
E�icient Exploration in Edge-Friendly Hyperdimensional
Reinforcement Learning

Yang Ni*
yni3@uci.edu

University of California, Irvine

Irvine, California, USA

William Youngwoo Chung*
chungwy1@uci.edu

University of California, Irvine

Irvine, California, USA

Samuel Cho
samuelc7@uci.edu

University of California, Irvine

Irvine, California, USA

Zhuowen Zou
zhuowez1@uci.edu

University of California, Irvine

Irvine, California, USA

Mohsen Imani
m.imani@uci.edu

University of California, Irvine

Irvine, California, USA

ABSTRACT

Integrating deep learning with Reinforcement Learning (RL) results

in algorithms that achieve human-like learning in complex yet un-

known environments via a process of trial and error. Despite the

advancements, the computational costs associated with deep learn-

ing become a major drawback. This paper proposes a revamped

Q-learning algorithm powered by Hyperdimensional Computing

(HDC), targeting more e�cient and adaptive exploration. We in-

troduce a solution leveraging model uncertainty to navigate agent

exploration. Our evaluation shows that the proposed algorithm is

a signi�cant enhancement in learning quality and e�ciency com-

pared to previous HDC-based algorithms, achieving more than 330

more rewards with small overheads in computation. In addition,

it maintains an edge over DNN-based alternatives by ensuring re-

duced runtime costs and improved policy learning, achieving up to

6.9× faster learning.

CCS CONCEPTS

• Computing methodologies→Machine learning; Intelligent

agents; • Computer systems organization→ Embedded systems.

KEYWORDS

Reinforcement Learning, Agent Exploration, Hyperdimensional

Computing, Brain-inspired Computing

ACM Reference Format:

YangNi*,WilliamYoungwooChung*, Samuel Cho, ZhuowenZou, andMohsen

Imani. 2024. E�cient Exploration in Edge-Friendly Hyperdimensional Rein-

forcement Learning. In Great Lakes Symposium on VLSI 2024 (GLSVLSI ’24),

June 12–14, 2024, Clearwater, FL, USA. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3649476.3658760

*These authors contributed equally to this work.

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs International 4.0 License.

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0605-9/24/06
https://doi.org/10.1145/3649476.3658760

1 INTRODUCTION

Smart systems on edge operate in constantly changing environ-

ments with diverse needs, where intelligent algorithms are required

to ensure optimal decision-making without explicit prior knowl-

edge [14]. RL is one such algorithm that focuses on solving sequen-

tial decision-making problems, where the agent learns through trial

and error, similar to human beings. RL agents utilize the feedback

from the environment to improve their policies and maximize the

accumulated returned rewards. The combination of deep learning

and RL has led to a wide range of algorithms capable of learning

in environments with complex action and state spaces. Take the

Deep-Q-Network (DQN) as an example, the unscalable Q-table in

traditional algorithms [43] is replaced with a Deep Neural Network

(DNN) [24]. However, utilizing DNN results in high computational

costs that are less friendly to resource-limited devices. In fact, RL

agents are frequently deployed in the edge environment for tasks

like smart transportation and healthcare [11, 19].

Recent work has proposed amore e�cient and hardware-friendly

HDC-based RL algorithm [27]. HDC is motivated by how brains rep-

resent information using neural activities in large dimensions [17].

At the functional level, it achieves human-like memorization and

reasoning via operations on high-dimensional vectors in the di-

mension of several thousand, i.e., hypervectors [15]. More speci�-

cally, HDC-based Q-learning algorithms represent the state and Q-

function using hypervectors, and computing the Q-value for a state-

action pair becomes a lightweight similarity check between hyper-

vectors. Compared to DNN, HDC-based RL algorithms achieve

signi�cantly faster learning, higher rewards, and better e�ciency

when implemented with a limited computing budget [27].

However, as learning and interaction are highly intertwined,

it is vital for RL algorithms to properly handle the exploration-

exploitation dilemma [3]. During the interaction, the RL agent

can either follow current knowledge to maximize the immediate

reward or explore unknown states and actions that are temporarily

sub-optimal but possibly informative to reach a better solution.

Prior HDC-based Q-learning applies a common technique called

Ċ-greedy to encourage exploration, which occasionally forces the

agent to take random actions [27]. However, such a random and

naive exploration is undirected and will inevitably compromise the

learning e�ciency.

In this paper, we redesign the HDC-based Q-learning algorithm

for more e�cient and adaptive exploration, which is capable of

111

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Yang Ni*, William Youngwoo Chung*, Samuel Cho, Zhuowen Zou, and Mohsen Imani

reaching a better decision-making policy with fewer interactions

given the same environment. The main contributions of the paper

are listed as follows:

• We highlight the challenge faced by agents with prior hyperdi-

mensional RL algorithms. They lack the stochasticity for e�ec-

tive exploration when dealing with an environment that either

gives highly sparse feedback or hides the optimal state with long

trajectories. Even with dithering techniques, we �nd that prior

HDC-based Q-learning can easily get stuck in suboptimal policies

if not completely lost in the sparse reward space.

• The proposed algorithm leverages the uncertainty from themodel

distribution to guide agent exploration. Instead of going through

the bulky computation of the model posterior, our algorithm is

composed of several HDC sub-models, i.e., forming an ensem-

ble. This amounts to a stochastic model that encourages deep

exploration in RL.

• We specially designed the algorithm to ensure sub-model diver-

sity during training. Compared to prior HDC algorithms with

zeroed initial models, we propose to use random and standalone

prior hypervectors coupled with random model initialization to

help diversify sub-models. This is e�ectively having HDC sub-

models with di�erent prior knowledge about the environment.

Therefore, HDC sub-models learn di�erent aspects of the space

and naturally show uncertainty when facing unseen samples.

• Our algorithms are optimized towards low-power hardware plat-

forms while achieving signi�cantly better learning quality and

e�ciency, thanks to the proposed exploration mechanism. Due

to its lightweight HDC backbone, our algorithm also outperforms

the DNN-based counterparts with various exploration techniques,

showing notable improvements in the runtime costs (up to 6.9×

faster) and learned policy (over 800 higher rewards for CartPole).

2 HYPERDIMENSIONAL Q-LEARNING

2.1 Overview of Reinforcement Learning

The RL algorithm essentially tells the agent which actions to take

given the current state of the environment and its forecast of future

rewards. Therefore, we can view the interaction in RL as a loop-like

structure: (1) Observing the state ®ĩĪ at time step Ī , the agent takes an

action ėĪ guided by the RL policy. (2) The environment updates its

state to ®ĩĪ+1 after the agent acts. (3) The agent receives a feedback

reward ĨĪ from the environment and possibly updates its policy. (4)

Loop until the end of the current trajectory. We summarize each

step of the interaction by an experience tuple (®ĩĪ , ėĪ , ĨĪ , ®ĩĪ+1), which

is then used for training RL agents.

In this paper, our focus is on value-based Q-learning, which

learns a Q-function č (®ĩĪ , ėĪ) to evaluate how pro�table is to take

action ėĪ in the state of ®ĩĪ . In practice, the value of this function

predicts the expected accumulated future rewards after time step

Ī , so that a greedy policy can be applied to select an action with

the largest Q-value. Note that the RL policy can also be directly

parameterized and learned, however, it is well known that value-

based methods are intrinsically more sample-e�cient than policy-

based RL methods. This is mainly because the Q-function can be

trained using o�-policy samples, that is, any experience tuples from

past trajectories.

Figure 1: Overview of HDC encoder with continuous binding.

Figure 2: Model hypervector training in HDC-based RL.

2.2 Hypervector Encoding

In HDC, the encoder projects original inputs to a high-dimensional

space, or hyperspace. This allows information to be stored holis-

tically and distributed evenly in each element of the hypervector,

giving HDC robustness against hardware noise. As shown in Fig-

ure 1, we assume that the input to the encoder is an agent state

vector ®ĩĪ ∈ R
Ĥ at a speci�c time step Ī . The HDC encoder is com-

posed of Ĥ base hypervectors { ®þ1, ®þ2, . . . , ®þĤ}, and the encoding

is carried out independently for each element of ®ĩĪ . These base

hypervectors are generated by randomly sampling from a distri-

bution. It is not hard to �nd that they are near-orthogonal to each

other: ®þ1 · ®þ2 ≈ 0. In prior HDC works, a wide range of random

distributions have been selected for encoding [4, 4, 17]. For HDC-

based Q-learning, the base hypervectors are comprised of random

phasors following prior work [27]: ®þ ∈ [ěğĂ]Ā , where Ă ∈ N (0, 1)

and the hypervector dimensionality Ā k Ĥ.

Figure 1 is an overview of the encoding process. To encode the

state vector ®ĩĪ , we apply Continuous Binding to represent con-

tinuous element values of ®ĩĪ : {ĩ1, ĩ2, . . . , ĩĤ} in the hyperspace, i.e.,

element-wise exponential of base hypervectors with the exponent

being the value to associate. More speci�cally, we compute the en-

coded state hypervector: ®ďĪ = ®þĩ11 » ®þĩ22 »· · ·» ®þĩĤĤ . Here the encoder

uses a hypervector operation called Binding (»), i.e., element-wise

multiplication, to form a single hypervector that represents the

whole state vector.

2.3 Reinforcement Learning with HDC

In both DQN and HDC-based Q-learning, we will maintain an

experience replay bu�er to save experience tuples generated during

the interaction. The major di�erence between these two algorithms

is that the Q-function is abstracted using hypervectors instead of

DNN, leading to changes in the agent decision-making process

and model training. For example, the DQN training process and

parameter update are based on back-propagation, whereas QHD

utilizes lightweight hypervector memorization.

112

E�icient Exploration in Edge-Friendly Hyperdimensional Reinforcement Learning GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

In HDC-based Q-learning, the model is comprised of several

hypervectors č = { ®ĉ1, ®ĉ2, . . . , ®ĉģ}, each corresponds to one of

theģ possible actions and has the same dimensionality Ā as the

encoded state. For example, to select an action with a greedy policy,

we predict the Q-value through the dot-product similarity between

the encoded state hypervector and the model hypervector corre-

sponding to the selected action:

ėĪ = argmax
ė∈A

č (®ďĪ , ė) = argmax
ė∈A

real(®ďĪ · ®ĉ
ė/Ā) (1)

where A is the action space, Ā is the normalization factor, č (·)

represent the Q-function, and ®ĉ
ė is the conjugate vector. In HDC,

computing the dot product of two hypervectors is known as the

Similarity Check. HDC-based Q-learning leverages the similarity

values between state and model hypervectors to predict Q-values.

Note that since two concerning vectors are complex-valued, we

take the real part of the result.

In Figure 2, we provide the outline of HDC-based Q-learning. The

training begins by randomly sampling an experience tuple from the

experience replay bu�er, e.g., (®ĩĪ , ėĪ , ĨĪ , ®ĩĪ+1). The algorithm �rst

encodes the state of the current time step and the next one to state

hypervectors ®ďĪ and ®ďĪ+1, respectively. Then we can predict the

Q-value for the state-action pair {®ĩĪ , ėĪ }:

ħ̂Ī = č (®ďĪ , ėĪ) = real(®ďĪ · ®ĉ
ėĪ
/Ā) (2)

The target Q-value ħĪ is derived from the Bellman optimality equa-

tion as the following:

ħĪ =

{

ĨĪ Ī is the last step

ĨĪ + Ā max
ė

č̄ (®ďĪ+1, ė) Ī is not the last step
(3)

It is computed as the sum of immediate reward ĨĪ and the greedy pre-

diction of the future accumulated rewards. As proposed in Double

Q-learning [40], the Q-value for the next time step is provided by a

delayed model č̄ , which will be updated less frequently by copying

the model hypervectors from the model č every few training steps.

This helps stabilize the training and reduce the overestimation of

Q-values when taking the maximum.Ā is the reward discount factor

that decides how short-sighted is the agent. The model update is

based on the o�-policy TD error, i.e., ħĪ −ħ̂Ī . The model hypervector

corresponding to the chosen action ėĪ will be updated:

®ĉėĪ+1 =
®ĉėĪ + ā (ħĪ − ħ̂Ī) ®ďĪ (4)

where ā is the learning rate. Depending on the sign of the TD error,

a weighted hypervector ®ďĪ is added to or subtracted from the model

hypervector, so a higher error results in a more aggressive update.

As shown in Equation 4, the model hypervectors ®ĉė are learned

to be a weighted combination of encoded state hypervectors, which

is usually referred to as hypervector Bundling in HDC. This allows

HDC to distinguish itself from DNNs used in DQN. Models in HDC-

based algorithms serve as memorization components that explicitly

record past experienced states ®ď and their rewards ħ. Therefore,

similarities in Equation 2 naturally gives Q-value predictions.

After training on a batch of prior experience samples, the up-

dated agent continues exploring the environment and collects new

samples for the experience replay bu�er.

3 BALANCE BETWEEN EXPLORATION AND
EXPLOITATION IN HDC-BASED RL

If we directly apply the HDC-based Q-learning introduced in the

previous section, it will not return satisfying results in most cases.

The main problem, also the focus of this work, lies in the Equation 1.

This equation stands for a purely greedy policy that always exploits

the current knowledge of the agent to choose the best possible

action. However, in the early phases of RL, the agent has very

limited knowledge about the environment, which cannot e�ectively

support a high-quality policy. As we mentioned in Section 1, Ċ-

greedy mitigates this issue by letting the agent randomly explore

the space with a decaying probability. This is based on a simple

notion that the need for exploration is greater in the beginning.

However, in our algorithm, we argue that the HDC-based agent

should choose to explore only when the agent is uncertain about

the current situation; this e�ectively de-correlates the exploration

from the number of training iterations, making it more �exible

on tasks with di�erent levels of complexity. In order to �nd out

the con�dence of the agent, we apply ensemble learning based on

HDC-based Q-learning.

3.1 Stochastic Policy via HDC Sub-models

The greedy policy in Q-learning is deterministic, yet it is desired

to obtain a stochastic policy for exploration. A possible solution

is to have a posterior distribution of the Q-function. By randomly

sampling a Q-value from the distribution, the policy becomes sto-

chastic. As the posterior is closely connected to the con�dence of

the agent, the agent is prone to exploration when it faces uncertain

states due to a wider Q-value distribution, and it automatically pri-

oritizes exploitation when the con�dence is high. However, directly

evaluating the posterior in practice is highly ine�cient.

With several HDC sub-models, our algorithm approximates the

posterior distribution by randomly choosing one sub-model to guide

the agent. Assume we have ġ di�erent sub-models {č1, č2, . . . , čġ }.

For e�ciency purposes, we only use one of them to actually guide

the agent interaction, di�erent from typical ensemble learning. Pe-

riodically, we perform a random selection from ġ HDC sub-models

such that the agent follows a stochastic policy. When the agent is

unfamiliar with the surrounding environment, this uncertainty is

re�ected through disagreements between HDC sub-models. There-

fore, sampling from sub-models e�ectively encourages agent explo-

ration for less frequently visited states, as each sub-model will be

likely to choose a di�erent action.

The frequency of sub-model re-selection can be tuned depending

on the depth of exploration needed. When the agent re-selects a

sub-model for every step of interaction, our algorithm is an e�cient

approximation of Thompson sampling without explicit posterior.

Thompson sampling has been shown to greatly boost agent explo-

ration in the multi-armed bandit problem [1]. It is suitable for tasks

that need shallow or local exploration. In contrast, when a sub-

model is re-sampled every episode, it is capable of deep exploration.

In this setting, the agent proactively looks for long-shot rewards

and informative states even if it means taking many sub-optimal

actions. We will show more details in Section 4.2.

Figure 3 shows the overall structure of our proposed design. All

HDC sub-models share the same hyperdimensional encoder, leading

113

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Yang Ni*, William Youngwoo Chung*, Samuel Cho, Zhuowen Zou, and Mohsen Imani

 �
�

ÿ
ÿ � ÿ

 ������ ∈�Ā

Figure 3: HDC-based Q-learning Exploration with Sub-model Ensemble.

to an e�cient implementation. Unifying the encoding process will

not compromise the stochastic policy, since the HDC encoder does

not contain trainable parameters. During training, HDC sub-models

will sample past experience tuples from a shared experience replay

bu�er. Thus, tuples collected by individual sub-models are shared

with each other to improve the utilization of training samples. This

ensures any informative or highly rewarding state will be used to

train all sub-models.

3.2 Diversi�cation in HDC Ensemble Learning

In Figure 3, we have extra hypervectors ®Č in each sub-model č ,

besides the regular model hypervectors ®ĉ . As a crucial part of

our design, they help keep sub-models di�erent from each other.

To encourage exploration, these sub-models should obtain a di-

verse understanding of the environment. Highly similar models

will defeat the purpose of an ensemble and lead to deterministic

policies.

However, training sub-models via hypervector memorization

(Equation 4) leads to the high similarity between those models,

given that the training samples are shared among them. In prior

works, HDC-basedmodels generally showmuch faster convergence

than other ML models even though they usually require no model

initialization. For sub-model diversi�cation, however, a fast model

convergence and zero initialization are not ideal.

Motivated by the Bayesian inference, we include the prior dis-

tribution to the HDC learning. Similar to how we approximate the

posterior via multiple HDC sub-models, the prior is represented by

a series of randomly sampled hypervectors loaded before any train-

ing. Now in each sub-modelč , there are additionalģ hypervectors

{ ®Č1, ®Č2, . . . , ®Čģ}. These hypervectors are not updated during train-

ing and are isolated from the model hypervectors during Q-value

computation.

We sample the prior hypervectors with dimensionality Ā from

a zero-mean Gaussian distribution: ®Č1, ®Č2, . . . , ®Čģ ∈ [N (0, Ă2)]Ā

, where Ă is the standard deviation and a hyperparameter in our

algorithm. We will then modify the inference process (Equation 1)

and č (·) accordingly:

ėĪ = argmax
ė∈A

č (®ďĪ , ė) = argmax
ė∈A

real
(

®ďĪ · (®ĉ

ė + ®Č ė)

)

Ā
(5)

In this equation, we �rst bundle the model hypervector and the

prior hypervector of the same action, and then the dot product

similarity is calculated between the encoded state and the bundled

Table 1: Runtime speedup on embedded CPU with di�erent

proposed optimization techniques.

Proposed

Optimization

Pre-

Encoding
Batching Mask Stacking

Full

Optimization

Speedup Over

Non-optimized
1.31× 1.44× 1.82× 4.56× 5.95×

hypervector. Q-value computation in Equation 2 and 3 are also

changed accordingly. As for training, we still use Equation 4 to

update only the model hypervectors and leave the prior untouched.

Adding prior distribution will not introduce bias in Q-value pre-

diction because su�cient training will eventually cancel out the

�xed prior hypervector. More importantly, when the agent reaches

a novel state, the lack of training means that prior hypervectors

will play a signi�cant role in the Q-value prediction. Suppose in the

extreme case that two sub-models č1 and č2 are never trained and

will be tested on a state-action pair { ®ď, ė}: the model hypervectors

can be ignored if they are initialized with zero, and the prior hy-

pervectors ®Č1ė and ®Č2ė are randomly generated. The �rst sub-model

will predict ħ̂1 = real(®ď · ®Č1 ė /Ā), and for the second one will give

ħ̂2 = real(®ď · ®Č2 ė /Ā). It is not hard to observe that they have diverse

predictions on Q-values due to di�erent prior knowledge, which

naturally leads to exploration in unseen states.

To further encourage sub-model diversity, we also apply two

similar techniques as in the prior work [32]: random initialization

for model hypervectors and bootstrapped sampling for HDC sub-

model training. For the �rst technique, we randomly sample model

hypervectors usingN(0, 1), such that the di�erences in sub-models

č are from both ®ĉ and ®Č . As for the second trick, we give a binary

mask of length ġ for each experience tuple in the experience bu�er:

®ģ ∈ {0, 1}ġ . For example,ģ3 = 1 means that this tuple will be used

to train the third sub-model. As the mask is not one-hot, a particular

tuple can be used for multiple sub-models. The mask elements

will be sampled independently from a Bernoulli distribution with

probability Ħ . A probability of less than 1 makes sub-models train

on slightly di�erent samples.

3.3 Edge-Friendly HDC-based RL

Various techniques have been applied to our model for e�cient

learning on embedded systems. By leveraging unique properties

of HDC, we can initialize a single tensor to e�ciently represent a

114

E�icient Exploration in Edge-Friendly Hyperdimensional Reinforcement Learning GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

group of model hypervectors. This allows us to train the models us-

ing the same number of operations as training a single QHD model,

signi�cantly decreasing the computational overhead of training

multiple models. We refer to this technique as "Stacking" in Table 1

and report a 4.56x speedup.

Prior work [32] experiments with using a mask to implement an

online bootstrap by masking each episode of data. It was reported

to show little to no bene�ts to performance yet required more

iterations to converge. However, we adjust the bootstrap to mask

which models should be trained per time step Ī instead of per

episode. This allows models to be trained during any given episode,

reducing the possibility of the selected exploration model not being

trained for an entire episode, which prohibited the bene�t of deep

exploration. We note that the result of our masking method not

only reduces the runtime by 1.82×, but also increases the amount

of rewards obtained in Figure 8 (a).

Other optimizations we introduce are pre-encoding and batch-

ing. Prior HDC-based RL work [16, 27, 29] encodes the state into

high-dimensional vectors for both inference and training. Since

the state encoding matrix remains �xed, this allows us to re-use

the same state hypervectors for inference and training and to dis-

regard the need for encoding the state twice. Training samples

can also be e�ciently batched to minimize the number of complex

high-dimensional encoding to one per training step. This has no

e�ect on the performance of the algorithm as we only batch the

encoding processes of the state vectors and not the training directly.

These approaches can be easily applied to existing HDC-based RL

methods for accelerated learning on embedded systems. We notice

a 1.33× and 1.44× speedup respectively.

Additionally, we combine all optimization methods and make

slight modi�cations to the QHD framework to make it more mem-

ory e�cient and compatible with learning on the edge and combine

all optimizations, resulting in 5.95× speedup over a naive imple-

mentation of training on embedded CPUs.

4 EXPERIMENTAL RESULT

4.1 Experiment Settings

Our implementation is based on the low-power laptop CPU Intel

Core-i5-8259U and an embedded ARM CPU on the Raspberry Pi

platform (with 6w TDP) using Python and the Pytorch framework.

The RL environments used are based on OpenAI Gym [6]. We in-

crease the task di�culty by making the rewards sparser (assign

reward only after reaching the goal) and each episode shorter (half

the number of steps in LunarLander and Acrobot). We compare the

proposed design against several state-of-the-art baselines including

QHD [27], Double DQN (DDQN) [40], Double DQN with Thomp-

son Sampling (TDQN) [1], and Bootstrapped DQN (BDQN) [32].

By default, we use hypervectors with Ā = 6000 for QHD as de-

scribed in the original paper. However, for our designwith ensemble

sub-models, we set Ā = 2000, as we �nd that it balances between

learning quality and runtime cost. The backbone of all DQN-based

methods is a neural network with two hidden layers. The �rst layer

has 128 neurons, and the second one has 256; this gives a similar

computation to a single QHD model at Ā = 6000 during inference.

We record multiple trials when evaluating our design and other

baselines, and we provide the moving average values of 20 episodes

S
c
o

re
s

0
50

100
150
200
250
300

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

DQN DDQN BDQN QHD BQHD

Chain

Length

Figure 4: Accumulated scores/rewards in Chain environment.

U
n

it
 R

u
n

ti
m

e
 (

s
)

Chain

Length

0
0.5

1
1.5

2
2.5

3

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

DQN DDQN BDQN QHD BQHD

Laptop CPU

Embedded CPU

Figure 5: Unit runtime in Chain environment.

for reward and runtime. For several aforementioned hyperparame-

ters, we set the default probability Ħ for the bootstrapping mask to

1, and Ă = 5 for sampling prior hypervectors. Our ablation study in

Section 4.4 explores the e�ect of these hyperparameters. In the fol-

lowing sections, for HDC-based algorithms, TQHD stands for QHD

with Thompson sampling (i.e., the HDC sub-model is re-selected

for each interaction), and BQHD is for the setting where the same

sub-model is used until another trajectory starts.

4.2 Deep Exploration with HDC-based
Q-learning

Figure 4 and Figure 5 illustrate the rewards and unit runtimes of

various RL algorithms in a Chain environment, which is designed

to highlight the importance of thorough, deep exploration. These

experiments involve simulated environments with chains of length

Ċ g 10 and each episode lasting Ċ + 9 discrete steps. Additionally,

this environment has also been modi�ed such that the reward is

0.001 when the agent is in the left-most state but reward is 1 when

the agent is in the right-most state. The simulation is �nished if the

agent obtains the optimal +10 rewards 50 times or runs over 2000

episodes. There is a fundamental trade-o� between employing a

well-established, moderately successful strategy and experiment-

ing an unfamiliar yet potentially more lucrative approach, favor-

ing algorithms that drive deep exploration. As shown in Figure 4,

bootstrapping drives e�cient exploration and is evident through

the di�erences in solved chain lengths and cumulative rewards

compared to non-bootstrapped architectures. BQHD signi�cantly

improves upon QHD in deep exploration as QHD is not able to learn

the optimal policy at any given chain length. Moreover, Figure 5

shows that BQHD performs similar exploration as BDQN while

signi�cantly reducing the runtime per episode.

4.3 Learning E�ciency and Quality
Comparison of Various RL Algorithms

Figure 6 shows the learning curves in the Cartpole task of di�erent

RL algorithms with or without adaptive exploration. Consistent

with the prior work [27], we observe that HDC-based algorithms

outperform the DQN-based ones in terms of achieved rewards

115

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Yang Ni*, William Youngwoo Chung*, Samuel Cho, Zhuowen Zou, and Mohsen Imani
R

e
w

a
rd

s

R
e

w
a

rd
s

(a) (b)

Episode Runtime (s)

TDQN BDQN

0

300

600

900

1200

0 80 160 240 320 400

QHD TQHDDDQNDQN BQHD

0

300

600

900

1200

0 250 500 750 1000

Figure 6: Cartpole learning curves comparison in terms of

(a) episodes and (b) runtime. Note that the runtime �gure is

clipped at 1000 seconds.

R
e

w
a

rd
s

R
u

n
ti

m
e

 (
s

)

0

300

600

900

1200

0

5000

10000

15000

(a) (b)

6.9x

3.7x

~330
Embedded

CPU

Laptop

CPU

Figure 7: In Cartpole, compare RL algorithms at 400 learning

episodes in terms of: (a) achieved average rewards and (b)

required total runtime.

also runtime e�ciency. More importantly, the proposed method

BQHD is able to further enhance that bene�t by a notable margin,

achieving over 1000 rewards at 400 episodes. The result indicates

that adaptive exploration guided by the model uncertainty helps

the agent discover a much more optimal policy. Figure 7(a) shows

that our proposed BQHD is able to achieve 330 rewards higher

than the baseline QHD. Thompson sampling is not performing as

well mainly due to its inability of deep exploration. In Figure 7(b),

we compare the required total runtime for 400 episodes in both

laptop and embedded CPU platforms. The results show that TDQN

and BDQN, due to having multiple DNNs, require a much longer

learning runtime (e.g., TDQN needs nearly 3800 seconds on the

laptop CPU and 13800 seconds on the embedded CPU); they are less

desirable for deployments in edge or resource-limited devices. On

the other hand, our BQHD is about 6.9× faster than TDQN and 3.7×

faster than BDQN. In Table 2, we further evaluate our algorithm on

the LunarLander and Acrobot task, where the BQHD achieves much

higher rewards than BDQN while providing runtime speedups, e.g.,

5.5× (2.7×) on embedded CPU for Acrobot (LunarLander).

4.4 Ablation Study

Figure 8(a) highlights the di�erence between di�erent mask proba-

bilities. The probability determines which models are trained on

the speci�c sample, which e�ectively allows the shared bu�er to

act as separate smaller bu�ers for each sub-model. Prior work [32]

suggests that training with multiple mini bu�ers increases the run

time but allows for more diversity within the models. According

to our results, using a Ħ between 0.5 and 0.75 is a fair compromise

between average rewards and run time.

As stated in Section 4.1, the dimensionality of each sub-model

is correlated with the quality of learning. Figure 8(b) showcases

di�erent dimensionalities, Ā , for each sub-model and compares

the average reward for 200 episodes. We notice that increasing the

Table 2: Learning quality and e�ciency comparison

Task Alg. Reward
Laptop

Runtime (s)

RPi

Runtime (s)

CartPole
BDQN 186 1896 7489

BQHD 1005 766 2006

Acrobot
BDQN 17 6066 38507

BQHD 70 906 7045

LunarLander
BDQN 27 13977 71480

BQHD 65 4097 27180

R
e

w
a

rd
s

Runtime (s)

0

300

600

900

1200

0 200 400 600 800

p=0.25

p=0.5

p=0.75

p=1

(a) Tuning Mask Probability (b) Tuning Dimensionality

0

300

600

900

1200

0 100 200 300 400 500

D=1k D=2k

D=3k D=4k

D=5k D=6k

Runtime (s)

R
e

w
a

rd
s

Figure 8: Explore the changes in the Cartpole learning curve

when tuning (a) Bernoulli probability Ħ and (b) hypervector

dimensionality Ā . We only record 200 episodes for (b).

R
e

w
a

rd
s

Episode

0

500

1000

1500

0 100 200 300 400

Prior: 0 Prior: 3 Prior: 5

Prior: 10 Prior: 20 Prior: 30

Figure 9: Ablation study on the scale of prior hypervectors.

dimensionality increases the learning runtime for the bene�t of

higher average rewards. Ā = 2000 is chosen as it has comparable

convergence speed to Ā = 1000, yet still achieves higher rewards

than vanilla QHD at 200 episodes.

The scale, Ă , for prior hypervectors heavily in�uences the ex-

ploration of the agent. The goal of the randomized prior tuning is

to �nd an optimal scale such that it helps the sub-models predict

di�erent actions at any given new state, but not too large such that

the agent fails to learn the optimal action. Figure 9 suggests that

using Ă = 5 gives just enough motivation for the agent to explore

e�ciently and optimally in terms of runtime and average rewards.

5 RELATED WORK

Reinforcement Learning: By integrating deep learning, modern

RL algorithms play an increasingly important role in �elds like

wireless communication [22], resource sharing in smart cities [2,

26], computer games [24], and intelligent transportation optimiza-

tion [19]. Deep RL algorithms leverage DNN to abstract better

policy for agents. However, they are computationally intensive due

to frequent agent learning, rendering poor applicability at the edge.

Exploration in RL: In RL, there is a dilemma between exploration

and exploitation [3]. In many applications, RL agent exploration is

empirically maintained through the Ċ decay rate in Ċ-greedy [23, 24].

Alternatively, the Boltzmann exploration assigns probabilities to

116

E�icient Exploration in Edge-Friendly Hyperdimensional Reinforcement Learning GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA

each action proportionally to their scores, avoiding blind random

actions [12, 37]. More advanced exploration methods are usually

designed in conjunction with RL models. Examples include ran-

dom value functions [33], bootstrapped DQN [32], Thompson sam-

pling [1, 5], and Bayesian inference [10]. They share a similar moti-

vation to our algorithm, i.e., following the "optimism in the face of

uncertainty" principle [21]. However, the overhead of these explo-

ration techniques further inhibits the deployments in practice.

Learning with Hyperdimensional Computing: As an alterna-

tive lightweight machine learning method, HDC has been imple-

mented to solve various learning and cognitive reasoning tasks,

such as graph reasoning [18, 35, 44], biosignal processing [25, 31,

34, 36, 38], human activity classi�cation [20, 30, 46], genomic se-

quencing [7, 45], regression [9, 13, 28], outlier detection [41, 42],

and text recognition [39]. These works show that HDC can out-

perform machine learning solutions, e.g., support vector machines

and DNNs. As for RL tasks, HDC has been utilized to achieve faster

convergence and lower the computational cost for both value-based

and policy-based RL algorithms [8, 27, 29]. The proposed algorithm

in work [27] requires a signi�cantly shorter runtime in learning

and obtains a better policy than DQN. As a downstream application,

work in [16] combines HDC-based RL and environment modeling

for resource optimization in an end-edge-cloud system. However,

prior works do not systematically handle RL exploration; instead,

they apply naive random exploration guided by Ċ-greedy [27] or

annealing variance [29], which gives rise to suboptimal sample

e�ciency. In comparison, via uncertainty estimation, our proposed

method adaptively encourages exploration when facing poorly un-

derstood samples.

6 CONCLUSION

Wepropose anHDC-based lightweight RL algorithm that adaptively

encourages agent exploration. Our algorithm discovers possibly

informative states through uncertainty estimation of HDC models.

It enables the self-learning agent to interact with and learn in

challenging environments more e�ciently. Our evaluation shows a

signi�cant improvement in the sample and runtime e�ciency when

compared with prior HDC-based and DNN-based RL algorithms.

ACKNOWLEDGMENTS

This work was supported in part by DARPA Young Faculty Award,

National Science Foundation #2127780, #2319198, #2321840, #2312517,

and #2235472, Semiconductor Research Corporation (SRC), Of-

�ce of Naval Research through the Young Investigator Program

Award, and grants #N00014-21-1-2225 and #N00014-22-1-2067, the

Air Force O�ce of Scienti�c Research, grants #FA9550-22-1-0253,

and generous gifts from Cisco.

REFERENCES
[1] Shipra Agrawal and Navin Goyal. 2012. Analysis of thompson sampling for the

multi-armed bandit problem. In Conference on learning theory. JMLR Workshop
and Conference Proceedings, 39–1.

[2] Aseel AlOrbani and Michael Bauer. 2021. Load balancing and resource allocation
in smart cities using reinforcement learning. In 2021 IEEE International Smart
Cities Conference (ISC2). IEEE, 1–7.

[3] Kai Arulkumaran, Marc Peter Deisenroth, et al. 2017. Deep reinforcement learn-
ing: A brief survey. IEEE Signal Processing Magazine 34, 6 (2017), 26–38.

[4] Sercan Aygun, Mehran Shoushtari Moghadam, et al. 2023. Learning from Hy-
pervectors: A Survey on Hypervector Encoding. arXiv preprint arXiv:2308.00685
(2023).

[5] Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. 2018.
E�cient exploration through bayesian deep q-networks. In 2018 Information
Theory and Applications Workshop (ITA). IEEE, 1–9.

[6] Greg Brockman et al. 2016. Openai gym. arXiv preprint arXiv:1606.01540 (2016).
[7] Hanning Chen and Mohsen Imani. 2022. Density-aware parallel hyperdimen-

sional genome sequence matching. In 2022 IEEE 30th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 1–4.

[8] Hanning Chen, Mariam Issa, et al. 2022. Darl: Distributed recon�gurable accel-
erator for hyperdimensional reinforcement learning. In Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design. 1–9.

[9] Hanning Chen, M Hassan Naja�, et al. 2022. Full stack parallel online hyper-
dimensional regression on fpga. In 2022 IEEE 40th International Conference on
Computer Design (ICCD). IEEE, 517–524.

[10] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference on
machine learning. PMLR, 1050–1059.

[11] Florin-Cristian Ghesu and Bogdan others Georgescu. 2017. Multi-scale deep
reinforcement learning for real-time 3D-landmark detection in CT scans. IEEE
transactions on pattern analysis and machine intelligence 41, 1 (2017), 176–189.

[12] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. 2017. Rein-
forcement learning with deep energy-based policies. In International conference
on machine learning. PMLR, 1352–1361.

[13] Alejandro Hernández-Cano, Yang Ni, Zhuowen Zou, Ali Zakeri, and Mohsen
Imani. 2024. Hyperdimensional computing with holographic and adaptive en-
coder. Frontiers in Arti�cial Intelligence 7 (2024). https://doi.org/10.3389/frai.
2024.1371988

[14] Wenjun Huang, Arghavan Rezvani, Hanning Chen, Yang Ni, Sanggeon Yun,
Sungheon Jeong, and Mohsen Imani. 2024. A Plug-in Tiny AI Module for Intelli-
gent and Selective Sensor Data Transmission. arXiv preprint arXiv:2402.02043
(2024).

[15] Mohsen Imani, Zhuowen Zou, Samuel Bosch, Sanjay Anantha Rao, Sahand Sala-
mat, Venkatesh Kumar, Yeseong Kim, and Tajana Rosing. 2021. Revisiting hy-
perdimensional learning for fpga and low-power architectures. In 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 221–234.

[16] Mariam Issa, Sina Shahhosseini, et al. 2022. Hyperdimensional hybrid learning on
end-edge-cloud networks. In 2022 IEEE 40th International Conference on Computer
Design (ICCD). IEEE, 652–655.

[17] Pentti Kanerva. 2009. Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random vectors.
Cognitive computation 1, 2 (2009), 139–159.

[18] Jaeyoung Kang, Minxuan Zhou, et al. 2022. RelHD: A Graph-based Learning
on FeFET with Hyperdimensional Computing. In 2022 IEEE 40th International
Conference on Computer Design (ICCD). IEEE, 553–560.

[19] Jintao Ke et al. 2019. Optimizing online matching for ride-sourcing services with
multi-agent deep reinforcement learning. arXiv preprint arXiv:1902.06228 (2019).

[20] Yeseong Kim, Mohsen Imani, and Tajana S Rosing. 2018. E�cient human ac-
tivity recognition using hyperdimensional computing. In Proceedings of the 8th
International Conference on the Internet of Things. 1–6.

[21] Tze Leung Lai, Herbert Robbins, et al. 1985. Asymptotically e�cient adaptive
allocation rules. Advances in applied mathematics 6, 1 (1985), 4–22.

[22] Le Liang, Hao Ye, and Geo�rey Ye Li. 2019. Spectrum sharing in vehicular
networks based on multi-agent reinforcement learning. IEEE Journal on Selected
Areas in Communications 37, 10 (2019), 2282–2292.

[23] Gabriel Maicas, Gustavo Carneiro, et al. 2017. Deep reinforcement learning
for active breast lesion detection from DCE-MRI. In International conference on
medical image computing and computer-assisted intervention. Springer, 665–673.

[24] Volodymyr Mnih, Koray Kavukcuoglu, et al. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[25] Ali Moin, Andy Zhou, et al. 2021. A wearable biosensing system with in-sensor
adaptive machine learning for hand gesture recognition. Nature Electronics 4, 1
(2021), 54–63.

[26] Almuthanna Nassar and Yasin Yilmaz. 2021. Deep reinforcement learning for
adaptive network slicing in 5G for intelligent vehicular systems and smart cities.
IEEE Internet of Things Journal 9, 1 (2021), 222–235.

[27] Yang Ni, Danny Abraham, et al. 2023. E�cient O�-Policy Reinforcement Learning
via Brain-Inspired Computing. In Proceedings of the Great Lakes Symposium on
VLSI 2023. 449–453.

[28] Yang Ni, Hanning Chen, et al. 2023. Brain-Inspired Trustworthy Hyperdimen-
sional Computing with E�cient Uncertainty Quanti�cation. In 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD). IEEE, 01–09.

[29] Yang Ni, Mariam Issa, et al. 2022. Hdpg: hyperdimensional policy-based rein-
forcement learning for continuous control. In Proceedings of the 59th ACM/IEEE
Design Automation Conference. 1141–1146.

117

GLSVLSI ’24, June 12–14, 2024, Clearwater, FL, USA Yang Ni*, William Youngwoo Chung*, Samuel Cho, Zhuowen Zou, and Mohsen Imani

[30] Yang Ni, Yeseong Kim, et al. 2022. Algorithm-hardware co-design for e�cient
brain-inspired hyperdimensional learning on edge. In 2022 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 292–297.

[31] Yang Ni, Nicholas Lesica, Fan-Gang Zeng, and Mohsen Imani. 2022. Neurally-
inspired hyperdimensional classi�cation for e�cient and robust biosignal pro-
cessing. In Proceedings of the 41st IEEE/ACM International Conference on Computer-
Aided Design. 1–9.

[32] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. 2016.
Deep exploration via bootstrapped DQN. Advances in neural information process-
ing systems 29 (2016).

[33] Ian Osband, Benjamin Van Roy, and Zheng Wen. 2016. Generalization and explo-
ration via randomized value functions. In International Conference on Machine
Learning. PMLR, 2377–2386.

[34] Una Pale, Tomas Teijeiro, and David Atienza. 2022. Multi-centroid hyperdimen-
sional computing approach for epileptic seizure detection. Frontiers in Neurology
13 (2022), 816294.

[35] Prathyush Poduval, Haleh Alimohamadi, et al. 2022. Graphd: Graph-based hy-
perdimensional memorization for brain-like cognitive learning. Frontiers in
Neuroscience 16 (2022), 757125.

[36] Abbas Rahimi, Artiom Tchouprina, et al. 2020. Hyperdimensional computing for
blind and one-shot classi�cation of EEG error-related potentials. Mobile Networks
and Applications 25 (2020), 1958–1969.

[37] Brian Sallans and Geo�rey E Hinton. 2004. Reinforcement learning with factored
states and actions. The Journal of Machine Learning Research 5 (2004), 1063–1088.

[38] Sina Shahhosseini, Yang Ni, et al. 2022. Flexible and personalized learning for
wearable health applications using hyperdimensional computing. In Proceedings

of the Great Lakes Symposium on VLSI 2022. 357–360.
[39] Kumar Shridhar and Harshil others Jain. 2020. End to end binarized neural

networks for text classi�cation. In Proceedings of SustaiNLP: Workshop on Simple
and E�cient Natural Language Processing. 29–34.

[40] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
learning with double q-learning. In Proceedings of the AAAI conference on arti�cial
intelligence, Vol. 30.

[41] Ruixuan Wang, Xun Jiao, and X Sharon Hu. 2022. Odhd: one-class brain-inspired
hyperdimensional computing for outlier detection. In Proceedings of the 59th
ACM/IEEE Design Automation Conference. 43–48.

[42] Ruixuan Wang, Sabrina Hassan Moon, X Sharon Hu, Xun Jiao, and Dayane Reis.
2024. A Computing-in-Memory-based One-Class Hyperdimensional Computing
Model for Outlier Detection. IEEE Trans. Comput. (2024).

[43] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[44] Ali Zakeri, Zhuowen Zou, et al. 2024. Conjunctive block coding for hyperdi-
mensional graph representation. Intelligent Systems with Applications (2024),
200353.

[45] Zhuowen Zou, Hanning Chen, et al. 2022. Biohd: an e�cient genome sequence
search platform using hyperdimensional memorization. In Proceedings of the 49th
Annual International Symposium on Computer Architecture. 656–669.

[46] Zhuowen Zou, Yeseong Kim, et al. 2021. Scalable edge-based hyperdimensional
learning system with brain-like neural adaptation. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 1–15.

118

	Abstract
	1 Introduction
	2 Hyperdimensional Q-learning
	2.1 Overview of Reinforcement Learning
	2.2 Hypervector Encoding
	2.3 Reinforcement Learning with HDC

	3 Balance Between Exploration and Exploitation in HDC-based RL
	3.1 Stochastic Policy via HDC Sub-models
	3.2 Diversification in HDC Ensemble Learning
	3.3 Edge-Friendly HDC-based RL

	4 Experimental Result
	4.1 Experiment Settings
	4.2 Deep Exploration with HDC-based Q-learning
	4.3 Learning Efficiency and Quality Comparison of Various RL Algorithms
	4.4 Ablation Study

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

