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A B S T R A C T

While modern 5-axis computer numerical control (CNC) systems offer enhanced design flexibility and reduced
production time, the dimensional accuracy of the workpiece is significantly compromised by geometric errors,
thermal deformations, cutting forces, tool wear, and fixture-related factors. In-situ sensing, in conjunction
with machine learning (ML), has recently been implemented on edge devices to synchronously acquire
and agilely analyze high-frequency and multifaceted data for the prediction of workpiece quality. However,
limited edge computational resources and lack of interpretability in ML models obscure the understanding
of key quality-influencing signals. This research introduces ąČĒăĐĎĄĀ, a novel graph-based hyperdimensional
computing framework that not only assesses workpiece quality in 5-axis CNC on edge, but also characterizes
key signals vital for evaluating the quality from in-situ multichannel data. Specifically, a hierarchical graph
structure is designed to represent the relationship between channels (e.g., spindle rotation, three linear axes
movements, and the rotary A and C axes), parameters (e.g., torque, current, power, and tool speed), and the
workpiece dimensional accuracy. Additionally, memory refinement, separability, and parameter significance
are proposed to assess the interpretability of the framework. Experimental results on a hybrid 5-axis LASERTEC
65 DED CNC machine indicate that ąČĒăĐĎĄĀ not only achieves a 90.7% F1-Score in characterizing a 25.4 mm
counterbore feature deviation but also surpasses other ML models with an F1-Score margin of up to 73.0%.
The interpretability of the framework reveals that load and torque have 12 times greater impact than power
and velocity feed forward for the characterization of geometrical dimensions. ąČĒăĐĎĄĀ offers the potential to
facilitate causal discovery and provide insights into the relationships between process parameters and part
quality in manufacturing.

1. Introduction

Modern 5-axis computer numerical control (CNC) systems play a
critical role in the precision fabrication of intricate workpieces, such
as molds and turbine blades in automotive and aerospace industries,
where adherence to stringent specifications is imperative [1]. These
systems enable the machining of five perpendicular faces in a sin-
gle clamping operation, optimizing tool angle and enhancing process
parameters crucial for shaping surface and internal structure geome-
tries [2]. However, the optimal performance of 5-axis machining is
challenged by a range of factors: (1) Mechanical idiosyncrasies inherent
to axes, spindles, and guideways result in machine tool aberrations;
(2) Issues associated with the tool, such as rigidity and accelerated
wear rates; (3) Inherent heterogeneity in material properties, which
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manifests as dimensional divergences, fluctuating hardness metrics,
and embedded internal stress vectors; (4) The multifaceted nature
of programming, highlighted by software-mediated anomalies such as
toolpath delineation errors, dimension input variances, and potential
misalignments in coordinate transformations [3].

Numerous standards are defined to help assess that parts created
with 5-axis machining are made accurately and consistently when
faced with errors such as thermal effects from machining, geometric
deviations, and tool degradation. Geometric evaluations such as those
defined in the ISO 230 series of standards [4–6] ensure that a machine’s
movements are accurate and match with their programmed instructions
before cutting material. Furthermore, standards such as ISO 10791-
7 [7] provide specific test pieces including cylinders, cones, and planes
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to identify if there are any inaccuracies in the machine’s positioning and
movements during the actual machining process. To guarantee adher-
ence to these standards, data is often relayed to the numerical control
with an adjusted tool path to minimize deviations, or machining errors,
from the intended shape [8]. There are primarily two main ways to
achieve this: (1) Full-field systems, often optical, project light onto the
workpiece surface, capturing any surface irregularities. For enhanced
lateral resolution, optical microscopes are commonly employed; (2)
Probe-scan systems employ a 1D or 2D probe, either contact or non-
contact, for surface scanning [9]. This method offers greater flexibility
in measuring the shapes and sizes of workpieces than a full-field system.

While ISO standards provide a comprehensive framework for many
machining operations, they fall short in addressing challenges unique
to 5-axis machining, including tool-path optimization, multi-plane dy-
namics, and intricate geometrical precision [10]. On the other hand,
measurement systems grapple with complications stemming from vibra-
tions, probe misalignments, and erratic machine axis movements, all of
which introduce measurement uncertainties [11]. The size of sensors,
such as laser scanners and white light interferometers, combined with
the constraints of the CNC machine and spatial limitations within
machine tools adds further complications.

Edge devices, equipped with in-situ sensing, have emerged as pow-
erful tools for capturing high-frequency data in real-time during 5-axis
machining while coping with spatial limitations of machine tools.
Specifically, these devices enable the comprehensive collection of data
on parameters such as load, current, torque, power, and tool speed,
derived from spindle rotation, movements across three linear axes,
and rotations in the rotary A and C axes, establishing the connection
between process parameters and geometrical deviations in a workpiece.
Sensing load offers insights into the cutting force exerted on the tool,
aiding in the prevention of tool breakage and providing foresight
into tool wear. Monitoring current is of paramount importance as it
reflects motor demand, whereas abrupt current spikes may indicate
potential tool collisions, or excessive force, while gradual changes
suggest tool wear. Torque measurement serves as a direct indicator
of forces during the cutting process, with variations in torque acting
as early alerts for potential concerns such as tool wear or suboptimal
tool paths. Command speed and control differentials provide insights
into discrepancies between the machine’s intended operation and its
actual performance. Power monitoring is essential to ensure energy ef-
ficiency and safe system operation. Encoder positions provide feedback
on the exact position of machine components, guaranteeing precise
movement. Misalignments produce workpieces that deviate from ac-
ceptable tolerances. Velocity feed forward reveals anticipated machine
speed based on commands. Axis position sensing verifies the accurate
coordination of all five axes for achieving desired workpieces.

The advantages of sensing and computing on edge devices include:
(1) Handling high-frequency data without sensor size limitations; (2)
Collecting multifaceted data from various channels, offering a nu-
anced understanding of 5-axis machining dynamics; (3) Performing
quality monitoring at the sensor, or in close proximity, minimizing
transmission delays, reducing network strain, and expediting inference
times [12]; (4) Achieving real-time control of the machining process by
agilely adjusting tool paths and control parameters, such as feed rate
and width of cut. Unlike in a cloud setting, where insignificant data
and noise are directly stored, edge computing allows for local filter-
ing, caching, and computing [13]. This strategy effectively addresses
the principal bottleneck associated with large data streams, thereby
optimizing the use of resources for real-time quality monitoring of
workpieces [14]. However, integration of in-situ monitoring with edge
computing in 5-axis machining presents the following challenges:

• Edge Limited Resources: Computational and memory con-
straints of edge devices pose critical challenges when integrating
learning models into 5-axis CNC machining. The least squares
support vector machine (LS-SVM) has been employed to correlate

variables such as cutting depth, spindle speed, feed rate, and
cutting time with tool wear in ball-end mill cutters [15]. Con-
volutional neural networks (CNNs) have been utilized to detect
tool wear on machined surfaces [16,17] and to assess energy
consumption specific to machining processes [18]. Vibration sig-
nals in the machining process have been analyzed using various
neural network architectures, including deep neural networks
(DNN), long short-term memory networks (LSTM) [19] and 1D-
CNNs [20], with the aim of predicting surface roughness and
geometric errors. Moreover, the self-organizing map (SOM) neu-
ral network and physics-based machine learning (ML) methods
have demonstrated promise in chatter detection, a significant con-
cern in machining, with a primary focus on vibration data [21].
However, the application of these methodologies has been largely
limited to feasibility studies on desktop computers, rather than
in real-world machining applications. Recent advancements, such
as sparsification [22], network pruning [23], and knowledge
distillation [24], aim to enhance the computational efficiency of
ML implementations on machines. Nonetheless, these techniques
introduce new challenges, including diminished accuracy and
need for model fine-tuning.
• Model Interpretation: The utilization of sensing across a range
of parameters is becoming prevalent, offering potential to identify
critical signals that influence quality. However, when analyzing
data using ML, a significant challenge arises due to many models’
‘‘black-box’’ nature. This characteristic complicates matters for
human experts seeking to understand the data attributes respon-
sible for the dimensional accuracy of workpieces [25]. Although
post-hoc explanation methods such as local interpretable model-
agnostic explanations (LIME) [26], Shapley additive explanations
(SHAP) [27], and DeepLIFT [28] aim to address this concern,
they encounter inherent issues related to computational costs and
sensitivity to input variations [29]. Conversely, classical explain-
able methods that involve discretization, including decision trees
and random forests, face a trade-off between performance and
interpretability when the depth of the tree is large [30].

We introduce a novel graphical hyperdimensional computing (HDC)
framework, ąČĒăĐĎĄĀ, to explore interpretable learning that character-
izes the relationship between process parameters and the workpiece
dimensional accuracy. By mapping in-situ sensing data into hyperspace
through binding and bundling, ąČĒăĐĎĄĀ creates a hierarchical graph
structure to represent the relationship between channels, parameters,
and workpiece geometrical deviation. Additionally, memory refinement
and iterative learning are designed to improve data representation. The
main contribution of this research is summarized as follows:

• A graph-based hyperdimensional computing with memory refine-
ment capability is introduced for interpretable learning, focusing
on key signals essential for assessing part quality from edge-
collected multichannel data. Specifically, the hierarchical graph
structure represents the relationship between channels (e.g., spin-
dle rotation, three linear axes movements, and rotary A and
C axes), parameters (e.g., torque, current, power, and tool
speed), and part dimensional accuracy, shedding light on the
cause-and-effect dynamics that drive quality variations.
• Two new quantifiers, separability and parameter significance, are
designed for evaluating the interpretability of the framework.
Separability provides a level of probabilistic certainty regard-
ing the association of channels to geometrical deviation. This
certainty ensures that data belonging to different quality levels
can be distinctly identified and accurately allocated. Parameter
significance allows for the evaluation of what parameters are most
significant in determining the chosen quality level.
• A real-world experiment conducted on a DMG machine reveals
part quality by capturing 13 parameters, such as load, torque,



CIRP Journal of Manufacturing Science and Technology 50 (2024) 198–212

200

D. Hoang et al.

axis position, and encoder position, each with 6 channels. Addi-
tionally, the model’s implementation on GPU and edge device,
specifically the NVIDIA Jetson AGX Orin 32 GB, showcases a
performance uplift in training time compared to state-of-the-art
learning models for quality characterization.

The experiment is conducted on a hybrid 5-axis CNC machine from
Deckel-Maho-Gildemeister (DMG). Eighteen workpieces are produced
using consistent machine settings, with worn bits replaced as needed
throughout the process. During machining, process parameters, such as
power, torque, and load, are captured using a Sinumerik edge device,
specifically the Simatic IPC227E. For each process parameter, data
from six channels, corresponding to the different 5 axes and spindle of
the DMG machine are simultaneously obtained. After fabrication, hole
dimensions serving as geometrical features are measured and compared
to the respective nominal values. A common feature on machined
workpieces, the diameter of a 25.4 mm counterbore, is chosen as a
representation of part quality for further analysis.

The remainder of this paper is organized as follows: Section 2
reviews edge computing and interpretable models for quality moni-
toring in manufacturing. Section 3 introduces the ąČĒăĐĎĄĀ framework
for model implementation. Section 4 discusses the detailed setup for
the experiments. Section 5 illustrates experimental results. Finally, the
conclusion of this proposed study is presented in Section 6.

2. Research background

Machine learning models have demonstrated promising results for
part initial alignment and positioning, optimizing tool path, tool wear
prediction and monitoring [31], surface roughness prediction [32],
chatter detection, and compensation machining [33]. However, edge
computing offers a unique capability to perform analysis near sensors
to tackle the latency concerns in cloud-based solutions for quality
monitoring and process control. This section reviews the current
edge computing models along with interpretability in learning for
manufacturing processes.

2.1. Edge computing in manufacturing

Numerous investigations have centered around the implementation
of machine learning models (e.g., traditional feature-based approaches
and comprehensive neural networks) on edge devices with an emphasis
on early fault identification and elimination of defective components.
Considering resource limitations on edge, a range of hybrid com-
putational strategies blending cloud and local processing have been
investigated, along with analyses of model compression techniques. Li
et al. [34] conducted a preliminary investigation for quality character-
ization through a DeepIns network model on hybrid edge and cloud
servers. The multi-Branch CNN model enabled early fault detection on
the edge layer for simpler images to be classified, while complex images
were sent to the cloud for further processing. They also introduced a
joint loss function to simultaneously train regressors and classifiers,
enabling the determination of defect categories and intensities. Ha
et al. [35] implemented an intelligent vision-based injection molding
defect detection system. The CNN model was located on edge to
automate the system and transfer the index of product-fault data to
the programmable logic controller for the automatic removal of faulty
products. Similar visual quality inspection schemes have been applied
in logistics packaging boxes [36], and the textile industry [37]. Ren
et al. [38] introduced a lightweight temporal convolution network
(LTCN) for the remaining useful life (RUL) prediction of bearings. On
edge, a single sampling time LTCN was utilized for rapid prediction,
while in the cloud, multiple sampling times incorporated features
from the edge. Tham et al. [39] investigated the impact of wireless
network channels on the accuracy of predictive maintenance models.
These works primarily utilized deep learning models, which require

longer training times and complex computations than traditional ML
models. To address this issue, Xu and Zhu [40] applied group ML
techniques, achieving an overall accuracy increase of approximately
35.77%, 27.63%, and 20.17%, compared to k-means clustering, pixel-
based, and contour detection methods, respectively. Wu et al. [41]
employed a random forest to predict tool wear in milling machines
using cutting force and vibration data.

Advancements have been made in compressing and accelerating
models through techniques such as pruning [42], quantization [43],
low-rank factorization [44], transferred or compact convolutional
filters [45], knowledge distillation [24], and neural architectural
search [46]. For example, Yang et al. [47] combined a variational
autoencoder for dimensionality reduction with a time convolutional
network (TCN) to reduce reliance on limited edge resources. This
approach captured long-term sequence features and yielded improved
accuracy compared to various benchmark machine learning and neural
network models. Li et al. [48] utilized regularization as a strategy to fa-
cilitate structured pruning by removing superfluous filters. Molchanov
et al. [42] used Taylor series expansions to estimate its effect on the
final loss in pruning due to the challenge related to evaluating the
contribution of a neuron (or filter). Courbariaux et al. [43] employed
a quantization technique that enabled a 1-bit representation of the
weights and activations learned during the training phase. Swami-
nathan et al. [44] implemented singular value decomposition (SVD) as
a low-rank approximation method for the weights of the fully connected
layer of a neural network, thus enabling efficient storage. MNASNet
was introduced by Tan et al. [49] in which they implemented a rein-
forcement learning approach to autonomously generate a deep neural
network, thereby striking a balance between accuracy and end-device
performance. Romero et al. [50] employed a knowledge distillation
and scrutinized a hint sourced from the teacher’s intermediate layer,
which was used to guide the student model’s training with the teacher’s
full feature maps. However, despite the capabilities, the current edge
computing for quality monitoring encounters the following challenges:

• The current DNN models are computationally and memory-
intensive, which causes difficulty in deploying them in devices
with limited resources and applications that require low la-
tency. Furthermore, compression solutions face generalizability
concerns while also requiring additional training, or fine-tuning
of models, which adds computational overhead to the training
process.
• Vision-based inspection methods, despite widespread adoption in
industry, present inherent limitations in establishing a compre-
hensive link between the manufacturing process and overall part
quality due to the detection of abnormalities restricted solely to
the surfaces of workpieces [51]. Leveraging combined sensory
data, including metrics such as power, torque, and force, en-
hances quality predictions at the edge. However, a notable gap
exists in comprehensive fusion of all available sensory data.

2.2. Interpretable learning

Identifying sensor feedback responsible for a particular fault or qual-
ity state in a workpiece becomes challenging when data from numerous
sensors are involved. Interpretability refers to the capability to infer
manufacturing sensor data which coincides with the intuition of human
experts, or with the configuration, parameters, and outputs of models.
Generally, achieving interpretability within the learning process de-
pends on two model categories: (1) Those based on knowledge-driven
feature engineering methods and (2) Those employing hierarchical and
graphical techniques.

Decision trees and random forests have gained popularity due to
their ability to associate features with learning model reactions. While
tree models provide a structured pathway for using local models in
predictions, recursive segmentation might not always yield decision
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Fig. 1. Flowchart of the proposed graph hyperdimensional computing for interpretable edge learning in 5-axis machining.

rules that are clear to human experts. Moreover, an increase in feature
length impacts performance [52].

Recent research trends have focused on demystifying deep neu-
ral networks that have undergone extensive training, examining both
local and global performances. Approaches such as the local inter-
pretable model-agnostic explanations method [26] and its derivative
techniques [53,54] have been explored to understand black-box deep
neural networks from both micro and macro perspectives. The fun-
damental principle involves complementing these complex black-box
models with other fully interpretable models, such as linear regression
models [26] and association rules [53]. However, they face challenges
such as high computational costs, stability issues, and an inability to
capture all the complexities of the original black-box model.

To enable interpolation of NNs, TSViz was introduced to elucidate
time series CNNs using dynamic variable selection outcomes, filter vari-
ance and importance, variation analysis, and robustness analysis [55].
To supplement the explanations provided by TSViz, a framework
named TSXplain integrates statistical features derived from raw time
series data. In a distinct study [56], the authors addressed a specific
problem by training separate binary classifiers for each fault as opposed
to a singular multiclass fault detector.

Hyperdimensional computing represents a new symbolic paradigm
recently integrated with edge computing to facilitate lightweight
learning [57]. Emerging from theoretical neuroscience, HDC models
short-term human memory and draws inspiration from the concept that
the cerebellum cortex processes high-dimensional data representations
due to the extensive size of brain circuits [58]. A variety of robust
and sample-efficient HDC models have been formulated for learning
tasks in advanced manufacturing systems [59,60]. In previous studies,
HDC has been explored in additive manufacturing contexts, aiding
in the characterization of melt pool images based on different scan
strategies, thereby providing a deeper understanding of melt pool
dynamics and facilitating the systematic qualification of an additive
manufacturing build [61]. Furthermore, HDC has been adapted for
single-pass defect learning using measurements from photodiodes in
the laser powder bed fusion process [62] in conjunction with an
active search algorithm for optimized data selection [63]. However,
exploration into the interpretability of HDC, especially in discerning
key quality-influencing signals in 5-axis machining on the edge with
high-frequency multichannel data remains limited.

3. Research methodology

In this section, we first discuss the preliminaries of hyperdimen-
sional computing, including operations, hypervectors, and learning

procedures. Then, we present ąČĒăĐĎĄĀ to enable efficient, robust, and
holographic reasoning. As shown in Fig. 1, 18 workpieces are manu-
factured by the LASERTEC 65 DED hybrid CNC DMG machine. Various
process signals, such as load, power, current, torque, axis position, com-
mand speed, control differential, contour deviation, encoder position,
velocity feed forward, and torque feed forward, are collected by a Sinu-
merik edge device. After fabrication, 47 features are measured from
the workpiece and compared to their corresponding nominal values
post-fabrication. As the 25.4 mm counterbore is commonly found on
machined workpieces, it is selected as the representation of the quality
of the workpiece for quality characterization and causal interpretation
analysis. Next, we define input nodes, intermediary nodes, and terminal
nodes to create a hierarchical structure to represent the relationship
between input channels, process parameters, and the workpiece quality
as a graph. The proposed ąČĒăĐĎĄĀ is then integrated with the graph
to encode the data into a hyperdimension for navigating through
edges for quality characterization and causal interpretation. The causal
interpretation is presented by the newly defined metric, i.e., parameter
significance, to show the importance of each process parameter.

3.1. Preliminary of hyperdimensional computing

Hyperdimensional computing arises from the field of theoretical
neuroscience as a model for short-term human memory. It is based on
the concept that the cortex of the cerebellum processes data in high-
dimensional forms, which is a result of the vast complexity of brain
circuits [64,65]. Consequently, HDC represents human memory using
points in a high-dimensional space, specifically encoded hypervectors.
Operation: Two types of operations, namely bundling and binding,

are employed in this HDC framework. Defining H⃗1 and H⃗2 as two
encoded hypervectors, the bundling operation (+) computes the point-
wise addition from these hypervectors. The final bundled hypervector
is similar to its constituents and therefore this operation acts as a
memorization tool during computations. On the other hand, the binding
operation (∗) is used to associate hypervectors with each other using
component-wise multiplication.
Hypervector: In HDC, data points are represented by hypervectors,

which are vectors composed of bits, integers, real numbers, or complex
numbers. Hypervectors can be non-binary or binary, with non-binary
HD algorithms offering greater accuracy, while the binary counterpart
is more hardware-friendly and exhibits higher efficiency [57,65,66].
To generate a hypervector, the data in the original space (i.e., Ć) is
encoded to the hyperspace (i.e., ö) utilizing an encoding function:
� ∶ Ć ³ ö. Here, input Ė⃗ * R

n is transformed into �(Ė⃗) * R
d ,
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Fig. 2. Overview of the HDC learning procedure.

where d ≫ n. Two encoding methods are commonly used for mapping
the data from the original space into the hyperspace. The record-based
encoding [67] employs position feature and value feature, and the n-
gram-based encoding [68] relies on n-gram statistics. A hypervector
is a distributed holographic representation for information modeling
such that no dimension is more significant than others, which enables
robustness against failures in other components.
Learning: The overview of HDC learning is represented in Fig. 2.

First, the training data is encoded into hypervectors based on the
encoders discussed above. By bundling, and binding, the corresponding
class hypervectors are trained to represent key characteristics from each
class. During the training procedure, a retraining process updates the
model and increases the performance. When new query data enters, the
class of the query data will be determined by utilizing the maximum
of the similarities between the newly encoded hypervector and all
class hypervectors. For this step, cosine similarity is one common
measurement to calculate the relationship between two hypervectors.
The cosine similarity between two hypervectors, �, is calculated as:

�(H⃗1, H⃗2) =
H⃗1 ç H⃗2

‖H⃗1‖‖H⃗2‖
(1)

where ç represents the dot product. Here, if two hypervectors are
identical, their cosine similarity would be 1, indicating a high degree of
similarity. Otherwise, if the cosine similarity is 0, the two hypervectors
are orthogonal and considered dissimilar. In the last step, the testing
result will be returned based on the comparison.

3.2. InterpHD framework

3.2.1. Graph representation
As mentioned above, graphs are highly effective for reasoning tasks

due to their inherent ability to capture and represent complex relation-
ships and dependencies between entities. In this work, we extend the
existing HDC theory to enhance reasoning capabilities, enabling a more
comprehensive understanding of complex relationships and dependen-
cies within the graph structure. Consider a graph õ = {V ,E}, where
V represents the set of nodes {v1, v2,& , vN}. If there is a relationship
between vi and vj , a directed edge (vi, vj) is added to E. Fig. 3(a) shows
one example of a graph structure. Each circle represents a node and
the arrow between nodes indicates their relationships. We define three
types of nodes, namely input node, intermediary node, and terminal
node. A path in the graph starts with an input node and finishes with
a terminal node. Here, input nodes take data for further analysis by
encoding the input data to the hyperspace. The bundled information
of each input node is then summarized to the intermediary node based
on the graph structure. For example, node v6 has three predecessors.
Based on our definition, nodes v3 and v4 are intermediary nodes and
the node v5 is an input node. In other words, an intermediary node can
be linked to multiple input nodes and other intermediary nodes. Our
graph HDC operations will bind and bundle all information regardless
of the type of the input node, further passing the integrated information
to the next level. As the next step, we describe our proposed ąČĒăĐĎĄĀ

methodology step by step, starting with the input feature encoding.

3.2.2. Node encoding
We first define a set of input features to the input node i as x⃗i =

{x⃗i,1, x⃗i,2,& , x⃗i,n}, where x⃗i,n represents the nth input corresponding to
node i. To ensure holographic representation of the input data, we
leverage the density encoding to map the input features into hyper-
vectors: �density(x⃗) ∶ Ć ³ ö. Fig. 4 presents examples of density
encoding. Each node is able to incorporate multiple input features,
each representing one instance of collected data. For example, assume
node v5 has 2 input feature vectors, each represented by one col-
umn in the numerical example. The density encoding process begins
with feature quantization, where data is transformed into integers by
multiplying with a selected dimension size and then rounding to the
nearest whole number; note that a dimension size of 8 is chosen for
demonstration purposes. Next, the quantized values are mapped to
a bipolar {-1,+1} vector representation based on the value of the
integer. Then, these bipolar vectors are bound with randomly generated
bipolar weight hypervectors using the Hadamard product to create
bound representations. Finally, each bound representation is bundled
to generate the final feature hypervector. For each input feature x⃗5,n,
the density encoder generates a corresponding hypervector. We further
pass the generated hypervector through a sign function to create the
final encoded hypervector H⃗5.

To generate a node hypervector, each encoded feature is first bound
with a randomly generated quasi-orthogonal ID hypervector and then
bundled together (See Fig. 3(a)). Here, each node is associated with
one ID hypervector and the elements of ID hypervectors are randomly
generated bipolar values {-1,+1}. Any two ID hypervectors are consid-
ered nearly orthogonal because the dimension of hypervectors is large.
Denoting H⃗i,n as the encoded hypervector of input feature n of node i,
the hypervector H⃗i for node i is calculated as:

H⃗i =
1
n

(
H⃗i,n ∗

⃗IDi

)
(2)

where ⃗IDi represents the ID hypervector for node i. Then, the node
hypervectors will be carried to the next step for memory generation.
Note that we utilized the hypervectors in green to represent the en-
coded input features, and hypervectors in yellow to indicate the ID
hypervectors in both Fig. 3 and Fig. 4.

3.2.3. Memory generation
As shown in Fig. 3(b), we combine encoded input features to form

the memory nodes. In the graph, both intermediary nodes and terminal
nodes store the information related to the graph memory. Here, we
define two types of graph memory hypervectors. Essentially, the mem-
ory hypervectors encompass the complete information derived from the
nodes directly connected to the memory node. We use M⃗ to denote
hypervectors related to the intermediary nodes, and G⃗ to represent the
output memory. Denote Q⃗j as the hypervector representing node j, we

represent the procedure of generating the memory hypervector M⃗i as

M⃗i =
1
j

(
Q⃗j ∗

⃗IDi

)
"(vj , vi) * E (3)

where i is associated with a memory node in the graph structure. Here,
Q⃗j can be either H⃗j or M⃗j , depending on the node type of j. (vi, vj ) ⊆ E

represents the subset of edges that there exist directed edges from vj to

vi. For example, M⃗4 represents the memory hypervector of node 4, and
it can be calculated as M⃗4 = H⃗2 ∗ ⃗ID4. M⃗6 is another intermediary
node that takes the information from nodes v3, v4, and v5. Based on
Eqs. (2) and (3), M⃗6 = M⃗3 ∗

⃗ID6 + M⃗4 ∗
⃗ID6 + H⃗5 ∗

⃗ID6 = H⃗1 ∗
⃗ID3 ∗

⃗ID6 + H⃗2 ∗ ⃗ID4 ∗ ⃗ID6 + H⃗5 ∗ ⃗ID6. The hypervector associated with
the terminal nodes can be calculated by

G⃗i =
1
j

Q⃗j "(vj , vi) * E (4)

where i is associated with a terminal node in the graph structure and
j can be both input nodes and intermediary nodes. For example, based
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Fig. 3. Hypervector generations in ąČĒăĐĎĄĀ: (a) the hypervector generation for input nodes and (b) the hypervector generation for intermediary nodes and terminal nodes. The
green hypervectors represent encoded features, and the yellow hypervectors indicate independent ID hypervectors that are associated with each node.

Fig. 4. Numerical examples of density encoding framework to map input features to the hyperspace.

on the graph structure in Fig. 3, the terminal node v7 takes input from
two nodes: an input node v8 and an intermediary node v6. To obtain the
terminal node hypervector G⃗7, ąČĒăĐĎĄĀ calculates G⃗7 = M⃗6+H⃗8, where
H⃗8 is an input node hypervector generated by the encoding procedure
in Section 3.2.2.

3.2.4. Graph memory refinement
The brain’s capacity for one-pass memorization is limited, as it typ-

ically requires multiple reviews of the same material to fully retain its
details [69]. Similarly, HDC requires multiple iterations to effectively
memorize every intricate detail of a graph. To ensure robust mem-
orization of information, HDC should iteratively examine the graph,
reinforcing the nodes’ information and connections. We define memory
refinement to enable the enhancement of information retention and
strengthen the overall memorization in ąČĒăĐĎĄĀ.

Define the corresponding outcome of input feature x⃗i,n as yi,n. When
dealing with a memory node linked to C different outcome levels,
the refinement procedure focuses on maximizing the separation among
node memories across these levels. To achieve this, the node memories
are updated by comparing their cosine similarities with their input
nodes across multiple levels. The refinement procedure, outlined in
Algorithm 1, consists of multiple comparisons across different out-
come levels. Here, ĉăċčĐėĎăĄ ćČă first separates features into multiple
subgroups based on their outcome y. For each outcome level c, a
node hypervector will be generated accordingly, and the refinement
function iterates over all nodes i and updates their memories based
on information from preceding nodes if the cosine similarity between
this level and the input nodes of the other levels is greater than a
threshold T . The elements of M⃗i,c are then updated using element-wise
subtraction with the information from Q⃗i,c2 multiplied by a refinement

weight �. This algorithm facilitates the refinement and enhancement of
memory representations in a graph, resulting in improved separation
and learning capabilities for the associated input features.

Algorithm 1 ĉăċčĐėĎăĄ ćČă ()

Input:
õ ± graph structure
(x⃗, y) ± pairs of input features and the corresponding labels
Q⃗ = {H⃗, M⃗} ± all hypervectors associated with the graph
� ± refinement weight
T ± threshold

1: Create M⃗i,c to separate input for each node i based on the outcome
level C ⊳ C = unique(y)

2: Create the set Q⃗i,c2 ⊳ all input nodes corresponding to memory
node from all other respective levels

3: for c * C do
4: if �(M⃗i,c , Q⃗i,c2 ) > T then

5: M⃗i,c ± M⃗i,c − �Q⃗i,c2

6: end if
7: end for

Output: M⃗

3.2.5. ąČĒăĐĎĄĀ Learning
ąČĒăĐĎĄĀ executes ăĐÿĎĆđĎĂÿĒă using the updated graph memory.

This iterative process refines the comparison between the mem-
ory nodes and graph output. Algorithm 2 delineates the steps of
ăĐÿĎĆđĎĂÿĒă, a central component of the proposed ąČĒăĐĎĄĀ. It is de-
signed to refine prediction accuracy and augment learning by adjusting
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the graph and memory vectors contingent on the difference between
predicted and actual labels. Specifically, the algorithm updates the out-
put hypervectors G⃗ and memories M⃗ influenced by the prediction ŷ. If
there is a misprediction, that is ŷ � y, then the weights of hypervectors
G⃗ and M⃗ associated with the correct label c and incorrect label c2

are updated using element-wise addition and element-wise subtraction,
respectively. The amount of information added, or subtracted, is based
on a chosen learning rate � and the cosine similarity between the
terminal node G⃗i of a training sample and the terminal nodes of the
correct G⃗c and mispredicted G⃗c2 outcome level.

Algorithm 2 ăĐÿĎĆđĎĂÿĒă ()

Input:
õ ± graph structure
(x⃗, y) ± pairs of input features and the corresponding labels
Q⃗ = {M⃗, G⃗} ± all hypervectors associated with the graph
� ± learning rate
Epocℎ ± number of epoch

1: for epocℎ d Epocℎ do
2: ŷ = argmaxc �(G⃗i, G⃗c*C ) ⊳ Predictions corresponding to the
terminal node of sample

3: for c * C do
4: if ŷ � y then ⊳ Update graph and memories corresponding
to incorrect predictions

5: G⃗c ± G⃗c + �(1 − �(G⃗i, G⃗c ))G⃗i

6: G⃗c2 ± G⃗c2 − �(1 − �(G⃗i, G⃗c2 ))G⃗i

7: M⃗c,i ± M⃗c,i + �(1 − �(G⃗i, G⃗c ))M⃗i

8: M⃗c2 ,i ± M⃗c2 ,i − �(1 − �(G⃗i, G⃗c2 ))M⃗i

9: end if
10: end for
11: end for

Output: G⃗

Furthermore, the learning procedure for the proposed ąČĒăĐĎĄĀ

framework is shown in Algorithm 3 below. In summary, ąČĒăĐĎĄĀ

has five main steps. First, features loaded into input nodes are
encoded into hyperspace based on density encoding. Next, graph
memory is created for both memory nodes through the mathematics
introduced in Section 3.2.3. Then, intermediary hypervectors are re-
fined by ĉăċčĐėĎăĄ ćČă and output hypervectors are updated through
ăĐÿĎĆđĎĂÿĒă. Finally, query features are predicted by comparing them
to the trained graph hypervectors.

Algorithm 3 ąČĒăĐĎĄĀ ()

Input:
õ ± graph structure
(x⃗, y) ± pairs of input features and the corresponding labels
� ± learning rate
Epocℎ ± number of epoch
� ± refinement weight
T ± threshold

1: For each node i, generate H⃗i, M⃗i, G⃗i based on the type of node
2: Generate x⃗train, x⃗query, ytrain, yquery
3: M⃗ ± ĉăċčĐėĎăĄ ćČă (ytrain, H⃗ , M⃗ , �, T )
4: G⃗ ± ăĐÿĎĆđĎĂÿĒă (ytrain, M⃗ , G⃗, �, Epocℎ)
5: ŷquery ± argmaxc �(G⃗query, G⃗c*C )

Output: ŷquery

3.3. Quality characterization and causal interpretation

Finally, we proposed two quantifiers to support the quantification
and the evaluation of the ąČĒăĐĎĄĀ. The separability sp operates based

on the equation

sp = S
⎛
⎜⎜⎝

�(M⃗c, G⃗c) −
1

C

1C
c=1 �(M⃗c, G⃗c)

1|�(M⃗c, G⃗c) −
1

C

1C
c=1 �(M⃗c, G⃗c)|

⎞
⎟⎟⎠

(5)

This equation calculates sp by taking the softmax (i.e., S) of the
normalized difference between a specific value of � and the average
value of � over all C elements. The higher the value of separability, the
higher the degree of distinctiveness between the node memories across
different outcome levels. This distinctiveness allows for more reliable
and accurate prediction of query data outcomes.

The parameter significance sg is defined as

sg = S

(
�(Mc , Gc )1
c �(Mc , Gc )

)
(6)

where higher values of sg signify a higher degree of importance of that
specific parameter. We magnify the similarities of the memory nodes
to the terminal node by representing the sg in percentage form.

4. Experimental design

Data analyzed in this study is collected from experiments conducted
on a LASERTEC 65 DED hybrid CNC DMG machine. The fabrication
procedure and data collection are described in Fig. 5. In total, 18 work-
pieces were fabricated from 1040 steel blocks of dimensions 76.2 mm
x 76.2 mm x 76.2 mm. Each individual workpiece consists of 47
distinct features, such as chamfers, holes, rounded corners, and through
holes. Siemens NX was employed to generate tool paths, which were
then categorized into 42 distinct jobs based on the specific tooling bit
required. For example, jobs 03 and 04 utilized a 12.3 mm end mill bit,
while jobs 18 and 19 utilized a 6.76 mm drill bit. Each job or command
had the capability to create multiple features. For instance, job 01
generated both feature 31 (i.e., flatness) and feature 11 (i.e., profile).
A total of 42 in-process signal files were recorded for each workpiece,
corresponding to the 42 different jobs. Expert-guided tool replacements
occurred during the manufacturing process.

To collect real-time non-aliased data, an edge device (Siemens
Simatic IPC227E) is connected to the DMG machine and exports the
data into job files. Fig. 6(a) shows the high-frequency data communica-
tion between the Sinumerik edge device and the connected Sinumerik
controller. Siemens Analyze MyWorkpiece/Capture4Analysis edge de-
vice software was employed to set up data recording triggers which
then consolidated the data on the internal solid-state drive of the edge
device. The software allows the setup of triggers based on several
different conditions. For example, trigger phrases such as ‘‘STARTREC’’
and ‘‘STOPREC’’ are used in the g-code to start and stop record-
ings, respectively. Additionally, within the same trigger line other
text such as the manufacturing operation number can be captured
as a part of the manufacturing data recording, parsed, and then
used as the identifier of the recording file. Through this approach,
manufacturing signals captured on the edge device are categorized
according to the specific manufacturing process. These signals can
then be automatically linked to corresponding Feature ID measure-
ments obtained during post-inspection, enabled by a Feature ID to
Manufacturing Operation mapping file. Consequently, when multiple
workpieces are produced, the time series signals related to each man-
ufacturing operation naturally align with the corresponding feature
measurements which constitute a substantial portion of pre-processing
before utilization in the hyperdimensional computing workflow.

In total, the edge device captured 91 process signals at a frequency
of 500 Hz during the manufacturing process. These signals were ob-
tained from six channels, which corresponded to the five axes and the
spindle. We name these process signals as parameter and their col-
lected data as channel. Subsequently, the channels will serve as input
nodes within our reasoning graph, while the parameter nodes will be
associated with intermediary nodes. Note that we removed the channels
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Fig. 5. Outline of experiment on 5-axis CNC DMG system integrated with Siemens Simatic IPC227E edge device.

Fig. 6. Edge device application, Analyze MyWorkpiece/Capture4Analysis.

Fig. 7. The illustration of the sampling procedure.

that do not have data recorded, and each channel is normalized before
sampling. Assuming data collected for channel k * K has length of T ,
our goal is to employ a sampling technique to create non-overlapping n-
gram windows that are shifted across the time-series data. Note that to
differentiate the notation from the number node in the graph, we define
the length of each output signal sample as L. In other words, T ∕L
number of sampled signals will be generated from windows (i.e., w)
after this procedure for each channel node. As depicted in Fig. 7, the
purpose of this sampling approach is to generate a greater number of
data samples while preserving the temporal relationship inherent in the
original signal.

After machining, each feature was measured and compared to the
average of all workpieces using a GOM ATOS ScanBox. Denoting mea-
sured feature value as y and the corresponding nominal value as yr, the
deviation of a feature can be calculated as dp = yp − yrp "p = 1,& , 18,
where p represents the workpiece number. In some literature, the dif-
ference between the actual value and the nominal value is also named
as residual. This geometric deviation will function as the output node

within our graph structure. In our analysis, we selected job 19 (see the
highlighted box in Fig. 5) as the output because it is commonly found
on machined workpieces. The next step is to assign the workpieces into
three categories. Fig. 8 illustrates the steps to classify the deviation of
the right counterbore diameter (i.e., associated with job 19) based on
their deviation. As shown, the deviation is first transformed into the z-
score to ensure standardized representation and facilitate comparison
across different data points. Then, we establish three quality levels
by categorizing the z-scores. Specifically, deviations below −1 are
classified as low, deviations between −1 and 1 are considered average,
and deviations above 1 are deemed high. It is worth noting that in
practice, the definition of average can be expanded to any z-score, tight-
ening or loosening predictions based on the standard deviation of the
measurements and the distance of the mean from the nominal value.

5. Experimental results

In this section, we present our experimental results. First, we present
the graph structure that was constructed for our study. Second, we
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Fig. 8. (a) The final build of the designed workpiece. Feature 20 (i.e., the right counterbore diameter) is highlighted in the red circle, (b) The characterization of workpiece
quality is achieved through the utilization of z-scores. The workpieces are categorized into three distinct groups, namely low, average, and high. Each group corresponds to the
deviation exhibited by the feature in relation to its nominal value.

Fig. 9. The graph generated from the experiment depicts a visual representation of the relationship between channels, parameters, and the quality of workpieces. The yellow
nodes symbolize the input channels, where the acquired signals are sampled and subsequently encoded. Intermediary nodes, depicted in green, represent the parameters. Finally,
the purple nodes signify the terminal node, which serves as a representation of the quality of the workpiece, specifically by capturing the deviation in the diameter of the right
counterbore.

demonstrate the effectiveness of the proposed ąČĒăĐĎĄĀ in characteriz-
ing quality. Lastly, we delve into the graph reasoning capabilities of the
ąČĒăĐĎĄĀ approach, highlighting separation of parameter and deviation
levels, as well as the significance of parameter deviation levels.

5.1. Graph structure

Based on the collected and pre-processed data, we first create the
graph structure for analysis. As defined in Section 3, our graph structure
consists of three different types of nodes. The input nodes receive data
for subsequent analysis and encode the input data into the hyperspace.
The terminal nodes, on the other hand, are associated with the quality
characteristics that are calculated using post-inspection information.
Meanwhile, the intermediary nodes act as bridges, facilitating the
connection between the input nodes and the output nodes. Fig. 9 shows
the graphical structure created based on the experimental setup. In the
visualization, the input nodes are depicted in yellow, the intermediary
nodes are in green, and the terminal nodes are in purple. We use

capital letters to denote parameters and the subscript represents the
input channel. The sample signal of each channel is included in Fig. 9.
For example, the parameter load L has six different channels of input
(i.e., L1,& , L6). In our experiment, we have designed each parameter
to encompass six channels. Among these channels, the first five are
intricately linked to five distinct axes, while the sixth and final channel
corresponds specifically to the spindle. The presence of fewer than
six input channels for certain parameters in Fig. 9 can be attributed
to the deliberate omission of channels that either lacked recorded
data or exhibited negligible variations in their respective values. For
each channel, we perform sampling with window size and encode
each sampled window based on the density encoding discussed in
Section 3.2.2. The encoded features undergo an initial binding process
with a corresponding set of unique IDs assigned to each channel.
Subsequently, the channels are bundled together to form the param-
eter. This procedure is consistently applied to process each parameter,
enabling the representation of the terminal deviation node. The process
parameters of this study with their corresponding abbreviations are
summarized in Table 1.
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Table 1
Summary of process parameters utilized for the graph construction and analysis.

Process parameter Notation

Load L

Current C

Torque T

Command Speed CS

Control Differential I CD I

Control Differential II CD II

Power P

Contour Deviation ConD

Encoder Position I EP I

Encoder Position II EP II

Velocity Feed Forward V FF

Torque Feed Forward TFF

Axis Position AX

5.2. Sensitivity analysis

Our initial focus is directed towards exploring the influence of the
parameters associated with ąČĒăĐĎĄĀ on the characterization of quality
in order to acquire a comprehensive understanding of their impact and
discern key factors that contribute to the overall quality assessment.
Fig. 10 presents the sensitivity analysis of ąČĒăĐĎĄĀ, specifically focus-
ing on the impact of four crucial model parameters, i.e., hypervector
dimension, sampling window size, model learning rate, and number of
epochs (i.e., in ăĐÿĎĆđĎĂÿĒă), respectively. Here, we set a fixed baseline
for the sensitivity analysis by maintaining certain parameters at specific
values. The hypervector dimension is set at 5000, the sampling window
size is maintained at 10, the learning rate is fixed at 0.9, and the
number of epochs remains constant at 150. These values serve as the
foundation for assessing the impact and variations of other parameters
in the subsequent sensitivity analysis. This analysis sheds light on
the influence of each parameter on the performance of the ąČĒăĐĎĄĀ

framework and supports understanding their individual contributions
to the overall performance of ąČĒăĐĎĄĀ. Particularly, we utilize four per-
formance metrics to evaluate and validate the effectiveness of ąČĒăĐĎĄĀ
on quality characterization. The performance of the model in quality
characterization improves as the model metrics exhibit higher values,
indicating an enhanced level of effectiveness and accuracy.

In Fig. 10(a), the performance of the model is evaluated in re-
lation to the dimension of the hypervector. It is observed that as
the dimension of the hypervector increases, the performance of the
model improves. This can be related to the fact that higher dimen-
sions allow for the inclusion of more digits in hypervectors, thereby
accommodating and conveying a greater amount of information. The
performance continues to enhance until the dimension reaches a value
of 5000, after which it stabilizes and converges. Additionally, an-
other observation is that as the hypervector dimension increases, the
variation of the model decreases, indicating a more consistent and
reliable performance. Fig. 10(b) illustrates the performance metrics
across a range of sampling window sizes, spanning from 10 to 50 with
a step size of 10. Notably, it can be seen that a smaller window size
consistently yields better performance. Furthermore, it can be observed
that an increase in the window size leads to a corresponding increase
in variance. Based on these observations, we select a window size
of 10 as it consistently yields the best learning outcome. Also, note
that a window size of 10 corresponds to a time duration of 0.02 s
in our recording. A window size of 5 was experimented with, and
comparable results to a window size of 10 were obtained. However,
the former took 2× as long regarding training, leading to the adoption
of 10 as the minimum window size. Fig. 10(c) presents the relationship
between the learning rate and the model outcome. It is observed that as
the learning rate increases, there is a slight improvement in accuracy,
precision, recall, and F1-Score. In our model, the learning rate (i.e., �)
plays a critical role during the ăĐÿĎĆđĎĂÿĒă process. Specifically, a
larger learning rate leads to more significant updates in the class

hypervector based on mispredictions. Notably, the variation remains
relatively stable across different learning rates. Based on the learning
outcome, we have determined that a learning rate of 0.7 yields the
best result and consequently selected it as the optimal choice for our
model. Finally, in Fig. 10(d), the evaluation of the model is illustrated
in relation to the number of epochs employed for ăĐÿĎĆđĎĂÿĒă. It
can be observed that as the number of epochs increases, the model
exhibits a significant improvement. Specifically, the accuracy of the
model demonstrates a notable increase from 0.686 to 0.915, reflecting
an improvement of 33.4%. Moreover, the precision, recall, and F1-
score also experience substantial enhancements of 29.2%, 33.4%, and
44.3%, respectively. This clear upward trend in performance highlights
the effectiveness of increasing the number of epochs in improving the
model’s overall performance. Notably, the performance of the model
reaches a convergence point at approximately 150 epochs, suggesting
that further increases in the number of epochs may not lead to substan-
tial gains. In addition, an observation is that as the number of epochs
increases, the variance decreases, indicating a higher level of reliability
and the generation of more robust outcomes by the model. It is worth
mentioning that across all figures, the model demonstrating the best
performance, considered the optimal choice, is distinguished by the
darkest color. In the subsequent stage, we proceed with the selection
of specific parameters for further analysis. Particularly, the hypervector
dimension is set to 5000, the sampling window size is 10, the learning
rate is assigned as 0.7, and the number of epochs is determined as 150.

5.3. Quality characterization

Based on the selected model parameters, we investigate the per-
formance of the proposed ąČĒăĐĎĄĀ by comparing it to other state-
of-the-art learning algorithms used in quality characterization [70].
These algorithms include support vector machine (SVM), quadratic
support vector machine (Q-SVM), cubic support vector machine (C-
SVM), naive Bayes (NB), multilayer perceptron (MLP), convolutional
neural network (CNN), Time LeNet (t-LENet) [71], and multivariate
LSTM-FCN (MLSTM-FCN) [72]. Here, SVM, Q-SVM, C-SVM, and NB are
well-known algorithms commonly used in data analysis, while MLP,
CNN, t-LENet, MLSTM-FCN are considered well-known deep learning
frameworks that often deliver commendable results in characteriza-
tion tasks. The summary of parameters utilized for the benchmarking
models is presented in Table 2.

The objective is to evaluate the prediction capability of the proposed
framework on the workpiece quality. The sampled and encoded data
are loaded into input nodes of the graph, through binding and bundling
across multiple stages (see Fig. 9), and the ąČĒăĐĎĄĀ assigns a final
outcome (i.e., low, average, or high deviation) to the workpiece quality.
The predicted result is then compared with the true information related
to the workpiece quality for model evaluation. For other benchmarking
algorithms, the input data is the sampled data. The assessment of
models tested in this work is evaluated in terms of accuracy, preci-
sion, recall, and F1-Score. Here, the accuracy measures the overall
correctness of the prediction, representing the proportion of correctly
characterized instances. The precision and recall are also included as
indicators to represent the correctly positive instances while minimiz-
ing the false positives as well as correctly find the positive instances
while minimizing false negatives, respectively. The F1-Score is also
taken into account as it considers both precision and recall, providing
a balanced measure that takes into account the trade-off between
correctly identifying positive instances and avoiding false positives and
false negatives. In our analysis, our data is divided into two distinct sets:
80% of the data is allocated for model training, while the remaining
20% is designated for model testing. All models are then trained using
the same number of epochs where applicable to ensure standardization.
It is also important to note all algorithms are implemented 50 times and
all deviation data sets are balanced. This rigorous repetition is to ensure
the robustness and reliability of the experimental results.
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Fig. 10. Sensitivity analysis on the model parameters. (a) The model performance (i.e., accuracy, precision, recall, and F1-score) when the dimension of the encoded hypervector
increases from 1000 to 5000 with a step size of 1000, (b) the model performance when the window size increases from 10 to 50 with a step size of 10, (c) the performance of
the model when the learning rate increases from 0.1 to 0.9 with a step size of 0.2, and (d) the performance of the model when the number of epoch increases from 30 to 150
with a step size of 30.

Table 2
Model parameter settings and model structure utilized for comparison.

Model Summary of parameters

Support Vector Machine
(SVM)

- Max Epochs = 150
- Kernel Function = Radial basis function

Quadratic Support Vector
Machine (Q-SVM)

- Max Epochs = 150
- Kernel Function = Quadratic

Cubic Support Vector
Machine (C-SVM)

- Max Epochs = 150
- Kernel Function = Cubic

Naive Bayes (NB) - Additive Smoothing = 1.0

Multilayer Perceptron
(MLP)

- Max Epochs = 150
- No. of Layers = 3
- No. of Hidden Neurons = 500
- Solver = Adadelta

Convolutional Neural
Network (CNN)

- Max Epochs = 150
- No. of Layers = 6
- Filters = 6,12
- Kernel Size = 7,7
- Pool Size = 3,3
- Solver = Adam

Time Le-Net (t-LENet) - Max Epochs = 150
- No. of Layers = 3
- Filters = 5,20
- Kernel Size = 5,5
- Pool Size = 2,4
- No. of Hidden Neurons = 500
- Solver = Adam

Multivariate LSTM-FCN
(MLSTM-FCN)

- Max Epochs = 150
- No. of Layers = 12
- Filters = 128, 256, 128
- Kernel Size = 8, 5, 3
- Pooling = Global average
- Solver = Adam

Table 3 presents the characterization results comparing the novel

ąČĒăĐĎĄĀ with other benchmarking algorithms. The results highlight

Table 3
Performance metrics (i.e., accuracy, precision, recall, and F1-score) of the proposed
ąČĒăĐĎĄĀ model compared to other characterization algorithms.

Model Accuracy Precision Recall F1-Score

InterpHD 0.910 ± 0.051 0.919 ± 0.029 0.910 ± 0.051 0.907 ± 0.062

SVM 0.394 ± 0.025 0.408 ± 0.037 0.394 ± 0.025 0.381 ± 0.028

Q-SVM 0.426 ± 0.044 0.479 ± 0.107 0.426 ± 0.044 0.386 ± 0.057

C-SVM 0.535 ± 0.047 0.560 ± 0.044 0.0535 ± 0.047 0.523 ± 0.055

NB 0.371 ± 0.017 0.377 ± 0.021 0.371 ± 0.017 0.364 ± 0.018

MLP 0.428 ± 0.022 0.556 ± 0.030 0.428 ± 0.022 0.392 ± 0.036

CNN 0.712 ± 0.070 0.713 ± 0.066 0.712 ± 0.062 0.696 ± 0.075

t-LENet 0.339 ± 0.011 0.172 ± 0.129 0.328 ± 0.011 0.177 ± 0.022

MLSTM-FCN 0.735 ± 0.218 0.788 ± 0.203 0.735 ± 0.218 0.690 ± 0.271

Table 4
Training time on NVIDIA Jetson AGX Orin and speedup of our model compared to
other algorithms.

Model InterpHD CNN MLSTM-FCN

Training time (s) 84.9 207 648
Speedup - 2.4× 7.6×

the superior performance of ąČĒăĐĎĄĀ, outperforming both classical
lightweight algorithms and state-of-the-art approaches. Particularly, it
achieves an accuracy of 0.910, precision of 0.919, recall of 0.910,
and an F1-score of 0.907. These consistent and remarkable results
demonstrate the effectiveness of ąČĒăĐĎĄĀ across various evaluation
metrics, suggesting its potential for high-quality characterization in the
next generation of manufacturing systems on edge. Furthermore, exper-
imental results indicate ąČĒăĐĎĄĀ offers stability and robustness in its
learning outcomes, enhancing its reliability for practical applications.

To test the edge implementation of the model, comparable models
to ąČĒăĐĎĄĀ were executed on an NVIDIA Jetson AGX Orin 32 GB 50
times, and their average training times were obtained as shown in Ta-
ble 4. CNN and MLSTM were selected as they are the only comparable
model in terms of the metrics used for predictive capability. Analyzing
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Fig. 11. The heatmap presents the separation between parameters and deviation levels when the refinement weight increases from 0.1 to 0.5 with the step size of 0.1 for input
features related to the low deviation.

the training times of the models shows ąČĒăĐĎĄĀ, CNN, and MLSTM
require 84.9, 207, and 648 s on average, respectively. ąČĒăĐĎĄĀ achieves
a speedup of approximately 2.4×, and 7.6× compared to CNN and
MLSTM, respectively, showcasing its superior performance on edge.

5.4. Memory refinement

Next, we show the graph memory refinement of ąČĒăĐĎĄĀ. Specif-
ically, memory refinement allows significant separation between the
parameters of different deviation levels. As mentioned before, the
proposed graph-based ąČĒăĐĎĄĀ model allows for the separation of the
symbolic representation of the three levels of deviation. This sepa-
ration is necessary to show that the signals used to construct each
hypervectors associated with each deviation level are dissimilar from
hypervectors that represent other levels of deviation.

We present the separation between parameters and deviation levels
through multiple heatmaps of separability across various refinement
weights (i.e., �). The bigger the value of �, the more adjustment the
ąČĒăĐĎĄĀ adjusts based on other memory nodes. Figs. 11, 12, and 13
show the memory refinement outcome obtained when the refinement
weight is low and the refinement weight is high. The spectrum illus-
trates the varying degrees of separation strength, with the color red
indicating high levels of separation and blue representing the least.
For each set of heatmaps, the separability is calculated based on the
features related to the corresponding deviation. For example, in Fig. 11,
it can be observed that the distinct separation between parameters
and three deviations is based on input features associated with the
low deviation level. The primary objective is to achieve a substantial
differentiation between the low deviation and the other two deviation
levels. When the refinement weight is relatively low, only a limited
number of parameters exhibit notable separation in relation to the
low deviation. For example, the intersection point between the load
parameter and the low deviation demonstrates a significantly high
separability score (i.e., in red). As the refinement weight increases,
it can be seen that a greater number of parameters become distinctly
separated from the other deviations. Also, for the parameter that does
not show strong separation for other deviation levels (i.e., which may
cause errors in the learning outcome), the refinement procedure is
able to increase the separation with the correct deviation level. This
is indicated by the red area within the heatmap shifts towards the left
side for all parameters, aligning with the first column that signifies the
low deviation level.

Similarly, in Fig. 12, we notice the movement of the high separation
area towards the center, where the average deviation is represented.
When comparing Fig. 12 to Fig. 11, we observe slight differences in
the parameters exhibiting strong separation for the average deviation,

particularly during the initialization stage. For example, the command
speed shows a strong separation level even when the refinement weight
is low. In terms of the extent of separation achieved by the refine-
ment procedure for different deviation levels, we can observe that the
amount of separation between parameters for the average deviation
level is relatively less significant compared to the separation observed
for the low and high deviations (see Fig. 13). This is indicated by the
darker shade of red in the heatmap. The reason for this disparity in
separation levels is due to the fact that the deviation is categorized into
three distinct levels, with the average deviation falling between the low
and high deviations.

Further, Fig. 14 provides insights into the distributions of the cal-
culated separability for each deviation level in relation to Figs. 11, 12,
and 13. Across all three cases, we observe a consistent trend where the
separation of the focused deviation level increases as the refinement
weight progresses. This is visually represented by the distributions
shifting towards the right side of the graph. This again highlights the ef-
fectiveness of the refinement procedure in enhancing the differentiation
and separability of the targeted deviation level.

In summary, the refinement procedure plays a critical role in en-
hancing the separation between parameters and the various deviation
levels. As the refinement weight progresses, more parameters exhibit
clear differentiation, contributing to an improved understanding and
characterization of the manufacturing process.

5.5. Causal interpretation

Finally, we perform causal interpretation to decide which of the
parameters are most important to the quality outcome of manufacturing
process. By calculating the parameter significance, we represent the
heatmap of significance in Fig. 15. Here, the color gradient shows the
spectrum of significance strength, allowing for an intuitive understand-
ing of the importance of each parameter in determining the deviation
level. Each row sums to 100% (i.e., total significance), and the numbers
are associated with the value of the center point of each square.

The analysis reveals that certain parameters, including Axis Position
(AX), Load (L), Torque (T ), and Encoder Position I (EP I), play a
significant role in determining the deviation levels observed. Surpris-
ingly, the Power (P ) parameter does not exert a notable influence on
the outcome of workpiece quality. Other parameters such as Velocity
Feed Forward (V FF ) and Torque Feed Forward (TFF ) exhibit rel-
atively lower values across all deviation classes, suggesting a lesser
degree of impact on the overall quality prediction. In conclusion, these
insights emphasize the need for a deeper understanding of the causal
relationships between these influential parameters and the quality of
production, enabling a more focused approach to optimize and enhance
the manufacturing process.
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Fig. 12. The heatmap presents the separation between parameters and deviation levels when the refinement weight increases from 0.1 to 0.5 with a step size of 0.1 for input
features related to the average deviation.

Fig. 13. The heatmap presents the separation between parameters and deviation levels when the refinement weight increases from 0.1 to 0.5 with a step size of 0.1 for input
features related to the high deviation.

Fig. 14. Distribution of separability between parameters and deviations under varying refinement weight. (a) low deviation, (b) average deviation, and (c) high deviation.

6. Conclusions

This paper introduces ąČĒăĐĎĄĀ as a multichannel data fusion frame-
work to enable the identification of the sensing channels that provide
the best process signature for geometrical deviation of workpieces

using a wide range of machining parameters. ąČĒăĐĎĄĀ integrates and

processes multiple channels of edge signals, offering a promising so-

lution for not only characterizing part deviation effectively, but also

realizing the contribution of process parameters on the predicted work-

piece geometrical accuracy. The experimental evaluation conducted
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Fig. 15. The heatmap representing the parameter significance for each deviation level.

on a practical hybrid 5-axis CNC Deckel-Maho-Gildemeister machine
demonstrated the effectiveness of HDC in integrating and analyzing
multichannel in-process signals acquired by an edge device at a fre-
quency of 500 Hz. By incorporating multiple process signals such
as load, current, torque, command speed, control differential, power,
and contour deviation, ąČĒăĐĎĄĀ performed quality characterization
for a 25.4 mm diameter feature achieving an F1-score of 0.907, and
training time of only 84.9 s on average, demonstrating its proficiency
in accurately assessing the quality of parts manufactured using this
specific operation. In addition, the causal interpretation through pa-
rameter significance highlights the significance of load, torque, axis
position, and encoder position in accurately predicting dimensional
accuracy. The ąČĒăĐĎĄĀ framework offers a powerful solution for in-
process characterization on the edge, overcoming challenges associated
with the capability related to interpretation, efficiency in handling lim-
ited samples, and high requirements in computational resources. Future
work will focus on the generalization of the model to accommodate a
wide range of manufacturing processes that involve high-dimensional
sensing data.
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