
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPT 2023 1

CyberRL: Brain-Inspired Reinforcement Learning

for Efficient Network Intrusion Detection
Mariam Ali Issa, Student Member, IEEE, Hanning Chen, Student Member, IEEE,

Junyao Wang, Student Member, IEEE and Mohsen Imani, Member, IEEE

Abstract—Due to the rapidly evolving landscape of cybersecu-
rity, the risks in securing cloud networks and devices are attesting
to be an increasingly prevalent research challenge. Reinforcement
learning is a subfield of machine learning that has demonstrated
its ability to detect cyberattacks, as well as its potential to
recognize new ones. Many of the popular reinforcement learning
algorithms at present rely on deep neural networks, which are
computationally very expensive to train. An alternative approach
to this class of algorithms is hyperdimensional computing, which
is a robust, computationally efficient learning paradigm that is
ideal for powering resource-constrained devices. In this paper, we
present CyberRL, a hyperdimensional computing algorithm for
learning cybersecurity strategies for intrusion detection in an ab-
stract Markov game environment. We demonstrate that CyberRL
is advantageous compared to its deep learning equivalent in
computational efficiency, reaching up to 1.9× speedup in training
time for multiple devices, including low-powered devices. We
also present its enhanced learning quality and superior defense
and attack security strategies with up to 12.8× improvement.
We implement our framework on Xilinx Alveo U50 FPGA
and achieve approximately 700× speedup and energy efficiency
improvements compared to the CPU execution.

Index Terms—Intrusion Detection, Reinforcement Learning,
Hyperdimensional Computing, Brain-inspired Computing, Cy-
bersecurity

I. INTRODUCTION

A
S we have experienced exponential growth in the tech-

nology industry, the prevalence of malicious network-

targeted attacks have developed in parallel, making cyber-

security an increasingly critical challenge to address. Prior

to the artificial intelligence resurgence, cybersecurity chal-

lenges were primarily delegated to domain experts, who were

responsible for implementing defense protocols and directly

responding to attacks. However, this system quickly grew

impractical due to the increased software and infrastructure

update frequencies heightening the likelihood of introducing

new vulnerabilities.

This work was supported in part by DARPA Young Faculty Award,
National Science Foundation #2127780, #2312517, #2321840, #2319198,
and #2235472, Semiconductor Research Corporation (SRC), Office of Naval
Research, grants #N00014-21-1-2225 and #N00014-22-1-2067, the Air Force
Office of Scientific Research, grants #FA9550-22-1-0253, and generous gifts
from Xilinx and Cisco.

Mariam Ali Issa is with the Department of Computer Science, University
of California Irvine, Irvine, CA, USA. Email: mariamai@uci.edu

Hanning Chen is with the Department of Computer Science, University of
California Irvine, Irvine, CA, USA. Email: hanningc@uci.edu

Junyao Wang is with the Department of Computer Science, University of
California Irvine, Irvine, CA, USA. Email: junyaow4@uci.edu

Mohsen Imani is with the Department of Computer Science, University of
California Irvine, Irvine, CA, USA. Email: m.imani@uci.edu

A second driving force attributing to this transition is the

acceleration in which cyber-attacks are evolving. The advance-

ment in their complexity is why intelligent and automated

Intrusion Detection Systems (IDS) and other security defenses

have been widely adopted. However, the industry standard

is further progressing and moving away from human-in-

the-loop to autonomous human-on-the-loop protocols. These

solutions are highly sought out due to their ability to adapt

to a consistently evolving environment, thus, enabling robust

solutions for handling future unforeseen threats [1], [2].

There have been various intelligent solutions for security

tasks, ranging from Naive Bayes [3] to neural networks [4],

and SVMs [5]; however, these past approaches have required

large amounts of high-quality data and careful fine-tuning to

achieve adequate detection performance [6]. Furthermore, due

to frequent infrastructure changes and the evolution of cyber-

attacks, these supervised machine learning based IDS require

maintenance for updating the training datasets to handle new

attacks.

Differentiating itself from other machine learning methods,

Reinforcement Learning (RL) does not require large, curated

datasets at initialization. Instead, it learns from interacting

with a simulated environment, which is comprised of a set

of states, actions, and their respective rewards defined by

environment feedback [1], [7]. One popular RL algorithm is

Q-Learning, a value-based approach that learns a Q-function

for approximating the Q-value (e.g., the expected reward of

taking an action at a given state). The original Q-Learning

algorithm is Tabular Q-Learning [8], which could only handle

simple environments due to the state explosion problem [1].

As a result, the neural network based Q-Learning, Deep Q-

Network (DQN) [9], was introduced to handle this scalability

issue [10].

By implementing the Q-Learning algorithm using a deep

neural network, it is able to handle applications with complex

learning tasks. However, deep learning algorithms have the

following computational challenges: (1) demand unreasonable

resources to train since neural networks rely on costly back-

propagation and gradient-based methods, (2) are extremely

sensitive to noise in data, network, or underlying hardware,

and (3) lack human-like cognitive support for long-term mem-

orization and transparency.

To address the aforementioned challenges, recent learning

algorithms aim to model the human brain more closely, in-

cluding HyperDimensional Computing (HDC). Brain-inspired

HDC is gaining traction for its impressive learning abil-

ity, lightweight hardware implementation, and computational

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3418392

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:15:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPT 2023 2

efficiency [11]–[16]. The origin of this field stems from

neuroscience research on how the human brain processes

information in high dimension due to the brain’s extensive

circuitry. HDC abstractly extends this concept as a learning

paradigm by modeling and operating on high-dimensional data

representations [17].

HDC achieves this by encoding input data into high-

dimensional space, outputting what is called hypervectors,

and using well-defined HDC operations to train and execute

inference tasks [11]. Each dimension of the hyperspace ab-

stractly models a neuron’s functionality in processing external

stimuli [17]. HDC operations are simple arithmetic operations

over these dimensions that can be supported on devices with

limited resources and computational power [18]. In addition,

this class of algorithms is equipped to accomplish both classi-

fication and regression machine learning tasks [11], [19]–[21],

and has demonstrated comparable results to neural networks

while offering higher learning quality (e.g., faster convergence,

learning speed, and computational efficiency) [11], [22].

Given these distinctive advantages, HDC suggests itself as

a promising potential solution in applications concerning low-

powered Internet of Things (IoT) devices [23]–[25]. Most

state-of-the-art machine learning approaches involve deep

learning, which requires costly computational power to train,

thus making them impractical for edge learning [26]. In

contrast, HDC-based algorithms are an ideal candidate for their

lightweight algorithmic design and energy efficiency [27].

We propose CyberRL, an HDC RL algorithm for developing

cybersecurity attack and defense strategies in an abstract

intrusion detection Markov game. Our contributions are the

following:

• To the best of our knowledge, this paper presents the first

HDC based RL algorithm to effectively learn cybersecu-

rity strategies for network intrusion detection.

• We demonstrate CyberRL’s ability to learn more effective

cybersecurity defense and attack strategies relative to

previous Deep Q-Learning algorithms.

• CyberRL is computationally more efficient on multiple

computing platforms, including on low-powered edge

devices.

• Compared to traditional neural network based RL, Cy-

berRL shows higher hardware efficiency. To further im-

prove CyberRL’s performance, we design an FPGA-based

domain specific accelerator.

We evaluate the efficacy of our approach on multiple em-

bedded platforms including the NVIDIA Jetson Orin I and the

Xilinx Alveo U50 FPGA. Our evaluation shows that CyberRL

is computationally more efficient than DQN with a speedup

of 1.9× on CPU and 700× on FPGA. In addition, CyberRL

is able to achieve 12.8× higher rewards, demonstrating an

overall improved learning quality.

II. BACKGROUND

A. HyperDimensional Computing

HyperDimensional Computing (HDC) is motivated by the

theoretical neuroscience observation that the human brain

processes information by operating on high-dimensional data

representations. This concept formulates the core algorithmic

design behind HDC, which is to map objects into their high-

dimensional representations.

This is done by encoding the original data into hypervectors,

which are vectors that store thousands of elements. Each di-

mension of these hypervectors abstractly constitutes a neuron’s

functionality in processing external stimuli [17]. Once an HDC

model is trained, the encoded hypervector will have captured

the important patterns of its respective class across dimensions.

The information will be captured throughout the hypervector,

which lends the HDC model to also be holographic.

Let us assume that H⃗1 and H⃗2 are two randomly initialized

hypervectors, where H⃗1, H⃗2 ∈ {0, 1}d and d is the dimen-

sionality (e.g., d = 10, 000). Due to random generation and

high-dimensionality, these two vectors are nearly orthogonal:

¶(H⃗1, H⃗2) ≈ 0, where ¶ is a defined similarity function

between the two hypervectors.

By working in high-dimensional space, the multitude of

nearly orthogonal hypervectors lends itself to be a foundational

basis for defining the HDC model. It does so by defining

operations, including bundling and binding, to combine hy-

pervectors while maintaining their respective information with

high probability. The training process involves encoding the

original input data and bundling those of the same class to

produce a class hypervector, which is the representation of

the class in high-dimensional space.

The HDC operation binding performs the cognitive compu-

tation and learning over the encoded data during the training

phase to procure highly accurate, high-dimensional represen-

tations. Given a new data point to classify, the inference

algorithm is a similarity search conducted between the model

hypervectors and the encoded new data point to inform the

model in its decision-making. The HDC operations are de-

scribed in greater detail below:

Bundling: The component-wise additive operation of hy-

pervectors, where the information from multiple hypervectors

are saved into a single hypervector. This formulates the mem-

orization capability of HDC since the bundled hypervector is

similar to each of the component hypervectors that comprise

it (i.e., ¶(H⃗1 + H⃗2, H⃗1) ≈ 1).

Binding: The binding operation associates items in hyper-

space. Given the hypervectors H⃗1 and H⃗2, component-wise

multiplication (XOR in binary) denoted as (·) is conducted to

produce a new hypervector that is dissimilar to its constituent

vectors (i.e., ¶(H⃗1·H⃗2, H⃗1) ≈ 0). This is ideal for constructing

hypervectors for variable-value association.

B. Reinforcement Learning

Many Reinforcement Learning (RL) tasks are modeled

using the Markov Decision Process (MDP). The MDP is a

model of a generally finite system, which can be modified by

applied external control. This modeling is discrete, stochastic,

and is formally defined as a tuple: < S,A, T ,R >, where

S represents the discrete set of states, A is the discrete set

of actions, T is the transition function, and R is the reward

function [28].

The transition function is defined as T : S × A → (S →
R), and the reward function is defined by R : S × A → R.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3418392

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:15:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPT 2023 3

N2

(a) Cybersecurity Environment (b) Attacking agent targeting N1 (c) Attacking agent compromising N1

 S1A=[0,0,2]

 S1D=[1,1,1,0]
<S2

A, S2
D> <S3A, S3D>

<SdataA , SdataD>

N1
N1

NdataNdata

Nstart Nstart

N2 N3
N3 N1

Ndata

Nstart

N2 N3

Fig. 1. (a) Shows an overview of the topology of a simple computer network to simulate the intrusion detection environment. The attacking agent initially
resides at Nstart at the beginning of each episode. Ndata represents the database containing the network’s critical data, which the attacking agent aims to
compromise and the defending agent, the Intrusion Detection System (IDS), needs to secure. In this simulation, the network contains a single intermediate
layer comprising of three computing devices: N1,N2,N3 with the connectivity between devices represented by edges. (b) The partially observable state
spaces for the agents are shown within each node in the network: <SA

i , SD
i >, where SA

i is the attacking agent’s cyber-attack repertoire and SD
i is the IDS’s

defense to each attack with i indicating the network node. Note that the number of cyber attacks in this elementary simulation is limited to m = 3; thus,
|SD| = 4 since the defending agent has an additional attribute for the breach detection capacity of the respective node. In (c), the agent is able to successfully
compromise N1 since SA

1,2 = 2 > SD
1,2 = 1. Upon compromising N1, the attacking agent is now able to target nodes adjacent to N1 (i.e., Ndata).

Both of these functions solely depend on the current state and

action pair for the transition, ignoring the prior trajectory; this

attribute deems the process Markovian [28].

Given an MDP, an environment is defined for an RL task,

where the RL agent (i.e., model) learns to analyze the state

space to make an informed decision on the next action. The

agent relies on the reward probability function R, which

measures the agent’s success in completing the defined RL

task as feedback to improve its overall strategy. There are

a number of different approaches in solving this problem

statement with the two main classes of RL algorithms being:

model-free learning, which comprises value-based RL (e.g., Q-

Learning [29]) and policy-based RL (e.g., REINFORCE [30],

PPO [31]), and model-based RL (e.g., Dyna-Q [32]).

In regards to this paper, the RL algorithm of greatest

interest is Q-Learning. Q-Learning is an off-policy RL algo-

rithm, which learns to approximate the expectation of future

rewards (i.e., the Q-function) using the Bellman Equation

as a condition for optimality [33]. The implementation for

CyberRL uses Double Q-Learning, which builds off of the Q-

Learning module, and utilizes double estimation to mitigate the

overestimation problem. We elaborate further on this algorithm

in Section IV.

III. MODELING INTRUSION PREVENTION AS A GAME

This next section details Hammar and Stadler’s abstract

simulation of an intrusion detection cybersecurity environment

[34]. The task is modeled as a multi-agent zero-sum Markov

game, indicating that the positive reward of one agent is

strictly at the detriment of the other(s). This particular game

environment constitutes two agents: a cyber attacker and an

Intrusion Detection System (IDS), the defending agent. The

former’s objective is to compromise a computer network,

while the latter’s adversary task is to secure it; in addition

to successfully detecting any attempted security breaches by

the attacking agent. The game terminates when either agent

completes their defined task.

The environment is implemented to simulate a computer

network of interconnected computing devices. The node in the

first layer, denoted Nstart, is where the attacking agent resides

when the game is initialized. Ndata, which comprises the last

layer, contains the network’s sensitive data, which is the node

that the defending agent aims to protect from any breaches by

the attacking agent. The intermediate layers can include any

number of nodes and any defined depth. An illustration of such

a structure is presented in Figure 1, where a simplified network

is modeled using a single intermediate layer containing three

nodes.

The attacker’s objective is to reach Ndata and successfully

compromise it. In order to accomplish this, the attacker must

explore the infrastructure through reconnaissance and compro-

mise intermediate nodes until it reaches Ndata. However, the

topology of the infrastructure remains unknown to the attacker

with the only accessible information being the successfully

compromised nodes and their adjacent neighboring devices.

Conversely, the defending agent is aware of the entire network

infrastructure, but lacks information pertaining to the status

of the attacking agent. Since both agents can only observe a

subsection of the entire state space, this formulates a Partially

Observable Markov Decision Process (POMDP) [35].

The game is simulated on a round-by-round basis with the

defender and attacker alternatively selecting actions to accom-

plish their respective adversarial objectives. The infrastructure

of the game is represented as a graph G = <N , E>, where N
denotes the nodes in the network and E denotes the edges in

the graph that represent the devices that are connected to one

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3418392

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:15:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPT 2023 4

/

Experience
Replay Buffer

Environment

State st

 Action a1

 st Hypervector

MAX
Q-Value

st a1 Q-value

HDC
Encoder

B

 Action a2

 Action an
A

D

E H

F

G
HDC Target

Model HDC Model

Action at

C

st a2 Q-value

st an Q-value

N1

Ndata

Nstart

N2 N3

Fig. 2. The above figure outlines the steps of the CyberRL algorithm in the given intrusion detection environment. (A) Given a state st, the state is then
(B) encoded into a hypervector and (C) multiplied with the class hypervectors, which correspond to each action in the action space (e.g., a1, a2, ..., an). The
action corresponding to the maximum Q-value is selected (D) as the next move in the environment. At the conclusion of each step, the given state st, the
selected action at, and the resulting reward rt, and next state st+1 (E) are stored as a tuple (st, at, rt, st+1) in the experience replay buffer to later be used
for (G) updating the CyberRL model. (F) indicates the interaction with the environment, while (H) shows the periodic target model updates.

another. Each node in the network Ni ∈ N has a node state

Si = <SA
i , S

D
i > to encompass each agent’s state space.

Given a node Nk, the attacking agent has a repertoire

of cyber-attacks that it can leverage on the targeted node

SA
k = [SA

k,0, S
A
k,1, ..., S

A
k,m−1

], where each element in the set

abstractly represents the type of cyber-attack (e.g., Denial-of-

Service (DOS) attack, cross-site scripting attack, etc.). Each

attribute takes on a numerical value, which represents the

strength of the attack and remains unknown to the defending

agent.

Similarly, the defending agent has a corresponding set of

attributes for node Nk that map to the defense strength against

each cyber-attack: SD
k = [SD

k,0, S
D
k,1, ..., S

D
k,m]. These repre-

sent cybersecurity defenses, such as firewalls or encryption

functions. For instance, if attribute j represents a DOS attack,

SA
k,j indicates the strength the attacking agent has in leveraging

a DOS attack on node Nk. Meanwhile, SD
k,j represents Nk’s

resilience from being corrupted by a DOS attack. The final

defense attribute in the set for each node SD
k,m is the defending

agent’s strength in detecting the attacking agent at Nk. The

attributes for both the attacking and defending agents are

limited to a finite range, specifically SA
i,j , S

D
i,j ∈ [0, w], where

w is a natural number.

In terms of the action space, the attacking agent has two

courses of action: the first would be to increase the strength

of one of its cyber-attacks on any one of the accessible nodes

(i.e., increment the value of SA
k,j for node Nk and attack j) or

to attempt to compromise a visible node with an attack of its

selection from 0...m−1. Meanwhile, the defending agent may

either choose to strengthen its defense from a particular attack

(i.e., increment the value of a defense attribute SD
k,j for node

Nk and counter-attack j) or choose to strengthen the detection

ability for any node in the infrastructure (i.e., increment SD
k,m

attribute).

If the attacking agent chooses to wage a cyber-attack on

node Nk, an attack is simulated by exposing the defending

agent’s corresponding attribute SD
k to the attacker. Given that

the attacker chose to attack with the attribute j, the attacker

would successfully compromise the node if SA
k,j > SD

k,j . If the

attack is unsuccessful then the defender has an opportunity to

identify the attack with a probability of p =
SD
k,m

w+1
, where SD

k,m

is the defending agent’s detection capability.

For example, in Figure 1 (b-c) the attacking agent is able

to successfully compromise N1 since it leveraged cyber attack

SA
1,2, which is stronger than SD

1,2, the IDS security capability in

defending from the respective cyber-attack. If in the scenario

that SA
1,2 <= SD

1,2 , then with probability
SD
1,3

w+1
, the IDS would

detect the cyber attacker; hence, winning the episode.

The game progresses as each agent takes an action of its

choice altering the state environment in each round of the

game. The episode terminates when either the attacking agent

successfully compromises Ndata or when the IDS detects the

attacker. The winning agent is awarded +1 utility, while the

losing agent receives -1 utility in rewards.

IV. CYBERRL AS AN INTRUSION DETECTION SYSTEM

In this section, we detail the CyberRL algorithm employed

to learn both attack and defense strategies.

As is known with learning new environments in RL tasks,

the agent needs to learn undiscovered areas of the state space

while also utilizing past experience to learn the best action to

take at any given state. This is known as the exploration vs.

exploitation trade-off. Exclusively using one of these initiatives

results in one of the two extremes: either the model never

learns the Q-function or the model converges to a local

maxima, resulting in a sub-optimal configuration.

To mitigate this, the epsilon-greedy method is employed,

which initializes the RL agent to prioritize exploration at

the early stages of training. However, as more experience is

accumulated, the agent increasingly relies on the learned Q-

function until ϵ completely decays, enabling pure exploitation

of its past experience. This is done by initializing ϵ = 1 and

applying a decay rate for epsilon to converge to zero. At each

time step in training, if the generated number is less than ϵ,

then a random action is selected. If not, the model selects the

action with the highest Q-value, as shown below:

at =

{

random action a ∈ A, with probability ϵ

argmaxa∈AQ(st, a), with probability 1− ϵ

given an action space A at time step t.

Similar to Deep Q-Learning, CyberRL also delegates the

Q-function approximation to a machine learning model rather

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3418392

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:15:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPT 2023 5

than recordkeeping a Q-table; however, instead of a neural

network approximating these values, the agent utilizes an HDC

model. This is achieved by mapping the states and actions

into hyperdimensional space using the exponential kernel as

the encoding function. The HDC model contains n model

hypervectors {M⃗a1
,M⃗a2

, ...M⃗an
}, where n is the size of

the action space (i.e., each of these hypervectors corresponds

to an encoded action).

With Deep Q-Learning, an action is selected by choosing

the argmax of the highest Q-value computed by the trained

neural network. In the HDC version, we do this by multiplying

the encoded state hypervector S⃗t with each model hypervector

M⃗ai
to output the corresponding Q-value for each state-action

pair. The agent selects the action with the highest Q-value and

interacts with the environment, collecting feedback rt, and

observing the next state in this transition st+1. The algorithm

advances to the next time step t + 1, and iterates until the

episode terminates. An overview of this process is detailed in

Figure 2.

The class hypervectors of the HDC model are updated

over episodes as more experience is accumulated. After each

time step t, the state, the selected action, the reward, and

the next state are stored in an experience replay buffer as

a tuple (st, at, rt, st+1). This experience replay strategy is

used to collect additional data for training the agent in an

online approach. After sufficient data samples are collected,

a batch of these tuples are sampled from the experience

replay buffer to update the HDC model Q. Unlike supervised

machine learning, which has labeled data at its disposal,

the Q-Learning algorithm relies on the Bellman Equation or

Dynamic Programming Equation [33], which is a recursive

expression for the Q-value at time step t, to estimate the true

Q-values. We use this to define the optimal Q-function

qt true = rt + µmaxaQ
′(st+1, a) (1)

and to maximize the accumulated rewards in an episode.

In order to achieve this, the Bellman Equation states that

each sub-task must be optimized to realize the highest rewards

for the entire task, which means qtrue is the sum of rt and the

maximum Q-value for the next time step. As noted in the equa-

tion above, we use Q′, the target model, since our approach

uses the Double Q-Learning method in updating the model

[36]. Compared to Q, which is updated at every time step, Q′

is updated periodically and stabilizes the learning process to

avoid overestimating the Q-value, a common consequence of

maximizing the Bellman Equation. Additionally, the reward

decay µ is included to adjust the weight on future or near-

sighted rewards: a value of 1 puts a higher weight for the

long-term rewards and a value close to 0 prioritizes the more

immediate rewards.

Returning to the update step: for a given tuple

(st, at, rt, st+1), we encode the state st into hyperdimensional

space to give its corresponding hypervector S⃗t and multiply it

with action at’s class hypervector, M⃗at
, from the HDC model

qt pred = Q(st, at) = S⃗t × M⃗at
(2)

We take the difference between qpred and qtrue and use it

to update the HDC model

Fig. 3. CyberRL model acceleration on the FPGA. Here si represents agent

i’s original state vector. B⃗ is the base hypervector matrix. Hs is the encoded
state hypervector.

M⃗at
= M⃗at

+ ³(qt true − qt pred)× S⃗t (3)

where ³ is the learning rate. Over the duration of learning, the

Q-function gradually becomes more accurate in estimating the

best actions across the state space.

Furthermore, this development of the HDC Double Q-

Learning model includes optimizations in the action selection

and model update steps using batch training. This allows

for the HDC model to be vectorized in both the Q-value

calculations and target model updates. As a consequence,

the model experiences significant computational efficiency to

enable it to scale to RL tasks with larger state and action

spaces.

V. FPGA ARCHITECTURE DESIGN

Compared to CPU and GPU, HDC models generally have

a higher execution performance and energy-efficiency on the

FPGA platform [37], [38]. On one hand, FPGA accelerators

achieve a balance between computation parallelism and energy

efficiency through customized hardware design. On the other,

HDC model computation does not require high-precision data

computation due to the holographic nature of the HDC model.

Essentially, this implies that we can achieve parallel hyper-

vector computation without relying heavily on digital signal

processing IP (DSP) and by utilizing lookup tables (LUT)

instead.

In Figure 3, we present the FPGA acceleration of CyberRL.

Here we assume our model simultaneously controls N agents

with each agent’s state vector dimensions being 1 × d0. For

each agent i, a corresponding base hypervector matrix Bi

with dimensions d×D is stored in the on-chip storage (such

as BRAM). During the state encoding process, we pipeline

each agent’s state encoding computation. The mathematical

representation of this pipeline is:

H⃗s =

N
∑

i=1

d⃗iBi (4)

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3418392

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:15:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPT 2023 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 26 51 76 101 126 151 176 201

Episode

CyberRL

DQN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 26 51 76 101 126 151 176 201

Episode

CyberRL

DQN

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 26 51 76 101 126 151 176 201

Episode
CyberRL Defense Agent Attack Agent (vs. CyberRL)

Attack Agent (vs. DQN) DQN Defense Agent

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 26 51 76 101 126 151 176 201

Episode

CyberRL Attack Agent Defense Agent (vs. CyberRL)

DQN Attack Agent Defense Agent (vs. DQN)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 26 51 76 101 126 151 176 201

A
v
e

ra
g

e
 R

e
w

a
rd

s

Episode

CyberRL Attack Agent Defense Agent (vs. CyberRL)

DQN Attack Agent Defense Agent (vs. DQN)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 26 51 76 101 126 151 176 201

H
a

ck
 P

ro
b

a
b

il
ti

y

Episode

CyberRL

DQN

Maximal Attack Random DefenseMinimal Defense

Fig. 4. Comparison of our CyberRL to DQN [9] in the three different intrusion detection scenarios. The top row shows the Hack Probability of the network
being compromised, while the bottom row shows the Average Rewards, computed from the last 100 episodes of self-play.

Here the dimension of the encoded state hypervector (H⃗s) is

1 ×D. Before conducting regression operations to select the

optimal action, we also pass the encoded state hypervector

through a kernel function, such as the exponential function

used in CyberRL. To implement the kernel function on-chip,

we divide the kernel function IP into two parts, the sine and

cosine function components since we have:

ejx = cos(x) + jsinx(x) (5)

To save on resources, we choose to pre-store sine and cosine

values inside the on-chip storage (such as on-chip BRAM) in-

stead of using Xilinx’s existing hardware IP, such as CORDIC

IP. For the regression part, we accelerate the encoded state

and action hypervectors’ matrix multiplication using a systolic

array [39]. In the last stage, a max IP is used to choose the

highest action index. This action index will also be passed

back to host CPU via AXI DMA IP.

VI. EXPERIMENTS

A. Attack and Defense Scenarios

To measure the effectiveness of HDC in learning cybersecu-

rity strategies, we applied our CyberRL algorithm to various

intrusion detection scenarios given the simulated environment

detailed in Section III, which serves as the dataset [34]. This

is a multi-agent RL environment with one agent attempting to

compromise the given computer network, while the other acts

as an Intrusion Detection System (IDS) (e.g., the attack and

defense agents respectively). The given environment includes

multiple scenarios to allow for training both of these agents.

They are the following:

• Minimal Defense Scenario: where we train an attacking

agent against the environment’s IDS, which follows a

policy that will always defend the attribute with the

minimal value of its neighbors

• Random Defense Scenario: where we train an attacking

agent against an IDS that uses a random baseline defense

policy

• Maximal Attack Scenario: where we train the IDS to

defend against an attacking agent, who will target the

node which has the highest attack attribute

It’s important to note that the adversary agent in each of

these scenarios will be simulated by the environment. For

instance, in the Maximal Attack scenario, the adversary agent

is the attack agent, which is integrated into the environment,

while we train the implemented CyberRL defense agent.

We run our CyberRL algorithm in each of these scenarios

and compare it to the Deep Q-Network (DQN) from [9] in

terms of computational efficiency and quality of the learned

security strategies. The latter is measured by the trained

agent’s realized Average Rewards during training and Hack

Probability.

The Hack Probability metric is the likelihood measure of the

computer network environment being hacked. When training a

defense agent, as is the case in the Maximal Attack scenario,

a lower hack probability is desired since it is aligned with

the trained model’s objective; conversely, for the Random and

Minimal Defense scenarios, a higher hack probability measures

a better trained attack agent. The second metric, the Average

Rewards, is calculated from the previous 100 game simulations

or episodes, where rewards are the measured utility (e.g., -1,

+1) of winning the simulated game.

The topology of the network consists of two intermediate

layers, each with three nodes, for a total of 8 nodes. Addition-

ally, the attack agent has ten different attack attributes that it

can leverage against a node in the network. Hence, the state

space of this environment consists of 168 features and the

action spaces for the agents are 80 and 88 for the attacking

and defending agents respectively. We use the implementation

of the DQN from the original project [34] and compare it to

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3418392

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:15:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPT 2023 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 26 51 76 101 126 151 176 201

H
a

ck
 P

ro
b

a
b

il
it

y

Episode

0.99

0.95

0.9

0.85

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 26 51 76 101 126 151 176 201

H
a

ck
 P

ro
b

a
b

il
it

y

Episode

1×10^-5

1×10^-4

1×10^-3

1×10^-2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 26 51 76 101 126 151 176 201

Episode

1×10^-5

1×10^-4

1×10^-3

1×10^-2

0

0.05

0.1

0.15

0.2

0.25

0.3

1 26 51 76 101 126 151 176 201

Episode

0.99

0.95

0.9

0.85

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 26 51 76 101 126 151 176 201

Episode

1×10^-5

1×10^-4

1×10^-3

1×10^-2

0.7

0.75

0.8

0.85

0.9

0.95

1

1 26 51 76 101 126 151 176 201

Episode

0.99

0.95

0.9

0.85

Minimal Defense Random DefenseMaximal Attack

� ·, �, �&������ ���������

· �, �, �&������ ���������

Fig. 5. Experiments for fine-tuning the values (a) ³ and (b) ϵ across the three cybersecurity scenarios.

TABLE I
CYBERRL MODEL HYPERPARAMETERS

Minimal

Defense

Maximal

Attack

Random

Defense

HDC Dimension 1000 1000 1000
Learning Rate 0.01 0.00001 0.01
Epsilon Decay 0.85 0.85 0.90
Target Model Update 50 50 50
Discount Factor 0.90 0.95 0.8
Batch Size 32 32 32

our CyberRL model, which has been fine-tuned. Table I shows

the values for the set hyperaparameters for the final model used

to compute the results reported in Figure 4.

B. Experimental Setup

We run our algorithms on a 2.4GHz 8-core Intel Core i9

to report our results. In addition, we deploy our model on the

NVIDIA Jetson Orin I with varying power settings. Table II

reports the resource utilization of the NVIDIA Jetson Orin I on

each of these power settings. As one can observe from Table II,

when the power consumption increases, the corresponding fre-

quency, main memory, external memory controller (EMC), and

computing cores consequently increase as well. Furthermore,

for the FPGA acceleration, we implement the algorithm using

C++ HLS and we select Xilinx Alveo U50 as the kernel FPGA

board. The communication between host CPU and kernel

FPGA is based on the Xilinx Vitis platform [40]. We also use

Xilinx Vivado Power Estimator (XPE) to measure the kernel

FPGA on-chip power consumption [41].

TABLE II
NVIDIA JETSON ORIN I PLATFORM. HERE EMC MEANS EXTERNAL

MEMORY CONTROLLER. THE VALUE OF EMC REPRESENTS THE

EXTERNAL MEMORY USAGE.

Power 15W 30W 50W Max

Frequency 1.1GHz 1.7GHz 1.5GHz 2.8GHz

EMC 5% 6% 6% 2%
Memory 2.2GB 2.4GB 3GB 6.4GB

CPU 4 cores 8 cores 12 cores 12 cores

VII. EVALUATION

In this section, we demonstrate the efficacy of applying our

CyberRL algorithm in finding security strategies in an intru-

sion detection RL environment. We compare it to DQN and

evaluate the performance of the agents in multiple intrusion

detection scenarios. We report the computational efficiency

and the overhead incurred by the agents’ learning process.

A. Hyperparameter Optimization and Training

We conducted a thorough exploration of the various hy-

perparameters for the CyberRL model, which is implemented

using a Double Q-Learning framework. The hyperparameters

that were fine-tuned include the following:

• ³: the learning rate for the HDC model

• ϵ: the epsilon decay for the ϵ-greedy algorithm

• Q′: the target model update frequency for stabilizing the

learning curve

• µ: the discount factor for calculating the Temporal Dif-

ference Error for the Q-learning algorithm

Figures 5 and 6 display the full set of experiments. The

columns correspond to the cybersecurity scenario, while the

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3418392

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:15:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPT 2023 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 26 51 76 101 126 151 176 201

H
a

ck
 P

ro
b

a
b

il
ty

Episode

1000

500

250

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 26 51 76 101 126 151 176 201

H
a

ck
 P

ro
b

a
b

il
it

y

Episode

0.999

0.95

0.9

0.85

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 26 51 76 101 126 151 176 201

Episode

1000

500

250

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 26 51 76 101 126 151 176 201

Episode

0.999

0.95

0.9

0.8

0.7

0.75

0.8

0.85

0.9

0.95

1

1 26 51 76 101 126 151 176 201

Episode

1000

500

250

50

0.7

0.75

0.8

0.85

0.9

0.95

1

1 26 51 76 101 126 151 176 201

Episode

0.999

0.95

0.9

0.8

�"������ ��������� �, ·, �

� �, ·, �"������ ���������

Minimal Defense Random DefenseMaximal Attack

Fig. 6. Experiments for fine-tuning the values (a) Q′ and (b) µ across the three security scenarios.

TABLE III
DESIGN ACCELERATION ON ALVEO U50. THE FPGA KERNEL

FREQUENCY IS 200MHZ AND FPGA POWER CONSUMPTION IS 17W.
HERE Tattacker AND Tdefender ARE SINGLE TIME STEP LATENCY.

Name LUT FF DSP BRAM URAM

Total 398.5K 728.8K 7 713 316
Available 872K 1743K 5952 1344 640
Utilization 45.6% 41.8% ∼0% 53.1% 49.3%

Tattacker = 8.94us , Tdefender = 8.64us

rows indicate the hyperparameter being optimized. The metric

used to determine the optimal value is the Hack Probability.

The first set of experiments demonstrated in Figure 5 include

experiments for determining the values for ³ and ϵ in each

scenario, while Figure 6 includes the experiments for Q′ and

µ.

B. Performance

We evaluate the performance between CyberRL and DQN

across the three cybersecurity scenarios. Our primary results

are presented in Figure 4, which compares the two models

over the duration of training. The Hack Probability metrics

are presented in the top row of Figure 4 and the Average

Rewards for each agent and their adversary agent in the lower

row.

Across all three scenarios, the CyberRL model is able to

learn a more effective strategy, as shown by achieving a higher

Hack Probability when training an attack agent (the left and

right columns of Figure 4), and a lower Hack Probability when

training a defense agent in Maximal Attack. Furthermore, the

effectiveness of the CyberRL implementation of the defense

and attack agents are reflected in the Average Reward Plots.

The intuition for why CyberRL outperforms the deep learn-

ing equivalent stems from HDC’s intrinsic memory-like capa-

bilities and pattern recognition from its training framework.

By encoding the state and action spaces in hyperdimensional

space, CyberRL is advantageous in learning the critical fea-

tures of the task environment significantly faster than the neu-

ral network architecture. These results are not anomalous since

HDC-based reinforcement learning algorithms have shown to

outperform their deep learning counterparts in various tasks

[20], [42], [43].

C. Efficiency

In Table III, we present the resource utilization of our

algorithm’s implementation on Xilinx Alveo U50 FPGA. For

each time step, the attacker agent’s execution latency is

8.94µs and the defender agent’s latency is 8.64µs. In addition,

Figure 7 plots the CyberRL’s improvements in latency and

energy efficiency in each of the three scenarios on the CPU and

FPGA platforms. The first plot of Figure 7 displays the latency

improvements compared to DQN calculated from the training

time, which is the duration of time for the model to converge.

As anticipated, the CyberRL algorithm is significantly faster

in all three scenarios: for the Maximal Attack Scenario, the

CyberRL is 1.2× more efficient; 1.9× faster in the Random

Defense Scenario; and 1.6× in the Minimal Defense Scenario.

When ran on the Xilinx Alveo U50 FPGA, CyberRL achieves

around 700× speedup and energy efficiency improvements

compared to the CPU execution.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3418392

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:15:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPT 2023 9

TABLE IV
COMPARISON OF THE COMPUTATIONAL EFFICIENCY BETWEEN THE

DQN [9] AND CYBERRL ALGORITHMS ON THE NVIDIA JETSON ORIN I
VARIOUS POWER SETTINGS. MEASUREMENTS TAKEN FOR THE MINIMAL

DEFENSE SCENARIO AND MEASURED IN SECONDS.

15W 30W 50W MAX

DQN 1.9× 103 1.5× 103 1.6× 103 1.0× 103

CyberRL 1.4× 103 1.0× 103 1.3× 103 0.8× 103

DQN CyberHD DQN (FPGA) CyberHD (FPGA)

Speedup

Max Attack Min Defense Random Defense

DQN CyberHD DQN (FPGA) CyberHD (FPGA)

Energy Efficiency

Max Attack Min Defense Random Defense

10
#

10
$

10
%

10
&

10
'

10
(

10
#

10
$

10
%

10
&

10
'

10
(

Fig. 7. The above figure displays the time and energy efficiency improvements
relative to DQN [9]. (a) shows the CyberRL speedup on both the CPU and
FPGA platforms, while (b) shows the improved energy efficiency.

Furthermore, Table IV compares CyberRL and DQN when

executed on the NVIDIA Jetson Orin I platform on vari-

ous low-powered settings (e.g., 15W, 30W, 50W, Maximum

Power). We demonstrate CyberRL’s efficiency advantage over

DQN across all power settings, which also realizes a reduced

training time of up to 30%.

VIII. RELATED WORKS

The work from [34] introduces the developed Markov cyber-

security game environment, which demonstrates the efficacy of

Deep Reinforcement Learning (DRL) algorithms for solving

intrusion detection problems. Another paper from this group,

which builds upon their previous work, includes [44], where

they formulate the intrusion detection task into an optimal

stopping problem. This subsequent work continues to utilize

reinforcement learning to estimate optimal defense policies;

however, the main contribution is primarily in reframing the

cybersecurity environment to solve for optimal stopping.

Other recent work in the area include [45], which introduces

a DRL framework for learning defense countermeasures to

dynamically evolving environments. They tested various DRL

algorithms, including Deep Q-Network (DQN), Advantage

Actor Critic (A2C), Asynchronous Actor-Critic, and Proximal

Policy Optimization (PPO), to demonstrate the efficacy of

DRL to proactively detect various cybersecurity threats. This

work introduces a new reinforcement learning environment,

which extends the OpenAI Gym library; however, their code

has yet to be open-sourced.

In the space of HDC reinforcement learning algorithms,

CyberRL is an optimized version of the QHD algorithm

introduced in [20]. CyberRL is developed from the Double Q-

Learning [36] algorithm and similar to [20], CyberRL imple-

ments the Q-function approximation with the HDC framework

in lieu of a deep neural network. An issue limiting [20] is

its inability to scale to solve RL tasks with large state and

action spaces. In this prior work, its primary results stem from

OpenAI Gym game environments (e.g., Cartpole, Acrobot,

and LunarLanding) [46] where the state and action spaces for

each task is relatively small. As discussed in Section IV, the

optimization of the algorithm enables CyberRL to scale to

learn more complex RL tasks, such as the one provided here

[34].

IX. CONCLUSION

In this paper we present CyberRL, an efficient, brain-

inspired algorithm for learning cybersecurity strategies in

an abstract Markov game environment for solving intrusion

detection type security problems. We demonstrate that Cy-

berRL is advantageous in both computational efficiency and

in producing stronger defense and attack strategies.

ACKNOWLEDGMENTS

This work was supported in part by the DARPA Young

Faculty Award, the National Science Foundation (NSF) un-

der Grants #2127780, #2319198, #2321840, #2312517, and

#2235472, the Semiconductor Research Corporation (SRC),

the Office of Naval Research through the Young Investi-

gator Program Award, and Grants #N00014-21-1-2225 and

#N00014-22-1-2067. Additionally, support was provided by

the Air Force Office of Scientific Research under Award

#FA9550-22-1-0253, along with generous gifts from Xilinx

and Cisco.

REFERENCES

[1] H. Alavizadeh, H. Alavizadeh, and J. Jang-Jaccard, “Deep q-learning
based reinforcement learning approach for network intrusion detection,”
Computers, vol. 11, no. 3, p. 41, 2022.

[2] M. Sewak, S. K. Sahay, and H. Rathore, “Deep reinforcement learning
for cybersecurity threat detection and protection: A review,” in Secure

Knowledge Management In The Artificial Intelligence Era. Springer
International Publishing, 2022, pp. 51–72.

[3] N. B. Amor, S. Benferhat, and Z. Elouedi, “Naive bayes vs decision
trees in intrusion detection systems,” in Proceedings of the 2004 ACM

symposium on Applied computing, 2004, pp. 420–424.

[4] Y. Bouzida and F. Cuppens, “Neural networks vs. decision trees for in-
trusion detection,” in IEEE/IST workshop on monitoring, attack detection

and mitigation (MonAM), vol. 28. Citeseer, 2006, p. 29.

[5] D. S. Kim and J. S. Park, “Network-based intrusion detection with
support vector machines,” in International conference on information

networking. Springer, 2003, pp. 747–756.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3418392

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:15:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPT 2023 10

[6] K. A. Da Costa, J. P. Papa, C. O. Lisboa, R. Munoz, and V. H. C.
de Albuquerque, “Internet of things: A survey on machine learning-
based intrusion detection approaches,” Computer Networks, vol. 151,
pp. 147–157, 2019.

[7] Y. Badr, “Enabling intrusion detection systems with dueling double
deep q-learning,” Digital Transformation and Society, no. ahead-of-print,
2022.

[8] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, May 1992. [Online]. Available:
https://doi.org/10.1007/BF00992698

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[10] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, J. Pineau
et al., “An introduction to deep reinforcement learning,” Foundations

and Trends® in Machine Learning, vol. 11, no. 3-4, pp. 219–354, 2018.
[11] L. Ge and K. K. Parhi, “Classification using hyperdimensional comput-

ing: A review,” IEEE Circuits and Systems Magazine, vol. 20, no. 2, pp.
30–47, 2020.

[12] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-
efficient classifier using brain-inspired hyperdimensional computing,”
in Proceedings of the 2016 International Symposium on Low Power

Electronics and Design, ser. ISLPED ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 64–69. [Online].
Available: https://doi.org/10.1145/2934583.2934624

[13] Z. Zou, H. Chen, P. Poduval, Y. Kim, M. Imani, E. Sadredini, R. Cam-
marota, and M. Imani, “Biohd: an efficient genome sequence search
platform using hyperdimensional memorization,” in Proceedings of the

49th Annual International Symposium on Computer Architecture, 2022,
pp. 656–669.

[14] H. Chen, A. Zakeri, F. Wen, H. E. Barkam, and M. Imani, “Hyper-
graf: Hyperdimensional graph-based reasoning acceleration on fpga,” in
2023 33rd International Conference on Field-Programmable Logic and

Applications (FPL). IEEE, 2023, pp. 34–41.
[15] H. Lee, J. Kim, H. Chen, A. Zeira, N. Srinivasa, M. Imani, and Y. Kim,

“Comprehensive integration of hyperdimensional computing with deep
learning towards neuro-symbolic ai,” in 2023 60th ACM/IEEE Design

Automation Conference (DAC). IEEE, 2023, pp. 1–6.
[16] H. Chen, Y. Ni, W. Huang, and M. Imani, “Scalable and interpretable

brain-inspired hyper-dimensional computing intelligence with hardware-
software co-design,” in 2024 IEEE Custom Integrated Circuits Confer-

ence (CICC). IEEE, 2024, pp. 1–8.
[17] P. Kanerva, “Hyperdimensional computing: An introduction to comput-

ing in distributed representation with high-dimensional random vectors,”
Cognitive computation, vol. 1, no. 2, pp. 139–159, 2009.

[18] M. Imani, Z. Zou, S. Bosch, S. A. Rao, S. Salamat, V. Kumar, Y. Kim,
and T. Rosing, “Revisiting hyperdimensional learning for fpga and low-
power architectures,” in 2021 IEEE International Symposium on High-

Performance Computer Architecture (HPCA), 2021, pp. 221–234.
[19] Y. Ni, Y. Kim, T. Rosing, and M. Imani, “Algorithm-hardware co-design

for efficient brain-inspired hyperdimensional learning on edge,” in 2022

Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2022, pp. 292–297.

[20] Y. Ni, D. Abraham, M. Issa, Y. Kim, P. Mercati, and M. Imani, “Ef-
ficient off-policy reinforcement learning via brain-inspired computing,”
in Proceedings of the Great Lakes Symposium on VLSI 2023, 2023, pp.
449–453.

[21] Y. Ni, N. Lesica, F.-G. Zeng, and M. Imani, “Neurally-inspired hyper-
dimensional classification for efficient and robust biosignal processing,”
in Proceedings of the 41st IEEE/ACM International Conference on

Computer-Aided Design, 2022, pp. 1–9.
[22] A. Zakeri, Z. Zou, H. Chen, H. Latapie, and M. Imani, “Conjunctive

block coding for hyperdimensional graph representation,” Intelligent

Systems with Applications, vol. 22, p. 200353, 2024.
[23] H. Chen and M. Imani, “Density-aware parallel hyperdimensional

genome sequence matching,” in 2022 IEEE 30th Annual Interna-

tional Symposium on Field-Programmable Custom Computing Machines

(FCCM). IEEE, 2022, pp. 1–4.
[24] H. Chen, Y. Kim, E. Sadredini, S. Gupta, H. Latapie, and M. Imani,

“Sparsity controllable hyperdimensional computing for genome se-
quence matching acceleration,” in 2023 IFIP/IEEE 31st International

Conference on Very Large Scale Integration (VLSI-SoC). IEEE, 2023,
pp. 1–6.

[25] E. Hassan, Z. Zou, H. Chen, M. Imani, Y. Zweiri, H. Saleh, and
B. Mohammad, “Efficient event-based robotic grasping perception using
hyperdimensional computing,” Internet of Things, vol. 26, p. 101207,
2024.

[26] Y. Lu and L. Da Xu, “Internet of things (iot) cybersecurity research:
A review of current research topics,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 2103–2115, 2018.

[27] Z. Zou, Y. Kim, F. Imani, H. Alimohamadi, R. Cammarota, and
M. Imani, “Scalable edge-based hyperdimensional learning system with
brain-like neural adaptation,” in Proceedings of the International Con-

ference for High Performance Computing, Networking, Storage and

Analysis, 2021, pp. 1–15.
[28] W. Uther, Markov Decision Processes. Boston, MA: Springer

US, 2010, pp. 642–646. [Online]. Available: https://doi.org/10.1007/
978-0-387-30164-8 512

[29] C. Watkins, “Learning form delayed rewards,” Ph. D. thesis, King’s

College, University of Cambridge, 1989.
[30] R. J. Williams, “Simple statistical gradient-following algorithms for

connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3–4,
p. 229–256, may 1992. [Online]. Available: https://doi.org/10.1007/
BF00992696

[31] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017. [Online]. Available: http://arxiv.org/abs/1707.06347

[32] R. S. Sutton, A. G. Barto et al., “Introduction to reinforcement learning,”
1998.

[33] R. Bellman, “On the theory of dynamic programming,” Proceedings

of the National Academy of Sciences of the United States of America,
vol. 38, no. 8, p. 716, 1952.

[34] K. Hammar and R. Stadler, “Finding effective security strategies through
reinforcement learning and Self-Play,” in International Conference on

Network and Service Management (CNSM 2020) (CNSM 2020), Izmir,
Turkey, Nov. 2020.

[35] M. T. J. Spaan, Partially Observable Markov Decision Processes.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 387–414.
[Online]. Available: https://doi.org/10.1007/978-3-642-27645-3 12

[36] H. Hasselt, “Double q-learning,” Advances in neural information pro-

cessing systems, vol. 23, pp. 2613–2621, 2010.
[37] M. Imani, Z. Zou, S. Bosch, S. A. Rao, S. Salamat, V. Kumar, Y. Kim,

and T. Rosing, “Revisiting hyperdimensional learning for fpga and low-
power architectures,” in 2021 IEEE International Symposium on High-

Performance Computer Architecture (HPCA). IEEE, 2021, pp. 221–
234.

[38] Y. Ni, H. Chen, P. Poduval, Z. Zou, P. Mercati, and M. Imani,
“Brain-inspired trustworthy hyperdimensional computing with efficient
uncertainty quantification,” in 2023 IEEE/ACM International Conference

on Computer Aided Design (ICCAD). IEEE, 2023, pp. 01–09.
[39] H. Chen, M. H. Najafi, E. Sadredini, and M. Imani, “Full stack

parallel online hyperdimensional regression on fpga,” in 2022 IEEE 40th

International Conference on Computer Design (ICCD). IEEE, 2022,
pp. 517–524.

[40] V. Kathail, “Xilinx vitis unified software platform,” in Proceedings of

the 2020 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, 2020, pp. 173–174.
[41] J. Becker, M. Huebner, and M. Ullmann, “Power estimation and power

measurement of xilinx virtex fpgas: trade-offs and limitations,” in 16th

Symposium on Integrated Circuits and Systems Design, 2003. SBCCI

2003. Proceedings. IEEE, 2003, pp. 283–288.
[42] M. Issa, S. Shahhosseini, Y. Ni, T. Hu, D. Abraham, A. M. Rahmani,

N. Dutt, and M. Imani, “Hyperdimensional hybrid learning on end-
edge-cloud networks,” in 2022 IEEE 40th International Conference on

Computer Design (ICCD), 2022, pp. 652–655.
[43] Y. Ni, M. Issa, D. Abraham, M. Imani, X. Yin, and M. Imani, “Hdpg:

Hyperdimensional policy-based reinforcement learning for continuous
control,” in Proceedings of the 59th ACM/IEEE Design Automation Con-

ference. New York, NY, USA: Association for Computing Machinery,
2022, p. 1141–1146.

[44] K. Hammar and R. Stadler, “Learning near-optimal intrusion responses
against dynamic attackers,” 2023.

[45] A. Dutta, S. Chatterjee, A. Bhattacharya, and M. Halappanavar, “Deep
reinforcement learning for cyber system defense under dynamic adver-
sarial uncertainties,” 2023.

[46] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3418392

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:15:28 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. ??, NO. ?, SEPT 2023 11

X. BIOGRAPHY SECTION

Mariam Ali Issa (Graduate Student Member, IEEE)
is a Computer Science PhD Candidate and NSF
Graduate Research Fellow at the University of Cali-
fornia at Irvine. She is a member of the Bio-Inspired
Architecture and Systems Lab and conducts research
on brain-inspired computing paradigms, predomi-
nantly HyperDimensional Computing (HDC). Her
current research is focused on developing the the-
oretical foundation of HDC to enable explainability
and interpretability.

Prior to her graduate studies, she worked as a full-
stack software engineer in the financial technology sector and earned her B.S.
Math-Computer Science from the University of California at San Diego.

Hanning Chen (Graduate Student Member, IEEE) is
a Computer Science PhD Candidate at the University
of California at Irvine. He received the B.S. degree
in microelectronic engineering from the Nanjing
University, Nanjing, China, in 2019, and the M.S.
degree in electrical and computer engineering from
Georgia Institute of Technology, Atlanta, GA, USA
in 2021. He is a member of the Bio-Inspired Archi-
tecture and Systems Lab and conducts research on
computer architecture and machine learning.

Junyao Wang (Graduate Student Member, IEEE)
received the B.S. degree in mathematics and statis-
tics and the M.S. degree in operations research from
the University of Illinois at Urbana–Champaign,
Champaign, IL, USA, in 2019 and 2020, respec-
tively. She is currently pursuing the Ph.D. degree
with the Department of Computer Science, Univer-
sity of California at Irvine, Irvine, CA, USA.

Mohsen Imani (Member, IEEE) received the B.Sc.
and M.S. degrees from the School of Electrical
and Computer Engineering, University of Tehran,
Tehran, Iran, in 2011 and 2014, respectively, and
the Ph.D. degree from the Department of Computer
Science and Engineering, University of California
at San Diego, La Jolla, CA, USA, in 2020. He is
currently an Assistant Professor with the University
of California at Irvine, Irvine, CA, USA. His cur-
rent research interests include braininspired comput-
ing, approximation computing, and processing in-

memory.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3418392

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 02:15:28 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Background
	HyperDimensional Computing
	Reinforcement Learning

	Modeling Intrusion Prevention as a Game
	CyberRL as an Intrusion Detection System
	FPGA Architecture Design
	Experiments
	Attack and Defense Scenarios
	Experimental Setup

	Evaluation
	Hyperparameter Optimization and Training
	Performance
	Efficiency

	Related Works
	Conclusion
	References
	Biography Section
	Biographies
	Mariam Ali Issa
	Hanning Chen
	Junyao Wang
	Mohsen Imani

