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Deep random forest (DRF), which combines deep learning and random forest, exhibits comparable accuracy, inter-
pretability, low memory and computational overhead to deep neural networks (DNNs) in edge intelligence tasks. 
However, e�cient DRF accelerator is lagging behind its DNN counterparts. The key to DRF acceleration lies in real-
izing the branch- split operation at decision nodes. In this work, we propose implementing DRF through associative 
searches realized with ferroelectric analog content addressable memory (ACAM). Utilizing only two ferroelectric 
�eld e�ect transistors (FeFETs), the ultra- compact ACAM cell performs energy- e�cient branch- split operations by 
storing decision boundaries as analog polarization states in FeFETs. The DRF accelerator architecture and its model 
mapping to ACAM arrays are presented. The functionality, characteristics, and scalability of the FeFET ACAM DRF 
and its robustness against FeFET device non- idealities are validated in experiments and simulations. Evaluations 
show that the FeFET ACAM DRF accelerator achieves ∼106

×/10× and ∼106
×/2.5× improvements in energy and 

latency, respectively, compared to other DRF hardware implementations on state- of- the- art CPU/ReRAM.

INTRODUCTION

Edge intelligence in the era of Internet of �ings (IoT) requires that 
raw data are analyzed locally instead of being transmitted back to the 
cloud for processing (1–3). Such edge intelligence can best be achieved 
by deploying an arti�cial intelligence (AI) hardware engine designed 
for IoT devices. Deep neural networks (DNNs) are highly e�ective in 
processing visual and speech data for various applications with high 
accuracy. However, DNN models face several fundamental challenges 
and are not readily deployable in the IoT. First, modern DNN models 
require large memories to store learned weights (commonly >1 GB) 
(4), well beyond the capacity of an embedded, on- chip memory in edge 
devices. External memories are therefore needed to store the entire 
DNN model. �e requisite data transfers between on/o�- chip memory 
lead to notable energy and latency overheads, which in turn limit the 
network complexities that may be deployed in edge devices. Second, 
to achieve high accuracy, DNNs require a huge amount of labeled 
training data. Data collection and preparation is expensive and time 
consuming for many tasks—especially for edge devices, considering 
their diverse functionalities and applications (5–7). �ird, the “black 
box” nature and large parameter space of a DNN makes it challeng-
ing to analyze and understand how DNNs make their decisions. In 
certain domains, such as medicine, health care, and �nance, the in-
terpretability of a model is critical in establishing trust and devel-
oping solutions to other related problems (8–11). In light of these 
challenges, deep random forests (DRFs), a recently proposed inter-
pretable and memory- e�cient AI model (12), are considered to be an 
excellent alternative to DNNs in realizing lightweight AI engines for 
edge intelligence.

At a high level, DRF incorporates the core features of deep learning 
models, i.e., layer- by- layer processing, in- model feature transformation, 

and su�cient model complexity (12), as shown in Fig. 1A. DRF fol-
lows a cascaded structure where each layer in a DRF receives feature 
information extracted from the preceding level. Each layer is an en-
semble of random forests (i.e., an ensemble of weak decision tree–
based classi�ers). Each forest models the class distribution of the 
datasets through either majority voting or averaging the predictions 
of decision trees in the same random forest. �ose outputs from the 
forests in the same layer are concatenated together and forwarded to 
the next layer for further processing (12). Equipped with these deep 
model features, DRF achieves comparable or better accuracy with 
DNNs in processing low- resource dataset (12). In addition, by in-
heriting the interpretability and low energy and memory require-
ments of the random forest (13), DRF represents a competitive 
solution for edge intelligence to handle information processing 
tasks with requirements that DNNs might struggle to satisfy (e.g., 
limited resources or interpretability). Unlike DNNs, hardware ac-
celeration of DRF has not been well explored. Our work addresses 
this gap by introducing an energy- e�cient and high- performance 
hardware for accelerating DRF.

�e key challenge in accelerating DRF is to implement the deci-
sion trees, the core component of DRF, as shown in Fig. 1B. It per-
forms comparisons at each nonleaf node, and depending on the 
comparison results, the node is split into di�erent branches. It has 
been proposed that analog content addressable memory (ACAM) 
can be used to perform the branch- split operation in a decision tree 
(14–16), which opens up the possibility of accelerating DRF with 
ACAM arrays. As a type of associative memories, content address-
able memories (CAMs) have gained popularity in data- centric com-
puting due to their massively parallel pattern- matching capability 
(17, 18). �ey can identify the stored entries matching the search 
query in parallel in the exact or approximate matching mode. In the 
exact matching mode, only the items that exactly match the input 
query are identi�ed (18), while in the approximate matching mode, 
the Hamming distance (HD) between the query and stored entries 
is returned by sensing the match- line (ML) current. �e approximate 
matching function has been applied to accelerate various machine 
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learning applications (19, 20). All the developments above have only 
considered digital CAMs, where binary information is stored and 
searched. However, it is also possible to leverage the analog states of 
nonvolatile memories for multi- bit or ACAMs (21–23). Multi- bit 
information can be stored in the CAM, and an analog or multi- bit 
query can be searched across the CAM array for pattern matching, 
thus greatly improving the information density and expanding the 
CAM functionality (21–24). Here, we demonstrate ferroelectric 
ACAMs and leverage their unique properties to accelerate DRF.

In an ACAM cell, a matching range, de�ned by the upper and 
lower bounds of the search line (SL) voltage, can be dynamically 

adjusted by con�guring the memory device states (21). We observe 
that by �xing the upper/lower bound of the matching range to the 
maximum/minimum voltage allowed on the SL and leaving the cor-
responding lower/upper bound adjustable, the respective greater- 
than (i.e., >)/less- than (i.e., <) branch- split operations in a decision 
tree can be e�ciently implemented in an ACAM cell through a 
simple search operation, as shown in Fig.  1C. An ACAM word, 
composed of a row of CAM cells, can be used to implement a branch 
from the root node to a leaf node in a decision tree, while an ACAM 
array represents an entire decision tree. In this way, the decision 
space partitioned by the decision tree can be mapped into the 
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Fig. 1. Overview of implementing DRF with ferroelectric ACAM. (A) DRF is a deep model built by cascading random forests, forming a layer- by- layer structure. The 

output of each layer concatenates a portion of the input features, allowing in- model feature transformation. The resulting DRF model can achieve good performance. 

(B) Each decision tree in a random forest forms a nondi�erentiable decision boundary by making a branch split at each nonleaf node based on the input features. (C) The 

random forest can be mapped onto an ACAM array. An ACAM cell with adjustable matching bounds (i.e., upper or lower matching bound) can e�ciently realize the 

branch- split operation in a decision tree; as such, an ACAM word can realize a branch from the root node to the leaf node in a decision tree. (D) Existing demonstrated 

ACAM cells based on the multi- bit embedded nonvolatile memories. Compared with its 6T2R ReRAM ACAM counterpart, the 2FeFET- based ACAM is compact and univer-

sal by simultaneously serving as a digital and analog CAM. (E) Working principle of 2FeFET ACAM cell with adjustable upper/lower matching bound to realize the branch 

split in a decision tree.
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matching space of an ACAM array. As a result, the inference opera-
tion of a decision tree can be realized through a simple parallel 
search operation in an ACAM array. �e identi�ed matched entries 
indicate the prediction results (i.e., the matching branches). By cas-
cading multiple ACAM arrays together, the DRF can be realized. 
�e e�ects of the limited precision of ACAM cells in de�ning the 
decision boundaries and the device- to- device variation of ACAMs 
are explored in the system benchmarking section.

Developing ACAM arrays for DRF requires that the ACAMs be 
compact, fast, and energy e�cient. In our previous work (21), we 
have proposed a universal ferroelectric CAM design through SPICE 
simulations, in which a CAM cell composed of two ferroelectric �eld 
e�ect transistors (FeFETs) can simultaneously serve as a digital and 
analog CAM cell. Notably, the 2FeFET CAM is the most compact 
cell to date, compared with SRAM- based CAM cells typically com-
posed of 16 transistors, spin- transfer- torque magnetic random ac-
cess memory (STT- MRAM)–based CAM cells built using 10 to 
15 transistors and 2 to 4 magnetic tunnel junctions (MTJs), and a re-
sistive memory [i.e., resistive random access memory (ReRAM) and 
phase change memory (PCM)]–based CAM cell constructed with 
2 transistors and 2 resistive memory devices (20). �is compactness 
originates from its intrinsic three- terminal transistor structure and 
its capability in enabling single- FeFET cell memory array (25, 26) 
when appropriate bias inhibition schemes are applied (27). Addi-
tionally, CAM based on FeFET is especially energy e�cient. Unlike 
a volatile SRAM CAM, which consumes a substantial leakage power, 
FeFET CAM is nonvolatile, thus avoiding the energy consumption 
due to leakage current. Moreover, unlike other non- volatile memories 
(NVMs) where switching is typically driven by a large conduction 
current, ferroelectric switching can be induced with an applied electric 
�eld without consuming conduction current, thus exhibiting superior 
energy e�ciency. Write energy down to 1 fJ/bit is achievable in a 
single FeFET (2, 28). Finally, ferroelectric CAM exhibits superior 
performance owing to its intrinsic transistor structure and a large 
ION/IOFF ratio (e.g., ∼104), greatly outperforming the two- terminal 
resistive memories, which typically show an ION/IOFF ratio of ∼100. 
�ese characteristics enables 2FeFET CAM to simultaneously serve 
as both a digital and an analog CAM, creating a versatile hardware 
platform for various applications.

Here, we demonstrate the 2FeFET- based ACAM for the imple-
mentation of a DRF. �ere have been reports of using other NVM 
devices to implement an ACAM cell, such as the �rst proposed Re-
RAM ACAM (22) (Fig. 1D). However, due to its limited ION/IOFF 
ratio, additional transistors are added into the digital CAM cell core 
(e.g., the 2T2R CAM cell) to support the analog/multi- bit search 
functionality, making it a 6T2R structure (22), larger than the 2FeFET 
ACAM design. �e operating principles of the proposed 2FeFET 
ACAM cell for implementing the branch- split operation in a decision 
tree are illustrated in Fig. 1E. To implement a less- than branch (Fig. 1E, 
le�), the FeFET F1, connected with SL  , is set to the high-  VTH state 
such that it remains in the cuto� state over the entire SL search 
range, thus forming a �xed lower bound. Adjusting the VTH state of 
the FeFET F0 associated with the SL tunes the upper bound of the 
matching range. When the SL search voltage VSL falls within the yellow 
region (where both the FeFETs turn o� and the ML discharges slowly), 
the ML voltage, VML, remains high throughout the sensing phase of 
a voltage sense ampli�er (SA). When the VTH of F0 increases, the 
resulting upper bound of the matching range also increases. As a 
result, the less- than branch with di�erent thresholds can be mapped 

to the 2FeFET ACAM cell with an adjustable upper bound. By sym-
metry, the greater- than branch can also be achieved by setting F0 in 
high-  VTH state, forming a �xed upper bound and adjusting the VTH 
of F1 to set the lower bound of the matching range. For the cases 
where not all the branches are of the same length, such as branch 
1 and branch 2 in Fig. 1C, or of the same set of features for branch 
split, the “don’t care” functionality of ACAM is leveraged. When a 
branch- split operation occurs over an input feature that is not in-
cluded in the other branches, the ACAM cells mapping the missing 
features in those branches are set to the “don’t care” state so that they 
contribute negligible leakage current through the ML, without a�ect-
ing the VML. �e “don’t care” functionality can be realized by simply 
setting both FeFETs of the ACAM cell to the high-  VTH state.

In the following sections, we �rst describe the experimental 
demonstration of the 2FeFET ACAM cell and verify the branch- split 
operation for decision trees. We also demonstrate the capability of 
an ACAM word in realizing a branch from the root node to a leaf 
node in a decision tree through a simple search operation. �is capa-
bility is used to realize a DRF, which exhibits good performance and 
superior energy e�ciency. In addition, we present the evaluation of 
the impact of FeFET nonidealities, such as variation and limited 
precision, on the DRF performance to demonstrate the robustness 
of FeFET ACAM DRF. Compared with existing works, the major con-
tributions of our work are as follows: (i) proposing a DRF accelerator 
leveraging the ferroelectric ACAM arrays for edge intelligence; (ii) 
�rst experimental demonstration of a ultra- compact, energy- e�cient, 
and universal 2FeFET digital and analog CAM cell; (iii) �rst experi-
mental demonstration of mapping a decision tree to an ACAM array, 
and �rst experimental demonstration of a DRF containing multiple 
layers; (iv) evaluating the impact of limited precision of the multi- bit 
matching ranges stored in FeFETs on the accuracy of DRF, and pro-
posing a precision extension method using low- precision devices; 
(v) validating the robustness of FeFET ACAM–based DRF against 
device- to- device variation.

RESULTS

2FeFET analog CAM demonstration
In this section, we �rst discuss the experimental validation of the 
ACAM cell operation. We have constructed the proposed ACAM 
cell with the GlobalFoundries 28- nm high- κ metal gate (HKMG) 
FeFET technology (shown in Fig. 2, A and B). �e device features an 
8- nm- thick Si- doped HfO2 ferroelectric thin �lm as the gate dielectric, 
capped with a TiN and polysilicon layer. A thin SiO2 interlayer (∼1 nm) 
is also present between the ferroelectric and the silicon substrate. 
Figure 2B shows the schematic cross- section of the device. Detailed 
process information can be found in (29). �e local crystallographic 
phase has been characterized in the ferroelectric HfO2 �lms by 
transmission–electron back- scattering di�raction (EBSD) (30), as 
shown in Fig. 2C. Dendritic grains consisting of the ferroelectric 
orthorhombic phase are observed, and only a small portion of the 
�lm grains are in the monoclinic dielectric phase, suggesting a good 
control over the ferroelectric phase through the high- temperature 
stressed annealing. �is is consistent with our previous work in the 
analysis of the ferroelectric material stack on silicon, speci�cally 
focusing on the orientation distribution within the �lm (31), which 
also shows that the presence of the tetragonal phase is suppressed 
and a predominantly orthorhombic ferroelectric phase is achieved 
through careful optimization of the fabrication process and doping 
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parameters. From the in- plane inverse pole �gure map (Fig. 2D), a 
large variety of crystallographic orientations can be deduced. As a 
consequence, the polarization axis in each grain will be located at 
slightly di�erent angles. Moreover, as gradients can be observed inside 
these grains and especially the dendrites, high degrees of intra- 
granular misorientation are expected (32). Consequently, these den-
drites are likely to experience slightly di�erent electric �elds and are 
therefore reducing the e�ective grain size of the �lm. Note that a 
dendrite grain could contain di�erent domains, and a broad distri-
bution of polarization orientations, as present in this �lm, allows for 
analog- like multi- state operation in the ferroelectric HfO2 layer.

�e FeFET ID-  VG characteristics for the low-  VTH and high-  VTH 
states a�er ±4- V, 1- μs write pulses are shown in Fig. 2E. Experimental 
setup for the cell and array measurement is shown in �g. S1. Device 
variation is characterized by measuring 60 di�erent devices. �e re-
sults show a large memory window of ∼1.2 V and a large sensing 
margin (i.e., ION/IOFF) separating the two VTH states even when con-
sidering the device variation. �e switching dynamics of the tested 
FeFET are shown in Fig. 2F, where the required pulse width to obtain 
a memory window of 1.2 V as a function of write pulse amplitude is 
presented. �e required switching time can be well described by the 
expression derived from domain nucleation theory (33, 34).

where α is a �tting parameter related with the polarization switching 
barrier, τo is the switching time at an in�nitely large applied pulse 
amplitude, and Vo� is the o�set voltage, an indication of the local 

domain environment. With the increase of write pulse amplitude, 
FeFET switching speed can be further reduced to below 10 ns (35), 
suggesting the great promise for high- speed and energy- e�cient 
ferroelectric memory.

Leveraging the partial polarization switching in the multi- domain 
FeFET, multiple VTH states have been demonstrated and used for 
multilevel cell memories and synaptic weight cells for the acceleration 
of matrix- vector multiplication (36–38). Here, we harness the inter-
mediate VTH states to realize the branch- split operation with adjustable 
thresholds for the nonleaf nodes in a decision tree for DRF. Figure S2 
shows experimentally measured ID-  VG characteristics for four VTH 
levels in a FeFET, which are set by applying di�erent pulse ampli-
tudes (23). �e extracted VTH distribution for four and eight levels 
are shown in �g. S2, C and D, respectively. With negligible overlaps 
between the neighboring levels, it is feasible to store multiple states 
into a FeFET, thus enabling the ACAM application proposed in this 
work. As shown in Fig. 2G, to verify the single ferroelectric ACAM 
cell operation, the FeFET associated with SL  (F1) is set to the high-
  VTH state (VTH = 1.1 V) and the FeFET associated with SL (F0) is 
con�gured to di�erent VTH states. �e ML current is then measured 
with a sweeping SL voltage, VSL. As a result, the matching range of 
VSL where the ML current is low can be identi�ed. Such VTH con-
�gurations de�ne a matching range with varying upper bounds over 
the VSL, thus implementing a less- than branch- split operation with 
varying decision boundaries. Because of the symmetry of the ACAM 
cell, the greater- than branch split is realized by simply swapping the 
VTH settings of the two FeFETs. Figure 2H shows the measurement 
results corresponding to Fig. 2G. With the high-  VTH state of F1, this 
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control in the FeFET. (F) Representative switching dynamics in the FeFET. To obtain a given memory window (e.g. 1.2 V in this case), the required switching time as a func-

tion of applied pulse amplitude can be well �tted with the nucleation limited switching model. (G) CAM cell con�guration used in the experimental validation, where 

F1 is set to be highest VTH state and F0 is adjusted. (H) Measured ML current as a function of the SL voltage, VSL. Since F1 is �xed to be highest VTH, it contributes negligible 

current. When VTH of F0 is varied, the threshold of the matching range is shifted, thus demonstrating successful single- cell operation.
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FeFET is cut o� in the entire voltage range (i.e., 0 to 1 V) and is only 
turned on at negative VSL. By setting VTH of F0 to eight di�erent 
states, the upper bounds for the matching range are de�ned accord-
ingly. As such, this veri�es the successful operation of the ferroelec-
tric ACAM cell.

To exploit a ferroelectric ACAM word for the mapping of an en-
tire branch from the root node to a leaf node of a decision tree, we 
further validate the capability of an ACAM word to de�ne a matching 
subspace in the high- dimensional feature space spanned by the VSL 
inputs of all the ACAM cells. Figure 3A illustrates the experimental 
validation of the ferroelectric ACAM word. Figure  3B shows the 
compact layout for an ACAM word. Without loss of generality and 
for better illustration, an ACAM word consisting of two ACAM cells 

is demonstrated, which can de�ne a matching subspace in the whole 
feature space spanned by VSL1 and VSL2. For the experimental dem-
onstration, similar to the single- cell case, the F1 transistor in both 
cells is set to the high-  VTH state, while the VTH state of F0 is varied 
among four di�erent levels from 0 to 1.1 V. In the ACAM array, each 
cell is independent from each other. As such, the VTH of F0 de�nes a 
VSL plane, below which the cell contributes negligible current, indi-
cating a match. When multiple cells are connected in parallel on the 
same ML, each cell de�nes one such VSL plane, and the intersection 
of the space bounded by those planes de�nes the matching subspace 
of the ACAM word, namely, the search input space that satis�es all 
the split conditions along a branch of a decision tree. Figure 3C 
illustrates the ML current as a function of VSL1 and VSL2 when the 
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VTH of F0 in both cell 1 and cell 2 is set to one of the four di�erent 
levels (a total of 4 × 4 con�gurations). �e three- dimensional (3D) 
colormap surface of the ML current and its projection on the VSL1 
and VSL2 plane are presented. It indicates that the low current region 
on each dimension (e.g., ≤10−7A in this work) follows the VTH states 
of the F0 transistor in the corresponding cell. �is successfully dem-
onstrates the independence among the ACAM cells. �us, the con-
�gured cell threshold sets the boundary of the matching subspace 
on the dimension of the corresponding cell.

An ACAM array with a larger word length of 16 has also been 
tested. As the matching subspace of the word lies in the 16D space 
and cannot be visualized, for ease of illustration, we consider a con-
�guration where 15 cells are grouped together by storing the same 
state and are searched with the same information. �e F1 transistors 
in all ACAM cells are in the high-  VTH state, enabling all cells to per-
form the lower- than branch- split operation. �e F0 transistors in the 
grouped 15 cells are set to the same intermediate state. �e remaining 
single cell is adjusted among the four di�erent VTH states. A�er con-
�guring the cells, the VSL of the single cell and that of the grouped 
cells are swept from −0.3 V to 1.2 V in steps of 0.1 V. Figures S3 to S6 
show the measured ML current when the F0 transistors of the grouped 
15 cells are set to VTH = 1.1, 0.8, 0.4, and 0 V, respectively. It shows 
that on the dimension of each VSL, the low ML current matching 
range closely follows the VTH of the corresponding cell. �is indicates 
that the boundary of the matching subspace on one VSL dimension in 
the high- dimensional space is set by the decision boundary of that 
particular ACAM cell. �is veri�es the basic operation principles of 
the proposed ACAM array in realizing the branch- split operation of 
a decision tree in a DRF.

Experimental veri�cation of an ACAM array is also conducted. 
Figure 4A shows a decision tree composed of two layers and four leaf 
nodes. It can be mapped to an ACAM array with two columns and 
four rows, as shown in Fig. 4B. Programming of the FeFET VTH states 
in the array is shown in Fig. 4C, and the programmed VTH states are 
close to target values. On the basis of the mapping, the theoretical 
and the resulted experimental matching space partitioned by the two 
SLs are shown in Fig. 4, D and E, respectively. �e experimental re-
sults resemble the theoretical ones, with wider boundaries between 
neighbor matching regions. �e uncertainty at the boundary regions 
can be reduced by optimizing the subthreshold swing of FeFETs. In 
addition, an example DRF composed of three layers and one decision 
tree per layer is experimentally constructed and veri�ed, as shown in 
�g. S7. �e results show that the experimental measurements match 
the theoretical results, indicating the successful DRF operation with 
the ACAM array. �ese preliminary experimental demonstrations 
indicate that the proposed hardware- algorithm co- design solution is 
promising toward practical applications.

To use an ACAM array, voltage domain sensing is typically adopted 
for its simplicity, where the SA output voltage remains high when 
the search information matches the stored ACAM word; otherwise, 
the ML voltage discharges to ground. Such functionality has also 
been validated in SPICE simulations using a calibrated FeFET compact 
model (39), as shown in Fig. 4. Here, a single two- stage bu�er circuit 
is adopted for voltage domain sensing, where the output is binary, as 
shown in �g. S8. �e output is close to VDD when a low current �ows 
through the ML (i.e., match case) and at ground when a mismatch 
happens. Figure 4F shows the simulated ML current of a single cell 
con�gured to perform the less- than branch- split operation. �e simu-
lated ML current shows a similar trend as the experimental results 

shown in Fig. 2H. With this ML current dependence on VSL, voltage 
domain sensing can be performed with the SA shown in �g. S8A. �e 
simulated output transient waveforms at di�erent search voltages are 
shown in �g. S14. For VSL in the matching subspace, the ML current 
is low; thus, ML voltage remains high. Otherwise, the ML voltage 
discharges to ground at a fast rate. At a certain sense time (e.g., in this 
work, 10 ns is chosen), the SA output voltage varies as a function of 
VSL, and multiple voltage thresholds for the branch- split operation 
can be de�ned depending on the stored VTH in the cell, as shown in 
Fig. 4G. �erefore, whether the input query matches with the de�ned 
branch condition can be determined by the output of the SA.

�e operations of the ACAM array are also simulated. Similar to 
the experiment shown in Fig. 3, the ML current of an ACAM array 
with two columns is simulated by sweeping VSL1 and VSL2 of the 
cells. By setting VTH of F0 in both cells in one of 4 × 4 con�gurations, 
di�erent match subspaces can be realized in the space spanned by 
VSL1 and VSL2 (as shown in �g. S15, following the same behavior as 
the experiment shown in Fig.  3). Voltage domain sensing of the 
ACAM array is also implemented using the same setup as the single 
cell as shown in �g. S8B. �e impact of the array size (i.e., rows and 
columns of the ACAM array) on the voltage sensing of the ACAM 
array has been simulated, as shown in Fig. 4 (H to K). A worst- case 
scenario is considered, where only one cell in the array is swept 
while all the other cells are searched with a VSL close to the decision 
boundary, which makes it challenging to sense. �e impact of the 
number of columns (i.e., the number of ACAM cells connected to 
the same match line) on the sensing of the ACAM array is studied. 
As the number of cells per word increases, the leakage current con-
tributed by the cells searched close to the boundary becomes larger, 
resulting in an increased discharge rate of the match line. �erefore, 
as shown in �g. S16, when the column size increases from 1 to 32, the 
search time needs to be adjusted accordingly. Figure 4J shows the 
output voltage as a function of VSL1 for ACAM arrays with di�erent 
number of columns sensed at the search times shown in Fig. 4H. It 
can be seen that the decision boundary can be maintained across 
various sizes of arrays. Since the array size is predetermined, the 
adjustment of sense time is straightforward. Figure 4 (I and K) 
shows that the impact of the number of rows, i.e., number of ACAM 
words or independent match lines, on the array sensing is negligible, 
as each ML sensing is independent. �erefore, the decision bound-
ary can be maintained for scaled array sizes.

Application evaluation and benchmarking
Leveraging the validated FeFET ACAM array, the performance of 
DRF can be evaluated. �e mapping of a DRF involves multiple 
ACAM arrays. As demonstrated in Fig. 1, DRF is a machine learning 
framework that follows a layer- by- layer structure using cascaded 
random forests. Each layer is composed of multiple random forests, 
which output a probability for each class. A random forest uses an 
ensemble of decision trees to determine the probability of each target 
class for a given test example. Each decision tree can be mapped to 
an ACAM array as shown in Fig. 5A. Each cell represents a nonleaf 
node that performs the branch- split operation over a speci�c feature. 
Each row of the ACAM implements a branch from the root node to 
a leaf node. Hence, the number of rows corresponds to the number 
of leaf nodes (i.e., number of branches). �e number of columns in 
an ACAM array corresponds to the number of features. Multiple 
ACAM arrays can be cascaded horizontally as shown in Fig. 5A to 
hold all the features of a decision tree. As each cell in an ACAM 
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word is independent of each other, a large ACAM word can be de-
composed into multiple small ACAM words such that searching for 
a large ACAM matching word is equivalent to searching for the match-
ing words in all ACAM subarrays simultaneously. Each ACAM array 
corresponding to a decision tree votes for a given class, and using a 
vote counter, the random forest outputs a vote vector, which repre-
sents the number of votes for each class.

�e vote vectors of the random forests are then concatenated and 
passed to the next layer of the DRF. �e speci�c circuit details, in-
cluding the decision tree implementation, the sensing circuitry, the 
digital- to- analog converter (DAC) for SLs, the random forest imple-
mentation, and the digital logic to postprocessing the match/mismatch, 

performing the majority voting for the forest and transmitting the 
intermediate results between the forests, are discussed in �gs. S9 to 
S13, respectively. Here, the DRF simulation is implemented on an 
Intel Core i7- 10750H 6- Core CPU and a Titan X GPU. �e branch- 
split threshold is quanti�ed using linear quantization. In our experi-
ments, up to eight layers, eight random forests per layer, and 64 trees 
per forest are used.

DRFs have been used in a variety of applications such as facial 
age estimation (40), malware detection (41), and classi�cation of 
hyperspectral images (42). Here, we use two representative datasets 
for benchmarking to evaluate the accuracy of the DRF model. One 
is an image dataset, MNIST (43), and the other is the time- series 
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time is almost the same for di�erent number of rows (I). (J and K) Transfer characteristics of the SA output over the input voltage as a function of the number of columns 
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dataset, sEMG, used for hand movement recognition (44). �e 
sEMG dataset consists of 1800 records, where each one belongs to one 
of six hand movements, i.e., spherical, tip, palmar, lateral, cylindri-
cal, and hook. Each record captures approximately 6 s at 500 samples 
per second or approximately 3000 samples. For the sEMG data, we 
used a sliding window approach with a window size of 100 samples 
and a 95% overlap. �is results in a 100 × 600 dimensional vector, 
which is used as an input to the DRF. Figure 5 (B and C) shows the 
inference accuracy for the MNIST and sEMG dataset as a function 
of the number of trees per forest in the DRF. We follow the train-
ing procedure in (12) while varying the number of trees. �e DRF 
is trained at full precision, and the branch- split decision boundary 
is quantized a�er training to evaluate the impact of the boundary 
precision.

For both models, the accuracy saturates when more than eight 
trees per forest are used. An accuracy of 99.2% is achievable for the 
MNIST dataset, which is on par with a three- layer convolutional 
deep belief network (45). For sEMG, the accuracy of the DRF model 
is 72%, substantially outperforming an advanced long short- term 
memory (LSTM) machine learning model (12). These results 
demonstrate the competitive performance of DRF in performing 
di�erent classi�cation tasks.

As FeFET ACAM cell can currently hold three bits of VTH states 
in this work (per �g. S2), the impact of precision on inference ac-
curacy is evaluated. Figure 5 (D and E) shows the inference accuracy 
as a function of precision of the decision boundary for the MNIST 
and sEMG dataset, respectively. For MNIST, each grayscale pixel in-
tensity is used as a feature, i.e., nonleaf branch- split node. Since rele-
vant features are either black or white, the DRF performs well even 
at 1- bit precision. However, for the sEMG dataset, the accuracy starts 
to degrade when the decision boundary precision drops below 4 bits 
and accuracy is especially low at 1- bit precision. �e FeFET ACAM 
with 3- bit precision demonstrated in this work su�ers accuracy deg-
radation but still performs better than LSTM for the sEMG dataset. 
Note that due to the core tree structure in a DRF, a higher precision 
branch- split operation can be realized using ACAM cells with lower 
precision at the cost of additional ACAM area and energy consump-
tion. To implement a higher precision DRF, each tree node or some 
critical nodes (i.e., requiring a higher precision) can be split into 
multiple tree nodes (lower precision), as illustrated in �g. S17 as an 
example. Each feature must be split into its most signi�cant bits 
(MSBs) and least signi�cant bits (LSBs) and treated as two separate 
features and searched separately. �is results in an increased number 
of branches, and hence the number of rows when mapping to ACAM 
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arrays. In future work, we will evaluate the trade- o�s of extending 
the precision for FeFET ACAMs.

It is also important to evaluate the impact of device- to- device 
variation of FeFETs on the classi�cation accuracy of the DRF. �e 
variation in FeFET VTH (per �g. S2) is directly translated into the vari-
ation in the decision boundary, which impacts the accuracy of the 
branch- split operations. As VTH variation increases, overlap between 
neighboring decision boundaries is expected. �e impact of such vari-
ations may vary by datasets. For MNIST, because the input is binary, 
the DRF is highly robust to variation as long as the decision boundary 
between the black and white pixels is well de�ned. For sEMG, the in-
put values are not binary, but intermediate values, which increase the 
susceptibility of the system to FeFET variation. However, as suggested 
in �g. S18, when the SD of the decision boundary is less than 7% of the 
overall memory window, the accuracy remains una�ected. Consider-
ing that current FeFET VTH SD is on average 4% of the overall memory 
window, DRF that leverages even current devices still yields negligible 
accuracy loss, demonstrating great robustness. As the FeFET technology 
continues to improve, variations will be further suppressed (46); thus, 
FeFETs will become an even more robust technology platform for 
DRF implementation.

To compare FeFET ACAM–based DRF with alternative DRF im-
plementations, the ferroelectric ACAM array performance extracted 
from the simulations in Fig. 4 is used for system- level benchmarking. 
We assume an ACAM array of size 128 × 128 as the basic ACAM 
module and that multiple ACAM arrays are cascaded to complete all 
system- level tasks. Figure 5F shows energy versus latency for a single 
classi�cation. �e DRF implementation on an Intel Core i7- 10750H 
CPU (14- nm node) @ 2.60 GHz with 16 GB of RAM is used as a 
reference (i.e., the latency and energy per classi�cation is considered 
as 1), against which the system implementation using ACAM arrays 
based on ReRAM [16- nm node (14)] and FeFETs is benchmarked. 
�e instantaneous CPU power during the inference of a DRF model 
is extracted by Power API of an Intel i7- 10750H CPU. �e energy per 
classi�cation is calculated using the average power and the latency. 
�e extracted FeFET ACAM array energy includes the ML precharge 
energy, the SA energy associated with the MLs, and the DACs driving 
the SLs, as shown in �g. S19. �e search latency is determined, similar 
to �g.  S14, as the time point when the corresponding matching 
boundary of the SA output transfer curve with VSL aligns with the 
prede�ned boundary, i.e., the stored matching boundary. Since ReRAM 
ACAM array has only been proposed for a decision tree implemen-
tation and not for DRF (14), we take the reported ReRAM ACAM array 
characteristics, demonstrating outstanding performance gain against 
digital processors, and evaluate its performance in implementing the 
DRF. Because of their parallel nature and compact, in- memory 
computing characteristics, the ferroelectric ACAM array exhibits 
notable savings in energy and latency when compared with a CPU 
(e.g., up to 106

× saving in energy and latency). FeFET- based ACAM 
arrays have lower energy consumption than their ReRAM counter-
part due to the elimination of the DC �owing through the ReRAM 
ACAM cell. �ese results suggest great promise for the ferroelectric 
ACAM array when implementing the DRF. In addition, we also 
implemented a simple random forest model (i.e., no layer- by- layer 
structure) using the ferroelectric ACAM and evaluated its perfor-
mance on some electroencephalogram (47) and positron emission 
tomography (48) dataset. Table S1 summarizes the metrics includ-
ing cell size, energy, and latency per classi�cation using our ferro-
electric ACAM–based random forest, as well as other advanced 

machine learning model implementations. Again, superior energy 
e�ciency and latency for a classi�cation operation using the ferro-
electric analog CAM array is demonstrated.

Figure 5G provides the evolution of CAM cell density as a func-
tion of technology nodes. Both the digital and analog CAM cells are 
included for completeness. As expected, with technology scaling, 
CAM cell density continues to improve. Because of its compactness, 
the ferroelectric ACAM cell (2FeFET) exhibits the highest density 
so far, greatly outperforming its ReRAM counterpart (6T2R). As a 
result, the compact ferroelectric ACAM array could well support 
the acceleration of the DRF model.

DISCUSSION

Here, we implemented the DRF with ferroelectric ACAM array by 
leveraging the parallelism and in- memory computing capability of 
the ACAM array. We demonstrated that DRF inference could be 
e�ciently mapped as the associative search operations in ACAM 
arrays, as the ACAM cell can realize the key branch- split operation 
of a decision tree in memory by harnessing the analog polarization 
states within an FeFET. We validated the functionality of the 2FeFET 
ACAM cell and the capability of ACAM arrays in identifying the 
matching region in the high- dimensional search space. Each ACAM 
row corresponds to a speci�c branch from the root node to a leaf 
node in a decision tree. With the proposed ultra- compact ACAM 
cell, we show that the FeFET ACAM–based DRF accelerator exhibits 
order- of- magnitude improvement in footprint, and inference energy 
and latency. �ese results suggest that ferroelectric ACAMs provide 
a promising hardware platform to implement DRF as an alternative 
complement to DNNs for achieving edge intelligence with its inter-
pretability, low latency, and superior energy e�ciency.

MATERIALS AND METHODS

Device fabrication
Here, the fabricated FeFET features a poly- crystalline Si/TiN (2 nm)/
doped HfO2 (8 nm)/SiO2 (1 nm)/p- Si gate stack. �e devices were 
fabricated using the GlobalFoundries 28- nm node gate- �rst HKMG 
complementary metal- oxide semiconductor (CMOS) process on 
300- mm silicon wafers. �e ferroelectric gate stack process module 
starts with growth of a thin SiO2- based interfacial layer, followed by 
the deposition of an 8- nm- thick Si- doped HfO2. A TiN metal gate 
electrode was deposited using physical vapor deposition (PVD), on 
top of which the poly- Si gate electrode is deposited. �e source and 
drain n+  regions were obtained by phosphorus ion implantation, 
which were then activated by a rapid thermal annealing (RTA) at 
approximately 1000°C. �is step also results in the formation of the 
ferroelectric orthorhombic phase within the doped HfO2. For all the 
devices electrically characterized, they all have the same gate length 
and width dimensions of 1 μm × 1 μm, respectively.

Electrical characterization
�e FeFET device characterization was performed with a PXI- Express 
system from National Instruments, using a PXIe- 1095 cassis, NI 
PXIe- 8880 controller, NI PXIe- 6570 pin parametric measurement 
unit (PPMU), and NI PXIe- 4143 source measure unit (SMU). Before 
characterization, all FeFETs are preconditioned using the SMUs by 
cycling them 100 times with the pulses of +4.5 V, −5 V with a pulse 
length of 500 ns each. Readout of the memory state is done by a 
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stepwise increase of the gate voltage in 0.1 V- increments while ap-
plying 0.1 V to the drain terminal and measuring the current using 
the PPMU. Bulk and source terminals are tied to ground at all times. 
�e read operation takes approximately 7 ms. �e multilevel charac-
terization of individual FeFETs is performed by putting them in a 
reference state with a gate voltage of −5 V or + 4.5 V for 500 ns for 
erase or program, respectively. A�er that, a single pulse of increasing 
amplitude is applied for 200 ns. �e gate voltage amplitude stepping 
is set to 100 mV. A�er each pulse, a delay of 2 s is added to ensure 
su�cient time for charge detrapping a�er which a readout is per-
formed. �is scheme is repeated for the full switching range. �e 
CAM measurements are performed in an AND- connected array. 
One CAM cell is constructed by measuring two FeFETs sharing the 
same connection at their drain terminal, the matchline. Source and 
bulk terminal are tied to ground at all times. �e FeFETs are pro-
grammed to the target VT’s individually, applying a single �xed pro-
gram pulse speci�c to the target VT. Readout operation is performed 
similar to the single devices. �e ML is kept at 0.1 V, while an stepped 
gate sweep is performed. Using individual PPMU channels, the read-
out is performed on both FeFETs of one CAM cell.

Transmission- EBSD characterization
For transmission- EBSD characterization, also known as transmission 
Kikuchi di�raction, a 10- nm Si- doped HfO2 layer was deposited on 
a silicon wafer with a thin chemical oxide layer. �is was carried out 
using atomic layer deposition with a cycling ratio of 16:1 (Hf:Si). 
A�er capping the layer with a 10- nm TiN top electrode, the �lm was 
crystallized via RTA at 1000°C. A dimpled sample was prepared and 
analyzed in a scanning electron microscope using a Bruker Optimus 
TKD detector. An acceleration voltage of 30 kV and a current of 
3.2 nA were used.

SPICE simulation setup
�e FeFET compact model (39) adopted in our simulations is cali-
brated by the fabricated FeFET, along with the predictive technology 
model (PTM) for CMOS transistors (49). �e supply voltage is 1 V, 
and the temperature is set to 27°C. Wiring parasitics are extracted 
from DESTINY (50). For an ACAM array of size 128 × 128, 6.4-  and 
3.84- fF parasitic capacitance are extracted and associated with MLs 
and SLs, respectively.

Supplementary Materials
This PDF �le includes:

Figs. S1 to S19

Table S1
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