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Abstract—Due to the rapidly evolving landscape of cybersecu-
rity, the risks in securing cloud networks and devices are attesting
to be an increasingly prevalent research challenge. Reinforcement
learning is a subfield of machine learning that has demonstrated
its ability to detect cyberattacks, as well as its potential to
recognize new ones. Many of the popular reinforcement learning
algorithms at present rely on deep neural networks, which are
computationally very expensive to train. An alternative approach
to this class of algorithms is hyperdimensional computing, which
is a robust, computationally efficient learning paradigm that is
ideal for powering resource-constrained devices. In this paper, we
present CyberRL, a hyperdimensional computing algorithm for
learning cybersecurity strategies for intrusion detection in an ab-
stract Markov game environment. We demonstrate that CyberRL
is advantageous compared to its deep learning equivalent in
computational efficiency, reaching up to 1.9x speedup in training
time for multiple devices, including low-powered devices. We
also present its enhanced learning quality and superior defense
and attack security strategies with up to 12.8x improvement.
We implement our framework on Xilinx Alveo U50 FPGA
and achieve approximately 700 x speedup and energy efficiency
improvements compared to the CPU execution.

Index Terms—Intrusion Detection, Reinforcement Learning,
Hyperdimensional Computing, Brain-inspired Computing, Cy-
bersecurity

I. INTRODUCTION

S we have experienced exponential growth in the tech-

nology industry, the prevalence of malicious network-
targeted attacks have developed in parallel, making cyber-
security an increasingly critical challenge to address. Prior
to the artificial intelligence resurgence, cybersecurity chal-
lenges were primarily delegated to domain experts, who were
responsible for implementing defense protocols and directly
responding to attacks. However, this system quickly grew
impractical due to the increased software and infrastructure
update frequencies heightening the likelihood of introducing
new vulnerabilities.
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A second driving force attributing to this transition is the
acceleration in which cyber-attacks are evolving. The advance-
ment in their complexity is why intelligent and automated
Intrusion Detection Systems (IDS) and other security defenses
have been widely adopted. However, the industry standard
is further progressing and moving away from human-in-
the-loop to autonomous human-on-the-loop protocols. These
solutions are highly sought out due to their ability to adapt
to a consistently evolving environment, thus, enabling robust
solutions for handling future unforeseen threats [1], [2].

There have been various intelligent solutions for security
tasks, ranging from Naive Bayes [3] to neural networks [4],
and SVMs [5]; however, these past approaches have required
large amounts of high-quality data and careful fine-tuning to
achieve adequate detection performance [6]. Furthermore, due
to frequent infrastructure changes and the evolution of cyber-
attacks, these supervised machine learning based IDS require
maintenance for updating the training datasets to handle new
attacks.

Differentiating itself from other machine learning methods,
Reinforcement Learning (RL) does not require large, curated
datasets at initialization. Instead, it learns from interacting
with a simulated environment, which is comprised of a set
of states, actions, and their respective rewards defined by
environment feedback [1], [7]. One popular RL algorithm is
Q-Learning, a value-based approach that learns a Q-function
for approximating the Q-value (e.g., the expected reward of
taking an action at a given state). The original Q-Learning
algorithm is Tabular Q-Learning [8], which could only handle
simple environments due to the state explosion problem [1].
As a result, the neural network based Q-Learning, Deep Q-
Network (DQN) [9], was introduced to handle this scalability
issue [10].

By implementing the Q-Learning algorithm using a deep
neural network, it is able to handle applications with complex
learning tasks. However, deep learning algorithms have the
following computational challenges: (1) demand unreasonable
resources to train since neural networks rely on costly back-
propagation and gradient-based methods, (2) are extremely
sensitive to noise in data, network, or underlying hardware,
and (3) lack human-like cognitive support for long-term mem-
orization and transparency.

To address the aforementioned challenges, recent learning
algorithms aim to model the human brain more closely, in-
cluding HyperDimensional Computing (HDC). Brain-inspired
HDC is gaining traction for its impressive learning abil-
ity, lightweight hardware implementation, and computational
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efficiency [11]-[16]. The origin of this field stems from
neuroscience research on how the human brain processes
information in high dimension due to the brain’s extensive
circuitry. HDC abstractly extends this concept as a learning
paradigm by modeling and operating on high-dimensional data
representations [17].

HDC achieves this by encoding input data into high-
dimensional space, outputting what is called hypervectors,
and using well-defined HDC operations to train and execute
inference tasks [11]. Each dimension of the hyperspace ab-
stractly models a neuron’s functionality in processing external
stimuli [17]. HDC operations are simple arithmetic operations
over these dimensions that can be supported on devices with
limited resources and computational power [18]. In addition,
this class of algorithms is equipped to accomplish both classi-
fication and regression machine learning tasks [11], [19]-[21],
and has demonstrated comparable results to neural networks
while offering higher learning quality (e.g., faster convergence,
learning speed, and computational efficiency) [11], [22].

Given these distinctive advantages, HDC suggests itself as
a promising potential solution in applications concerning low-
powered Internet of Things (IoT) devices [23]-[25]. Most
state-of-the-art machine learning approaches involve deep
learning, which requires costly computational power to train,
thus making them impractical for edge learning [26]. In
contrast, HDC-based algorithms are an ideal candidate for their
lightweight algorithmic design and energy efficiency [27].

We propose CyberRL, an HDC RL algorithm for developing
cybersecurity attack and defense strategies in an abstract
intrusion detection Markov game. Our contributions are the
following:

« To the best of our knowledge, this paper presents the first
HDC based RL algorithm to effectively learn cybersecu-
rity strategies for network intrusion detection.

« We demonstrate CyberRL’s ability to learn more effective
cybersecurity defense and attack strategies relative to
previous Deep Q-Learning algorithms.

o CyberRL is computationally more efficient on multiple
computing platforms, including on low-powered edge
devices.

o Compared to traditional neural network based RL, Cy-
berRL shows higher hardware efficiency. To further im-
prove CyberRL’s performance, we design an FPGA-based
domain specific accelerator.

We evaluate the efficacy of our approach on multiple em-
bedded platforms including the NVIDIA Jetson Orin I and the
Xilinx Alveo U50 FPGA. Our evaluation shows that CyberRL
is computationally more efficient than DQN with a speedup
of 1.9x on CPU and 700x on FPGA. In addition, CyberRL
is able to achieve 12.8x higher rewards, demonstrating an
overall improved learning quality.

II. BACKGROUND
A. HyperDimensional Computing

HyperDimensional Computing (HDC) is motivated by the
theoretical neuroscience observation that the human brain
processes information by operating on high-dimensional data

representations. This concept formulates the core algorithmic
design behind HDC, which is to map objects into their high-
dimensional representations.

This is done by encoding the original data into hypervectors,
which are vectors that store thousands of elements. Each di-
mension of these hypervectors abstractly constitutes a neuron’s
functionality in processing external stimuli [17]. Once an HDC
model is trained, the encoded hypervector will have captured
the important patterns of its respective class across dimensions.
The information will be captured throughout the hypervector,
which lends the HDC model to also be holographic.

Let us assume that ’ﬁl and 7‘22 are two randomly initialized
hypervectors, where #1,Hs € {0,1}? and d is the dimen-
sionality (e.g., d = 10,000). Due to random generation and
high-dimensionality, these two vectors are nearly orthogonal:
§(H1,Ha) ~ 0, where § is a defined similarity function
between the two hypervectors.

By working in high-dimensional space, the multitude of
nearly orthogonal hypervectors lends itself to be a foundational
basis for defining the HDC model. It does so by defining
operations, including bundling and binding, to combine hy-
pervectors while maintaining their respective information with
high probability. The training process involves encoding the
original input data and bundling those of the same class to
produce a class hypervector, which is the representation of
the class in high-dimensional space.

The HDC operation binding performs the cognitive compu-
tation and learning over the encoded data during the training
phase to procure highly accurate, high-dimensional represen-
tations. Given a new data point to classify, the inference
algorithm is a similarity search conducted between the model
hypervectors and the encoded new data point to inform the
model in its decision-making. The HDC operations are de-
scribed in greater detail below:

Bundling: The component-wise additive operation of hy-
pervectors, where the information from multiple hypervectors
are saved into a single hypervector. This formulates the mem-
orization capability of HDC since the bundled hypervector is
similar to each of the component hypervectors that comprise
it (i.e., (5(7‘[1 + ’Hg,’Hl) ~1).

Binding: The binding operation associates items in hyper-
space. Given the hypervectors H, and Ho, component-wise
multiplication (XOR in binary) denoted as (-) is conducted to
produce a new hypervector that is dissimilar to its constituent
vectors (i.e., 0 (7—21 -ﬁg, 7-_[1) ~ 0). This is ideal for constructing
hypervectors for variable-value association.

B. Reinforcement Learning

Many Reinforcement Learning (RL) tasks are modeled
using the Markov Decision Process (MDP). The MDP is a
model of a generally finite system, which can be modified by
applied external control. This modeling is discrete, stochastic,
and is formally defined as a tuple: < S, A,7T,R >, where
S represents the discrete set of states, A is the discrete set
of actions, 7 is the transition function, and R is the reward
function [28].

The transition function is defined as 7 : S x A — (S —
R), and the reward function is defined by R : S x A — R.
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Fig. 1. (a) Shows an overview of the topology of a simple computer network to simulate the intrusion detection environment. The attacking agent initially
resides at Ns¢qrt at the beginning of each episode. Nyq¢, represents the database containing the network’s critical data, which the attacking agent aims to
compromise and the defending agent, the Intrusion Detection System (IDS), needs to secure. In this simulation, the network contains a single intermediate
layer comprising of three computing devices: N1, N2, N3 with the connectivity between devices represented by edges. (b) The partially observable state
spaces for the agents are shown within each node in the network: <S{4, SZ.D >, where SZA is the attacking agent’s cyber-attack repertoire and SiD is the IDS’s
defense to each attack with ¢ indicating the network node. Note that the number of cyber attacks in this elementary simulation is limited to m = 3; thus,
|SP| = 4 since the defending agent has an additional attribute for the breach detection capacity of the respective node. In (c), the agent is able to successfully
compromise N7 since SﬂQ =2> sz = 1. Upon compromising N7, the attacking agent is now able to target nodes adjacent to N7 (i.e., Nggiqa)-

Both of these functions solely depend on the current state and
action pair for the transition, ignoring the prior trajectory; this
attribute deems the process Markovian [28].

Given an MDP, an environment is defined for an RL task,
where the RL agent (i.e., model) learns to analyze the state
space to make an informed decision on the next action. The
agent relies on the reward probability function R, which
measures the agent’s success in completing the defined RL
task as feedback to improve its overall strategy. There are
a number of different approaches in solving this problem
statement with the two main classes of RL algorithms being:
model-free learning, which comprises value-based RL (e.g., Q-
Learning [29]) and policy-based RL (e.g., REINFORCE [30],
PPO [31]), and model-based RL (e.g., Dyna-Q [32]).

In regards to this paper, the RL algorithm of greatest
interest is Q-Learning. Q-Learning is an off-policy RL algo-
rithm, which learns to approximate the expectation of future
rewards (i.e., the Q-function) using the Bellman Equation
as a condition for optimality [33]. The implementation for
CyberRL uses Double Q-Learning, which builds off of the Q-
Learning module, and utilizes double estimation to mitigate the
overestimation problem. We elaborate further on this algorithm
in Section IV.

ITI. MODELING INTRUSION PREVENTION AS A GAME

This next section details Hammar and Stadler’s abstract
simulation of an intrusion detection cybersecurity environment
[34]. The task is modeled as a multi-agent zero-sum Markov
game, indicating that the positive reward of one agent is
strictly at the detriment of the other(s). This particular game
environment constitutes two agents: a cyber attacker and an
Intrusion Detection System (IDS), the defending agent. The
former’s objective is to compromise a computer network,

while the latter’s adversary task is to secure it; in addition
to successfully detecting any attempted security breaches by
the attacking agent. The game terminates when either agent
completes their defined task.

The environment is implemented to simulate a computer
network of interconnected computing devices. The node in the
first layer, denoted N;qr¢, is Where the attacking agent resides
when the game is initialized. Nyqs, Which comprises the last
layer, contains the network’s sensitive data, which is the node
that the defending agent aims to protect from any breaches by
the attacking agent. The intermediate layers can include any
number of nodes and any defined depth. An illustration of such
a structure is presented in Figure 1, where a simplified network
is modeled using a single intermediate layer containing three
nodes.

The attacker’s objective is to reach Ny, and successfully
compromise it. In order to accomplish this, the attacker must
explore the infrastructure through reconnaissance and compro-
mise intermediate nodes until it reaches Ny,:o. However, the
topology of the infrastructure remains unknown to the attacker
with the only accessible information being the successfully
compromised nodes and their adjacent neighboring devices.
Conversely, the defending agent is aware of the entire network
infrastructure, but lacks information pertaining to the status
of the attacking agent. Since both agents can only observe a
subsection of the entire state space, this formulates a Partially
Observable Markov Decision Process (POMDP) [35].

The game is simulated on a round-by-round basis with the
defender and attacker alternatively selecting actions to accom-
plish their respective adversarial objectives. The infrastructure
of the game is represented as a graph G = <N, £>, where N’
denotes the nodes in the network and £ denotes the edges in
the graph that represent the devices that are connected to one
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The above figure outlines the steps of the CyberRL algorithm in the given intrusion detection environment. (A) Given a state s¢, the state is then
(B) encoded into a hypervector and (C) multiplied with the class hypervectors, which correspond to each action in the action space (e.g., a1, a2, ...,

an). The

action corresponding to the maximum Q-value is selected (D) as the next move in the environment. At the conclusion of each step, the given state s¢, the
selected action a¢, and the resulting reward r¢, and next state s;11 (E) are stored as a tuple (s¢, at,7t, S¢+1) in the experience replay buffer to later be used
for (G) updating the CyberRL model. (F) indicates the interaction with the environment, while (H) shows the periodic target model updates.

another. Each node in the network N; € A has a node state
S; = <SA, SP> to encompass each agent’s state space.

Given a node AN, the attacking agent has a repertoire
of cyber-attacks that it can leverage on the targeted node
SA = [Sk O,Sk 13 ...,S,émfl}, where each element in the set
abstractly represents the type of cyber-attack (e.g., Denial-of-
Service (DOS) attack, cross-site scripting attack, etc.). Each
attribute takes on a numerical value, which represents the
strength of the attack and remains unknown to the defending
agent.

Similarly, the defending agent has a corresponding set of
attributes for node N}, that map to the defense strength against
each cyber-attack: S =[S£, S0y, ..., SE,,]. These repre-
sent cybersecurity defenses, such as firewalls or encryption
functions. For instance, if attribute j represents a DOS attack,
S ;;‘ ; indicates the strength the attacking agent has in leveraging
a DOS attack on node N},. Meanwhile, SP k,; represents Ni’s
resilience from being corrupted by a DOS attack The final
defense attribute in the set for each node SP,, is the defending
agent’s strength in detecting the attackmg agent at V. The
attributes for both the attacking and defendlng agents are
limited to a finite range, specifically S7! R S ; € [0,w], where
w is a natural number.

In terms of the action space, the attacking agent has two
courses of action: the first would be to increase the strength
of one of its cyber-attacks on any one of the accessible nodes
(i.e., increment the value of S} A i for node N}, and attack j) or
to attempt to compromise a visible node with an attack of its
selection from 0...m — 1. Meanwhile, the defending agent may
either choose to strengthen its defense from a particular attack
(i.e., increment the value of a defense attribute S ,5 j for node
N and counter-attack j) or choose to strengthen the detection
ability for any node in the infrastructure (i.e., increment S ,gm
attribute).

If the attacking agent chooses to wage a cyber-attack on
node N, an attack is simulated by exposing the defending
agent’s corresponding attribute S¢ to the attacker. Given that
the attacker chose to attack with the attribute j, the attacker
would successfully compromise the node if S;é ;>S5 ,’3 ;- If the

attack is unsuccessful then the defender has an opportunity to

identify the attack with a probability of p = i =T,

where SP kom

is the defending agent’s detection capability.

For example, in Figure 1 (b-c) the attacking agent is able
to successfully compromise A7 since it leveraged cyber attack
Sf‘z, which is stronger than SlD2, the IDS security capability in
defending from the respective cyber-attack If in the scenario

that S;* o <= SP o » then with probablhty o
detect the cyber attacker hence, winning the episode.

The game progresses as each agent takes an action of its
choice altering the state environment in each round of the
game. The episode terminates when either the attacking agent
successfully compromises Nyqs, or when the IDS detects the
attacker. The winning agent is awarded +1 utility, while the
losing agent receives -1 utility in rewards.

IV. CYBERRL AS AN INTRUSION DETECTION SYSTEM

In this section, we detail the CyberRL algorithm employed
to learn both attack and defense strategies.

As is known with learning new environments in RL tasks,
the agent needs to learn undiscovered areas of the state space
while also utilizing past experience to learn the best action to
take at any given state. This is known as the exploration vs.
exploitation trade-off. Exclusively using one of these initiatives
results in one of the two extremes: either the model never
learns the Q-function or the model converges to a local
maxima, resulting in a sub-optimal configuration.

To mitigate this, the epsilon-greedy method is employed,
which initializes the RL agent to prioritize exploration at
the early stages of training. However, as more experience is
accumulated, the agent increasingly relies on the learned Q-
function until € completely decays, enabling pure exploitation
of its past experience. This is done by initializing ¢ = 1 and
applying a decay rate for epsilon to converge to zero. At each
time step in training, if the generated number is less than e,
then a random action is selected. If not, the model selects the
action with the highest Q-value, as shown below:

random action a € A, with probability e

ay =
aTgmaxaEAQ(Sta a)7

with probability 1 — ¢
given an action space A at time step ¢.

Similar to Deep Q-Learning, CyberRL also delegates the
Q-function approximation to a machine learning model rather
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than recordkeeping a Q-table; however, instead of a neural
network approximating these values, the agent utilizes an HDC
model. This is achieved by mapping the states and actions
into hyperdimensional space using the exponential kernel as
the encoding function. The HDC model contains n model
hypervectors {Mal,Ma27...A7lan}, where n is the size of
the action space (i.e., each of these hypervectors corresponds
to an encoded action).

With Deep Q-Learning, an action is selected by choosing
the argmax of the highest Q-value computed by the trained
neural network. In the HDC version, we do this by multiplying
the encoded state hypervector S, with each model hypervector
/\;lai to output the corresponding Q-value for each state-action
pair. The agent selects the action with the highest Q-value and
interacts with the environment, collecting feedback r;, and
observing the next state in this transition s;4;. The algorithm
advances to the next time step ¢ + 1, and iterates until the
episode terminates. An overview of this process is detailed in
Figure 2.

The class hypervectors of the HDC model are updated
over episodes as more experience is accumulated. After each
time step t, the state, the selected action, the reward, and
the next state are stored in an experience replay buffer as
a tuple (s¢,as, ¢, S¢+1). This experience replay strategy is
used to collect additional data for training the agent in an
online approach. After sufficient data samples are collected,
a batch of these tuples are sampled from the experience
replay buffer to update the HDC model Q. Unlike supervised
machine learning, which has labeled data at its disposal,
the Q-Learning algorithm relies on the Bellman Equation or
Dynamic Programming Equation [33], which is a recursive
expression for the Q-value at time step ¢, to estimate the true
Q-values. We use this to define the optimal Q-function

Qt_true = Tt + ymaxg Ql(8t+17 CL) (])

and to maximize the accumulated rewards in an episode.

In order to achieve this, the Bellman Equation states that
each sub-task must be optimized to realize the highest rewards
for the entire task, which means g, is the sum of r; and the
maximum Q-value for the next time step. As noted in the equa-
tion above, we use Q’, the target model, since our approach
uses the Double Q-Learning method in updating the model
[36]. Compared to Q, which is updated at every time step, Q’
is updated periodically and stabilizes the learning process to
avoid overestimating the Q-value, a common consequence of
maximizing the Bellman Equation. Additionally, the reward
decay ~y is included to adjust the weight on future or near-
sighted rewards: a value of 1 puts a higher weight for the
long-term rewards and a value close to O prioritizes the more
immediate rewards.

Returning to the wupdate step: for a given tuple
(8¢, a¢, 14, St+1), We encode the state s; into hyperdimensional
space to give its corresponding hypervector S, and multiply it
with action a;’s class hypervector, /\Zat, from the HDC model

Gt_pred = Q(St7 at) = ‘S?t X Mat (2)

We take the difference between ¢preq and gy and use it
to update the HDC model

Pipeline

Y

VIAQ IXV

dI XYW

Fig. 3. CyberRL model acceleration on the FPGA. Here s; represents agent
i’s original state vector. B is the base hypervector matrix. H is the encoded
state hypervector.

Mat = Mat + a(qt_true - qt_pred) X S;t (3)

where « is the learning rate. Over the duration of learning, the
Q-function gradually becomes more accurate in estimating the
best actions across the state space.

Furthermore, this development of the HDC Double Q-
Learning model includes optimizations in the action selection
and model update steps using batch training. This allows
for the HDC model to be vectorized in both the Q-value
calculations and target model updates. As a consequence,
the model experiences significant computational efficiency to
enable it to scale to RL tasks with larger state and action
spaces.

V. FPGA ARCHITECTURE DESIGN

Compared to CPU and GPU, HDC models generally have
a higher execution performance and energy-efficiency on the
FPGA platform [37], [38]. On one hand, FPGA accelerators
achieve a balance between computation parallelism and energy
efficiency through customized hardware design. On the other,
HDC model computation does not require high-precision data
computation due to the holographic nature of the HDC model.
Essentially, this implies that we can achieve parallel hyper-
vector computation without relying heavily on digital signal
processing IP (DSP) and by utilizing lookup tables (LUT)
instead.

In Figure 3, we present the FPGA acceleration of CyberRL.
Here we assume our model simultaneously controls N agents
with each agent’s state vector dimensions being 1 x dy. For
each agent i, a corresponding base hypervector matrix B;
with dimensions d x D is stored in the on-chip storage (such
as BRAM). During the state encoding process, we pipeline
each agent’s state encoding computation. The mathematical
representation of this pipeline is:

N
H, = d;B; “)
i=1
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Fig. 4. Comparison of our CyberRL to DQN [9] in the three different intrusion detection scenarios. The top row shows the Hack Probability of the network
being compromised, while the bottom row shows the Average Rewards, computed from the last 100 episodes of self-play.

Here the dimension of the encoded state hypervector (I—f s) 1S
1 x D. Before conducting regression operations to select the
optimal action, we also pass the encoded state hypervector
through a kernel function, such as the exponential function
used in CyberRL. To implement the kernel function on-chip,
we divide the kernel function IP into two parts, the sine and
cosine function components since we have:

&% = cos(x) + jsinz(x)

®)

To save on resources, we choose to pre-store sine and cosine
values inside the on-chip storage (such as on-chip BRAM) in-
stead of using Xilinx’s existing hardware IP, such as CORDIC
IP. For the regression part, we accelerate the encoded state
and action hypervectors’ matrix multiplication using a systolic
array [39]. In the last stage, a max IP is used to choose the
highest action index. This action index will also be passed
back to host CPU via AXI DMA IP.

VI. EXPERIMENTS
A. Attack and Defense Scenarios

To measure the effectiveness of HDC in learning cybersecu-
rity strategies, we applied our CyberRL algorithm to various
intrusion detection scenarios given the simulated environment
detailed in Section III, which serves as the dataset [34]. This
is a multi-agent RL environment with one agent attempting to
compromise the given computer network, while the other acts
as an Intrusion Detection System (IDS) (e.g., the attack and
defense agents respectively). The given environment includes
multiple scenarios to allow for training both of these agents.
They are the following:

e Minimal Defense Scenario: where we train an attacking
agent against the environment’s IDS, which follows a
policy that will always defend the attribute with the
minimal value of its neighbors

e Random Defense Scenario: where we train an attacking
agent against an IDS that uses a random baseline defense
policy

e Maximal Attack Scenario: where we train the IDS to
defend against an attacking agent, who will target the
node which has the highest attack attribute

It’s important to note that the adversary agent in each of
these scenarios will be simulated by the environment. For
instance, in the Maximal Attack scenario, the adversary agent
is the attack agent, which is integrated into the environment,
while we train the implemented CyberRL defense agent.

We run our CyberRL algorithm in each of these scenarios
and compare it to the Deep Q-Network (DQN) from [9] in
terms of computational efficiency and quality of the learned
security strategies. The latter is measured by the trained
agent’s realized Average Rewards during training and Hack
Probability.

The Hack Probability metric is the likelihood measure of the
computer network environment being hacked. When training a
defense agent, as is the case in the Maximal Attack scenario,
a lower hack probability is desired since it is aligned with
the trained model’s objective; conversely, for the Random and
Minimal Defense scenarios, a higher hack probability measures
a better trained attack agent. The second metric, the Average
Rewards, is calculated from the previous 100 game simulations
or episodes, where rewards are the measured utility (e.g., -1,
+1) of winning the simulated game.

The topology of the network consists of two intermediate
layers, each with three nodes, for a total of 8 nodes. Addition-
ally, the attack agent has ten different attack attributes that it
can leverage against a node in the network. Hence, the state
space of this environment consists of 168 features and the
action spaces for the agents are 80 and 88 for the attacking
and defending agents respectively. We use the implementation
of the DQN from the original project [34] and compare it to
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Fig. 5. Experiments for fine-tuning the values (a) o and (b) e across the three cybersecurity scenarios.

TABLE I
CYBERRL MODEL HYPERPARAMETERS

Minimal Maximal Random

Defense Attack Defense
HDC Dimension 1000 1000 1000
Learning Rate 0.01 0.00001 0.01
Epsilon Decay 0.85 0.85 0.90
Target Model Update 50 50 50
Discount Factor 0.90 0.95 0.8
Batch Size 32 32 32

our CyberRL model, which has been fine-tuned. Table I shows
the values for the set hyperaparameters for the final model used
to compute the results reported in Figure 4.

B. Experimental Setup

We run our algorithms on a 2.4GHz 8-core Intel Core 19
to report our results. In addition, we deploy our model on the
NVIDIA Jetson Orin I with varying power settings. Table II
reports the resource utilization of the NVIDIA Jetson Orin I on
each of these power settings. As one can observe from Table II,
when the power consumption increases, the corresponding fre-
quency, main memory, external memory controller (EMC), and
computing cores consequently increase as well. Furthermore,
for the FPGA acceleration, we implement the algorithm using
C++ HLS and we select Xilinx Alveo U50 as the kernel FPGA
board. The communication between host CPU and kernel
FPGA is based on the Xilinx Vitis platform [40]. We also use
Xilinx Vivado Power Estimator (XPE) to measure the kernel
FPGA on-chip power consumption [41].

TABLE 11
NVIDIA JETSON ORIN I PLATFORM. HERE EMC MEANS EXTERNAL
MEMORY CONTROLLER. THE VALUE OF EMC REPRESENTS THE
EXTERNAL MEMORY USAGE.

Power 15W 30W S50W Max
Frequency 1.1GHz 1.7GHz 1.5GHz 2.8GHz
EMC 5% 6% 6% 2%
Memory 2.2GB 2.4GB 3GB 6.4GB

CPU 4 cores 8 cores 12 cores 12 cores

VII. EVALUATION

In this section, we demonstrate the efficacy of applying our
CyberRL algorithm in finding security strategies in an intru-
sion detection RL environment. We compare it to DQN and
evaluate the performance of the agents in multiple intrusion
detection scenarios. We report the computational efficiency
and the overhead incurred by the agents’ learning process.

A. Hyperparameter Optimization and Training

We conducted a thorough exploration of the various hy-
perparameters for the CyberRL model, which is implemented
using a Double Q-Learning framework. The hyperparameters
that were fine-tuned include the following:

o «: the learning rate for the HDC model

e: the epsilon decay for the e-greedy algorithm

Q’: the target model update frequency for stabilizing the
learning curve

~: the discount factor for calculating the Temporal Dif-

ference Error for the Q-learning algorithm

Figures 5 and 6 display the full set of experiments. The
columns correspond to the cybersecurity scenario, while the
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Fig. 6. Experiments for fine-tuning the values (a) Q' and (b) ~ across the three security scenarios.

TABLE III
DESIGN ACCELERATION ON ALVEO U50. THE FPGA KERNEL
FREQUENCY IS 200MHz AND FPGA POWER CONSUMPTION IS 17W.
HERE Tyttacker AND Tycfender ARE SINGLE TIME STEP LATENCY.

Name | LUT FF DSP BRAM URAM

Total 398.5K  728.8K 7 713 316
Available 872K 1743K 5952 1344 640
Utilization | 45.6% 418%  ~0%  53.1% 49.3%

Tottacker = 8.94us , Tdefender = 8.64us

rows indicate the hyperparameter being optimized. The metric
used to determine the optimal value is the Hack Probability.
The first set of experiments demonstrated in Figure 5 include
experiments for determining the values for o and € in each
scenario, while Figure 6 includes the experiments for Q' and

Y.

B. Performance

We evaluate the performance between CyberRL and DQN
across the three cybersecurity scenarios. Our primary results
are presented in Figure 4, which compares the two models
over the duration of training. The Hack Probability metrics
are presented in the top row of Figure 4 and the Average
Rewards for each agent and their adversary agent in the lower
TOW.

Across all three scenarios, the CyberRL model is able to
learn a more effective strategy, as shown by achieving a higher
Hack Probability when training an attack agent (the left and
right columns of Figure 4), and a lower Hack Probability when

training a defense agent in Maximal Attack. Furthermore, the
effectiveness of the CyberRL implementation of the defense
and attack agents are reflected in the Average Reward Plots.

The intuition for why CyberRL outperforms the deep learn-
ing equivalent stems from HDC'’s intrinsic memory-like capa-
bilities and pattern recognition from its training framework.
By encoding the state and action spaces in hyperdimensional
space, CyberRL is advantageous in learning the critical fea-
tures of the task environment significantly faster than the neu-
ral network architecture. These results are not anomalous since
HDC-based reinforcement learning algorithms have shown to
outperform their deep learning counterparts in various tasks
[20], [42], [43].

C. Efficiency

In Table III, we present the resource utilization of our
algorithm’s implementation on Xilinx Alveo U50 FPGA. For
each time step, the attacker agent’s execution latency is
8.94ps and the defender agent’s latency is 8.64us. In addition,
Figure 7 plots the CyberRL’s improvements in latency and
energy efficiency in each of the three scenarios on the CPU and
FPGA platforms. The first plot of Figure 7 displays the latency
improvements compared to DQN calculated from the training
time, which is the duration of time for the model to converge.
As anticipated, the CyberRL algorithm is significantly faster
in all three scenarios: for the Maximal Attack Scenario, the
CyberRL is 1.2x more efficient; 1.9x faster in the Random
Defense Scenario; and 1.6 X in the Minimal Defense Scenario.
When ran on the Xilinx Alveo U50 FPGA, CyberRL achieves
around 700x speedup and energy efficiency improvements
compared to the CPU execution.
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TABLE IV
COMPARISON OF THE COMPUTATIONAL EFFICIENCY BETWEEN THE
DQN [9] AND CYBERRL ALGORITHMS ON THE NVIDIA JETSON ORIN I
VARIOUS POWER SETTINGS. MEASUREMENTS TAKEN FOR THE MINIMAL
DEFENSE SCENARIO AND MEASURED IN SECONDS.

15W 30W 50W MAX
DQON 1.9 x 103 1.5 x 103 1.6 x 103 1.0 x 103
CyberRL 1.4 x 103 1.0 x 103 1.3 x 103 0.8 x 103
Speedup

105

10*

103

102

10t

10°

DQON CyberHD DQN (FPGA) CyberHD (FPGA)
B Max Attack ® Min Defense @ Random Defense
Energy Efficiency

105

10*

103

102

10t

10°

DON CyberHD

DQN (FPGA)

CyberHD (FPGA)

B Max Attack B Min Defense B Random Defense

Fig. 7. The above figure displays the time and energy efficiency improvements
relative to DQN [9]. (a) shows the CyberRL speedup on both the CPU and
FPGA platforms, while (b) shows the improved energy efficiency.

Furthermore, Table IV compares CyberRL and DQN when
executed on the NVIDIA Jetson Orin I platform on vari-
ous low-powered settings (e.g., 15W, 30W, 50W, Maximum
Power). We demonstrate CyberRL’s efficiency advantage over
DQN across all power settings, which also realizes a reduced
training time of up to 30%.

VIII. RELATED WORKS

The work from [34] introduces the developed Markov cyber-
security game environment, which demonstrates the efficacy of
Deep Reinforcement Learning (DRL) algorithms for solving
intrusion detection problems. Another paper from this group,
which builds upon their previous work, includes [44], where
they formulate the intrusion detection task into an optimal
stopping problem. This subsequent work continues to utilize
reinforcement learning to estimate optimal defense policies;
however, the main contribution is primarily in reframing the
cybersecurity environment to solve for optimal stopping.

Other recent work in the area include [45], which introduces
a DRL framework for learning defense countermeasures to

dynamically evolving environments. They tested various DRL
algorithms, including Deep Q-Network (DQN), Advantage
Actor Critic (A2C), Asynchronous Actor-Critic, and Proximal
Policy Optimization (PPO), to demonstrate the efficacy of
DRL to proactively detect various cybersecurity threats. This
work introduces a new reinforcement learning environment,
which extends the OpenAl Gym library; however, their code
has yet to be open-sourced.

In the space of HDC reinforcement learning algorithms,
CyberRL is an optimized version of the QHD algorithm
introduced in [20]. CyberRL is developed from the Double Q-
Learning [36] algorithm and similar to [20], CyberRL imple-
ments the Q-function approximation with the HDC framework
in lieu of a deep neural network. An issue limiting [20] is
its inability to scale to solve RL tasks with large state and
action spaces. In this prior work, its primary results stem from
OpenAl Gym game environments (e.g., Cartpole, Acrobot,
and LunarLanding) [46] where the state and action spaces for
each task is relatively small. As discussed in Section IV, the
optimization of the algorithm enables CyberRL to scale to
learn more complex RL tasks, such as the one provided here
[34].

IX. CONCLUSION

In this paper we present CyberRL, an efficient, brain-
inspired algorithm for learning cybersecurity strategies in
an abstract Markov game environment for solving intrusion
detection type security problems. We demonstrate that Cy-
berRL is advantageous in both computational efficiency and
in producing stronger defense and attack strategies.
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