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Deep random forest with ferroelectric analog content

addressable memory
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Deep random forest (DRF), which combines deep learning and random forest, exhibits comparable accuracy, inter-
pretability, low memory and computational overhead to deep neural networks (DNNs) in edge intelligence tasks.
However, efficient DRF accelerator is lagging behind its DNN counterparts. The key to DRF acceleration lies in real-
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izing the branch-split operation at decision nodes. In this work, we propose implementing DRF through associative
searches realized with ferroelectric analog content addressable memory (ACAM). Utilizing only two ferroelectric
field effect transistors (FeFETs), the ultra-compact ACAM cell performs energy-efficient branch-split operations by
storing decision boundaries as analog polarization states in FeFETs. The DRF accelerator architecture and its model
mapping to ACAM arrays are presented. The functionality, characteristics, and scalability of the FeFET ACAM DRF
and its robustness against FeFET device non-idealities are validated in experiments and simulations. Evaluations
show that the FeFET ACAM DRF accelerator achieves ~10°x/10x and ~10°x/2.5x improvements in energy and
latency, respectively, compared to other DRF hardware implementations on state-of-the-art CPU/ReRAM.

INTRODUCTION
Edge intelligence in the era of Internet of Things (IoT) requires that
raw data are analyzed locally instead of being transmitted back to the
cloud for processing (1-3). Such edge intelligence can best be achieved
by deploying an artificial intelligence (AI) hardware engine designed
for IoT devices. Deep neural networks (DNNs) are highly effective in
processing visual and speech data for various applications with high
accuracy. However, DNN models face several fundamental challenges
and are not readily deployable in the IoT. First, modern DNN models
require large memories to store learned weights (commonly >1 GB)
(4), well beyond the capacity of an embedded, on-chip memory in edge
devices. External memories are therefore needed to store the entire
DNN model. The requisite data transfers between on/off-chip memory
lead to notable energy and latency overheads, which in turn limit the
network complexities that may be deployed in edge devices. Second,
to achieve high accuracy, DNNs require a huge amount of labeled
training data. Data collection and preparation is expensive and time
consuming for many tasks—especially for edge devices, considering
their diverse functionalities and applications (5-7). Third, the “black
box” nature and large parameter space of a DNN makes it challeng-
ing to analyze and understand how DNNs make their decisions. In
certain domains, such as medicine, health care, and finance, the in-
terpretability of a model is critical in establishing trust and devel-
oping solutions to other related problems (8-11). In light of these
challenges, deep random forests (DRFs), a recently proposed inter-
pretable and memory-efficient Al model (12), are considered to be an
excellent alternative to DNNG in realizing lightweight AI engines for
edge intelligence.

At a high level, DRF incorporates the core features of deep learning
models, i.e., layer-by-layer processing, in-model feature transformation,
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and sufficient model complexity (12), as shown in Fig. 1A. DRF fol-
lows a cascaded structure where each layer in a DRF receives feature
information extracted from the preceding level. Each layer is an en-
semble of random forests (i.e., an ensemble of weak decision tree-
based classifiers). Each forest models the class distribution of the
datasets through either majority voting or averaging the predictions
of decision trees in the same random forest. Those outputs from the
forests in the same layer are concatenated together and forwarded to
the next layer for further processing (12). Equipped with these deep
model features, DRF achieves comparable or better accuracy with
DNNs in processing low-resource dataset (12). In addition, by in-
heriting the interpretability and low energy and memory require-
ments of the random forest (13), DRF represents a competitive
solution for edge intelligence to handle information processing
tasks with requirements that DNNs might struggle to satisfy (e.g.,
limited resources or interpretability). Unlike DNNs, hardware ac-
celeration of DRF has not been well explored. Our work addresses
this gap by introducing an energy-efficient and high-performance
hardware for accelerating DRF.

The key challenge in accelerating DRF is to implement the deci-
sion trees, the core component of DREF, as shown in Fig. 1B. It per-
forms comparisons at each nonleaf node, and depending on the
comparison results, the node is split into different branches. It has
been proposed that analog content addressable memory (ACAM)
can be used to perform the branch-split operation in a decision tree
(14-16), which opens up the possibility of accelerating DRF with
ACAM arrays. As a type of associative memories, content address-
able memories (CAMs) have gained popularity in data-centric com-
puting due to their massively parallel pattern-matching capability
(17, 18). They can identify the stored entries matching the search
query in parallel in the exact or approximate matching mode. In the
exact matching mode, only the items that exactly match the input
query are identified (18), while in the approximate matching mode,
the Hamming distance (HD) between the query and stored entries
is returned by sensing the match-line (ML) current. The approximate
matching function has been applied to accelerate various machine
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learning applications (19, 20). All the developments above have only  adjusted by configuring the memory device states (21). We observe
considered digital CAMs, where binary information is stored and that by fixing the upper/lower bound of the matching range to the
searched. However, it is also possible to leverage the analog states of ~maximum/minimum voltage allowed on the SL and leaving the cor-
nonvolatile memories for multi-bit or ACAMs (21-23). Multi-bit  responding lower/upper bound adjustable, the respective greater-
information can be stored in the CAM, and an analog or multi-bit  than (i.e., >)/less-than (i.e., <) branch-split operations in a decision
query can be searched across the CAM array for pattern matching, tree can be efficiently implemented in an ACAM cell through a
thus greatly improving the information density and expanding the simple search operation, as shown in Fig. 1C. An ACAM word,
CAM functionality (21-24). Here, we demonstrate ferroelectric =~ composed of a row of CAM cells, can be used to implement a branch
ACAMs and leverage their unique properties to accelerate DRF. from the root node to a leaf node in a decision tree, while an ACAM

In an ACAM cell, a matching range, defined by the upper and  array represents an entire decision tree. In this way, the decision
lower bounds of the search line (SL) voltage, can be dynamically space partitioned by the decision tree can be mapped into the
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Fig. 1. Overview of implementing DRF with ferroelectric ACAM. (A) DRF is a deep model built by cascading random forests, forming a layer-by-layer structure. The
output of each layer concatenates a portion of the input features, allowing in-model feature transformation. The resulting DRF model can achieve good performance.
(B) Each decision tree in a random forest forms a nondifferentiable decision boundary by making a branch split at each nonleaf node based on the input features. (C) The
random forest can be mapped onto an ACAM array. An ACAM cell with adjustable matching bounds (i.e., upper or lower matching bound) can efficiently realize the
branch-split operation in a decision tree; as such, an ACAM word can realize a branch from the root node to the leaf node in a decision tree. (D) Existing demonstrated
ACAM cells based on the multi-bit embedded nonvolatile memories. Compared with its 6T2R ReRAM ACAM counterpart, the 2FeFET-based ACAM is compact and univer-
sal by simultaneously serving as a digital and analog CAM. (E) Working principle of 2FeFET ACAM cell with adjustable upper/lower matching bound to realize the branch
split in a decision tree.
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matching space of an ACAM array. As a result, the inference opera-
tion of a decision tree can be realized through a simple parallel
search operation in an ACAM array. The identified matched entries
indicate the prediction results (i.e., the matching branches). By cas-
cading multiple ACAM arrays together, the DRF can be realized.
The effects of the limited precision of ACAM cells in defining the
decision boundaries and the device-to-device variation of ACAMs
are explored in the system benchmarking section.

Developing ACAM arrays for DRF requires that the ACAM:s be
compact, fast, and energy efficient. In our previous work (21), we
have proposed a universal ferroelectric CAM design through SPICE
simulations, in which a CAM cell composed of two ferroelectric field
effect transistors (FeFETs) can simultaneously serve as a digital and
analog CAM cell. Notably, the 2FeFET CAM is the most compact
cell to date, compared with SRAM-based CAM cells typically com-
posed of 16 transistors, spin-transfer-torque magnetic random ac-
cess memory (STT-MRAM)-based CAM cells built using 10 to
15 transistors and 2 to 4 magnetic tunnel junctions (MTTJs), and a re-
sistive memory [i.e., resistive random access memory (ReRAM) and
phase change memory (PCM)]-based CAM cell constructed with
2 transistors and 2 resistive memory devices (20). This compactness
originates from its intrinsic three-terminal transistor structure and
its capability in enabling single-FeFET cell memory array (25, 26)
when appropriate bias inhibition schemes are applied (27). Addi-
tionally, CAM based on FeFET is especially energy efficient. Unlike
a volatile SRAM CAM, which consumes a substantial leakage power,
FeFET CAM is nonvolatile, thus avoiding the energy consumption
due to leakage current. Moreover, unlike other non-volatile memories
(NVMs) where switching is typically driven by a large conduction
current, ferroelectric switching can be induced with an applied electric
field without consuming conduction current, thus exhibiting superior
energy efficiency. Write energy down to 1 f]/bit is achievable in a
single FeFET (2, 28). Finally, ferroelectric CAM exhibits superior
performance owing to its intrinsic transistor structure and a large
Ion/Iopr ratio (e.g., ~10%), greatly outperforming the two-terminal
resistive memories, which typically show an Ion/Iopr ratio of ~100.
These characteristics enables 2FeFET CAM to simultaneously serve
as both a digital and an analog CAM, creating a versatile hardware
platform for various applications.

Here, we demonstrate the 2FeFET-based ACAM for the imple-
mentation of a DRE. There have been reports of using other NVM
devices to implement an ACAM cell, such as the first proposed Re-
RAM ACAM (22) (Fig. 1D). However, due to its limited Ion/Iorr
ratio, additional transistors are added into the digital CAM cell core
(e.g., the 2T2R CAM cell) to support the analog/multi-bit search
functionality, making it a 6T2R structure (22), larger than the 2FeFET
ACAM design. The operating principles of the proposed 2FeFET
ACAM cell for implementing the branch-split operation in a decision
tree are illustrated in Fig. 1E. To implement a less-than branch (Fig. 1E,
left), the FeFET Fj, connected with SL, is set to the high- Vyy state
such that it remains in the cutoff state over the entire SL search
range, thus forming a fixed lower bound. Adjusting the Vry state of
the FeFET F associated with the SL tunes the upper bound of the
matching range. When the SL search voltage Vg falls within the yellow
region (where both the FeFETs turn off and the ML discharges slowly),
the ML voltage, Vi, remains high throughout the sensing phase of
a voltage sense amplifier (SA). When the Vry of F, increases, the
resulting upper bound of the matching range also increases. As a
result, the less-than branch with different thresholds can be mapped
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to the 2FeFET ACAM cell with an adjustable upper bound. By sym-
metry, the greater-than branch can also be achieved by setting Fj in
high-Vry state, forming a fixed upper bound and adjusting the Vg
of F; to set the lower bound of the matching range. For the cases
where not all the branches are of the same length, such as branch
1 and branch 2 in Fig. 1C, or of the same set of features for branch
split, the “don’t care” functionality of ACAM is leveraged. When a
branch-split operation occurs over an input feature that is not in-
cluded in the other branches, the ACAM cells mapping the missing
features in those branches are set to the “don’t care” state so that they
contribute negligible leakage current through the ML, without affect-
ing the V1. The “don’t care” functionality can be realized by simply
setting both FeFETs of the ACAM cell to the high- Vry state.

In the following sections, we first describe the experimental
demonstration of the 2FeFET ACAM cell and verify the branch-split
operation for decision trees. We also demonstrate the capability of
an ACAM word in realizing a branch from the root node to a leaf
node in a decision tree through a simple search operation. This capa-
bility is used to realize a DRF, which exhibits good performance and
superior energy efficiency. In addition, we present the evaluation of
the impact of FeFET nonidealities, such as variation and limited
precision, on the DRF performance to demonstrate the robustness
of FeFET ACAM DRE Compared with existing works, the major con-
tributions of our work are as follows: (i) proposing a DRF accelerator
leveraging the ferroelectric ACAM arrays for edge intelligence; (ii)
first experimental demonstration of a ultra-compact, energy-efficient,
and universal 2FeFET digital and analog CAM cell; (iii) first experi-
mental demonstration of mapping a decision tree to an ACAM array;,
and first experimental demonstration of a DRF containing multiple
layers; (iv) evaluating the impact of limited precision of the multi-bit
matching ranges stored in FeFETs on the accuracy of DREF, and pro-
posing a precision extension method using low-precision devices;
(v) validating the robustness of FeFET ACAM-based DRF against
device-to-device variation.

RESULTS

2FeFET analog CAM demonstration

In this section, we first discuss the experimental validation of the
ACAM cell operation. We have constructed the proposed ACAM
cell with the GlobalFoundries 28-nm high-k metal gate (HKMG)
FeFET technology (shown in Fig. 2, A and B). The device features an
8-nm-thick Si-doped HfO, ferroelectric thin film as the gate dielectric,
capped with a TiN and polysilicon layer. A thin SiO, interlayer (~1 nm)
is also present between the ferroelectric and the silicon substrate.
Figure 2B shows the schematic cross-section of the device. Detailed
process information can be found in (29). The local crystallographic
phase has been characterized in the ferroelectric HfO, films by
transmission-electron back-scattering diffraction (EBSD) (30), as
shown in Fig. 2C. Dendritic grains consisting of the ferroelectric
orthorhombic phase are observed, and only a small portion of the
film grains are in the monoclinic dielectric phase, suggesting a good
control over the ferroelectric phase through the high-temperature
stressed annealing. This is consistent with our previous work in the
analysis of the ferroelectric material stack on silicon, specifically
focusing on the orientation distribution within the film (31), which
also shows that the presence of the tetragonal phase is suppressed
and a predominantly orthorhombic ferroelectric phase is achieved
through careful optimization of the fabrication process and doping
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Fig. 2. Experimental demonstration of a ferroelectric ACAM cell. (A) Cross-sectional transmission electron microscopy (TEM) image of the FeFET device and (B) its
schematic cross-section. It features an 8-nm-thick doped HfO, ferroelectric film. (C) The phase analysis through transmission-EBSD confirms that the poly-crystalline HfO,
film consists mostly of the orthorhombic ferroelectric phase. Inverse pole figure maps (D) reveal intra-granular misorientation, especially in the dendrites. (E) Experimen-
tally measured Ip-V; characteristics for low-Vry and high-Vqy states after +4-V, 1-pus write pulses. Sixty different devices are measured, suggesting excellent device variation
control in the FeFET. (F) Representative switching dynamics in the FeFET. To obtain a given memory window (e.g. 1.2V in this case), the required switching time as a func-
tion of applied pulse amplitude can be well fitted with the nucleation limited switching model. (G) CAM cell configuration used in the experimental validation, where
Fy is set to be highest Vqy state and Fy is adjusted. (H) Measured ML current as a function of the SL voltage, Vs,. Since F; is fixed to be highest Vqy, it contributes negligible

current. When Vqy of Fy is varied, the threshold of the matching range is shifted, thus demonstrating successful single-cell operation.

parameters. From the in-plane inverse pole figure map (Fig. 2D), a
large variety of crystallographic orientations can be deduced. As a
consequence, the polarization axis in each grain will be located at
slightly different angles. Moreover, as gradients can be observed inside
these grains and especially the dendrites, high degrees of intra-
granular misorientation are expected (32). Consequently, these den-
drites are likely to experience slightly different electric fields and are
therefore reducing the effective grain size of the film. Note that a
dendrite grain could contain different domains, and a broad distri-
bution of polarization orientations, as present in this film, allows for
analog-like multi-state operation in the ferroelectric HfO, layer.
The FeFET Ip- Vg characteristics for the low-Vry and high-Vry
states after +4-V, 1-us write pulses are shown in Fig. 2E. Experimental
setup for the cell and array measurement is shown in fig. S1. Device
variation is characterized by measuring 60 different devices. The re-
sults show a large memory window of ~1.2 V and a large sensing
margin (i.e., Ion/Iorr) separating the two Vy states even when con-
sidering the device variation. The switching dynamics of the tested
FeFET are shown in Fig. 2F, where the required pulse width to obtain
amemory window of 1.2 V as a function of write pulse amplitude is
presented. The required switching time can be well described by the
expression derived from domain nucleation theory (33, 34).

o
PW =1 e Var?

where o is a fitting parameter related with the polarization switching
barrier, 7, is the switching time at an infinitely large applied pulse
amplitude, and Vg is the offset voltage, an indication of the local
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domain environment. With the increase of write pulse amplitude,
FeFET switching speed can be further reduced to below 10 ns (35),
suggesting the great promise for high-speed and energy-efficient
ferroelectric memory.

Leveraging the partial polarization switching in the multi-domain
FeFET, multiple Vry states have been demonstrated and used for
multilevel cell memories and synaptic weight cells for the acceleration
of matrix-vector multiplication (36-38). Here, we harness the inter-
mediate Vy states to realize the branch-split operation with adjustable
thresholds for the nonleaf nodes in a decision tree for DRF. Figure S2
shows experimentally measured Ip-V characteristics for four Vry
levels in a FeFET, which are set by applying different pulse ampli-
tudes (23). The extracted Vry distribution for four and eight levels
are shown in fig. S2, C and D, respectively. With negligible overlaps
between the neighboring levels, it is feasible to store multiple states
into a FeFET, thus enabling the ACAM application proposed in this
work. As shown in Fig. 2G, to verify the single ferroelectric ACAM
cell operation, the FeFET associated with SL (F;) is set to the high-
Vru state (Vg = 1.1 V) and the FeFET associated with SL (Fp) is
configured to different Vry states. The ML current is then measured
with a sweeping SL voltage, Vs. As a result, the matching range of
V1. where the ML current is low can be identified. Such Vry con-
figurations define a matching range with varying upper bounds over
the Vg, thus implementing a less-than branch-split operation with
varying decision boundaries. Because of the symmetry of the ACAM
cell, the greater-than branch split is realized by simply swapping the
Vru settings of the two FeFETs. Figure 2H shows the measurement
results corresponding to Fig. 2G. With the high- V1 state of F, this
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FeFET is cut off in the entire voltage range (i.e., 0 to 1 V) and is only
turned on at negative V. By setting Vry of Fy to eight different
states, the upper bounds for the matching range are defined accord-
ingly. As such, this verifies the successful operation of the ferroelec-
tric ACAM cell.

To exploit a ferroelectric ACAM word for the mapping of an en-
tire branch from the root node to a leaf node of a decision tree, we
further validate the capability of an ACAM word to define a matching
subspace in the high-dimensional feature space spanned by the Vg,
inputs of all the ACAM cells. Figure 3A illustrates the experimental
validation of the ferroelectric ACAM word. Figure 3B shows the
compact layout for an ACAM word. Without loss of generality and
for better illustration, an ACAM word consisting of two ACAM cells

,. _______________

SL;

SL,
High \(ry 1T

SL, SL,

is demonstrated, which can define a matching subspace in the whole
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Fig. 3. Experimental demonstration of ferroelectric ACAM array. (A) Configuration of FeFETs in an ACAM word with two columns. F1 transistors in both cells are set to
the high-Vyy state, and Fy transistors in both cells are configured to different Vry states, which set the threshold for the branch-split operation. (B) Compact layout of a
2FeFET ACAM word with a word length of 8. (C) The experimental results show that the low ML current region (i.e., matched condition) can be configured in different loca-
tions in the Vs space. Orange lines in each figure correspond to a match line current of 1077 A. It successfully demonstrates the capability of ferroelectric ACAM word in

configuring the matching subspace in the overall Vs space.
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Vru of Fo in both cell 1 and cell 2 is set to one of the four different
levels (a total of 4 X 4 configurations). The three-dimensional (3D)
colormap surface of the ML current and its projection on the Vg,
and Vg, plane are presented. It indicates that the low current region
on each dimension (e.g., <1077A in this work) follows the Vi states
of the Fy transistor in the corresponding cell. This successfully dem-
onstrates the independence among the ACAM cells. Thus, the con-
figured cell threshold sets the boundary of the matching subspace
on the dimension of the corresponding cell.

An ACAM array with a larger word length of 16 has also been
tested. As the matching subspace of the word lies in the 16D space
and cannot be visualized, for ease of illustration, we consider a con-
figuration where 15 cells are grouped together by storing the same
state and are searched with the same information. The F; transistors
in all ACAM cells are in the high- Vry state, enabling all cells to per-
form the lower-than branch-split operation. The F, transistors in the
grouped 15 cells are set to the same intermediate state. The remaining
single cell is adjusted among the four different Vy states. After con-
figuring the cells, the Vg, of the single cell and that of the grouped
cells are swept from —0.3 V to 1.2 V in steps of 0.1 V. Figures S3 to S6
show the measured ML current when the F; transistors of the grouped
15 cells are set to Vg = 1.1, 0.8, 0.4, and 0V, respectively. It shows
that on the dimension of each Vg, the low ML current matching
range closely follows the Vry of the corresponding cell. This indicates
that the boundary of the matching subspace on one Vg dimension in
the high-dimensional space is set by the decision boundary of that
particular ACAM cell. This verifies the basic operation principles of
the proposed ACAM array in realizing the branch-split operation of
a decision tree in a DRF.

Experimental verification of an ACAM array is also conducted.
Figure 4A shows a decision tree composed of two layers and four leaf
nodes. It can be mapped to an ACAM array with two columns and
four rows, as shown in Fig. 4B. Programming of the FeFET Vry states
in the array is shown in Fig. 4C, and the programmed Vry states are
close to target values. On the basis of the mapping, the theoretical
and the resulted experimental matching space partitioned by the two
SLs are shown in Fig. 4, D and E, respectively. The experimental re-
sults resemble the theoretical ones, with wider boundaries between
neighbor matching regions. The uncertainty at the boundary regions
can be reduced by optimizing the subthreshold swing of FeFETs. In
addition, an example DRF composed of three layers and one decision
tree per layer is experimentally constructed and verified, as shown in
fig. S7. The results show that the experimental measurements match
the theoretical results, indicating the successful DRF operation with
the ACAM array. These preliminary experimental demonstrations
indicate that the proposed hardware-algorithm co-design solution is
promising toward practical applications.

To use an ACAM array, voltage domain sensing is typically adopted
for its simplicity, where the SA output voltage remains high when
the search information matches the stored ACAM word; otherwise,
the ML voltage discharges to ground. Such functionality has also
been validated in SPICE simulations using a calibrated FeFET compact
model (39), as shown in Fig. 4. Here, a single two-stage buffer circuit
is adopted for voltage domain sensing, where the output is binary, as
shown in fig. S8. The output is close to Vpp when a low current flows
through the ML (i.e., match case) and at ground when a mismatch
happens. Figure 4F shows the simulated ML current of a single cell
configured to perform the less-than branch-split operation. The simu-
lated ML current shows a similar trend as the experimental results
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shown in Fig. 2H. With this ML current dependence on Vg, voltage
domain sensing can be performed with the SA shown in fig. S8A. The
simulated output transient waveforms at different search voltages are
shown in fig. S14. For Vg in the matching subspace, the ML current
is low; thus, ML voltage remains high. Otherwise, the ML voltage
discharges to ground at a fast rate. At a certain sense time (e.g., in this
work, 10 ns is chosen), the SA output voltage varies as a function of
Vs1, and multiple voltage thresholds for the branch-split operation
can be defined depending on the stored Vry in the cell, as shown in
Fig. 4G. Therefore, whether the input query matches with the defined
branch condition can be determined by the output of the SA.

The operations of the ACAM array are also simulated. Similar to
the experiment shown in Fig. 3, the ML current of an ACAM array
with two columns is simulated by sweeping Vg1 and Vg, of the
cells. By setting Vry of Fy in both cells in one of 4 X 4 configurations,
different match subspaces can be realized in the space spanned by
Vs and Vg, (as shown in fig. S15, following the same behavior as
the experiment shown in Fig. 3). Voltage domain sensing of the
ACAM array is also implemented using the same setup as the single
cell as shown in fig. S8B. The impact of the array size (i.e., rows and
columns of the ACAM array) on the voltage sensing of the ACAM
array has been simulated, as shown in Fig. 4 (H to K). A worst-case
scenario is considered, where only one cell in the array is swept
while all the other cells are searched with a Vg close to the decision
boundary, which makes it challenging to sense. The impact of the
number of columns (i.e., the number of ACAM cells connected to
the same match line) on the sensing of the ACAM array is studied.
As the number of cells per word increases, the leakage current con-
tributed by the cells searched close to the boundary becomes larger,
resulting in an increased discharge rate of the match line. Therefore,
as shown in fig. S16, when the column size increases from 1 to 32, the
search time needs to be adjusted accordingly. Figure 4] shows the
output voltage as a function of Vgi; for ACAM arrays with different
number of columns sensed at the search times shown in Fig. 4H. It
can be seen that the decision boundary can be maintained across
various sizes of arrays. Since the array size is predetermined, the
adjustment of sense time is straightforward. Figure 4 (I and K)
shows that the impact of the number of rows, i.e., number of ACAM
words or independent match lines, on the array sensing is negligible,
as each ML sensing is independent. Therefore, the decision bound-
ary can be maintained for scaled array sizes.

Application evaluation and benchmarking

Leveraging the validated FeFET ACAM array, the performance of
DRF can be evaluated. The mapping of a DRF involves multiple
ACAM arrays. As demonstrated in Fig. 1, DRF is a machine learning
framework that follows a layer-by-layer structure using cascaded
random forests. Each layer is composed of multiple random forests,
which output a probability for each class. A random forest uses an
ensemble of decision trees to determine the probability of each target
class for a given test example. Each decision tree can be mapped to
an ACAM array as shown in Fig. 5A. Each cell represents a nonleaf
node that performs the branch-split operation over a specific feature.
Each row of the ACAM implements a branch from the root node to
a leaf node. Hence, the number of rows corresponds to the number
of leaf nodes (i.e., number of branches). The number of columns in
an ACAM array corresponds to the number of features. Multiple
ACAM arrays can be cascaded horizontally as shown in Fig. 5A to
hold all the features of a decision tree. As each cell in an ACAM

60f11

$202 ‘90 1SNSNY U0 SUIAI[ RILIOJI[R)) JO AJISIOATU(] J& SI0°90UIOS MMM //: SN WOI papeo[umo(]



SCIENCE ADVANCES | RESEARCH ARTICLE

A Asimple decision tree for test B C
X, Target Vry
X,?2
- Actual Vo
Target Vyy
Branch 3 Actu;l Vi
Theory
D ] E
SL,, SL, space that is 4 RO
divided into different S S =il
regions that have lowest = =
X x x
current, corresponding = =
to matching of different » 2 )
branches 3
0 1
SLy (X1) (V)
F 105 H 12 J
—_ 1.2
—~10% 2 L [
< R 508
= £ \ c
£107 = b\ g o4
3 = =4 | >
j % 6 L Z 08 /
§ N Zo! -
=100 3 . o
\.\‘ 2
-9
10764 00 04 08 12 9724 81632 5.
VoL (V Num. of columns Sre,
G 1.2 | 12 K
5 m1.
— O
=038 <9 ¥
= Q B~
3 £ S
3 g ="
0.4 <4 z
w b =
0.0 3
00 02 04 06 08 1.0 1 2 4 8 16 32
Ve (V) Num. of rows

Fig. 4. Experimental and simulation validations of the proposed ACAM array. (A) Decision tree adopted for the experimental validation. (B) ACAM array implement-
ing the decision tree. (C) Experimental Vyy programming of the ACAM array and the programmed states versus target states. (D and E) Theoretically and experimentally
obtained matching space for the decision tree, with respect to SL; and SL,, respectively. SL; and SL, space is divided into four regions corresponding to the four matching
ranges stored in the CAM array rows in (B), thus mapping the four branches in (A). (F) Simulated ML current of a single ACAM cell with different Vs when the ACAM cell is
configured to perform the less-than branch-split operation. (G) Simulated transfer characteristics of the two-stage buffer SA over the search input voltage at the search
time of 10 ns for the less-than branch-split operation. (H and ) The corresponding search time needs to be adjusted for different number of columns (H), while the search
time is almost the same for different number of rows (). (J and K) Transfer characteristics of the SA output over the input voltage as a function of the number of columns
and rows in the ACAM array, respectively.

word is independent of each other, a large ACAM word can be de-  performing the majority voting for the forest and transmitting the
composed into multiple small ACAM words such that searching for ~ intermediate results between the forests, are discussed in figs. S9 to
alarge ACAM matching word is equivalent to searching for the match- ~ S13, respectively. Here, the DRF simulation is implemented on an
ing words in all ACAM subarrays simultaneously. Each ACAM array  Intel Core i7-10750H 6-Core CPU and a Titan X GPU. The branch-
corresponding to a decision tree votes for a given class, and using a  split threshold is quantified using linear quantization. In our experi-
vote counter, the random forest outputs a vote vector, which repre-  ments, up to eight layers, eight random forests per layer, and 64 trees
sents the number of votes for each class. per forest are used.

The vote vectors of the random forests are then concatenated and DRFs have been used in a variety of applications such as facial
passed to the next layer of the DREF. The specific circuit details, in-  age estimation (40), malware detection (41), and classification of
cluding the decision tree implementation, the sensing circuitry, the hyperspectral images (42). Here, we use two representative datasets
digital-to-analog converter (DAC) for SLs, the random forest imple-  for benchmarking to evaluate the accuracy of the DRF model. One
mentation, and the digital logic to postprocessing the match/mismatch,  is an image dataset, MNIST (43), and the other is the time-series
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Fig. 5. Benchmarking of the DRF using ferroelectric ACAM arrays. (A) Mapping of the DRF onto ferroelectric ACAM arrays. Each tree of a forest is mapped to an ACAM
array, where the number of rows corresponds to the number of leaf nodes (i.e., branches) and the number of columns corresponds to the total required features. (B and
C) Inference accuracy for the MNIST and sEMG dataset with respect to the number of trees per forest, respectively. Excellent accuracy is obtained with the DRF, even when
compared with the LSTM models. (D and E) Accuracy when mapped to the ACAM array considering the limited precision of the branch-split decision boundary. (F) En-
ergy versus latency for a single classification using the DRF when mapped to the CPU, ReRAM- and FeFET-based ACAMs, respectively. FeFET-based ACAM shows superior
performance. (G) ACAM cell density, including both the digital and analog cells. The 2FeFET-based ACAM achieves the highest density due to its compactness.

dataset, SEMG, used for hand movement recognition (44). The
sEMG dataset consists of 1800 records, where each one belongs to one
of six hand movements, i.e., spherical, tip, palmar, lateral, cylindri-
cal, and hook. Each record captures approximately 6 s at 500 samples
per second or approximately 3000 samples. For the sSEMG data, we
used a sliding window approach with a window size of 100 samples
and a 95% overlap. This results in a 100 X 600 dimensional vector,
which is used as an input to the DRE. Figure 5 (B and C) shows the
inference accuracy for the MNIST and sEMG dataset as a function
of the number of trees per forest in the DRE. We follow the train-
ing procedure in (12) while varying the number of trees. The DRF
is trained at full precision, and the branch-split decision boundary
is quantized after training to evaluate the impact of the boundary
precision.

For both models, the accuracy saturates when more than eight
trees per forest are used. An accuracy of 99.2% is achievable for the
MNIST dataset, which is on par with a three-layer convolutional
deep belief network (45). For sSEMG, the accuracy of the DRF model
is 72%, substantially outperforming an advanced long short-term
memory (LSTM) machine learning model (12). These results
demonstrate the competitive performance of DRF in performing
different classification tasks.

Yin etal., Sci. Adv. 10, eadk8471 (2024) 5 June 2024

As FeFET ACAM cell can currently hold three bits of Vry states
in this work (per fig. S2), the impact of precision on inference ac-
curacy is evaluated. Figure 5 (D and E) shows the inference accuracy
as a function of precision of the decision boundary for the MNIST
and sEMG dataset, respectively. For MNIST, each grayscale pixel in-
tensity is used as a feature, i.e., nonleaf branch-split node. Since rele-
vant features are either black or white, the DRF performs well even
at 1-bit precision. However, for the sSEMG dataset, the accuracy starts
to degrade when the decision boundary precision drops below 4 bits
and accuracy is especially low at 1-bit precision. The FeFET ACAM
with 3-bit precision demonstrated in this work suffers accuracy deg-
radation but still performs better than LSTM for the sEMG dataset.
Note that due to the core tree structure in a DRF, a higher precision
branch-split operation can be realized using ACAM cells with lower
precision at the cost of additional ACAM area and energy consump-
tion. To implement a higher precision DRE, each tree node or some
critical nodes (i.e., requiring a higher precision) can be split into
multiple tree nodes (lower precision), as illustrated in fig. S17 as an
example. Each feature must be split into its most significant bits
(MSBs) and least significant bits (LSBs) and treated as two separate
features and searched separately. This results in an increased number
of branches, and hence the number of rows when mapping to ACAM

8of 11

$202 ‘90 1SNSNY U0 SUIAI[ RILIOJI[R)) JO AJISIOATU(] J& SI0°90UIOS MMM //: SN WOI papeo[umo(]



SCIENCE ADVANCES | RESEARCH ARTICLE

arrays. In future work, we will evaluate the trade-offs of extending
the precision for FeFET ACAMs.

It is also important to evaluate the impact of device-to-device
variation of FeFETs on the classification accuracy of the DRE The
variation in FeFET Vy (per fig. S2) is directly translated into the vari-
ation in the decision boundary, which impacts the accuracy of the
branch-split operations. As Vy variation increases, overlap between
neighboring decision boundaries is expected. The impact of such vari-
ations may vary by datasets. For MNIST, because the input is binary,
the DREF is highly robust to variation as long as the decision boundary
between the black and white pixels is well defined. For sEMG, the in-
put values are not binary, but intermediate values, which increase the
susceptibility of the system to FeFET variation. However, as suggested
in fig. S18, when the SD of the decision boundary is less than 7% of the
overall memory window, the accuracy remains unaffected. Consider-
ing that current FeFET V15 SD is on average 4% of the overall memory
window, DREF that leverages even current devices still yields negligible
accuracy loss, demonstrating great robustness. As the FeFET technology
continues to improve, variations will be further suppressed (46); thus,
FeFETs will become an even more robust technology platform for
DRF implementation.

To compare FeFET ACAM-based DRF with alternative DRF im-
plementations, the ferroelectric ACAM array performance extracted
from the simulations in Fig. 4 is used for system-level benchmarking.
We assume an ACAM array of size 128 X 128 as the basic ACAM
module and that multiple ACAM arrays are cascaded to complete all
system-level tasks. Figure 5F shows energy versus latency for a single
classification. The DRF implementation on an Intel Core i7-10750H
CPU (14-nm node) @ 2.60 GHz with 16 GB of RAM is used as a
reference (i.e., the latency and energy per classification is considered
as 1), against which the system implementation using ACAM arrays
based on ReRAM [16-nm node (14)] and FeFETs is benchmarked.
The instantaneous CPU power during the inference of a DRF model
is extracted by Power API of an Intel i7-10750H CPU. The energy per
classification is calculated using the average power and the latency.
The extracted FeFET ACAM array energy includes the ML precharge
energy, the SA energy associated with the MLs, and the DACs driving
the SLs, as shown in fig. S19. The search latency is determined, similar
to fig. S14, as the time point when the corresponding matching
boundary of the SA output transfer curve with Vg, aligns with the
predefined boundary, i.e., the stored matching boundary. Since ReRAM
ACAM array has only been proposed for a decision tree implemen-
tation and not for DRF (14), we take the reported ReRAM ACAM array
characteristics, demonstrating outstanding performance gain against
digital processors, and evaluate its performance in implementing the
DRE. Because of their parallel nature and compact, in-memory
computing characteristics, the ferroelectric ACAM array exhibits
notable savings in energy and latency when compared with a CPU
(e.g., up to 10°X saving in energy and latency). FeFET-based ACAM
arrays have lower energy consumption than their ReRAM counter-
part due to the elimination of the DC flowing through the ReRAM
ACAM cell. These results suggest great promise for the ferroelectric
ACAM array when implementing the DRE In addition, we also
implemented a simple random forest model (i.e., no layer-by-layer
structure) using the ferroelectric ACAM and evaluated its perfor-
mance on some electroencephalogram (47) and positron emission
tomography (48) dataset. Table S1 summarizes the metrics includ-
ing cell size, energy, and latency per classification using our ferro-
electric ACAM-based random forest, as well as other advanced
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machine learning model implementations. Again, superior energy
efficiency and latency for a classification operation using the ferro-
electric analog CAM array is demonstrated.

Figure 5G provides the evolution of CAM cell density as a func-
tion of technology nodes. Both the digital and analog CAM cells are
included for completeness. As expected, with technology scaling,
CAM cell density continues to improve. Because of its compactness,
the ferroelectric ACAM cell (2FeFET) exhibits the highest density
so far, greatly outperforming its ReRAM counterpart (6T2R). As a
result, the compact ferroelectric ACAM array could well support
the acceleration of the DRF model.

DISCUSSION

Here, we implemented the DRF with ferroelectric ACAM array by
leveraging the parallelism and in-memory computing capability of
the ACAM array. We demonstrated that DRF inference could be
efficiently mapped as the associative search operations in ACAM
arrays, as the ACAM cell can realize the key branch-split operation
of a decision tree in memory by harnessing the analog polarization
states within an FeFET. We validated the functionality of the 2FeFET
ACAM cell and the capability of ACAM arrays in identifying the
matching region in the high-dimensional search space. Each ACAM
row corresponds to a specific branch from the root node to a leaf
node in a decision tree. With the proposed ultra-compact ACAM
cell, we show that the FeFET ACAM-based DRF accelerator exhibits
order-of-magnitude improvement in footprint, and inference energy
and latency. These results suggest that ferroelectric ACAMs provide
a promising hardware platform to implement DRF as an alternative
complement to DNNs for achieving edge intelligence with its inter-
pretability, low latency, and superior energy efficiency.

MATERIALS AND METHODS

Device fabrication

Here, the fabricated FeFET features a poly-crystalline Si/TiN (2 nm)/
doped HfO, (8 nm)/SiO, (1 nm)/p-Si gate stack. The devices were
fabricated using the GlobalFoundries 28-nm node gate-first HKMG
complementary metal-oxide semiconductor (CMOS) process on
300-mm silicon wafers. The ferroelectric gate stack process module
starts with growth of a thin SiO,-based interfacial layer, followed by
the deposition of an 8-nm-thick Si-doped HfO,. A TiN metal gate
electrode was deposited using physical vapor deposition (PVD), on
top of which the poly-Si gate electrode is deposited. The source and
drain n+ regions were obtained by phosphorus ion implantation,
which were then activated by a rapid thermal annealing (RTA) at
approximately 1000°C. This step also results in the formation of the
ferroelectric orthorhombic phase within the doped HfO,. For all the
devices electrically characterized, they all have the same gate length
and width dimensions of 1 pm X 1 pm, respectively.

Electrical characterization

The FeFET device characterization was performed with a PXI-Express
system from National Instruments, using a PXIe-1095 cassis, NI
PXIe-8880 controller, NI PXIe-6570 pin parametric measurement
unit (PPMU), and NI PXIe-4143 source measure unit (SMU). Before
characterization, all FeFETs are preconditioned using the SMUs by
cycling them 100 times with the pulses of +4.5 V, =5 V with a pulse
length of 500 ns each. Readout of the memory state is done by a
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stepwise increase of the gate voltage in 0.1 V-increments while ap-
plying 0.1 V to the drain terminal and measuring the current using
the PPMU. Bulk and source terminals are tied to ground at all times.
The read operation takes approximately 7 ms. The multilevel charac-
terization of individual FeFETs is performed by putting them in a
reference state with a gate voltage of —5 V or + 4.5V for 500 ns for
erase or program, respectively. After that, a single pulse of increasing
amplitude is applied for 200 ns. The gate voltage amplitude stepping
is set to 100 mV. After each pulse, a delay of 2 s is added to ensure
sufficient time for charge detrapping after which a readout is per-
formed. This scheme is repeated for the full switching range. The
CAM measurements are performed in an AND-connected array.
One CAM cell is constructed by measuring two FeFETs sharing the
same connection at their drain terminal, the matchline. Source and
bulk terminal are tied to ground at all times. The FeFETs are pro-
grammed to the target V’s individually, applying a single fixed pro-
gram pulse specific to the target V. Readout operation is performed
similar to the single devices. The ML is kept at 0.1 V, while an stepped
gate sweep is performed. Using individual PPMU channels, the read-
out is performed on both FeFETs of one CAM cell.

Transmission-EBSD characterization

For transmission-EBSD characterization, also known as transmission
Kikuchi diffraction, a 10-nm Si-doped HfO, layer was deposited on
a silicon wafer with a thin chemical oxide layer. This was carried out
using atomic layer deposition with a cycling ratio of 16:1 (Hf:Si).
After capping the layer with a 10-nm TiN top electrode, the film was
crystallized via RTA at 1000°C. A dimpled sample was prepared and
analyzed in a scanning electron microscope using a Bruker Optimus
TKD detector. An acceleration voltage of 30 kV and a current of
3.2 nA were used.

SPICE simulation setup

The FeFET compact model (39) adopted in our simulations is cali-
brated by the fabricated FeFET, along with the predictive technology
model (PTM) for CMOS transistors (49). The supply voltage is 1 V,
and the temperature is set to 27°C. Wiring parasitics are extracted
from DESTINY (50). For an ACAM array of size 128 X 128, 6.4- and
3.84-fF parasitic capacitance are extracted and associated with MLs
and SLs, respectively.
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