReRAM PIM
architecture to implement the complete HD computing-based
classification pipeline for non-binary data. Our design utilizes
a novel distance metric that is PIM-friendly and provides
similar application accuracy as the more complex baseline
metric. Our proposed architecture is enabled in PIM by fast
and energy-efficient in-memory logic operations. We further
increase the amount of in-memory parallelism by using in-block
switches, which segment the bitlines to make parallel operations
independent of each other. Our evaluation shows that for all
applications tested using HD, Tri-HD provides on average
434x (2170x) speedup and consumes 4114x (26019x) less
energy as compared to the CPU while running end-to-end HD
training (inference). Tri-HD also achieves at least 2.2% higher
classification accuracy than all existing PIM-based HD designs.

ACKNOWLEDGMENTS

This work was supported in part by , the Center for Processing
with Intelligent Storage and Memory (PRISM) SRC grant
number 2023-JU-3135, CoCoSys, centers in JUMP 2.0, an
SRC program sponsored by DARPA, TILOS AI Research
Institute (NSF CCF-2112665), and also NSF grants # 1527034,
#1730158, #1826967, #1911095, and #2003279.

REFERENCES

[1] C. Perera et al., “Context aware computing for the internet of things:
A survey,” IEEE communications surveys & tutorials, vol. 16, no. 1,
pp. 414454, 2013.

J. Gubbi et al., “Internet of things (iot): A vision, architectural elements,
and future directions,” Future generation computer systems, vol. 29,
no. 7, pp. 1645-1660, 2013.

A. Rahimi et al., “A robust and energy-efficient classifier using brain-
inspired hyperdimensional computing,” in International Symposium on
Low Power Electronics and Design, pp. 6469, 2016.

Y. Kim et al., “Efficient human activity recognition using hyperdimen-
sional computing,” in Proceedings of the 8th International Conference
on the Internet of Things, pp. 1-6, 2018.

S. Gupta et al., “Thrifty: training with hyperdimensional computing across
flash hierarchy,” in IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pp. 1-9, 2020.

W. Xu et al., “Hypermetric: Robust hyperdimensional computing on
error-prone memories using metric learning,” in IEEE 41st International
Conference on Computer Design (ICCD), pp. 243-246, 1EEE, 2023.
W. Xu et al., “Hyperspec: Ultrafast mass spectra clustering in hyperdi-
mensional space,” Journal of Proteome Research, 2023.

Z.Zou et al., “Biohd: an efficient genome sequence search platform using
hyperdimensional memorization,” in Annual International Symposium
on Computer Architecture, pp. 656-669, 2022.

R. Balasubramonian et al., “Near-data processing: Insights from a micro-
46 workshop,” IEEE Micro, vol. 34, no. 4, pp. 3642, 2014.

G. H. Loh et al., “A processing in memory taxonomy and a case for
studying fixed-function pim,” in Workshop on Near-Data Processing
(WoNDP), pp. 1-4, 2013.

Q. Guo et al., “Ac-dimm: associative computing with stt-mram,” in
Proceedings of the 40th Annual International Symposium on Computer
Architecture, pp. 189-200, 2013.

[2]

[3]

[4]

[51

[6]

[7

—

[8

—

[91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Q. Guo et al., “A resistive tcam accelerator for data-intensive computing,”
in Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 339-350, 2011.

L. Yavits et al., “Resistive associative processor,” IEEE Computer
Architecture Letters, vol. 14, no. 2, pp. 148-151, 2014.

S. Gupta et al., “Rapid: A reram processing in-memory architecture for
dna sequence alignment,” in IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED), pp. 1-6, 2019.

A. Siemon et al., “A complementary resistive switch-based crossbar array
adder,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 5, no. 1, pp. 64-74, 2015.

S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in Proceedings
of the 53rd Annual Design Automation Conference, pp. 1-6, 2016.

N. Talati et al., “Logic design within memristive memories using
memristor-aided logic (magic),” IEEE Transactions on Nanotechnology,
vol. 15, no. 4, pp. 635-650, 2016.

V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise oper-
ations using commodity dram technology,” in IEEE/ACM International
Symposium on Microarchitecture, pp. 273-287, 2017.

Nejatollahi et al., “Cryptopim: in-memory acceleration for lattice-based
cryptographic hardware,” in ACM/IEEE Design Automation Conference
(DAC), pp. 1-6, 2020.

S. Gupta et al., “Scrimp: A general stochastic computing architecture
using reram in-memory processing,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1598-1601, 2020.

S. Kvatinsky et al., “MAGIC — memristor-aided logic,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 61, no. 11, pp. 895-899,
2014.

S. Kvatinsky et al., “Memristor-based material implication (imply) logic:
Design principles and methodologies,” [EEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054-2066, 2013.
A. Haj-Ali et al., “Efficient algorithms for in-memory fixed point
multiplication using magic,” in 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1-5, 2018.

J. Borghetti et al., “‘memristive’switches enable ‘stateful’logic operations
via material implication,” Nature, vol. 464, no. 7290, pp. 873-876, 2010.
S. Gupta et al., “Felix: Fast and energy-efficient logic in memory,” in
Proceedings of the International Conference on Computer-Aided Design,
p. 55, 2018.

P. Kanerva, “Hyperdimensional computing: An introduction to computing
in distributed representation with high-dimensional random vectors,”
Cognitive Computation, vol. 1, no. 2, pp. 139-159, 2009.

M. Imani et al., “Voicehd: Hyperdimensional computing for efficient
speech recognition,” in 2017 IEEE International Conference on Rebooting
Computing (ICRC), pp. 1-8, 2017.

M. Imani et al., “Low-power sparse hyperdimensional encoder for
language recognition,” IEEE Design & Test, vol. 34, no. 6, pp. 94-101,
2017.

M. Imani et al., “Exploring hyperdimensional associative memory,
in IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 445-456, 2017.

M. Zhou et al., “Thermal-aware design and management for search-based
in-memory acceleration,” in Proceedings of the 56th Annual Design
Automation Conference 2019, pp. 1-6, 2019.

S. Datta et al., “A programmable hyper-dimensional processor architecture
for human-centric iot,” IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, vol. 9, no. 3, pp. 439-452, 2019.

T. F. Wu et al., “Hyperdimensional computing exploiting carbon nanotube
fets, resistive ram, and their monolithic 3d integration,” IEEE Journal of
Solid-State Circuits, vol. 53, no. 11, pp. 3183-3196, 2018.

G. Karunaratne et al., “In-memory hyperdimensional computing,” arXiv
preprint arXiv:1906.01548, 2019.

H. Li et al., “Hyperdimensional computing with 3d vrram in-memory
kernels: Device-architecture co-design for energy-efficient, error-resilient
language recognition,” in IEEE International Electron Devices Meeting
(IEDM), pp. 16-1, 2016.

J. Liu et al., “Hdc-im: Hyperdimensional computing in-memory archi-
tecture based on rram,” in IEEE International Conference on Electronics,
Circuits and Systems (ICECS), pp. 450-453, 2019.

S. Hamdioui et al., “Applications of computation-in-memory architectures
based on memristive devices,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 486—491, 2019.

M. Imani et al., “Searchd: A memory-centric hyperdimensional com-
puting with stochastic training,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2019.

>

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:00:47 UTC from IEEE Xplore. Restrictions apply.

© 2024 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3435679

[38] “Uci machine learning repository: Isolet dataset.” http://archive.ics.uci.

edu/ml/datasets/ISOLET, 1994.

[39] G. Griffin et al., “Caltech-256 object category dataset,” 2007.

[40] “Uci machine learning repository: Har dataset.” https://archive.ics.uci.

edu/ml/datasets/Daily+and+Sports+Activities, 2012.

[41] A. Reiss and D. Stricker, “Creating and benchmarking a new dataset for
physical activity monitoring,” in The 5th International Conference on

PErvasive Technologies Related to Assistive Environments, p. 40, 2012.

[42] M. Imani er al., “Floatpim: In-memory acceleration of deep neural
network training with high precision,” in ACM/IEEE Annual International

Symposium on Computer Architecture (ISCA), pp. 802-815, 2019.

[43] N. Hajinazar et al., “Simdram: a framework for bit-serial simd processing
using dram,” in ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, pp. 329-345, 2021.

[44] J. Morris et al., “Hydrea: Utilizing hyperdimensional computing for a
more robust and efficient machine learning system,” ACM Transactions

on Embedded Computing Systems, vol. 21, no. 6, pp. 1-25, 2022.

[45] M. Imani er al., “Nvquery: Efficient query processing in nonvolatile
memory,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 38, no. 4, pp. 628-639, 2018.

K. Prabhu ef al., “Chimera: A 0.92-tops, 2.2-tops/w edge ai accelerator
with 2-mbyte on-chip foundry resistive ram for efficient training and
inference,” IEEE Journal of Solid-State Circuits, vol. 57, no. 4, pp. 1013—
1026, 2022.

Q. Luo et al., “Nb 1-x 02 based universal selector with ultra-high
endurance (; 10 12), high speed (10ns) and excellent v th stability,” in
Symposium on VLSI Technology, pp. T236-T237, IEEE, 2019.

[46]

[47]

[48]

S. Kvatinsky et al., “Vteam: A general model for voltage-controlled
memristors,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 62, no. 8, pp. 786-790, 2015.

Weihong Xu received the B.E. degree in information
engineering and M.E. in information and communica-
tion engineering from Southeast University, Nanjing,
China, in 2017 and 2020. He is currently a fourth-
year Ph.D. student in Computer and Computer
Engineering at the University of California San Diego,
La Jolla, CA, USA. His research interests include in-
memory and in-storage architecture for deep learning,
bioinformatics, and hyperdimensional computing.

Saransh Gupta received his Ph.D. degree from
the University of California, San Diego, La Jolla,
CA, USA in 2021. He received his B.E. (Hons) in
Electrical and Electronics Engineering from Birla
Institute of Technology & Science, Pilani - K.K.
Birla Goa Campus in 2016 and M.S. in Electrical and
Computer Engineering from University of California
San Diego in 2018. His research interests include
circuit, architecture, and system level aspects of
emerging computing paradigms.

Justin Morris received the B.S. degree, in 2018, and
the joint Ph.D. degree from the University of Cali-
fornia at San Diego and San Diego State University,
in 2022. He had the pleasure of being advised by
both Dr. Tajana Rosing and Dr. Baris Aksanli. Before
starting the Ph.D. degree, he was an Undergraduate
Student Researcher with the University of California
at San Diego. He took a gap year focusing on
research, while he applied for the Ph.D. degree to
stay in Dr. Tajana Rosing’s research group with the
System Energy Efficiency Laboratory. During both
the undergraduate and graduate degrees, he was actively engaged in teaching.
He was a Tutor, TA, and also an Instructor with the University of California
at San Diego. Recently, he joined California State University San Marcos as
an Assistant Professor in computer engineering, in Fall 2022.

Xincheng Shen received the Bachelor degree in 2021
and M.S. degree in 2023 from the Department of
Computer Science, UC San Diego. He is currently a
software engineer for Vista in San Mateo, California,
United States.

Mohsen Imani received the Ph.D. degree from the
Department of Computer Science, UC San Diego.
He is currently an Assistant Professor with the
Department of Computer Science, UC Irvine. He
is also the Director of the Bio-Inspired Architecture
and Systems (BIASLab). His contribution has led to
a new direction on brain-inspired hyperdimensional
computing that enables ultra-efficient and real-time
learning and cognitive support. His research was also
the main initiative in opening up multiple industrial
and governmental research programs. His research
has been recognized with several awards, including the Bernard and Sophia
Gordon Engineering Leadership Award, the Outstanding Researcher Award,
and the Powell Fellowship Award. He also received the Best Doctorate
Research from UCSD and several best paper nomination awards at multiple
top conferences, including the Design Automation Conference (DAC) in 2019
and 2020, the Design Automation and Test in Europe (DATE) in 2020, and
the International Conference on Computer-Aided Design (ICCAD) in 2020.
Furthermore, he received the Best Paper Award in DATE 2022 Conference.

Baris Aksanli is currently an Assistant Professor
with the Electrical and Computer Engineering De-
partment, San Diego State University, San Diego, CA,
USA. Previously, he was a Postdoctoral Researcher at
the Computer Science and Engineering Department,
University of California San Diego. As a Researcher,
his affiliations include the Multi Scale Systems
Center (MuSyC), the TerraSwarm Research Center,
K and the Center for Networked Systems (CNS); and

the collaborators of his projects include Google,
Microsoft, Panasonic, Intel, and IBM. His research
interests include energy efficiency and peak power management of large-scale
systems, such as data centers and smart grids, efficient battery usage in data
centers and residential houses, battery lifetime modeling, cost and energy
aware automation of residential houses, learning techniques to enhance user
behavior modeling and context extraction, house/building/data center, and grid
interaction.

Tajana Rosing received her Ph.D. degree from
Stanford University, Stanford, CA, USA, in 2001. She
is a Professor, a Holder of the Fratamico Endowed
Chair, and the Director of System Energy Efficiency
Laboratory, University of California at San Diego,
La Jolla, CA, USA. From 1998 to 2005, she was a
full-time Research Scientist with HP Labs, Palo Alto,
CA, USA, while also leading research efforts with
Stanford University, Stanford, CA, USA. She was a
Senior Design Engineer with Altera Corporation, San
Jose, CA, USA. She is leading a number of projects,
including efforts funded by DARPA/SRC JUMP 2.0 PRISM program with
focus on design of accelerators for analysis of big data, DARPA and NSF
funded projects on hyperdimensional computing, and SRC funded project
on IoT system reliability and maintainability. Her current research interests
include energy-efficient computing, cyber—physical, and distributed systems.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:00:47 UTC from IEEE Xplore. Restrictions apply.

© 2024 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See https://www.ieee.org/publications/rights/index.html for more information.

