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Abstract—Multiple access (MA) is a crucial part of any
wireless system and refers to techniques that make use of the
resource dimensions (e.g., time, frequency, power, antenna, code,
message, etc) to serve multiple users/devices/machines/services,
ideally in the most efficient way. Given the increasing needs
of multi-functional wireless networks for integrated communica-
tions, sensing, localization, computing, coupled with the surge of
machine learning / artificial intelligence (AI) in wireless networks,
MA techniques are expected to experience a paradigm shift in
6G and beyond. In this paper, we provide a tutorial, survey and
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outlook of past, emerging and future MA techniques and pay
a particular attention to how wireless network intelligence and
multi-functionality will lead to a re-thinking of those techniques.
The paper starts with an overview of orthogonal, physical layer
multicasting, space domain, power domain, rate-splitting, code
domain MAs, MAs in other domains, and random access, and
highlight the importance of conducting research in universal
multiple access (UMA) to shrink instead of grow the knowledge
tree of MA schemes by providing a unified understanding of
MA schemes across all resource dimensions. It then jumps
into rethinking MA schemes in the era of wireless network
intelligence, covering AI for MA such as AI-empowered resource
allocation, optimization, channel estimation, receiver designs,
for different MA schemes, and MA for AI such as federated
learning/edge intelligence and over-the-air computation. We then
discuss MA for network multi-functionality and the interplay
between MA and integrated sensing, localization, and commu-
nications, covering MA for joint sensing and communications,
multimodal sensing-aided communications, multimodal sensing
and digital twin-assisted communications, and communication-
aided sensing/localization systems. We finish with studying MA
for emerging intelligent applications such as semantic commu-
nications, virtual reality, and smart radio and reconfigurable
intelligent surfaces, before presenting a roadmap toward 6G
standardization. Throughout the text, we also point out numerous
directions that are promising for future research.

Index Terms—Multiple Access, Orthogonal Multiple Access,
Non-Orthogonal Multiple Access, Space Division Multiple Access,
Code Domain Multiple Access, Rate-Splitting Multiple Access,
Universal Multiple Access, Artificial Intelligence, Machine Learn-
ing, Integrated Sensing and Communications, Semantic Com-
munications, Reconfigurable Intelligent Surfaces, Augmented
Reality, Internet-of-Things, 6G.

I. INTRODUCTION

A. From Communication-centric 5G to Intelligent and Multi-
functional 6G

NExt generation wireless networks, such as 6G and be-
yond, will face challenges such as higher data through-

put and spectral/energy efficiency, enhanced reliability, mas-
sive connectivity, global coverage across terrestrial and non-
terrestrial networks, and a growing heterogeneity in the quality
of service (QoS) to meet the demands of further-enhanced
mobile broadband (FeMBB) for augmented reality (AR) /
virtual reality (VR); extremely ultra reliable and low-latency
communication (eURLLC) for full automation, control, and
operation in industrial environment and connected robotics;
and ultra massive machine type communication (umMTC)
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for Internet-of-Things (IoT) [1]. Importantly, future wireless
networks will not only provide the conventional commu-
nication functionality but also offer a wide range of new
functionalities such as sensing, intelligence, computation,
localization/navigation, powering. This tendency for multi-
functional networks is well exemplified by the increasing
number of research areas studying various forms of wireless
systems integration. Indeed, radio waves can be used for
communications, but also power in the form of wireless energy
harvesting and wireless power transfer, sensing in the form of
radar, localization, etc. Those areas have traditionally been
studied separately and have led to different disciplines within
Electrical and Electronic Engineering but have also evolved
into vastly different industry sectors [2]. In the past decade,
the community has progressively experienced a paradigm shift
in wireless network design, namely, unifying transmission and
processing of many quantities and functionalities, such as
information, power, sensing, localization etc so as to make the
best use of the radio frequency (RF) spectrum and radiation
as well as the network infrastructure for the multi-purpose
of communicating, energizing, sensing, locating, computing,
but also for the synergies that all those disciplines can bring
to each other once properly integrated. This quest for inte-
gration, convergence, and multi-functionality has led to the
new research areas of integrated sensing and communications
(ISAC), integrated sensing, localization, and communications,
wireless information and power transfer (WIPT), edge com-
puting and intelligence, and integrated artificial intelligence
(AI) and communications [1], [3]. Additionally, network in-
telligence, using AI and machine learning (ML), will become
pervasive in the design, control and optimization of the multi-
functional networks and the network itself will become the
underpinning tool to enable AI applications [4].

The above trend is much reflected in IMT-2030 framework
from ITU that sets the tone for the usage scenarios, capa-
bilities, and requirements of 6G [5]. Six main usage sce-
narios of immersive communication, hyper reliable and low-
latency communication, massive communication, ubiquitous
connectivity, AI and communication, and ISAC have been
identified. The first three are extension from IMT-2020 (5G)
on eMBB, mMTC, URLLC, while the last three are new and
stress the importance of intelligence and multi-functionality
(in the form of sensing and communications) in 6G. Moreover
fifteen capabilities have been selected, including nine of which
directly enhancing current 5G capabilities, such as security
and resilience, reliability, latency, mobility, connection density,
area traffic capacity, spectrum efficiency, user experienced
data rate, and peak data rate; and six new capabilities such
as positioning, interoperability, sustainability, applicable AI-
related capabilities, sensing-related capabilities, coverage.

B. The Crucial Role of Multiple Access

Capturing multi-functionality and intelligence in future
wireless network design will enable using wireless to its full
potential, hence enabling trillions of future intelligent users to
sense, compute, connect, energize, analyze anywhere, anytime,
and on the move [6], [7]. One major challenge and opportunity

that such intelligent multi-functional network brings is that the
notion of “wireless networks” and “users” should be under-
stood in a much more broader context compared to 1G–5G era.
In multi-functional networks, users refer to communication
devices, sensing targets, devices to be charged, AI nodes,
training devices, or any other form of services that the network
could provide.

At the core of wireless network design lies the multiple
access (MA) technique whose pivotal role is to serve and
process all these “users” and decide how to allocate them
resources, including time, frequency, power, space (e.g., an-
tennas, beams), signal (e.g., messages, codes, etc), in the
most efficient way. The design of future intelligent and multi-
functional networks brings new challenges and opportunities
for wireless network designers and in particular when it comes
to MA. It is crucial to comprehend how MA techniques
can address these future demands and how they need to be
re-thought in light of the network multi-functionality and
intelligence paradigms.

Time/frequency domain multiple access (TDMA/FDMA)
were popular in 2G, code-division multiple access (CDMA) in
3G, orthogonal frequency division multiple access (OFDMA)
coupled with space-division multiple access (SDMA) in 4G
and 5G. Though SDMA-OFDMA has remained the dominant
MA in the past 20 years, the past decade has also seen a wide
interest in other forms of MA schemes, often classified into
non-orthogonal multiple access (NOMA) [8], [9]. Classifying
MA techniques has been challenging due the proliferation of
new schemes in the past decade. Unfortunately, the widely
used classification into non-orthogonal MA vs orthogonal MA,
i.e., NOMA vs OMA, is over-simplistic and tends to amalga-
mate many different MA schemes under the non-orthogonal
umbrella without contrasting them or truly understanding the
essence of all those schemes [10]. Such classification has
caused unnecessary confusions and misunderstandings in the
past few years [11]. Instead of contrasting orthogonal vs
non-orthogonal, [10] suggested that a different classification
should be considered in next generation wireless networks
and showed that the fundamental question behind MA design
should instead be how to manage multi-user interference.
Answering this question shed the light on the differences
between various non-orthogonal approaches to MA designs
and on a new classification of MA schemes based on how the
interference is managed. Importantly, this exercise brought to
light the powerful and emerging rate-splitting multiple access
(RSMA) that unifies into a single MA scheme four seem-
ingly unrelated strategies, namely OMA, power domain (PD)-
NOMA, SDMA, and physical-layer multicasting [12]. The
capability of RSMA to unify and therefore be more universal
than other MA schemes makes practical implementation and
operation easier. Indeed, one could claim that a single unified
and general MA scheme would be easier to implement and
optimize than a combination of multiple MA schemes, each
optimized for specific conditions. This can be increasingly
important in multi-functional 6G and beyond networks where
the range and diversity of services, use cases, and deployments
explode.
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C. Objectives and Organization

This paper has three objectives: 1) a tutorial paper to educate
the readers about the fundamentals of a wide range MA
schemes, 2) a survey paper to give the readers access to the
state-of-the-art MA schemes and literature, and 3) an outlook
paper to guide the readers with new research directions.
Specifically the paper contributes in the following ways.

First, we provide a tutorial and survey (in Section II)
of a wide range of MA techniques: OMA in the form
of TDMA/FDMA/OFDMA, SDMA [13], and NOMA [14];
RSMA [10], [15]; code domain multiple access (CD-MA)
departing from traditional 3G CDMA [16] including low-
density spreading multiple access (LDS-CDMA), sparse code
multiple access (SCMA), multi-user shared multiple access
(MUSA), successive interference cancellation amenable mul-
tiple access (SAMA); and other MA schemes exploiting
other domains such as interleave-division multiple access
(IDMA), pattern division multiple access (PDMA), compute-
forward multiple access (CFMA), lattice-partition-based mul-
tiple access (LPBMA), spatially coupled multiple access,
layered-division multiplexing (LDM), index modulation mul-
tiple access (IMMA), delay-Doppler domain multiple access
(DDMA), etc. Random access finally concludes the overview
of MA schemes. The advantages and disadvantages of those
MA schemes and the interplay between them are discussed,
before drawing observations and conclusions on how to rethink
the role and design of MA schemes. This overview departs
from the conventional discussion on orthogonal versus non-
orthogonal approaches found in 5G [10] and recent tutorials
[10], [11], [14], [15], [17]–[21] whose focus was on RSMA
and its sub-MA schemes OMA, SDMA, NOMA, but not on
code domain and random access approaches nor on other
domains MA.

Second, we discuss and motivate (in Section II) the impor-
tance of shrinking the knowledge tree of the MA literature
in order to identify MA schemes that can exploit multiple
dimensions and unify them. Inspired by RSMA that shrinks
the knowledge tree by providing a unified and conceptually
simple understanding of a morass of results on OMA, SDMA,
NOMA, physical-layer multicasting, we motivate future re-
search toward universal/unified multiple access (UMA). UMA
should further shrink the knowledge tree of MA schemes by
unifying RSMA with all other dimensions, such as code do-
main MAs, and ultimately provide a unified and conceptually
simple understanding of the current and future morass of MA
schemes as illustrated in Fig. 1. Clearly, there is no UMA
yet that optimally suits all applications and use cases, but
such scheme and research directions are expected to become
increasingly important in multi-functional 6G and beyond
networks where the range and diversity of services, use cases,
and deployments explode. This research avenue and vision has
not been discussed in prior works.

Third, we discuss MA in the era of network intelligence
and the interplay between AI and MA (in Sections III and
IV). We first identify how AI can be leveraged to enhance MA
designs (in Section III). This includes AI-empowered resource
allocation and optimization for different MA schemes, AI-
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Fig. 1. Shrinking the knowledge tree of MA by unifying MA schemes as we
move from leaves, to the branches, to the trunk. UMA, not yet found, would
be the holy grail of MA scheme unification.

empowered channel estimation for different MA schemes, and
AI-empowered receiver designs for advanced MA schemes.
We then investigate the converse, namely how to design MA
schemes for AI applications (in Section IV). We here touch
upon MA for federated learning/edge intelligence and over-
the-air computation. We conclude the discussion by identifying
further research avenues on the interplay between MA and AI.
Such treatment significantly departs from other tutorials [10],
[11], [15], [17]–[20]. This is the first tutorial paper providing
a comprehensive review of the interplay between AI and MA,
addressing both AI for MA and MA for AI.

Fourth, we discuss MA in the era of network multi-
functionality and the interplay between MA and integrated
sensing, localization, and communications (in Section V). We
elaborate on how MA designs should be tailored for joint sens-
ing and communications, for multimodal sensing and digital
twin-assisted communications, and for communication-aided
sensing/localization systems. We identify the shortcoming of
existing MA schemes in multi-functional networks and inter-
esting research topics for future works. This treatment differs
from other tutorials such as [19] that focuses on demonstrating
RSMA superiority over SDMA and NOMA in ISAC or [22]
that does not focus on MA designs for ISAC.

Fifth, we discuss MA designs for emerging intelligence
applications (in Section VI) such as semantic communications,
virtual reality, and smart radio with reconfigurable intelligent
surfaces, before presenting a roadmap toward 6G standardiza-
tion (in Section VII). This differs from other tutorials such as
[10], [15], [17] that focus on RSMA and NOMA for some of
those applications.

Table I details the main abbreviations used throughout this
work.
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TABLE I
LIST OF ABBREVIATIONS.

BC Broadcast Channel (u)mMTC (ultra) massive Machine-Type Communication
CDMA Code Division Multiple Access MU–LP Multi-User Linear Precoding
CD-MA Code Domain Multiple Access MU-MIMO Multi-User Multiple-Input Multiple-Output
CFMA Compute-Forward Multiple Access MUSA Multi-User Shared Multiple Access
CoMP Coordinated Multi-Point (PD) NOMA (power domain) Non-Orthogonal Multiple Access
CSI Channel State Information NOUM Non-Orthogonal Unicast and Multicast
CSIT/R Channel State Information at the Transmitter/Receiver OFDMA Orthogonal Frequency Division Multiple Access
C-RAN Cloud-Radio Access Networks OMA Orthogonal Multiple Access
DDMA Delay-Doppler Domain Multiple Access PDMA Pattern Division Multiple Access
DoF Degree-of-Freedom QoS Quality of Service
DPC Dirty Paper Coding RF Radio Frequency
DPCRS Dirty Paper Coded Rate-Splitting RIS Reconfigurable Intelligent Surfaces
(F)eMBB (further-)enhanced Mobile Broadband Service RS Rate-Splitting
FDD Frequency Division Duplex RSMA Rate-Splitting Multiple Access
FDMA Frequency Division Multiple Access SAMA Successive Interference Cancellation Amenable Multiple Access
F-RAN Fog-Radio Access Networks SC Superposition Coding
GRS Generalized Rate-Splitting SCMA Sparse Code Multiple Access
HRS Hierarchical Rate-Splitting SDMA Space Division Multiple Access
IDMA Interleave-Division Multiple Access SIC Successive Interference Cancellation
IMMA Index Modulation Multiple Access SISO Single-Input Single-Output
ISAC Integrated Sensing and Communications SNR Signal-to-Noise Ratio
IRS Intelligent Reconfigurable Surface SWIPT Simultaneous Wireless Information and Power Transfer
LDM Layered-Division Multiplexing SIMO Single-Input Multiple-Output
LDS Low-Density Spreading TDD Time Division Duplex
LPBMA Lattice-Partition-Based Multiple Access TDMA Time-Division Multiple Access
MA Multiple Access UAV Unmanned Aerial Vehicles
MAC Multiple Access Channel UMA Universal Multiple Access
MIMO Multiple-Input Multiple-Output URA Unsourced Random Access
MISO Multiple-Input Single-Output (e)URLLC (extremely) Ultra-Reliable Low-Latency Communication

II. AN OVERVIEW OF MULTIPLE ACCESS TECHNIQUES

In this section, we provide an overview and discuss pros and
cons of OMA, Physical Layer Multicasting, SDMA, NOMA,
RSMA, CD-MA, random access, and other MAs exploiting
other dimensions. We draw some general observations before
identifying possible paths toward UMA.

A. Orthogonal Multiple Access

Orthogonal multiple access (OMA) is a fundamental MA
technique that has been widely used in mobile communication
systems. In OMA, the radio resources at hand are strategically
divided into distinct, non-overlapping frequency bands, time
slots, or codes, each meticulously allocated to an individual
user. OMA adheres to a typical principle of interference
management, which is to prevent multi-user interference.

There are four well-established OMA strategies specifically
tailored for 1G to 4G communication systems, namely, fre-
quency division multiple access (FDMA), time division mul-
tiple access (TDMA), code division multiple access (CDMA),
and orthogonal frequency division multiple access (OFDMA)
[23]. Specifically, FDMA divides the available spectrum into
non-overlapping frequency bands, each accommodating one
user. TDMA partitions time into time slots allocated to dif-
ferent users. CDMA utilizes orthogonal, user-specific codes
to spread the modulated user symbols, serving multiple users
simultaneously in the same time-frequency resources without
causing multi-user interference (under ideal propagation con-
ditions). OFDMA divides the frequency and time resources
into narrow subcarriers and time slots, which are grouped into
resource units and allocated to the users.

While OMA has garnered widespread acceptance in past
communication systems, its efficacy becomes restricted in
light of the explosive expansion of wireless communication
worldwide. Here we outline the advantages and disadvantages
of OMA:

• Advantages:

1) Widespread adoption: OMA is well-established
and extensively utilized in current communication
systems, making it easier for facilitating smooth and
effortless network expansion.

2) Simplicity: OMA simplifies transceiver design, im-
plementation, and management.

3) Interference free: OMA prevents interference be-
tween users, enabling interference-free transmis-
sions and thereby enhancing the overall quality and
reliability of communications. It excels in managing
low to moderate user loads effectively. It is effective
for handling low to moderate user loads.

• Disadvantages:

1) Inefficient spectrum utilization: In OMA, there is
a risk that even low-rate users, such as IoT sensors
with minimal resource requirements, may occupy an
entire resource block, leading to inefficient spectrum
utilization.

2) Low capacity: OMA allocates each orthogonal
radio resource to an individual user. The system ca-
pacity is restricted by the total number of available
radio resources. This limitation hinders its ability to
accommodate the surging user demand experienced
in modern communication systems.

3) High signaling overhead: To enhance system per-
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formance of OMA, it is essential to implement well-
designed user scheduling, which typically results in
a significant increase in signaling overhead.

B. Physical Layer Multicasting

Multicasting usually refers to the transmission of a message
intended to multiple users, i.e., one-to-all. Popular example are
radio and television where the message of interest to multiple
users is decoded by those users. However, multicasting can
also be understood in a wider context where the transmitter
transmits multiple unicast (i.e., one-to-one) messages, each
intended to one user, by encoding them jointly into one stream
to be decoded by all users. Users would then retrieve from
the decoded stream the part intended to them. The encoding
and transmission over the air is effectively a physical layer
multicasting since all messages are encoded into one multicast
stream to be decoded by all users. The difference with conven-
tional multicasting is that only part of the multicast stream is
intended to a given user, instead of the entire stream. Physical-
layer multicasting contrasts with OMA where messages are
encoded in independent streams and transmitted on orthogonal
resources.

• Advantages:
1) Coding gain: By combining messages and encoding

jointly multiple medium-size packets together into
a single stream, the encoded stream is longer and
the coding gain is increased, which leads to higher
reliability. Such feature is particularly useful in non-
terrestrial systems, such as geostationary satellite
communications based on DVB-S2X technology
[24], where each spot beam of the satellite serves
more than one user simultaneously by transmitting
a single coded frame. Since different beams illumi-
nate different group of users, such satellite system
follows a physical layer multigroup multicast trans-
mission [25].

2) Low latency: Since all messages are encoded
jointly into one stream to be decoded by all, users
can decode their messages simultaneously and do
not have to wait for their message to be transmit-
ted consecutively as in TDMA, therefore reducing
latency in the network.

3) Interference free: Multicasting prevents interfer-
ence between users since there is only one stream
transmitted, enabling interference-free transmission
and thereby enhancing the overall quality and reli-
ability of communications.

• Disadvantages:
1) Inefficient spectrum utilization: In multicasting,

all users, from the weakest to the strongest, need
to be able to decode the stream. Consequently the
transmission rate of the stream is always determined
by the weakest user, therefore leading to inefficient
spectrum and resource utilization. This can be frus-
trating to stronger users who could receive at higher
rates but are constrained by the weakest user in the
pool.

C. Space Division Multiple Access

In response to the limitations inherent in OMA and the
growing demand for higher data rates, improved QoS, and
increased network capacity, a new resource dimension - space
- has been introduced in modern wireless networks. This gives
rise to the widespread integration of multiple antennas in most
wireless access points, signifying the advent of the multiple-
input multiple-output (MIMO) paradigm since 4G networks.
MIMO has become indispensable in modern and future wire-
less networks, finding inclusion in nearly all high-rate wireless
standards such as WiMAX, 4G LTE, IEEE 802.11n, 5G NR,
etc. By leveraging the spatial dimension, MIMO networks
introduce a novel MA known as SDMA [23], [26], [27].
SDMA empowers multiple users to share the same time-
frequency resources, adhering to the interference management
principle of precanceling interference at the transmitter and
treating interference as noise at the receivers.

To mitigate interference at the transmitter, SDMA intro-
duces precoding techniques, which are typically classified into
two primary categories: non-linear and linear precoding. One
of the most renowned non-linear techniques is dirty paper
coding (DPC) [26], [28]. It attains the capacity region of
MIMO Gaussian broadcast channel (BC) when perfect channel
state information is available at the transmitter. However, its
application is hindered by the impracticality arising from its
high computational demands. In contrast, multi-user linear
precoding (MU-LP) offers a more practical alternative by
leveraging linear precoding techniques at the transmitter while
regarding multi-user interference as noise at the receivers [26],
[27]. Although MU-LP cannot achieve the capacity region
achieved by DPC, it is particularly useful when users possess
semi-orthogonal channels and comparable signal strengths
(and also perfect channel state information at the transmitter-
CSIT). Therefore, it plays a pivotal role in many transmission
techniques underpinning both 4G and 5G networks, including
multi-user MIMO (MU-MIMO), massive MIMO, networked
MIMO, and other advanced techniques.

While SDMA remains crucial in modern wireless networks,
the ongoing evolution of wireless technologies compels us to
scrutinize SDMA critically. In the following, we delineate the
advantages and disadvantages of SDMA:

• Advantages:

1) Enhanced spectrum efficiency: By utilizing the
spatial domain, SDMA allows multiple users to
efficiently share the same time-frequency resources,
thereby enhancing the spectrum efficiency when
CSIT is perfect and the network is underloaded.

2) Interference mitigation: With perfect CSIT and
an underloaded network, SDMA effectively elim-
inates or suppresses multi-user interference, achiev-
ing the maximum degrees-of-freedom in under-
loaded multi-antenna BC [29].

3) Low transceiver complexity: Thanks to the utiliza-
tion of linear precoding at the transmitter and each
receiver’s ability to directly decode the intended
message while treating interference as mere noise,
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SDMA exhibits a relatively low level of hardware
complexity at both the transmitter and receivers.

• Disadvantages:
1) High sensitivity to CSIT inaccuracy: The ef-

fectiveness of SDMA is highly affected by the
inaccuracies in CSIT [30], [31]. While SDMA ex-
cels with perfect CSIT in underloaded network, its
performance significantly decreases with imperfect
CSIT due to residual interference from imprecise
interference mitigation strategies that are originally
designed for perfect CSIT.

2) Limited network load tolerance: SDMA performs
effectively in underloaded networks but experiences
degradation in overloaded systems due to the con-
straints posed by limited spatial resources. To ad-
dress this issue, user grouping is usually employed
in overloaded scenarios, but at the cost of reduced
QoS and increased latency.

3) Limited user deployment flexibility: SDMA is
sensitive to user deployment such as the angles
and strengths of user channels. It works well for
users with orthogonal channels and similar signal
strengths. However, its performance significantly
degrades when user channels become nearly aligned
or exhibit substantial variations in signal strengths.

4) Complex scheduling: Due to the limited user de-
ployment flexibility, precise scheduling is impera-
tive for SDMA, leading to extra complexity in user
scheduling. Moreover, the scheduling algorithms
to achieve the (near) optimal performance can be
challenging to implement and maintain.

5) High signaling overhead: The requirements for
channel estimation, scheduling, and interference
management in SDMA leads to substantial signaling
overhead, particularly in dynamic and densely pop-
ulated network environments or when employing a
massive number of antennas at the transmitter.

D. (Power-domain) Non-Orthogonal Multiple Access

NOMA leverages the concept of superposition coding (SC)
at the transmitter and successive interference cancellation
(SIC) at the receivers to facilitate simultaneous sharing of
common resources, i.e., time, frequency, code, or space among
users [14], [32], [33]. This is achieved by allocating users with
varying power levels, and enabling signals from different users
superposed in the power domain. NOMA ensures the effective
decoding of these signals at users by empowering those with
weaker power levels to decode the messages of users with
stronger power levels. This approach is also referred to as
SC-SIC, adhering to the interference management principle of
decoding interference.

It is well-established in the literature that NOMA based on
SC–SIC achieves the capacity region for single-input single-
output (SISO) BC [34], and for the SISO multiple access
channel (MAC) [23], it is also capacity-achieving with time-
sharing. The performance merits of NOMA over OMA demon-
strated in SISO BC/MAC has driven research into MIMO

NOMA. In the multi-antenna BC, to exploit the spatial domain,
MIMO NOMA typically separates users into distinct groups.
Interference from users within the same group is managed by
SC-SIC while interference from users in different groups is
treated as noise. When there exists only a single user group,
MIMO NOMA reduces to SC-SIC, requiring users to decode
and remove all interference [33].

NOMA has not yet been incorporated into emerging wire-
less standards, though it has been investigated as part of a
study item in 5G but was not considered any further in 5G
because its gains compared to SDMA/MU-MIMO were not
found convincing [35]. As highlighted in [11], there exist many
confusions and misconceptions about NOMA, which impels us
to look into its advantages and disadvantages in the following:

• Advantages:
1) Enhanced spectrum efficiency: By utilizing the

power domain and advanced receiver techniques,
NOMA allows multiple users with closely aligned
channels and diverse channel strengths in the same
time-frequency resources to efficiently share the
same time-frequency resources, thereby enhancing
the spectrum efficiency when the network is ex-
tremely overloaded.

2) Enhanced user fairness: As NOMA requires
power allocation favoring users with weaker chan-
nel strength to enable successful interference can-
cellation, it is capable of enhancing user fairness
than SDMA in extremely overloaded network with
closely aligned users and large channel strength
disparities.

• Disadvantages:
1) Inefficient use of spatial dimensions: As shown in

[11], the sum multiplexing gain of MIMO NOMA
always falls below or equals that of SDMA. This
implies that the slope of the sum-rate of MIMO
NOMA at high signal-to-noise ratio (SNR) will
be lower than that of SDMA. This phenomenon
indicates that NOMA makes an inefficient use of
the multiple antennas.

2) Inefficient use of SIC: In MIMO NOMA, the
number of SIC deployed at each user scales propor-
tionally with the number of users in that user group.
Consequently, compared to SDMA, MIMO NOMA
introduces two notable issues: a loss in multiplexing
gain and an increase in receiver complexity. This
observation underscores MIMO NOMA’s inefficient
utilization of SIC.

3) High sensitivity to CSIT inaccuracy: As the inter-
group interference management in MIMO NOMA
follows the approach employed in SDMA, akin to
SDMA, MIMO NOMA is also sensitive to CSIT
inaccuracy.

4) Limited network load tolerance: NOMA has
been demonstrated as a capacity-achieving scheme
in SISO BC, rendering it effective in extremely
overloaded scenarios. However, as the number of
transmit antenna increases, MIMO NOMA suffers
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from performance degradation primarily due to its
inefficient use of spatial dimensions. Therefore,
NOMA is sensitive to the network load.

5) Limited user deployment flexibility: With perfect
CSIT and an underloaded network, SDMA effec-
tively eliminates or suppresses multi-user interfer-
ence, achieving the maximum degrees-of-freedom
in underloaded multi-antenna BC.

6) High transceiver complexity: In addition to the
hardware complexity introduced by SIC receivers,
NOMA imposes substantial computational com-
plexity at both transmitter and receivers. Specifi-
cally, at the transmitter, the joint optimization of
user scheduling, user grouping, decoding orders,
and precoders is imperative for enhancing perfor-
mance. However, solving such resource allocation
problem is typically challenging with high compu-
tational complexity.

7) High signaling overhead: In NOMA, extra sig-
naling overhead is required to convey information
such as the decoding order, user grouping result,
and power levels each user should use.

E. Rate-Splitting Multiple Access

RSMA has recently emerged as a promising non-orthogonal
transmission strategy for multi-antenna wireless networks,
owning to its capability to enhance the system performance
in a wide range of network loads, user deployment, and
CSIT qualities [15], [36]–[38]. RSMA is a generalized MA
scheme originally proposed in [36]–[38] for downlink and
in [39] for uplink. The key concept of RSMA is splitting
each user message into sub-messages at the transmitter. For
downlink RSMA, sub-messages are categorized into common
and private with the common sub-messages designed to be
decoded by multiple users, whereas private sub-messages are
intended to be decoded exclusively by their respective users.
For uplink RSMA, sub-messages of a given transmitter can
be decoded at the receiver in a non-consecutive manner.
This message split capability endows RSMA with a flexible
interference management strategy of partially decoding the
interference and partially treating the interference as noise.

Depending on the specific approaches used for message
splitting and combining, RSMA has a range of transmission
schemes, including linearly precoded 1-layer RS, 2-layer hi-
erarchical RS (HRS), and generalized RS (GRS), each of
which can be further extended to their respective non-linear
counterparts [15], [38], [40], and even to space-time designs
[41].

The most straightforward and practical downlink RSMA
scheme is 1-layer RS [36], [37], which is also the basic
building block of almost all existing RSMA schemes. In 1-
layer RS, each user message is split into one common sub-
message and one private sub-message (Fig. 2). All the common
sub-messages are combined and jointly encoded as a single
common stream to be decoded by all users, whereas the private
sub-messages are encoded individually as private streams. 1-
layer RS requires only one layer of SIC at each receiver. User

grouping and decoding order design is unnecessary since all
users decodes the unique common stream before decoding its
private stream.

HRS represents a more encompassing scheme compared
to 1-layer RS, as it introduces additional common streams
tailored for specific user groups (Fig. 2). In HRS, all users are
divided into separate groups, each comprising one or multiple
users. At the transmitter, each user message is split into
three sub-messages: an inter-group common sub-message, an
inner-group common sub-message, and a private sub-message
[42]. The inter-group common sub-messages and private sub-
messages respectively follow the common and private submes-
sages in 1-layer RS. The primary difference between HRS and
1-layer RS lies in the inner-group common sub-messages. The
inner-group sub-messages for users within the same group are
merged into a group-specific common message, subsequently
encoded into a inner-group common stream. The inner-group
common stream is decoded exclusively by users within the
corresponding user group, following their decoding of the
inter-group common stream. HRS requires two layers of SIC
at each receiver. Decoding order design in unnecessary since
each user follows the decoding order of inter-group stream,
inner-group stream, and private stream. In contrast to 1-layer
RS, the user grouping requires to be considered in HRS to
achieve a more flexible interference management capability
than 1-layer RS.

Unlike 1-layer RS and 2-layer HRS, which maintain a
constant number of message splits for each user message
regardless of the number of users, GRS takes a more com-
prehensive approach by utilizing all possible message splitting
and combining strategies to achieve generalized transmission
framework [38]. In GRS, during the message splitting and
combining process, all potential user grouping are explored
and the groups containing different number of users are
categorized into different layers (Fig. 2). For example, the
group in the first layer contains all users while each group in
the last layer only contains a single user. Each user message
is split into a number of common sub-messages. The common
sub-messages in the same group are combined and encoded
following the basic principle of HRS. At the user sides, a
number of SIC layers are employed at each user to decode all
common streams and the intend private stream. As all possible
user grouping has been considered in the message splitting and
combining process, only the decoding order among the groups
in the same layer need to be carefully designed. In Fig. 2,
a straightforward comparison of the three-user transmission
frameworks among 1-layer RS, HRS, and GRS is illustrated.

RSMA has been shown to generalize multicasting, OMA,
SDMA, and NOMA schemes [12], [15]. Specifically, when
all transmit power is allocated exclusively to the common
stream or one private stream, RSMA respectively simplifies to
the classical multicasting or OMA. When the transmit power
is solely allocated to the private streams, RSMA reduces to
SDMA. Furthermore, in the case where each user message is
totally encoded into distinct layers of common streams and
private stream within the GRS framework, RSMA reduces to
NOMA. For this reason, RSMA is a superset and therefore al-
ways achieves equal or better performance compared to OMA,
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Fig. 2. Illustration of the downlink transmission frameworks for 1-layer RS,
HRS, and GRS with 3 users.

SDMA, and NOMA. A simple two-user downlink transmission
framework comparison among multicasting, OMA, SDMA,
NOMA, and RSMA is delineated in Fig. 3, and the corre-
sponding uplink transmission frameworks are illustrated in
Fig. 4.

Fig. 5 illustrates the performance gain of RSMA over MU-
MIMO using BBC’s 3GPP compliant link-level simulations
in a two-user high density demand (HDD) area [43]. HDD
areas are important deployments for future 6G [44]. Though
only around 1% of UK geographical areas served by mobile
networks could be characterised as HDD, HDD areas drive
an estimated 20% of total mobile traffic. HDD scenarios are
dense urban areas, airports, sports venues, railway and subway
stations and major public events. Most HDD scenarios occur
in situations where a lot of users and devices are present
in a specific place or event, putting intense demand on the
network. In Fig. 5 simulations, an HDD with 20m spacing
among the two users at target spectral efficiencies of 3.4
bits per resource element is considered. LDPC with finite
block length and finite constellations are used along with
various RSMA receivers such as hard and soft codeword
interference cancellation (CWIC), soft symbol level inter-
ference cancellation (SLIC), joint demapping, with tailored
RSMA precoders for common and private streams [45]. For
MU-MIMO, zero-forcing (ZF), maximum ratio transmission
(MRT) or regularized zero forcing (RZF) precoders are used
and the receivers apply single user detector (only de-map the

desired signal) with QPSK or 16QAM for modulation (MU-
MIMO+ZF+QPSK/16QAM+SD), or jointly de-map (JD) with
QPSK for modulation (MU-MIMO+MRT/RZF+QPSK+JD).
The latter uses SDMA transmission strategy but uses an
advanced receiver that demaps the desired signal and interfer-
ence. MU-MIMO with advanced receivers is outperformed by
RSMA since RSMA can be viewed as a joint transmit-side and
receive-side interference management/cancellation strategies
where the contribution of the common stream is adjusted
according to the level of interference that can be canceled
by the receiver, instead of a full transmit-side interference
management strategy (as in SDMA) aided by an advanced
receiver [11].

Fig. 6 displays experimental results of sum and minimum
throughput achieved by RSMA, SDMA and NOMA using
software define radio implementations and over-the-air mea-
surements in a 2-user setting with finite block length polar
codes and finite constellations [46]. Nine indoor locations are
measured with various disparity of the channel strengths and
angle between user channel directions. The number beside
each data point indicates a measurement location. RSMA can
achieve higher sum-throughput but also better fairness among
users (minimum throughput of RSMA is higher). This double
advantage of RSMA in boosting jointly the sum and minimum
throughput originates from the split into common and private
streams and from adjusting the content of the common stream
so that better fairness is achieved while maximizing sum
throughput.

A general observation of the many existing simulation re-
sults on RSMA shows that the benefit of RSMA in comparison
with MU-MIMO/SDMA increases as users are closer together,
e.g., as in high density demand areas, and/or experience a
diversity of channel strengths, and/or as the system becomes
more overloaded, and/or as the CSIT accuracy degrades,
and/or as more fairness among users and QoS per user are
captured in the design objective and constraints, and/or as
the system is multi-functional such as ISAC - see [10], [11],
[15] and therein. NOMA can have some performance benefits
over SDMA when users are closely aligned (and potentially
experience a disparity of channel strength) leading to cor-
related channels, or when the system is overloaded and the
performance metric accounts for QoS or user fairness. Other-
wise, SDMA outperforms NOMA due its higher multiplexing
gain capability [11]. This is visible in Fig. 6 where SDMA
can outperform or be outperformed by NOMA depending on
the measurement location. RSMA, on the other hand, always
outperforms SDMA and NOMA since NOMA and SDMA are
particular instances of RSMA framework.

The main advantages and disadvantages of RSMA are
summarized in the following:

• Advantages:

1) Universality: RSMA is a comprehensive MA
framework encompassing OMA, SDMA, NOMA,
and multicasting as its constituent sub-schemes [12],
[38]. The universality of RSMA obviates the need
for a system to consider switching between OMA,
SDMA, NOMA, and multicasting.
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Fig. 3. Illustration of the two-user downlink transmission frameworks and beam shapes for multicasting, OMA, SDMA, NOMA, and RSMA.

2) Flexibility: RSMA is highly adaptable to varying
network loads, whether they are underloaded or
overloaded, as well as to diverse user deployments
characterized by varying channel directions and
strengths [38], [47], [48]. This remarkable advan-
tage of RSMA comes from its capability to flexibly
handle multi-user interference through partial inter-
ference decoding and treating the remaining inter-
ference as noise. An additional feature of RSMA is
its flexibility to handle mixed services and simul-
taneous unicast and multicast transmission [49]. A
multicast message W0 can indeed be encoded jointly

with the common parts Wc,1,Wc,2 of the unicast
messages W1,W2, as illustrated in Fig. 7, to enable
very efficient non-orthogonal unicast and multicast
(NOUM) transmission. The SIC is used for the
double purpose of separating unicast from multicast
and managing interference among unicast1.

3) Robustness: The rapid growth of RSMA in multi-
antenna networks is primarily attributed to its capac-

1SDMA-assisted NOUM is a particular instance of the RSMA architecture
of Fig. 7 where W1 and W2 are encoded into s1 and s2, respectively, without
being split. SIC would then be used only to separate multicast from unicast but
cannot manage interference between unicast due to lack of message splitting
- hence less flexibility in dealing with NOUM compared to RSMA approach.
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Fig. 4. Illustration of the two-user uplink transmission frameworks for OMA,
NOMA, and RSMA.

ity to achieve an optimal spatial multiplexing gain
in the multi-antenna BC with imperfect CSIT [37],
[41], [50]–[53]. A multitude of extant research en-
deavors has substantiated RSMA’s resilience when
confronted with CSIT uncertainties stemming from
diverse sources of impairment, such as quantized
feedback [41], [54], pilot contamination [55], [56],
channel estimation inaccuracies, latency in feed-
back, user mobility [57], and even RF impairments
such as phase noise [58].

4) Enhanced spectrum efficiency: RSMA is guar-
anteed to achieve the best sum-degree of freedom
(DoF) in both perfect and imperfect CSIT, which
translates into superior spectral efficiency as well. In
other words, RSMA outperforms other MA schemes
in terms of spectral efficiency in both perfect and
imperfect CSIT [37], [38]. When CSIT is perfect,
the achievable rate region of RSMA is larger than
other MA schemes, and it approaches the capacity
region achieved by DPC [38]. When CSIT is im-
perfect, RSMA can achieve a larger rate region than
DPC [31]. RSMA’s enhanced spectrum efficiency is
not limited to conventional multi-user multiple-input
single-output (MISO) unicast transmissions, but also
holds for MIMO unicast [59], [60], multigroup
multicast [25], [47], [61], [62], non-orthogonal uni-

cast and multicast [49], non-terrestrial [25], [63],
[64], network slicing [65]. The benefits have been
demonstrated using link-level simulations [45], [60]
and real-world experimentation [46].

5) Enhanced energy efficiency: RSMA not only
boosts spectral efficiency but also energy efficiency
and their tradeoffs across various applications with
different network loads and user deployments, as
evidenced in many existing works [49], [66].

6) Enhanced QoS and user fairness: RSMA achieves
the optimal max-min fair spatial multiplexing gain
in multi-antenna BC with both perfect and imperfect
CSIT. This advantage is reflected in the finite SNR
regime, where RSMA demonstrates its superior
max-min rate compared to the aforementioned MA
schemes. Furthermore, the substantial spectral effi-
ciency gain achieved by RSMA becomes even more
pronounced when stringent QoS rate constraints are
imposed on each individual user.

7) Low complexity: 1-layer RSMA stands out for its
simplicity at both transmitter and receivers design.
Its adaptability to varying network loads and user
deployments obviates the need for user ordering,
grouping, and scheduling at the transmitter. Each
user only necessitates a single SIC layer to decode
and cancel the common stream. This contrasts with
MIMO NOMA, which imposes stringent require-
ments for user grouping and ordering at the trans-
mitter along with multiple layers of SIC at each
user.

8) Coverage extension: RSMA with user relaying,
also known as cooperative rate-splitting (CRS) [67],
[68], has been demonstrated as a promising strategy
to amplify the data rates for users located at the
cell edge, offering substantial coverage extension
benefits [69]. CRS involves collaborative user re-
laying, enabling one user to decode and relay the
common stream to other users, thereby enhancing
user fairness particularly when jointly serving users
with substantial discrepancies in channel strengths.

9) Low latency: RSMA has demonstrated its prowess
in improving throughput compared to the afore-
mentioned MA schemes when employing finite-
length (e.g. polar) codes, as highlighted in [70]–
[72]. In other words, RSMA achieves the same
transmission rate as SDMA and NOMA but with
shorter block lengths, resulting in reduced latency.
Therefore, RSMA is a promising enabling technol-
ogy for significantly reducing latency in URLLC
services.

10) Security enhancement: RSMA can adjust the level
of confidentiality of its messages and consequently
trade off spectral efficiency with secrecy [73], [74].
This is not possible with NOMA since the message
of the weaker user is always decoded by a stronger
user, which creates a secrecy threat.

• Disadvantages:
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1) SIC requirement at receiver: Some RSMA
schemes, such as GRS, exhibit a characteristic
where the number of SIC layers at each user in-
creases with the number of users. This trend not
only leads to considerable burden on receiver com-
plexity but also introduces the error propagation is-
sues. Promising SIC-free RSMA architectures have
recently been developed [45].

2) High encoding complexity: Compared with the
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Fig. 7. RSMA as an enabler of efficient non-orthogonal unicast and multicast
(NOUM) transmission [49].

aforementioned MA schemes, RSMA requires more
date streams to be encoded due to the additional
common streams obtained from message splitting
and recombining.

3) High signaling burden: In RSMA, additional sig-
naling overhead is necessary to facilitate alignment
between the transmitter and receivers, ensuring they
possess a shared understanding of the methodology
for splitting and combining user messages.

4) High optimization burden: In terms of resource
allocation and precoder design, RSMA requires
the precoders (accounting for beamformer direc-
tions and power allocation) of the common and
private streams to be jointly optimized with the
common rate allocation. This joint optimization is
instrumental in unlocking the complete benefits of
RSMA. However, it is worth noting that this ex-
panded optimization space places a more demanding
computational burden on RSMA in comparison to
conventional MA schemes.
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F. Code-Domain Multiple Access

Code-domain multiple access (CD-MA) is inspired by the
traditional CDMA [16]. It allows multiple users to share the
same time/frequency resources while dedicated interleavers
and/or code sequences are employed to multiplex users.
However, unlike CDMA, the spreading sequences in CD-MA
are usually sparse or non-orthogonal low cross-correlation
sequences. In general, code-domain multiple access can be
divided into sparse CD-MA and dense CD-MA [75], [76],
depending on the sparsity of the spreading sequences. In this
section, we review some popular CD-MA schemes, compare
their performance, and discuss their main advantages and
disadvantages.

1) Low-Density Spreading (LDS) MA: One of the early
CD-MA techniques is the LDS-CDMA [77], an extension
to the classical CDMA. In an LDS-CDMA system, the data
symbols of each user are spread by a unique LDS with
a small fraction of non-zero entries and then superimposed
before transmission. Compared to the classical CDMA, the
interference on each chip can be reduced in LDS-CDMA. In
particular, the multi-user interference pattern at the receiver
entails a low-density graph, where message passing algorithm
(MPA) or belief propagation (BP) [78] can be adopted for
efficient symbol detection [79]. To design LDS sequences,
a structural approach was proposed in [80]. Furthermore,
the capacity region of LDS-CDMA was investigated in [81],
where the impacts of spreading sequence density factor and
the maximum number of users associated with each chip on
the capacity were revealed. In addition, the idea of LDS-
CDMA was extended to OFDM (LDS-OFDM) [82] where
each user’s data symbols are spread across a number of care-
fully selected subcarriers. Significant improvement of peak-
to-average-power ratio (PAPR) the link-level performance was
reported for LDS-OFDM over OFDM [83], [84].

2) Sparse Code Multiple Access (SCMA): The concept of
code domain multiplexing in LDS-CDMA was extended to
SCMA [85]. In SCMA, each user is assigned a sparse code-
word according to its message. In other words, the modulation
symbol mapping and the spreading sequences are merged
together such that the bits are directly mapped to a sparse
vector of a multi-dimensional constellation. Hence, SCMA
improves the spectral efficiency of LDS through shaping gains
of multi-dimensional constellations. Meanwhile, it still inherits
the benefits of LDS in terms of overloading and moderate
complexity of detection. An example of a SCMA system with
6 users and 4 resources is illustrated in Fig. 8. Each user maps
its two bits to its SCMA codeword such that the superimposed
transmitted block spread over the 4 resource blocks as shown
in Fig. 8(a). The resultant SCMA system can be represented
by a factor graph depicted in Fig. 8(b), where every circle rep-
resents a user or a variable node (VN), every block represents
a resource or factor node (FN), and the edge between VN i
and a FN j means that user i’s data is mapped to the j-th
resource block j for i ∈ {1, . . . , 6} and j ∈ {1, . . . , 4}. The
factor graph is regular in the sense that each VN is of degree-2
while each FN is of degree-3. The SCMA codebook design
based on lattice constellations [86] was investigated in [87],
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Fig. 8. Illustration of a SCMA system with 6 users and 4 resource blocks:
(a) mapping between each user’s two bits and SCMA codewords; (b) factor
graph corresponding to the SCMA system.

[88]. Similar to LDS-CDMA, the SCMA receiver adopts MPA.
To reduce the detection complexity of MPA, various detection
algorithms such as discretized MPA and sphere decoding
can be employed [88], [89]. Potential applications of SCMA
in 6G wireless communications systems were discussed in
[90]. However, the overloading performance is limited by the
number of sparse codewords and the sparsity.

3) Multi-User Shared Access (MUSA): MUSA was intro-
duced in [91] to support grant-free Internet of things [92].
In MUSA, the data symbols of each user are spread with a
short-length spreading sequence. The key principle is that non-
orthogonal complex spreading sequences are chosen by multi-
ple users autonomously to enable grant-free transmissions on
the same resources. It is also worth noting that the same user
can choose different spreading sequences for different symbols
to benefit from interference averaging. The receiver exploits
the low cross-correlation properties of spreading sequences
and uses SIC decoding. However, unlike LDS multiple access
schemes and SCMA, the spreading sequences of MUSA are
dense.

4) Successive Interference Cancellation Amenable Multiple
Access (SAMA): SAMA is based on the joint design of
the system signature matrix and the SIC-based MPA [93].
The symbols of different users are judiciously spread in the
frequency, which can be effectively exploited by the SIC-
based MPA and to obtain the diversity gain. Different from
the aforementioned LDS schemes, the spreading sequences in
SAMA have variable sparsity.

Let us now compare the performance of sparse CD-MA and
dense CD-MA. To see how they perform, we compare their
information-theoretic limits and link-level performance.

First, the spectral efficiency in the large-system limit versus
the system load β in users per resources for dense CD-MA and
sparse CD-MA is shown in Fig. 9, where Gaussian signaling,
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Fig. 9. Spectral efficiency of dense CD-MA and sparse CD-MA as a function
of system load β for fixed Eb

N0
= 10 dB [76].

random spreading sequences, symmetric channels, and fixed
power are assumed [76]. Moreover, sparse CD-MA can be
further divided into regular sparse CD-MA and irregular
sparse CD-MA depending on whether each user occupies a
fixed number of resources or not. Observe that regular sparse
CD-MA achieves larger spectral efficiency than dense CD-MA
under the optimal receiver and sub-optimal linear minimum-
mean square error (MMSE) receiver. Compared to regular
sparse CD-MA, irregular sparse CD-MA exhibit degraded
performance due to that some resources may be left unused.
With the increase of sparsity parameter d, regular sparse CD-
MA and irregular sparse CD-MA approach dense CD-MA
from the above and below, respectively.

Next, we consider the representative schemes of dense CD-
MA and sparse CD-MA, i.e., MUSA and SCMA, and compare
their link-level performance. Both schemes operate in the
uplink OFDM system with 10 equal SNR users, where three
receivers namely MMSE with hard SIC, expectation propaga-
tion algorithm (EPA) with hard and soft parallel interference
cancellation (PIC), and EPA are considered. The block error
rate versus SNR is shown in Fig. 10 [8]. For detailed system
parameter settings, please refer to Table 8.2-1 and Table 8.2-7
of [8]. It can be seen that SCMA slightly outperforms MUSA
under the same receiver. In addition, both schemes achieve
their best performance under EPA with hybrid PIC.

In light of the above, one can see that the class of sparse
CD-MA schemes demonstrates better theoretical and link-level
performance than dense CD-MA schemes. In addition, receiver
complexity reduction can be achieved by utilizing MPAs due
to the sparsity.

We summarize the main advantages and disadvantages of
CD-MA schemes as follows.

• Advantages:
1) Enhanced spectrum efficiency: CD-MA utilizes

the code domain to allow multiple users to share
the same resources, e.g., time and frequency, ef-
ficiently. With advanced multi-user detectors, CD-
MA improves the spectrum efficiency when CSIT is

Fig. 10. Link level performance of MUSA and SCMA in the uplink with
various receivers [8].

perfect and the network can be either underloaded
or overloaded.

2) Enhanced user fairness: User fairness in CD-
MA can be achieved by detecting strong users’
signals first in the multi-user detection. This is
because the early detected users only collect less
extrinsic information compared to the late detected
users [94]. In this way, more extrinsic information
together with interference cancellation performed in
the early detection steps can improve the detection
performance of weak users.

3) Flexibility: CD-MA is adaptable to various network
loads and channel conditions. This is owing to the
effective design of spreading code sequences in
terms of correlation and sparseness for reducing
inter-user interference.

4) Low signaling overhead: CD-MA can allow users
to choose their spreading sequences autonomously
to reduce the signaling overhead and latency. In this
case, the spreading sequences need to be carefully
designed for the underlying multi-user detectors to
mitigate collisions.

• Disadvantages:

1) High receiver complexity: CD-MA requires com-
plex multi-user detection techniques. In particular,
to achieve the promised gain of CD-MA, iterative
receiver architecture is often required. The complex-
ity scales proportionally with the number of users
and iteration numbers.

2) High design complexity: The key ingredient of
CD-MA is the spreading code sequence. However,
finding the optimal design for the spreading se-
quence is still a difficult problem, particularly when
the number of users is large.

3) High channel estimation complexity: Most exist-
ing CD-MA schemes assume perfect CSI knowl-
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edge. To accurately estimate the channel for each
user, channel estimation is often performed jointly
with multi-user detection, which incurs a high com-
plexity.

4) High sensitivity to synchronization: Most existing
CD-MA schemes assume perfect synchronization at
the receiver. However, this is not always the case
in practice. A delayed signal from a user could
disturb the message exchange in the iterative multi-
user detection, leading to performance loss.

G. Multiple Access in Other Domains

In addition to the prominent SDMA, NOMA, RSMA, and
CD-MA, a range of MA schemes in other domains have
been proposed in the literature. In particular, a full list of
MA schemes proposed during the study phase of 5G NR
were included in [8]. In what follows, we will review some
typical examples from [8] as well as some newly proposed
MA schemes.

1) Interleave-Division Multiple Access (IDMA): IDMA
was introduced in [95] in 2003 and has gained considerable
interest in recent years. IDMA can be considered as a spectral
case of CDMA with all signature sequences reducing to a
single chip [96]. In other words, IDMA relies on user-specific
interleaving as the only means to distinguish the signals from
different users [97]. Moreover, the spreading operations in
CDMA can be replaced by low-rate forward error correction
codes in IDMA to provide increased coding gain. It is also
possible to have non-orthogonal interleavers. For a K-user
IDMA system, the receiver adopts a chip-by-chip elementary
signal estimation and K single-user a posteriori probability
(APP) decoders, such that the total receiver complexity only
increases linearly with K [98]. Advantages of IDMA over
CDMA in terms of performance and complexity under prac-
tical considerations were demonstrated in [99]. Integration of
IDMA with other technologies such as OFDM and massive
MIMO were investigated in [100] and [101], respectively.

2) Pattern Division Multiple Access (PDMA): In PDMA
[93], [102], the transmitted data symbols are mapped to a
resource group that can consist of time, frequency, and spatial
resources or any combination of these resources according to
a pattern. Data of multiple users can be multiplexed onto the
same resource group with a different pattern to realize non-
orthogonal transmission. In addition, the pattern is designed
with disparate diversity order and sparsity such that the BP
algorithm can be efficiently employed for detection. To achieve
the best possible performance, an iterative turbo receiver
architecture [103] can be adopted, where the outer iteration
process between the detector and decoder is performed on top
of the inner iteration of the detection and decoder themselves.
A gain of 500% in terms of the number of supported users
under the given system packet drop rate of 1% was reported
for PDMA over OFDMA in the uplink [104]. In [105], the
patterns of different users are judiciously designed to exhibit
appropriate diversity disparity at the symbol level and power
disparity at the physical resource element level. In this way, the
appropriate disparity in diversity and power can be effectively

Fig. 11. link-level performance of IDMA and PDMA in the uplink with
various receivers [8].

exploited by the low-complexity SIC-based BP detector with
reduced error propagation during interference cancellation.
The principle of PDMA has later been exploited to design
pattern division random access [106]. The link-level perfor-
mance of PDMA with MMSE hard SIC and EPA in the uplink
OFDM system with 10 equal SNR user was demonstrated
in [8]. The block error rate versus SNR is shown in Fig.
11. For comparison, the performance of IDMA with iterative
elementary signal estimation and decoding (ESE-IDD) and
EPA is also included in the figure. It can be seen that PDMA
slightly outperforms IDMA in the high SNR regime. Note also
that the performance of hard interference cancellation does not
degrade much compared to soft interference cancellation.

3) Compute-Forward Multiple Access (CFMA): Compute-
and-forward (C&F) is a relaying strategy introduced in [107],
where the relay decodes a noisy linear combination of lattice
codewords. In contrast to the classic relaying strategies such as
amplify-and-forward and decode-and-forward, C&F exploits
interference to obtain significantly higher rates between users
in a network. Motivated by the benefits of C&F, [108] intro-
duced CFMA based on a modified C&F technique for the
Gaussian MAC. The receiver first decodes the sum of the
linear combination of lattice codewords. Upon recovering the
sum codewords, other users’ codewords can be successfully
decoded by using the sum as side information. It was proved
in [108] that whole capacity region of the two-user Gaussian
MAC is achievable by CFMA under lattice decoding [109],
provided that the SNR of both user is larger than 1+

√
2. It is

worth mentioning that any rate points on the dominant face of
the Gaussian MAC capacity region can be achieved by CFMA,
without the need of time-sharing [110, Ch. 15] or rate-splitting
[39]. However, random lattice codes were used in [108] as
the proof techniques, which can be difficult to implement in
practice. Practical implementation of CFMA based on off-the-
shelf binary low-density parity-check (LDPC) codes and sum-
product decoding was conducted in [111].
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Fig. 12. An illustration of the lattice-partition-based multiple access with
receivers adopting single-user TIN decoding.

4) Lattice-Partition-Based Multiple Access (LPBMA) with-
out SIC: In [112], A lattice-partition framework of MA
without SIC, i.e., with single-user treating interference as noise
(TIN) decoding, was introduced for the K-user Gaussian BC.
Each user adopts a linear code [113] in conjunction with
an appropriately designed constellation carved from a multi-
dimensional lattice which includes the commonly adopted
one- and two-dimensional constellations, i.e., pulse ampli-
tude modulation (PAM) and quadrature amplitude modulation
(QAM), as special cases. Essentially, the design ensures that
the superposition of all users’ signalings still preserves the
lattice structure, which can be exploited to hardness inter-
user interference in TIN decoding. A two-user example is
illustrated in Fig. 12, where both users’ signal constellations
and the superimposed constellation preserve the same lattice
structure. It was proved that the scheme based on discrete
signaling and TIN is capable of achieving the whole capacity
region within a constant gap independent of the number of
users and channel parameters. Consider the three-user BC
as an example. The achievable rate tuples of LBPMA with
three different base lattices, TDMA with Gaussian coding,
and the capacity region in bits per channel use are shown
in Fig. 13. Observe that LBPMA without SIC approaches the
capacity region and outperform Gaussian TDMA. Further per-
formance gain is obtained by employing higher-dimensional
base lattices. In addition, several new MA schemes evolving
from lattice-partition-based multiple access were proposed for
various channels, e.g., the Gaussian interference channel, the
Gaussian BC with heterogeneous blocklength and error prob-
ability constraints, etc. [114]–[117], where carefully designed
discrete signalings with TIN decoding are shown to be close
to Gaussian signalings with perfect SIC decoding.

5) Spatially Coupled Multiple Access (SC-MA): Spatial
coupling [118] is a code construction technique to boost the
performance of uncoupled (weak) codes, e.g., regular LDPC
codes and turbo codes, all the way to capacity-achieving
[119]–[122]. Motivated by this, [123], [124] introduced a new
signaling formats for the Gaussian MAC, where the modulated
data streams are repeated, permuted, and transmitted with
regular time offsets (delays). Since the relations between
the data bits and modulation symbols transmitted over the
channel can be represented by a sparse graph, the receiver
observes spatial coupling of the individual graphs which

Fig. 13. The achievable rate tuples of lattice-partition-based multiple access
with and without SIC by employing two-dimensional base lattices Z2 and
A2, and four-dimensional base lattice D4.
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Fig. 14. Examples of spatially coupled multiple access where data streams
are transmitted with different delays.

enables efficient demodulation/decoding. It was proved in
[123], [124] that coupling data transmission with a two-stage
demodulation/decoding in which iterative demodulation based
on symbol detection and interference cancellation followed
by parallel decoding achieves the Gaussian MAC capacity
asymptotically such that the gap to capacity vanishes as the
system’s SNR increases. Note that the feedback between the
decoder and the demodulator is not required. In contrast to
most NOMA receivers that have to demodulate/decode the
whole symbol block, sliding window demodulation/decoding
can be adopted thanks to the spatially coupled graph struc-
ture [125]. As a result, the demodulation/decoding latency
is limited, which can be suitable for streaming services. In
[126], the spatially coupled transmission scheme has been
extended to the case of transmitted blocks with irregular
delays. An example for the transmission scheme is illustrated
in Fig. 14, where each user divides its transmission frame
into sub-blocks and delays the transmission by τ . However,
the spatially coupled transmission scheme can be sensitive to
synchronization errors and fractional delay.

6) Layered-Division Multiplexing (LDM): LDM is a non-
orthogonal multiplexing technology adopted in the Advanced
Television Systems Committee standard (ATSC 3.0) [127],
which has never been implemented in previous broadcast and
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broadband systems [128]. In an LDM system, a layered trans-
mission structure is used to simultaneously transmit multiple
signals with different power levels and technologies (channel
coding, interleaving, modulation, multiple-antenna, etc.) for
different services [129]. At the receiver, the decoding of sig-
nals from multiple layers requires SIC. The principle of LDM
is similar to NOMA. Hence, its gain over the conventional
OMA schemes has been well understood. Note that LDM is
implemented on top of OFDM such that the superposition of
signals take place before OFDM modulations.

7) Index Modulation Multiple Access (IMMA): Index mod-
ulation is a technique of using the indices of resources to carry
extra information bits [130]. It can achieve higher spectral
and energy efficiency than conventional modulation schemes.
Motivated by this, IMMA was proposed to further improve
the spectral and energy efficiency of the traditional NOMA
scheme [131]. In IMMA, each user transmits additional infor-
mation bits (index bits) by partial resources, where the index
patterns can be the activation status of time slots, subcarriers,
transmit or receive antennas, spreading codes, power levels,
etc [132]. However, the detectors of these IMMA schemes are
joint maximum-likelihood detectors which can be challenging
to implement.

8) Delay-Doppler Domain Multiple Access (DDMA): Or-
thogonal time-frequency space (OTFS) modulation [133]–
[135] was introduced for high-mobility wireless applications,
which multiplexes data in the delay-Doppler (DD) domain
rather than the time-frequency domain as in conventional
multi-carrier modulations. OTFS has also stimulated new
research on delay-Doppler plane modulations. For instance,
the newly proposed orthogonal delay-Doppler division multi-
plexing (ODDM) [136] was proved to achieve orthogonality on
the DD plane’s fine resolutions with realizable pulses. Owing
to the orthogonality, ODDM itself can be potentially employed
as an OMA scheme on the DD domain. Another promising
research area is that other MA schemes such as SDMA and
RSMA can be combined with OTFS/ODDM, which can offer
high spectral efficiency with robust performance in high-
mobility channels.

9) Other Multiple Access: All the above discussion on MA
techniques is not exhaustive with new MA strategies disclosed
on a regular basis such as fluid antenna multiple access
(FAMA) [137], location division multiple access (LDMA) for
near-field communication [138], or orbital angular momentum
(OAM) multiplexing and multiple access. Additionally, tai-
lored MA schemes have been introduced to support specific
technologies such as model division multiple access (MDMA)
for semantic communications [139] and AirComp MA scheme
for federated learning [140].

H. Random Access
One last type of MA is random access, specifically tailored

for Internet of Things (IoT) and massive connectivity. For
IoT communication network, the key is how to coordinate
the transmission of small packets between the base station
and a huge number of IoT devices in a reliable and low-
latency manner. This is in sharp contrast to the human-
type communication, which targets at high-speed transmission

to/from a medium number of users. Such a difference poses
new challenges for the MA design under IoT applications.
Specifically, if the number of users is huge, then access
collision is more likely to occur, which leads to long delay.
In IoT network, it is of paramount importance to design
innovative MA schemes that can greatly reduce the access
delay so as to facilitate the small-packet transmission from a
massive number of IoT devices. Generally speaking, in the
literature, there are two solutions for MA in IoT network: the
grant-based MA technique and the grant-free MA technique,
as shown in Fig. 15.

Grant-based MA technique are conventional for eMBB-like
services and relies on the base station to grant users the access
of the radio spectrum for data transmission.

In grant-free MA, or also called grant-free random access
(RA), the devices can access the channel without any prior
resource requests [92], [141]. In addition, the set of active
users is unknown to the receiver. Grant-free RA is suitable for
supporting a massive number of devices with sporadic traffic,
e.g., mMTC as in IoT, and can be divided into two different
paradigms, namely sourced and unsourced RA [142], [143].
For sourced RA, the receiver is interested in both messages
and user identities. In the literature, various techniques, such
as the compressed sensing approach [144] and the covariance
approach [145], have been proposed to detect the active
devices and/or estimate their channels. For unsourced RA, the
receiver is interested in the transmitted messages only (user
identity is recovered at the higher layers of the communication
protocol rather than the physical layer).

In the sequel, we discuss grant-based MA, grant-free
sourced random access (based on compressed sensing and AI),
and grant-free unsourced random access.

1) Grant-based Random Access: First, with human-type
communication, the contention-based grant-based access
schemes, e.g., ALOHA, are widely used. Under this scheme,
there is a preamble pool consisting of lots of orthogonal
preambles. When a user becomes active, it will randomly
select a preamble from the poor. If an active users selects a
unique preamble that is not selected by other active users,
the base station will grant this user the access for data
transmission. Otherwise, if some active users select the same
preambles, the base station will detect their access collision
and not grant them the access for data transmission. Despite
of their simplicity, such schemes do work quite well in current
cellular network, where the number of users is moderate.
Therefore, it is not surprised that some efforts have been
paid in the literature to investigate how to modify the existing
grant-based access schemes according to the requirements of
IoT applications. Here, the main issue to directly apply grant-
based schemes in IoT network lies in delay - when there is a
huge number of IoT devices to compete for the transmission
grant from the base station, the possibility for collision is very
high. As a result, in the literature, some works have been done
to propose efficient methods for resolving the collisions. For
example, in [146], a strongest-user collision resolution scheme
was proposed for grant-free random access in IoT network.
The idea is that after a collision occurs, each colliding user will
make a decision about whether it is with the strongest channel
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Fig. 15. Grant-based versus grant-free random access schemes.

among all the colliding users. If a colliding user believes that
its channel is the strongest, it will send the access request to
the base station. Otherwise, it will be quiet for some time and
re-compete for the access. It was shown in [146] that under the
massive MIMO regime, the strongest-user collision resolution
scheme can resolve most of the access collisions in massive
connectivity.

2) Grant-Free Sourced Random Access based on Com-
pressed Sensing: Second, one may ask whether it is possible
to reduce the collision probability, rather than resolving the
collision, under IoT networks. The goal can be achieved via
the grant-free random access scheme [141]. Under the grant-
based random access scheme, collision arises from the case
when multiple users select the same preamble for transmission.
To mitigate collision, a natural idea is that each user is
allocated with a fixed preamble, while the preambles allocated
to different users are different. In this case, the preamble of
each user serves as the identification of this user. In other
words, after receiving the preambles sent from the active
IoT devices, the base station can detect which preambles are
received, and then know which users are active. This scheme is
called grant-free scheme because the base station just detects
which users are active, instead of sending grants to permit
some users to be active. However, detecting which preambles
are received is quite challenging in massive IoT connectivity,
because it is not possible to assign orthogonal preambles
to a huge number of users. Recently, a breakthrough was
made to tackle the above challenge arising from grant-based
random access based on the compressed sensing technique.
Specifically, although there is a huge number of IoT devices,
most of them are in the sleeping model to save the energy at
each time slot. Thanks to this activity sparsity, it was shown
in [144] that detecting the active devices, i.e., deciding which
preambles are received, can be cast into a compressed sensing
problem. More importantly, based on the state evolution,
[144] rigorously proved that in the asymptotic massive MIMO
regime where the number of antennas at the base station goes
to infinity, the activity detection error probability can go down
to zero when the approximate message passing algorithm is
used. This result theoretically justifies the effectiveness of the
compressed sensing based grant-free random access scheme
for IoT networks.

3) Grant-Free Sourced Random Access based on Covari-
ance Approach: Under the compressed sensing based grant-

free sourced random access scheme, the base station can
jointly detect the active devices and estimate their instan-
taneous channels. In many IoT applications, we may be
only interested in device activity detection, because channel
estimation is not that important to short packet transmission,
but will induce long estimation delay. Recently, [145] pointed
out that the covariance matrix of the base station received
signals is a sufficient statistic for device activity detection,
and proposed a covariance approach that exploits the sample
covariance matrix of the base station received signals to
detect the active devices without estimating their channels. The
covariance approach is suitable for massive MIMO systems,
because in such systems, the sample covariance matrix of
the base station received signals is a good estimation of
the covariance matrix. Under the covariance approach, the
fundamental scaling law among the numbers of the users,
active users, base station antennas, and the length of the
user preambles were rigorously characterized in [145] for
the case when the large-scale fading coefficients of the users
are known, termed as restricted version of the maximum
likelihood estimation, and in [147] for the case when the large-
scale fading coefficients of the users are not known, termed as
unrestricted version of the maximum likelihood estimation. It
is not surprising that more active devices can be detected under
the covariance approach compared to the compressed sensing
approach, because channel estimation is not performed.

To summarize, under both the compressed sensing based
scheme and the covariance based scheme, there is a theoretical
gain of the grant-free random access scheme over the grant-
based random access scheme in IoT networks, because the
former scheme can mitigate almost all the collisions in the
massive MIMO region, but the latter scheme can merely tackle
some of the collisions. But the theoretical gain is achieved with
complicated device activity detection algorithms, which need
to deal with high-dimension matrices in massive connectivity
systems.

4) Grant-Free Unsourced Random Access: Unsourced ran-
dom access (URA) is a novel communication paradigm intro-
duced in [148]. URA differs from the conventional random
access models in several ways and is well-suited to meet
the demands of massive connectivity in mMTC. In this new
paradigm, a wireless network has Ktot users, out of which
only a small number Ka ≪ Ktot users are active and sending
finite blocklength packets at any given time. The total number
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Fig. 16. Comparison between different achievable schemes for URA [152].

of users Ktot can be very large (potentially infinite) and
grows linearly with the blocklength. Moreover, all users share
a common codebook, which is motivated by the practical
scenario where millions of low-cost IoT devices have their
codebook hardwired at the moment of production. In this
case, the receiver is interested in the transmitted messages
only, whereas the user identity is recovered at the higher
layers of the communication protocol rather than the physical
layer. However, an active device can embed its identity as
a part of the payload. The decoder’s job is to produce a
permutation of the transmitted messages. As opposed to the
global error probability in the conventional RA, only per-user
error probability is of interest in URA.

Since the message lengths for typical IoT applications are
small, the fundamental limits of the URA channel should be
reinvestigated rather than relying on the classic information-
theoretic results based on infinite blocklength and a fixed
number of users. The achievability and converse bounds for
URA with single antenna transceiver and without fading were
first given in [148] as the minimum required energy-per-bit Eb

N0

for given Ka, blocklength, and the per-user error probability
requirement. The results were later generalized to URA with
quasi-static fading [149] and MIMO with quasi-static fading
fading [150]. Interestingly, all these results show that near-
perfect multi-user interference cancellation can be achieved
for user densities below a critical threshold. Very recently, it
was shown that the achievability of binary coding is very close
to that of Gaussian coding [151].

Ever since the introduction of URA, there has been sig-
nificant effort in designing achievable schemes to approach
the performance bound while maintaining low computational
complexity. The first line of works adopt coded compressed
sensing (CS) based approaches [153], [154], which split the
payloads into smaller pieces, perform CS recovery on the
sub-problems, and subsequently stitch pieces together using
an outer code. Another line of works focuses on sparsifying
collisions to reduce multiuser interference, such as schemes

in the spirit of T -fold ALOHA [155], [156] and schemes
leveraging spreading sequences [152], [157]. Notably, the
best achievable scheme based on LDPC codes with random
spreading and soft interference cancellation [152] even slightly
outperforms the random coding achievability bound in [148]
as shown in Fig. 16. The detailed list of URA schemes can
be found in [158, Ch. 2]. The coded compressing sensing
approaches were later extended to massive MIMO URA. It was
proved that as the number of receive antennas is sufficiently
large, one can detect Ka = O(n2) active users with n being the
channel coherent blocklength [159] and the required transmit
Eb
N0

for reliable communication can be made arbitrarily small
[160]. Recently, [161] demonstrated that employing spreading
sequence for interference mitigation together with data-aided
channel estimation gives the best performance so far.

Current URA schemes focus sorely on uplink transmission.
Incorporating downlink feedback, e.g., by informing decoding
failures to users, can further improve system performance.
However, without user identities, it is challenging for the base
station to provide feedback to unsourced active users. Hence,
how to integrate feedback into URA schemes would be a
worthwhile research direction.

I. Technology Outlook and Future Works

We draw several observations from the past subsectionvs on
common challenges in MA designs and on MA dimensions
before giving an outlook of MA technology development
toward UMA.

1) Common Challenges in MA Designs and Performance
Evaluations: Modern and emerging MA schemes share a
number of common challenges, namely their optimization
complexity (for power allocation, precoders, and resource al-
location), channel estimation complexity, receiver complexity
(involving highly complex operations at the receivers such
as SIC), and sensitivity to various impairments such as RF
impairments and synchronization. The latter challenge is par-
ticularly common in IoT where most of the works assume
that all the IoT devices are perfectly synchronized, such that
when they become active, they transmit their preambles at the
same time. In practice, it is impossible to perfectly synchronize
a huge number of low-cost IoT devices. In this case, how
to make the strongest-user collision resolution scheme work
under the grant-based random access scheme? How to for-
mulate the device activity detection and synchronization error
estimation problem as a compressed sensing problem under
the grant-based random access scheme? Whether the sample
covariance matrix of the received sequence is still a sufficient
statistic for device activity detection? All these questions
should be carefully addressed before the MA schemes can
work in IoT networks. How to overcome those challenges will
be discussed in more details in Section III.

Additionally there is a critical lack of comprehensive perfor-
mance evaluations and comparison among MA schemes. The
literature on NOMA has been primarily built upon NOMA
vs OMA comparisons, without consideration for RSMA and
other schemes. The RSMA literature has thrived to com-
pare with OMA, NOMA and SDMA, but not with code-
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domain schemes. Evaluations of CD-MAs compared perfor-
mance among various types of codes. What is missing is a
consistent performance evaluation methodology that enables
a comprehensive performance comparison of MA schemes
across all dimensions. This is crucial to obtain a holistic
understanding of the performance benefits of MA schemes
and the role played by the various MA dimensions for both
uplink and downlink.

2) MA Dimensions: Previous discussions highlight that
there are numerous dimensions exploitable by a MA scheme,
starting from the usual time, frequency, space, power, code, but
new dimensions have also appeared in recent years including
message, index, pattern, interleaver, etc. We have decided to
classify them all into five categories: time, frequency, power,
space, signal. Signal is a broad category that encompasses
multiple sub-dimensions such as message split and combiner,
channel coding, modulation, interleaver, spreading sequence,
etc. Table II displays a non-exhaustive list of dimensions
exploited by the aforementioned MA schemes and how afore-
mentioned MA schemes exploit those various dimensions.

Table II also highlights that MA techniques exploit one
or multiple of those dimensions. For instance, SDMA and
NOMA exploit the space domain and the power domain,
respectively, while RSMA by opening the door to the mes-
sage dimension exploits the message combiner, message split,
power, and space domains to generalize and unify SDMA,
NOMA, and physical layer multicasting. PDMA exploits
space, time and frequency domains and CD-MA schemes
exploit the spreading code domain together with time and
frequency. All five domains would be exploited by OFDM(A)-
RSMA for instance [162], [163].

3) RSMA - A First Step Toward Unification in 6G: The
beauty of RSMA is that it unifies into a single MA scheme the
seemingly unrelated strategies of NOMA, SDMA, and physi-
cal layer multicasting. This unification capability translates in
RSMA to be a superset of those three strategies and can boil
down to any of them by turning off some of the streams. This
was illustrated in Fig. 3 for a two-user scenario and has been
discussed extensively in the NOMA and RSMA literature [10],
[11], [15] and demonstrated by the well known message-to-
stream mapping of [10], [12]. Consequently, RSMA can softly
bridge those three strategies, explore operating points that are
not achievable by any of them, and outperforms them all. This
gives RSMA an edge over other MA schemes as demonstrated
in over 40 applications in 6G [10], [15], including in multi-
functional networks such as ISAC [164].

The capability of RSMA to unify MA schemes is crucial
for the long term research in the theory and practice of
communications and wireless systems. Recall indeed the wise
words in the acknowledgments section of the book [23] by
David Tse and Pramod Viswanath: “Bob Gallager’s research
and teaching style have greatly inspired our writing of this
book. He has taught us that good theory, by providing a
unified and conceptually simple understanding of a morass
of results, should shrink rather than grow the knowledge
tree.”. In our context, as illustrated in Fig. 17 and by the
RSMA branch in Fig. 1, RSMA, by providing a unified and
conceptually simple understanding of a morass of results on
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Fig. 17. From RSMA to UMA: How to further shrink the knowledge tree.

SDMA, NOMA, physical layer multicasting, shrinks rather
grows the knowledge tree of MA schemes based on space,
power, signal dimensions. The capability of RSMA to unify
and therefore be more universal than other MA schemes makes
practical implementation and operation easier. Indeed a single
unified and general MA scheme would be easier to implement
and optimize than a combination of multiple MA schemes,
each optimized for specific conditions. This is increasingly
important in multi-functional 6G and beyond networks given
the wide diversity of services, use cases, and deployments.

4) Toward Universal Multiple Access in Beyond 6G:
Though RSMA provides a good example of a unified theory
of MA schemes, RSMA does not unify all MA schemes and
therefore does not exploit all dimensions of time, frequency,
power, space (e.g. antennas, beams), signal (e.g. messages,
codes, etc). This would then bring the central question for
future research on MA in beyond 6G: “What is Universal Mul-
tiple Access (UMA)?”. Following the same wise philosophy of
Gallager, Tse, and Viswanath, UMA should further shrink the
knowledge tree of MA schemes by unifying RSMA with all
other dimensions, such as code domain MAs, and ultimately
provide a unified and conceptually simple understanding of
the current and future morass of MA schemes. This question,
vision, and research philosophy is illustrated in Fig. 17 and
Fig. 1. Following the above question, come the natural and
important questions (and related challenges) “How to design
UMA?” and “Why and when do we need UMA?”2.

There are no answers to those questions yet since UMA
does not exist. Those questions nevertheless aim to trigger
discussions, give research directions, and motivate further
research. Addressing them is very timely for 6G and beyond
for two main reasons. First, the literature and the number of

2Those questions include the design of the transmitter and receiver archi-
tectures, resource allocation, optimization, channel estimation, performance
analysis, sensitivity to impairments, performance evaluations, etc.
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TABLE II
MA DIMENSION CLASSIFICATION AND MAPPING OF MA SCHEMES TO MA DIMENSIONS. RSMA BASIC SCHEMES EXPLOIT SPACE, POWER, AND
MESSAGE SPLITTING DIMENSIONS, THOUGH SPACE-TIME AND SPACE-FREQUENCY RSMA SCHEMES EXIST [10], HENCE EXPLOITING A FOURTH

DIMENSION. IMMA HAS PRIMARILY TWO DIFFERENT SCHEMES, AND THE CURRENT DESIGNS UTILIZE THREE DIMENSIONS AT THE SAME TIME TO
DISTINGUISH USERS.

MA

Dimension
Time Frequency Space Power

Signal
Message Message Channel Modulation Interleaver Spreading
combiner split coding sequence

TDMA ✓
FDMA ✓

OFDMA ✓ ✓
SDMA ✓
NOMA ✓

PHY Multicasting ✓
RSMA ✓ ✓ ✓ ✓ ✓ ✓ ✓✓ ✓ ✓✓ ✓✓✓
CD-MA ✓ ✓ ✓
IDMA ✓ ✓
PDMA ✓ ✓ ✓
CFMA ✓ ✓ ✓

LPBMA ✓ ✓ ✓
SC-MA ✓ ✓
LDM ✓ ✓ ✓

IMMA ✓✓ ✓ ✓ ✓✓
DDMA ✓ ✓ ✓

MA schemes have exploded in the past decade and grown
non-organically, fueled by the sheer interest in making new
or better use of MA dimensions and the limited resources
but also by the large number of new wireless services of-
fered by multi-functional and intelligent 6G. Many of those
schemes claim to exploit new dimensions and presenting new
ideas, though it remains to be seen whether this is true or
whether those are a rebranding or twist of known concepts.
Second, the multi-functionality of wireless networks calls for
a more efficient, flexible and robust use of resources, better
management of interference, better handling of heterogeneity
of wireless services, unified and simplified hardware and
software architectures. UMA should shrink the knowledge tree
by truly understanding the essence of a unified MA design
at exploiting in the most simple way all five dimensions
(time, frequency, space, power, signal) to efficiently provide
intelligence and multi-functionality (communications, sensing,
localization, computation, energy transfer and harvesting) in
6G and beyond network.

Many MA schemes exploiting the code domain have been
classified as CD-MA with LDS and SCMA being instance
of sparse CD-MA and MUSA and SAMA of dense CD-
MA. However, CD-MA here only stands for a collection
MA schemes exploiting various properties of codes but CD-
MA is not a MA scheme itself that unifies LDS, SCMA,
MUSA, SAMA, i.e., there is no MA scheme that unifies
LDS, SCMA, MUSA, SAMA and enables to softly bridge
them all. Hence CD-MA does not have the same unification
capability as RSMA. Nevertheless, it is important to observe
that RSMA and CD-MA span different MA dimensions, with
e.g., RSMA not exploiting the spreading code dimension.
Shrinking the knowledge tree of MA schemes to identify
UMA would require a better understanding of how all CD-
MA schemes are linked to each other and whether they form
particular instances of a more general class of MA schemes,
and a better understanding of the interplay between RSMA and

CD-MA. Unfortunately such research avenues remain largely
unexplored. Indeed, a number of works have attempted to
combine CD-MA with other MA schemes. The combination
of NOMA and SCMA was investigated in [165]–[167]. The
motivation is to allow the same SCMA codeword to be used by
multiple users simultaneously, thereby increasing the number
of supported users. At the receiver, MPA combined with
SIC decoder is employed. However, the complexity would be
higher than that of a single SCMA or a NOMA scheme. In
[168], CD-MA is combined with SDMA in the massive MIMO
setting, where the cases of CD-MA offering spectral efficiency
improvement were identified. The integration of CD-MA into
RSMA was suggested in [10]. Since the split in common and
private streams in RSMA can be seen as virtual users, each
virtual user can be assigned a dedicated spreading sequence
for enabling code-domain multiplexing. However, such an idea
has not been explored further. One major arising challenge of
integrating RSMA and CD-MA, hence UMA, will lie in the
receiver complexity.

III. ARTIFICIAL INTELLIGENCE FOR MULTIPLE ACCESS

In this section, we demonstrate how AI techniques can be
used to address some of the MA challenges highlighted in
the previous section. We start by providing an overview of AI
methods and delve into how they can be applied for resource
allocation and optimization for different MAs. We then discuss
AI-empowered channel estimation, receiver design, and user
behavior predictions, and finish the section by providing some
outlook of AI for UMA.

A. AI-empowered MA Resource Allocation and Optimization

In every wireless communication system, there is a constant
challenge: harnessing limited resources to achieve improved
performance while satisfying various QoS requirements such
as rate, latency, and reliability. Therefore, the allocation of
wireless resources is of critical importance in the pursuit
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of optimized network performance and the fulfillment of
the multifaceted needs inherent to wireless communication
systems. Different MA schemes introduce distinct resources
for allocation. For instance, OFDMA introduces the challenge
of subcarrier allocation among users, TDMA involves time slot
allocation, NOMA introduces user pairing, grouping, decoding
order, and power allocation, SDMA incorporates beamform-
ing, power allocation, and user scheduling, RSMA centers
on beamforming, power allocation, common and private rate
allocation design, and SCMA deals with sparse code allocation
among users. Essentially, the choice of the optimal resource
allocation approach relies on various factors, including the
specific MA scheme, available resources, system requirements,
and the intricate interplay of these key factors.

Conventional resource allocation algorithms typically rely
on optimization theory and game theory. While these methods
can yield mathematically optimal, sub-optimal, or Nash equi-
librium solutions, they often come with a high computational
cost and burden, especially in large-scale (many devices,
antennas) systems. The rapid advancement of AI in the past
decades has opened up a new approach to tackling the com-
plex, non-convex problems often encountered in resource al-
location. This approach allows the resource allocation scheme
to be learned directly from data samples or environment,
eliminating the need for complex mathematical models. Fig.
18 shows a non-exhaustive search of the potential AI methods
that can be applied for resource allocation. Broadly, AI-based
resource allocation methods fall into three categories: tradi-
tional ML, deep learning (DL), and reinforcement learning
(RL). In the following, we provide a concise overview of these
three methodologies and how those AI-based approaches can
be applied to diverse resource allocation scenarios, followed
by a summary of the advantages and disadvantages for using
AI-based approaches.

1) Machine learning: The term “machine learning (ML)”
originally referred to the development of algorithms that en-
abled machines to learn and solve specific problems. With the
growing development of neural networks, ML now primarily
refers to traditional learning approaches that do not rely on
neural network. Common ML methods include support vector
machine (SVM), K nearest neighbors (KNN), and K-means
clustering and principal component analysis (PCA).

SVM is often used for resource allocation scenarios that
involve binary data classification. For instance, it can be ap-
plied to spectrum sensing in dynamic spectrum access (DSA)
systems. In this application, SVM is used to classify segments
of the spectrum as either occupied or available for secondary
users based on received signal characteristics, enabling effi-
cient spectrum utilization [169]. KNN works by finding the K
closest data points in the training data to a test data point, then
predicting or classifying based on the majority label or aggre-
gated values of those nearest neighbors. It’s non-parametric,
so it doesn’t make any assumptions about the data distribution.
In applications like user grouping, KNN helps clustering
or categorizing users based on their similarity in terms of
channel conditions or interference patterns [170]. SVM and
KNN are both supervised learning algorithms, and they share
common challenges when dealing with large datasets due to

their high computational complexity. For KNN, it suffers the
“curse of dimensionality” wherein data points tend to become
equidistant from each other in high-dimensional spaces, posing
difficulties in identifying meaningful nearest neighbors. In
contrast, both K-means clustering and PCA are unsupervised
learning algorithms. K-means clustering can be applied to
wireless resource allocation problems such as user grouping,
spectrum allocation. For example, a K-means based user
clustering algorithm is developed in [171] for NOMA by
exploiting the channel correlation among users. PCA is a
dimensionality reduction technique and itself is not a direct
resource allocation algorithm for wireless networks. However,
it plays a crucial role as a preprocessing and analysis tool
that enhances the quality of data used by resource allocation
algorithms [172].

All the aforementioned non-neural network-based ML al-
gorithms offer straightforward interpretations of results. How-
ever, their effectiveness is pronounced when dealing with
data characterized by straightforward relationships. They may
encounter difficulties in capturing intricate hierarchical repre-
sentations within complex data relationships. In such case, DL
or neural works demonstrate superior performance.

2) Deep Learning: The DL approach, powered by neural
networks, is one of the most renowned techniques in the
field of AI for its success in addressing various challenges,
such as image recognition and natural language processing.
Within the realm of wireless resource allocation, DL has
shown to be valuable thanks to its capacity to efficiently
process vast and intricate datasets. It facilitates intelligent and
adaptive resource allocation, continually optimizing network
performance in real-time. Popular neural networks mainly
consist of dense neural networks (DNNs), convolution neural
networks (CNNs), recurrent neural networks (RNNs), and
graph neural networks (GNNs). Each of these architectures
has demonstrated its prowess in addressing specific resource
allocation challenges for different MA schemes.

DNN: DNN is the most fundamental neural network ar-
chitecture, often referred to as multi-layer perception (MLP).
Within this architecture, neurons are associated with input
weights and incorporate an activation function to produce out-
puts. The computation unfolds layer by layer, with parameter
updates facilitated through the process of backpropagation. It’s
worth noting that this structural framework finds application
in various other types of neural networks as well. DNNs have
been employed to approximate the weighted minimum mean
square error (WMMSE) algorithm, a versatile non-convex op-
timization technique for resource allocation and optimization
of MA schemes, in an end-to-end manner [173]. This pioneer-
ing approach signifies a paradigm shift in optimization, known
as “learn to optimize”, since a three-layer DNN can closely
approximate WMMSE while achieving significant computa-
tional time reductions, often spanning orders of magnitude.
Considering the widespread adoption of WMMSE in wireless
resource allocation tasks such as beamforming and power
allocation for different MA schemes, this achievement implies
that DNNs can effectively address a broad range of resource
allocation challenges [174].

CNN: In contrast to DNNs, CNNs leverage convolutional
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Fig. 18. A non-exhaustive search of AI methods that can be applied for resource allocation.

and pooling layers for specialized operations. By stacking
these convolutional and pooling layers alongside dense layers,
CNNs significantly reduce the number of parameters required
to achieve equivalent performance to that of DNNs. CNNs
excel in feature extraction and are notably easier to train com-
pared to DNNs. These advantages have led to the widespread
adoption of CNNs in addressing resource allocation chal-
lenges. CNN has been trained to approximate WMMSE for
power allocation in [175], and for SDMA beamforming design
in [176]. In [177], the power control problem of NOMA is also
addressed by CNN.

RNN: RNNs take into account the impact of inputs from the
previous time steps. This distinctive feature allows RNNs to
maintain memory of prior inputs through their unique network
architecture. Therefore, RNNs are well-suited for handling
time-dependent data. This characteristic of RNNs make them
highly valuable to capture the temporal correlations of data.
In [178], RNN is used by each base station to predict the
spectrum allocation. Additionally, in [179], a graph attention
RNN is proposed for traffic prediction. The RNN family
includes various common variants, including long short-term
memory (LSTM) and gated recurrent unit (GRU), among
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others. These variants have been found highly effective in
tackling various resource allocation challenges. LSTM is used
to forecast the user mobility, and enhance the performance
of resource allocation [180]. In terms of beamforming design
for SDMA, LSTM emerges as a powerful tool for integrating
information from multiple preceding steps in order to refine the
current step, as evidenced in [181]. This contrasts with conven-
tional alternative optimization algorithms, which typically rely
solely on information from the present and the immediately
preceding step to influence their output. For GRU, it can serve
as a robust predictive model capable of consistently delivering
high levels of accuracy in forecasting resource requests [182].

GNN: GNNs are specifically built upon graph structures,
offering the capability to handle non-Euclidean data. GNNs
exhibit remarkable flexibility in accommodating input data
of varying dimensionality, making them a natural fit for the
dynamic nature of the wireless communication domain, where
the number of users and antennas can vary significantly. By
constructing directed/undirected graphs based on the structure
of the considered wireless networks with devices as nodes and
channels as edges, GNNs are capable to learn the wireless
network and enhance resource allocation [183], [184]. As an
alternative, GNNs can construct graphical models based on
the mathematical formulation of specific resource optimization
problems by defining node sets and incorporating parameters
as features, as evidenced in [185], [186]. By such means,
GNNs are promising for addressing large-scale MA resource
allocation problems while enjoying a high computational effi-
ciency.

Other Methods: In addition to the previously mentioned
standard neural network architecture, numerous advanced DL
approaches have gained widespread adoption in addressing
resource allocation problems. These encompass a range of
techniques, such as the transformer [187], autoencoder [188],
transfer learning [189], meta-learning [181]. The transformer
takes the advantage of the attention mechanism, which sets it
apart from RNNs. It is suitable for parallel computing, leading
to substantial performance enhancements when compared to
RNNs. An autoencoder, a neural network for unsupervised
learning, contains two parts: an encoder that compresses input
data into a simpler form, and a decoder that recreates the
original input from this simpler representation. In wireless
resource allocation, autoencoders are used to learn efficient
data representations that capture important patterns in com-
munication data. These learned representations improve the
efficiency of resource allocation methods like power control,
channel assignment, or user scheduling by giving decision-
making algorithms a more concise and informative input. The
fundamental concept behind transfer learning involves extract-
ing essential features from the source domain and fine-tuning
the pre-trained model for application in the target domain. By
leveraging its capability to transfer valuable prior knowledge
to new scenarios, transfer learning offers a promising solution
to address the challenge of task mismatch encountered in
practical wireless communication systems. The key to meta-
learning is the ability to “learn-to-learn” so that the trained
model can improve its learning ability and adapt to new tasks
or domains with minimal or no human intervention. This
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Fig. 19. Ergodic sum-rate of RSMA with meta-learning based optimization
and conventional precoder designs in a massive MIMO setting with 100
antennas serving 12 users [190].

approach facilitates rapid adaptation to new environments, thus
enabling more effective resource allocation decisions. In this
context, meta-learning was found to be a powerful compu-
tationally efficient alternative to WMMSE-based optimization
techniques to optimize precoders and resources allocation in
RSMA [190]. The performance obtained with meta-learning
is comparable to convex optimization-based approaches but
achieves a significantly lower running time. This is partic-
ularly helpful for large scale RSMA network settings with
many antennas and users, where WMMSE approaches are
not feasible due to the astronomic computational time, and
low complexity precoding algorithms achieve poor and clearly
sub-optimal performance, as illustrated in Fig. 19 where HRS
(recall Fig. 2) is used in a massive MIMO setting with
100 antennas serving 12 users divided in four groups. Meta-
learning provides significant performance enhancements over
the conventional low complexity precoder of [42] at reasonable
complexity and computational time [190]. Meta-learning also
enables to optimize and explore the full performance benefits
of MA schemes in large scale settings, with many antennas
and many users, which could not be achieved so far by
convex optimization techniques. For instance, Fig. 20 shows
the ergodic sum-rate (ESR) of RSMA and SDMA in a massive
MIMO deployment with 100 antennas and 40 users grouped
into four disjoint (non-overlapping) groups (12 users per
group) [191]. The relative gain of RSMA over SDMA, both
optimized using meta-learning, increases as the CSIT error σ2

e

increases3. This shows that the potential performance benefits
of RSMA over SDMA hold in fully optimized large scale
systems. Further investigations are needed to understand how
those gains change when using a 3GPP-compliant evaluation
methodology.

Additionally, algorithm-driven methods like deep unfold-

3The partial CSIT for user-k is given by ĥk =

R
1/2
g

(√
1− σ2

egk + σ2
ezk

)
, where zk is the CSIT error with i.i.d.

entries drawn from the distributions CN (0, 1), σ2
e ∈ [0, 1] denotes the CSIT

error variance, and Rg is the channel spatial covariance matrix of group g.



24

0 5 10 15 20 25 30
SNR (dB)

40

60

80

100

120
E

S
R

 (b
ps

/H
z)

Fig. 20. Ergodic sum-rate with QoS rate constraints of 1 bps/Hz per user
of RSMA and SDMA with meta-learning based optimization in a massive
MIMO deployment with 100 antennas and 40 users [191].

ing/unrolling and learning to branch and bound (BB) have also
played significant roles in MA resource allocation problems.
As the problems are typically non-convex, one approach is to
approximate the original non-convex problem to a sequence
of convex problems, and use an iterative algorithm to solve
the approximated problems. Deep unfolding/unrolling extends
this idea by unfolding the iterations of an iterative resource al-
location algorithm into a neural network architecture, allowing
for end-to-end training and optimization. Such approach has
been widely studied in beamforming design, user scheduling,
power allocation, etc [192], [193]. Another standard method
to deal with the non-convex optimization problem is to find
the global optimal solution based on BB, which is of high
computational complexity. To address this issue, a learning-
based BB is proposed that use neural network to learning the
BB algorithm [194].

3) Reinforcement Learning: RL involves the interaction
between agents and the environment, with the goal of optimiz-
ing a long-term objective. Among the most widely embraced
model-free RL algorithms, Q-learning is the most well-known
algorithm for computing an optimal policy that maximizes the
long-term reward. However, as system complexity deepens,
particularly when there exists hidden system states, calculating
and maintaining all Q-values becomes exceedingly imprac-
tical. This challenge, often referred to as the “curse of di-
mensionality”, makes Q-learning less suitable for the intricate
demands of ultra-dense and complex wireless networks [195].
To address this issue, deep RL (DRL) emerges as a powerful
solution that integrates traditional RL with deep learning
techniques.

Recent advances in DRL has made it a promising frontier
for resource optimization in wireless network for different
MA schemes [196]–[199]. DRL has found applications in
a wide range of resource allocation problems, such as user
scheduling, power control, beamforming design, and band-
width allocation. DRL demonstrates remarkable capability
in tackling the intricate challenges of sequential decision-

making within dynamic and large-scale networks, all without
relying on explicit models of the transmission environment.
This unique feature empowers agents to continually refine
their decision policies through interactions with the unknown
environment.

4) Advantages and Disadvantages: A non-exhaustive
search of existing works that use AI methods to allocate
resources for difference MA schemes is summarized in Table
III. The advantages and disadvantages of these AI-empowered
algorithms are summarized as follows.

AI-empowered resource allocation algorithms offer the fol-
lowing advantages:

Superior Performance: Thanks to their data-driven features
and the well developed neural networks, AI-empowered re-
source allocation can discover communication patterns and
relationships that are too complex to identify precise math-
ematical model. Therefore, AI-empowered algorithms often
achieve better performance compared to traditional model-
based algorithms.

Generalization: AI-empowered resource allocation algo-
rithms can generalize from historical data to make predictions
or decisions on uncharted data. This capability empowers
these algorithms to flexibly adapt to rapidly changing wireless
environment and efficiently allocate resources.

Scalability: AI-empowered resource allocation algorithms
can efficiently handle and process larger volumes of data.
They possess the ability to accommodate growing demands
without compromising performance or efficiency. Therefore,
these algorithms are generally proficient in tackling resource
allocation challenges of diverse sizes and complexities.

Low computational complexity: AI inference demands only
a limited set of basic operations and can be executed in real-
time. This appealing characteristic allows these algorithms
to reduce processing time and require fewer computational
resources, making them practical and cost-effective solutions
for both online and offline resource allocation problems.

Robustness: As AI-empowered algorithms are data-driven,
they are typically robust to handle uncertainty in data or envi-
ronment, allowing them to make reliable decisions despite in-
complete or noisy information. This robustness is particularly
valuable in resource allocation problems because it ensures
that the algorithm can adapt and make sound decisions even
when operating in unpredictable or dynamic environments.

Although AI-empowered MA resource allocation solutions
offer numerous advantages, they also come with certain dis-
advantages and challenges:

Lack of Interpretability: Directly replacing the conventional
resource allocation algorithm with a generic neural network
in an end-to-end fashion is often referred to as a “black-box”
approach, which lacks interpretability regarding the decisions
it makes. To address the issue, one can combine data-driven
and model driven algorithms, i.e., by unfolding an iterative
algorithm, it becomes possible to enhance interpretability.

Data Dependency: AI-empowered algorithms have a strong
dependence on data for both training and inference. When the
training data is biased, incomplete, or not representative, it can
result in suboptimal resource allocation decisions. As the wire-
less environment is changing rapidly, user channels, typically
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TABLE III
AI-EMPOWERED RESOURCE ALLOCATION FOR DIFFERENT MULTIPLE ACCESS SCHEMES.

MAs AI Method Reference Resource Allocation Problem

OFDMA
Deep Transfer Reinforcement Learning [200] beamforming and subcarrier assignment

DNN
[201] subcarrier assignment
[202] power allocation
[203] user scheduling

DRL [204] subcarrier assignment and power allocation

TDMA RNN (LSTM) [205] radio resource assignment
DRL [206] time-frequency resource block allocation

DRL (Q-learning) [207] power allocation

SDMA

K Nearest Neighbors [208] beamforming
K-means [209] user grouping

CNN
[210] hybrid beamforming
[211]

beamforming
[176]

GNN
[212]
[213]
[214]

NOMA
GNN [215] user scheduling
DQN [216] user pairing and power allocation
DNN [217] joint beamforming and SIC decoding

RSMA
Transformer [218]

beamformingDNN and autoencoder [219]
Meta-Learning [190]

DRL [220] power allocation

used as input data, may shift to different distributions over
time. This can significantly impact the ability of the trained
neural network to generalize effectively to new conditions and
scenarios.

Training Overhead: Developing and training AI models
for wireless resource allocation can be time-consuming and
resource-intensive. This is especially evident when utilizing
traditional resource optimization algorithms, known for their
high computational complexity, to generate the training data,
leading to substantial time requirements. Furthermore, to
maintain optimal performance, periodic model updates may
also be a necessity.

B. AI-empowered MA Channel Estimation

CSI plays a pivotal role in wireless communications and
MA designs and optimization. Precise CSIT facilitates the
implementation of precoding, adaptive resource allocation
and user scheduling, leading to substantial improvements in
performance and efficiency, while accurate CSI at the receiver
(CSIR) empowers coherent detection and decoding processes.
For acquiring CSIR, downlink channel estimation is a ne-
cessity, where the transmitter sends pilot signals to the re-
ceivers. This task becomes particularly vital and challenging in
OFDM systems due to the temporal variability and frequency-
selective characteristics of wireless channels. In terms of
CSIT acquisition, in time division duplex (TDD) systems,
CSI is obtained at the transmitter through the exploitation of
reciprocity. In this case, uplink channel estimation is required,
where users send pilot signals, enabling the base station to
estimate the uplink CSI. However, tackling this task in massive
access is challenging due to the limited number of orthogonal
pilot resources [221]. In frequency division duplex (FDD)
systems, acquiring CSIT involves sending the CSI estimated
at the receiver back to the transmitter through a feedback
link. However, this becomes challenging in massive MIMO

setups due to the large dimensions of the CSI, resulting in
a substantial increase in feedback overhead. To mitigate the
overhead, it becomes imperative to efficiently compress the
CSI estimate at the receiver or employ a codebook-based
approach for quantizing the CSI [222], [223].

AI can play a pivotal role in tackling the aforementioned
challenges and improving the quality of CSI obtained at either
the transmitter or receiver. This can be achieved through two
primary directions [224]:

1) Channel estimation: By modeling the channel estimation
problem as a regression task, we can create a neural
network-based channel estimator.

2) CSI compression: By modeling CSI compression as
a dimension reduction problem, we can develop AI
architectures specifically tailored to address this issue.

These two directions in general apply to different MA tech-
niques. However, for different MA enabled channel estimation,
some additional problems may arise. In the following, we
will respectively discuss these challenges for different systems
employing different MA schemes.

AI-enabled channel estimation: Deep learning enabled chan-
nel estimation is first studied in [225] for a point-to-point
OFDM system, where a DNN is employed to learn the char-
acteristics of frequency selective wireless channels. After that,
many existing works focus on using neural networks, such as
CNN, generative adversarial network (GAN) to tackle channel
estimation of MIMO networks [226]–[228]. As summarized
in [229], most of existing works on channel estimation con-
sider point-to-point communication networks. However, these
approaches often face limitations when applied to multi-user
MIMO systems due to the presence of multi-user interference.
In uplink multi-user MIMO, one way to mitigate inter-user
interference is by assigning different users orthogonal pilots.
However, due to the limited availability of these sequences,
users often end up using the same pilot for training, leading
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to pilot contamination [230]. To tackle this problem, uplink
NOMA can be considered. It allows non-orthogonal pilot
transmission and uses SIC for channel estimation [231]. How-
ever, since multiple users sharing the same pilots in uplink
NOMA, it introduces additional power control issues. Hence,
it is necessary to jointly design pilot and power allocation for
better performance compared to traditional methods without
SIC [232]. In addition to uplink NOMA, RSMA also shows
promise in resolving pilot contamination problems. An inter-
esting finding in [56] suggests that downlink RSMA can assist
in reducing the negative impacts of pilot contamination in
TDD massive MIMO. Such appealing benefit of RSMA makes
it highly promising for simplifying the channel estimation
process in the uplink.

AI-enabled CSI compression: In FDD massive MIMO sys-
tems, to reduce the CSI feedback overhead, one line of
works focuses on CSI compression methods and codebook
designs. While compression theories such as compressive
sensing have been applied to simplify the CSI feedback or
codebook design [233], [234], the feedback signaling overhead
in these approaches remains heavy since the overhead typically
increases linearly with the number of antennas, imposing
practical limitations. Deep learning has shown to be highly
effective in addressing data compression challenges across var-
ious domains, including images, audio, and video [235], [236].
Recognizing CSI as an additional data source for compression,
deep learning techniques have been successfully applied to the
compression and feedback of CSI for massive MIMO systems
[237]–[243]. Among various MA schemes, NOMA exhibits
greater sensitivity to CSI quantization/compression errors.
These errors not only affect the decoding order design but also
lead to practical issues of imperfect SIC and error propagation
during downlink transmission [244]. Thanks to its significant
advantages in interference management, RSMA has demon-
strated appealing spectral efficiency gains compared to NOMA
and SDMA in FDD massive MIMO systems with limited
feedback [42], [245]. It holds great promise for simplifying
deep learning based CSI compression or codebook design in
FDD massive MIMO setups while maintaining equivalent or
superior performance to conventional MA schemes.

C. AI-empowered MA Receiver Design
Aforementioned MA schemes often require advanced re-

ceivers, such as SIC for NOMA and RSMA, though other
types of receivers can be used to better trade performance with
receiver complexity [45]. One commonality in the design of
receivers for MAs is the reliance on models and assumption for
the noise, interference, signal propagation [246]. It is never-
theless challenging to mathematically relax those assumptions
while maintaining a tractable model. Indeed interference is
non-Gaussian with finite constellations, SIC and CSIR are
imperfect and propagates error, decoding delay and latency
increase chance of errors, etc. Those model-based receiver
algorithms have so far performed quite well [45] but take the
risk to rely on accurate prior model knowledge and potentially
perform poorly if it is not accurately acquired [246].

DL-based receivers are able to directly extract meaningful
information from the unknown channel solely on observations,

which is a major advantage. Therefore, DL is well suited for
scenarios in which the underlying mathematical channel model
is unknown, its parameters cannot be acquired with precision,
or when it is too complex to be studied by model-based
algorithms with low computational resources [247]. Never-
theless, employing DL in MA receivers presents substantial
challenges. Firstly, the appeal of model agnosticism in DL
approaches necessitates a complex network with numerous
nodes and layers, along with a sizable training set to acquire
a specific mapping. Consequently, this results in a substantial
computational burden at the receiver during the training phase.
Secondly, sharing a training set between the transmitter and
receiver introduces significant training overhead, potentially
causing delays in transmitting actual useful data to commu-
nication users. Lastly, due to the time-varying and dynamic
nature of wireless channels, periodic training of the DNNs
at the receivers becomes essential to accommodate channel
variations. However, this requirement renders the sharing of
large training sets highly impractical.

To tackle those challenges and leverage the advantages of
both traditional model-based algorithms and model-agnostic
DL approaches, model-based deep learning (MBDL) has
been introduced [246]. MBDL systems are implemented by
substituting specific steps and computations in model-based
algorithms, which rely on precise channel model knowledge,
with compact neural networks. These neural networks demand
smaller training data sets compared to conventional DL sys-
tems. In this context, adaptations of the SIC receiver using
MBDL have been proposed for uplink and downlink NOMA
and downlink RSMA [248]–[250], such that specialized DNNs
are employed for tasks such as interference cancellation and
symbol classification, as illustrated in Fig. 21 for RSMA.
Interestingly, the MBDL approach surpasses the performance
of conventional model-based SIC receivers. Fig. 22 illustrates
the throughput performance of RSMA receiver architectures of
Fig. 21. Eight transmit antennas serve eight users using 1-layer
RS scheme (recall Fig. 2 - hence one common stream and eight
private streams) which features finite alphabet modulation,
finite-length polar coding, Adaptive Modulation and Coding
(AMC), and rate backoff. We observe that the throughput loss
of the SIC receiver with imperfect CSIR increases with the
SNR. In comparison, the MBDL receiver is able to achieve
a similar throughput to that of the SIC receiver with perfect
CSIR, with an almost negligible loss, and comes close to the
performance of the optimum (but highly complex - hence not
practical for large number of streams and modulation order)
joint decoding receiver, the maximum a-posteriori probability
(MAP) receiver. The significant margin of the MBDL receiver
over the SIC receiver is due to its ability to generate on demand
non-linear symbol detection boundaries in a pure data-driven
manner [250].

D. AI-empowered Grant-Free Random Access

Another MA area where AI can play an important role is
the grant-free random access scheme discussed in Section II-H.
In massive IoT connectivity setup, the number of IoT devices
is huge. As a result, low-complexity MA design suitable for
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large-scale IoT network is appealing. In this sense, recently,
AI-empowered MA schemes have attracted more and more
attention in the area of grant-free random access under massive
machine-type communications.

On one hand, the performance of compressed sensing al-
gorithms introduced in Section II-H heavily depend on the
choice of the sensing matrix, while most of the works on
compressed sensing based device activity detection assume
that the sensing matrix, which is determined by the pilot
signals assigned to IoT devices, is given. For example, many
works assume Gaussian pilots [144], [159], [251] such that
the approximate message passing (AMP) algorithm can be
adopted to detect the active devices and analyze the detection
performance based on the state evolution. Moreover, Reed-
muller sequences based pilots have been utilized for device
activity detection in [252]. However, how to design the pilot
signals that work the best for device activity detection is still
an open problem. This difficulty lies in the unknown relation
between the sensing matrix and the detection performance. It

is well-known that AI techniques are a good option to learn
the complicated and unknown relations. Therefore, recently,
there is a growing interest in applying AI to design the pilot
signals for massive IoT connectivity. For example, it was found
in [253], [254] that if the deep learning technique is used to
design the pilot signals, the device detection performance can
be improved compared to using Gaussian pilots and Reed-
muller sequences based pilots.

On the other hand, deep learning technique can also be
applied to design efficient device activity detection algorithms,
when the dimension of the problem is huge due to the large
number of IoT devices. In general, these deep learning based
device activity detection methods can be classified into data-
driven based methods and model-driven based methods. Under
data-driven based methods, basic neural network architectures,
e.g., fully connected neural networks, CNNs, are utilized to
detect active devices [254], [255]. Under model-driven based
methods, existing algorithms, e.g., AMP, group LASSO, etc.,
are utilized to train the neural networks for better activity
detection performance [256]–[259].

E. Technology Outlook and Future Works

AI has been investigated for some relatively simple MA
schemes such as OMA and SDMA, but more needs to be done
for more advanced MA schemes, such as RSMA, CD-MA
and random access, for which the literature still remains quite
limited with a lot of new research challenges and opportunities
on the horizon. AI is likely to play an even bigger role for
UMA for which the optimization space is enlarged due to
the exploitation of all five dimensions (and sub-dimensions).
Moreover, AI could also be helpful to complement commu-
nication and information theory to discover and identify key
ingredients of UMA designs and architectures and also help
with receiver design for the same reasons as RSMA but also
because of the additional complexity increase incurred by the
exploitation of the code dimension.
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IV. MULTIPLE ACCESS FOR ARTIFICIAL INTELLIGENCE

We now switch the role and assess how MA schemes can
be designed and tailored to serve AI applications. We focus
on MA for federated learning (FL) and edge intelligence.

A. MA for Federated Learning and Edge Intelligence

FL is a decentralized method for training ML models.
Specifically, FL training consits of four main steps: 1) each
device uses its raw dataset to train its ML model, 2) each
device sends its local FL model parameters (i.e., gradient
vector) to a parameter server, 3) the parameter server aggre-
gates the received local FL model parameters of devices and
generate a global FL model, 4) the parameter server sends
the global FL model parameters back to all devices, 5) repeat
steps 1)-4) until model converges. From the training process,
we can see that FL eliminates the need for transferring data
from client devices to parameter servers since the devices
exchange FL model parameters. Hence, FL enhances data
privacy. One challenge of deploying FL [260] over wireless
networks is the communication bottleneck, which arises from
several edge devices transmitting large sized model param-
eters to a parameter server or a base station. Moreover the
heterogeneity of edge devices computing capabilities, com-
munication rates, and amount and quality of data can affect
the training performance in terms of accuracy, fairness and
convergence time. Researchers have attempted to reduce the
resultant communication latency using different approaches
such as excluding slow devices (“stragglers”) [261] or com-
pressing FL model parameters by exploiting their sparsity. To
further improve the number of FL participating devices, in this
subsection, we provide a review on the use of MA schemes
for supporting FL deployment over realistic wireless networks,
with a specific emphasis on OMA/SDMA/NOMA/RSMA-
based networks and an alternative MA approach – over-the-
air computation (AirComp) - for wireless FL performance
optimization.

1) OMA for FL: Using OMA, devices must use different
spectrum resource for FL parameter transmission. Due to
limited resources in wireless networks, the wireless resources
(i.e., power, computational power, spectrum) allocated to each
user are limited, which may significantly limit the number
of devices that can participate in FL and increase FL con-
vergence time [262]–[264]. Consequently, it is necessary to
optimize resource allocation such that devices can efficiently
complete the FL training process. The current researches
have optimized device selection [265]–[267], local and global
FL model updates [268], [269], spectrum allocation [270],
and used advanced technologies such as RIS [271], [272],
MIMO [273], compression [274] to improve training loss,
convergence speed, or training complexity of FL in OMA
based networks. However, the main drawback of OMA is that
it does not scale well with the number of devices. Specifically,
the required radio resources increase linearly with the number
of devices, or else the latency will grow linearly. This calls
for the integration of FL with other MA schemes.
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Fig. 23. An illustration of an RSMA-based FL.

2) SDMA for FL: To solve OMA drawback and enhance
the applications of FL, one can use MIMO and spatial do-
main techniques, which enable edge devices to use the same
time-frequency resources for FL parameter transmission thus
improving wireless resource utilization and FL convergence
speed. However, using MIMO for FL requires to optimize
transmit and receiver beforming matrices. In particular, the
parameter server requires to know the future gradient vectors
of devices to optimize its beamforming matrix since beam-
forming matrix depends on FL model parameter aggregation.

3) NOMA for FL: To further improve the FL parameter
transmission efficiency, one can use NOMA to separate edge
devices into distinct groups and managed the interference in
each group by SC-SIC. Here, current works have studied
the combination of NOMA with gradient quantization and
sparsification schemes [275], power allocation schemes [276],
device scheduling [277] to improve FL performance. However,
since NOMA decodes the interference of all other users, it
lacks in flexibility and the designed FL algorithms in NOMA
based networks may not be used for scenarios where each
user needs to transmit with a strict rate demand due to the
high dimension of model gradient. Moreover, since the FL
process requires multiple transmission rounds and accurate
knowledge of the CSI in all those time slots is unlikely, the
use of MA schemes robust to imperfect CSI is important in
FL applications. However, NOMA cannot be well adapted to
the imperfect CSI scenarios [11].

4) RSMA for FL: To address the issues introduced by
NOMA techniques and benefit from the space and power
domains, one can use RSMA to efficiently balance the signal
and interference and cope with imperfect CSI. In particular,
due to the flexibility of signal design and decoding, RSMA
can achieve robust performance with imperfect CSI, which
is suited to the long-term transmission in FL. Fig. 23 shows
an illustration of an RSMA-based FL. In this figure, each
device is considered as two virtual devices that jointly transmit
local FL model with different data rates. Meanwhile, RSMA
is appropriate for supporting the deployment of clustering
FL. The work in [278] has shown that RSMA can not only
significantly reduce the latency of clustering FL in comparison
to systems employing TDMA and NOMA, but also be more
energy efficient, reaching a lower latency with less power than
the latter alternatives. Another promising scenario of RSMA
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for FL is in a fog radio access network (F-RAN). F-RAN
leverages proximity edge nodes (ENs) to collect local model
parameters of wireless devices [279]. By splitting the message
in two parts in uplink RSMA as in Fig. 23, one part is
intended to be decoded by the ENs and the other part by
the cloud. By adjusting the content and the transmit power
of each part, one can softly combine the edge-decoding and
cloud-decoding approaches and consequently achieve a better
tradeoff between fronthaul overhead (communication cost) and
learning accuracy.

5) Over-the-air Computation for FL: An alternative MA
approach – over-the-air computation (AirComp) can also be
considered for wireless FL performance optimization. In par-
ticular, AirComp enables edge devices to achieve over-the-
air FL parameter aggregation via the waveform superposition
property of a multi-access channel [140]. Hence, when edge
devices implement AirComp, the FL transmission delay per
iteration will not depend on the number of edge devices
thus improving FL convergence speed. Note that AirComp
uses “interference” among device transmission for functional
computation via uplink devices’ cooperation. This contrasts
with the usual uplink MA schemes that aim at suppressing
interference among transmitted messages as devices transmit
independent data and do not collaborate.

A key requirement for implementing AirComp based FL
is time synchronization of devices’ transmissions. To address
this challenge, one can use timing advance methods which
have been used in several existing practical communication
systems (e.g., LTE). The timing advance technique requires
each edge device to estimate the FL parameter propagation
delay and then transmitting in advance to “cancel” the delay.
Thereby, different signals can overlap with sufficiently small
misalignment. The signal distortion of AirComp stems from
channel noise and interference of analog modulated signals.
Therefore, channel noise and interference will affect the model
updates of AirComp based FL. The impacts of channel noise
and interference on FL model updates can be evaluated by the
corresponding FL performance metrics.

AirComp can be classified into two categories: 1) Analog
AirComp and 2) Digital AirComp. Analog AirComp uses
discrete-time analog transmission for FL parameter transmis-
sion and aggregation. However, the performance of analog
AirComp is sensitive to the phase offsets among the super
imposed signal. In particular, if the signals cannot be syn-
chronized, the errors can also be accumulated thus leading
to significant aggregation errors. To address this problem,
digital AirComp is proposed which enables multiple devices
to use non-orthogonal subcarriers for data transmission. Dif-
ferent from analog AirComp that relies on accurate channel
precoding, digital AirComp leverages digital modulation and
channel codes to combat channel impairments and phase
misalignments, thereby achieving accurate model aggregation
even when the signal phases of multiple edge devices are
misaligned at the parameter server.

B. Technology Outlook and Future Works
Different MA techniques have their own advantages and

disadvantages as discussed in Section II. For FL, the selection

of MA techniques depends on the number of participating edge
devices, wireless resource (i.e., spectrum, transmit power),
computational power, and hardware (i.e., CPU or GPU), FL
model architecture of each device. To find the optimal MA
schemes, one must first analyze the convergence of FL and
figure out how different MA schemes affect FL convergence.
However, in practice, the selection of MA schemes must
be performed before FL implementation. Hence, the central
controller (i.e., base station or parameter server) may not
be able to know channel state information and FL model
setting information (i.e., gradient information), which may
increase the difficulty of MA scheme selection. Therefore, MA
scheme selection also depends on the available wireless and
FL setting information. The above discussion further motivates
the design of unified and universal schemes such as RSMA
and ultimately UMA, which would completely eliminate the
need for selection of MA schemes and whose design and
optimization could be fully integrated with FL. Also, the use
of over-the-air computation opens the door to other types of
uplink MA schemes that brings back analog computation into
the MA design picture.

V. MULTIPLE ACCESS FOR INTEGRATED SENSING AND
COMMUNICATIONS

In this section, we discuss the use and design of MA
schemes for ISAC, including joint sensing and commu-
nications, multimodal sensing-aided communications, digi-
tal twin-assisted communications, and communication-aided
sensing/localization systems.

A. MA Assisted ISAC

ISAC is primarily motivated by the potential of sharing the
same spectrum and, hence, providing access to more bands
for both the communication and sensing systems. Operating at
the same band, however, requires careful coordination of the
various wireless resources and necessitates the development
of new communication and sensing systems as well as joint
processing frameworks. When a base station is jointly serv-
ing communication users and performing sensing functions,
MA schemes are critical to efficiently allocate the available
resources in time, frequency, space, code, power, etc., and
optimize the waveform for both the communication and sens-
ing objectives. In addition, MA schemes are also required to
mitigate inter-user interference and sensing-to-communication
interference. In what follows, we review several design exam-
ples and highlight some key directions on MA-assisted ISAC.

There are two main approaches to the design MA-assisted
ISAC schemes. In the first approach, the communication
signals of a multiple access scheme are exploited for sensing.
Multiple access is employed within the communication func-
tionality to mitigate inter-user interference. This approach can
be deemed as a straightforward extension of employing MA
from the conventional communication system to the ISAC sys-
tem, such that the key features of the MA can be retained. For
this approach, research mainly focuses on the optimization of
the communication performance subject to additional sensing
performance constraints, where the underlying MA schemes
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Fig. 24. RSMA-assisted ISAC system with an additional radar sequence
[164].

can be SDMA, NOMA, and RSMA [19], [280]. Compared
to the first approach, the second approach uses additional
sensing waveforms (may or may not carry information) to
improve sensing quality. An example of such an approach
is shown in Fig. 24, where the underlying MA scheme is
RSMA. In this case, MA is employed between the commu-
nication and sensing functionalities to mitigate both inter-
user interference and sensing-to-communication interference.
For SDMA-assisted ISAC [281], additional radar waveforms
improve the communication and sensing performance tradeoff
than the first approach [280]. However, this does not provide
any performance enhancement for RSMA-assisted ISAC as
demonstrated in [164].

In summary, various works have demonstrated that the
superior performance of the MA schemes in communication
applications can be carried over to ISAC. Hence, the MA
scheme that has the best communication performance would
also achieve better communication and sensing performance
tradeoff than other MA schemes in ISAC. This has been
verified in [19] that RSMA-assisted ISAC outperforms the
SDMA and NOMA counterparts, as illustrated in Fig. 25.
RSMA benefits from the fact that the common stream is not
only used to manage multi-user interference but also helps
enhancing target sensing. On the other hand, NOMA-assisted
ISAC achieves the poorest tradeoff due to the degrees of
freedom (DoF) loss in multi-antenna NOMA [11]. At the
leftmost points which correspond to prioritizing the radar
functionality, the optimized precoders are designed to radiate
the highest power towards the target angle. This forces the
precoders to become linearly dependent and SDMA-assisted
ISAC can no longer exploit spatial DoF provided by multiple
antennas, which leads to lower MFR compared with the
RSMA-assisted and NOMA-assisted ISAC that employ SIC at
user sides to manage the multi-user interference. In summary,
pursuing the best-achieving MA scheme is meaningful in both
pure communication applications and ISAC.

B. Multimodal Sensing-aided Communications

Two key trends in current and future communication sys-
tems are (i) the use of large numbers of antennas and (ii) the
increasing dependence on high frequency bands. These trends,
while promising high data rates, pose multiple challenges for
the design and operation of future communication systems.
For example, the use of large numbers of antennas increases
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Fig. 25. Minimum fair rate (MFR) versus root Cramér-Rao bound (RCRB) of
target direction in a terrestrial ISAC system with 8 transmit antennas, 9 receive
antennas, 4 single-antenna communication users and one sensing target [19].

Fig. 26. The figure illustrates the key idea of multi-modal sensing-aided
multiple access, where infrastructure-side and user-side multi-modal sensing
information from cameras, LiDARs, radars, position sensors, etc., is leveraged
to optimize the multiple access decisions.

the overhead of estimating the channels or training the beams,
making it hard for these systems to support highly mobile
applications. Further, the use of high frequency bands makes
the signal propagation very sensitive to blockages, which
challenges the reliability and latency requirements for these
networks. To address these challenges, a new direction that
has been recently gaining increasing interest is the use of
multi-modal sensing data, collected for example from visual
cameras, LiDAR, radar, position sensors, to aid the com-
munication network decisions [282]. This is motivated by
the increasing dependency of the large antenna array and
high-frequency channels on the user location and on the
geometry of the surrounding environment. Over the last few
years, researchers investigated the potential gain of leveraging
multi-modal sensing data in multiple problems, such as beam
selection/tracking [283]–[292], proactive blockage prediction
[293]–[299], channel statistics prediction [300], codebook
design [301], among other interesting applications.

Multi-modal sensing provides some perception about the
location and geometry of the user devices, infrastructure nodes,
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and various elements of the environment. This perception can
enable more efficient MA operation in several ways. First,
multi-modal sensing may enable the base stations and access
points to intelligently select and schedule users to maximize
the MA system performance. For example, leveraging the
absolute or relative user position information, obtained by
GPS, radar, LiDAR, or camera, the base station may schedule
the users that are well-separated on the same time-frequency
resource to have less interference. In dense deployment, the
sensing information may also be utilized to assign users to
base stations/access points or to proactively predict handover,
which yields higher reliability, less latency, and better session
continuity. Beyond user selection and scheduling, the under-
lying information captured by multi-modal sensing can guide
the multiple access resource allocation decisions. For example,
in NOMA, multi-modal sensing data can potentially aid the
optimization of the transmit power of the different devices.
Further, in OMA, this sensing data may enable adaptive
allocation of the time, frequency, and spatial resources based
on the users relative positions, mobility patterns, and dynamic
scatterers in the environment. All that motivates investigating
the various promising applications of multi-modal sensing in
emerging MA schemes.

Realizing the potential gains of multi-modal sensing aided
MA in practice, however, requires overcoming a number of
challenges. First, a fundamental challenge in using sensors
such as cameras, LiDARs, and radars is identifying and
differentiating the communication users in the sensing scene.
This task, which is defined as user identification [302], is a
key for enabling multi-modal sensing-aided communication in
realistic environments. Initial approaches for user identification
rely on augmenting other user-specific measurements such as
sparse/limited channel or beam power measurements [284],
[303]. In addition to user identification and differentiation,
the coverage mismatch between the multi-modal sensing and
communication systems raises critical challenges. Overcoming
that motivates the extension to distributed multi-modal sensing
which involves the design and coordination of distributed
sensors to optimize the MA objectives. Addressing these
important challenges defines interesting directions for future
research in the interplay between MA techniques and multi-
modal sensing systems.

C. From Multimodal Sensing to Digital Twin-Assisted Com-
munications

Building upon the advances in multi-modal sensing aided
communications discussed in Section V-B and targeting a
more comprehensive perception of the communication envi-
ronment, the concept of (near) real-time digital twins of the
physical environment has been proposed [304]. In these digital
twins, the multi-modal sensing information is fused with the
3D maps to construct real-time or near real-time maps of
the surrounding environment. Running real-time ray-tracing,
which could potentially be machine learning enhanced, on
these 3D maps leads to (near) real-time digital twins of the
physical communication system. Using these digital twins,
the communication systems can pre-train ML models for the

different communication tasks, optimize the various network
procedures, or directly make predictions for the real system.
This is particularly valuable when these digital twins are
sufficiently calibrated with the physical world.

The relationship between wireless communication and digi-
tal twins is mutually beneficial. With more efficient communi-
cation of the sensory data, more accurate and updated digital
twins can be constructed. Further, as presented in [304], the
digital twins with real-time 3D maps of the environment can
be jointly leveraged to optimize the communication networks
and to assist other applications such as autonomous driving,
proactive collision prediction, traffic management, surveil-
lance, and many other applications. Towards this objective,
MA techniques play a central role in communicating the
data from the distributed sensors in autonomous vehicles, IoT
devices, distributed infrastructure side units, etc., needed for
constructing and maintaining the digital twins. For example,
it is important to develop digital twin-specific MA approaches
that optimize the resource allocations among different sensors
and modalities with the required digital twin fidelity and
freshness as objectives [305].

On the other side, these environment digital twins could also
be very beneficial for the design of MA solutions. In particular,
the digital twins provide the communication network with
comprehensive perception, that is potentially near real-time,
about its surrounding environment. This perception can assist
the various resource allocation decisions. For example, the
digital twins could be leveraged to decide on what users to
schedule in a specific MA transmission based on their relative
locations, mobility patterns, and interaction with the nearest
blockages. They can also be leveraged to develop adaptive
and site-specific MA techniques that dynamically change their
parameters based on the specific site characteristics. This
highlights the promising gains when leveraging environment
digital twins to assist MA designs and optimization in future
communication systems.

D. Communication-Aided Sensing/Localization Systems

Localization technologies have been embedded in mobile
communication systems for decades [306]. It is well known
that satellite-based positioning technologies, e.g., Global Navi-
gation Satellite Systems (GNSS), have been popular. However,
they suffer from severe degradation in indoors and urban
areas. To address these challenges, cellular-based localization
methods have been considered due to their natural advantages
of wide coverage, easy deployment, and low cost [307]. As
we have seen in the previous sections, MA schemes are
capable of providing larger spectral and energy efficiencies in
multi-user communications. Hence, under limited resources,
MA techniques can contribute to the potential improvement
of positioning accuracy and coverage for multiple users via
efficient resource and interference management.

The use of RSMA to assist direct localization was inves-
tigated in [308], where multiple base stations cooperatively
communicate with multiple users and directly estimate a
target’s 3D locations simultaneously. An example with N
cooperative base stations and K users is illustrated in Fig.
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B. Contributions

In this paper, we propose a Pareto optimization framework
for transmission scheme optimization in the CoISAC system,
where multiple BSs cooperatively communicate with multiple
users and directly estimate the target’s 3D location simultane-
ously over the same resources through RSMA framework. The
main contributions of this work are summarized as follows.

• CoISAC System: We propose a novel CoISAC framework
in C-RAN equipped with RSMA techniques and support-
ing direct localization services. RSMA has been shown
to achieve significant advantages in ISAC systems [13],
[14], [15]. Cooperative RSMA in C-RAN can further
unveil the potential of RSMA for unified communica-
tion and sensing considering the tradeoffs between dual
functionalities, which also enables the direct localization
to improve the positioning accuracy.

• Pareto Optimization: To explore the optimal tradeoff
between cooperative communication and direct local-
ization, a Pareto optimization mechanism [10], [11] is
adopted. Due to the normality and compactness of the
CoISAC performance region, two constrained optimiza-
tion problems, i.e., communication-centric and radar-
centric optimization problems, can be constructed to
search for the complete Pareto boundary, in which we
cooperatively optimize the splitting ratios, TBF and BS
scheduling policies under various practical constraints.

• Near-Optimal Pareto Boundary Searching: To effectively
solve the challenging communication and radar-centric
problems with guaranteed performance, we propose suc-
cessive convex approximation (SCA)-based algorithms
to address the nonconvexities and nonsmoothness in
the optimization problem. By varying the performance
requirement of one of the functions, we can find the
optimal Pareto boundary approximately.

• Performance Verification: Simulation results demonstrate
tremendous success of the proposed CoISAC system
compared with the SDMA, FDRC, TDRC and the
schemes without cooperative scheduling under different
system settings. It shows that the integration of RSMA,
ISAC and C-RAN can fulfill their respective potentials
to lead to a fully updated ISAC system with improved
overall performance.

The rest of paper is organized as follows. In Section II, we
present the signal models and performance metrics for coop-
erative communication and direct localization, respectively.
In Section III, we introduce the Pareto boundary to describe the
CoISAC performance tradeoffs and formulate two constrained
optimization problems to search for the Pareto boundary.
In Section IV, we propose two cooperative design algorithms
to solve the constrained problems, respectively. Finally, the
extensive simulation results are provided in Section V and
conclusions are drawn in Section VI.

Notation: Upper case and lower case bold face letters denote
matrices and vectors, respectively. A = Diag (α) stands
for the diagonal matrix with vector α on the diagonal and
α = diag (A) means vector α is extracted from the diagonal
elements of matrix A. [A]ij means the (i, j)-th element of

Fig. 1. The CoISAC system with RSMA transmission scheme and direct
localization.

matrix A. Re {·} and Im {·} stand for real part and imaginary
part operator. ⊗ and ⊙ stand for Kronecker product and
Element-wise product. IL means identity matrix with L × L
dimension. 1L means all one matrix with L × L dimension.
ΠA = A

(
AHA

)−1
AH is the orthogonal projection matrix

onto the column space of A and Π⊥
A = I − ΠA. ∥W∥∗ and

∥W∥2 denote the nuclear norm and ℓ2 norm respectively.

II. SYSTEM MODEL

In this section, we introduce the CoISAC MISO network as
depicted in Fig. 1, where a CP is connected to N BSs each
with L antennas via high-speed and capacity-limited fronthaul
links. N BSs cooperatively serve K single-antenna users and
estimate the location of a target1 simultaneously. Let N =
{1, . . . , N} and K = {1, . . . ,K} denote the BS indices and
user indices, respectively. Let q = [qx, qy, qz]

T and bn =[
bnx , b

n
y , b

n
z

]
denote the position of target and the position of

the n-th BS, respectively. The data to be transmitted to the K
users are split, precoded and designated to cooperative BSs
by CP, thus enabling cooperative transmission. The reflected
signals collected at cooperative BSs are jointly processed at
the CP to estimate the target location directly. We consider
perfect channel state information (CSI)2 of all users at the
CP and assume cooperative BSs adopt uniform planner arrays
(UPA) in full-duplex3 mode to support ISAC technology.

A. Communication Signal Model

We consider RSMA transmission mode, where the mes-
sage vk of user k is split into a common part vck and a private
part vpk. The common parts of all users {vc1, . . . , vcK} are
encoded into a common message sc, while the private parts of
all users {vp1 , . . . , vpK} are encoded individually into K private
message {sp1, · · · , spK}. Let Pn = [pc

n,p
p
n,1, . . . ,p

p
n,K ] ∈

CL×(K+1) denote the precoding matrix at BS n, where pc
n and

pp
n,k are the transmit precoders for the common and private

message for user k, respectively. Let s = [sc, sp1, · · · , spK ]T ∈
CK+1 denote the transmit messages at BS n. Then the transmit

1The extension to multi-target case is discussed in Section IV-C.
2The extension to imperfect CSI is discussed in Section IV-C.
3We assume the full-duplex operation with the sufficient isolation and self-

interference cancellation technique in the transceivers is used in our system.
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Fig. 27. RSMA assisted direct localization with N cooperative base stations
serving K users while estimating a target’s location [308].

27, where the common and private messages are used for
both communication and localization. Due to the efficient
resource allocation and interference management, RSMA-
assisted localization achieves better sum rate and localization
accuracy than TDMA and FDMA based localization schemes.
When the location accuracy requirement is high, RSMA can
achieve a larger sum rate than SDMA even though the number
of transmit antennas is larger than the number of users.
As pointed out in [309], localization can be performed in
both channel estimation and data transmission. In this case,
the duration of pilot and data transmission periods can be
optimized to enlarge the rate-accuracy region for a given
channel coherence time. Such an approach, however, has only
been investigated for SDMA [309].

E. Technology Outlook and Future Works

The design of efficient MA techniques for ISAC systems
is a challenging task. First, the joint optimization of the
resources and waveforms is typically associated with high
computational complexity. This complexity mainly stems from
the differences in the communication and sensing objectives
and from the various hardware and operation constraints on
these systems. This becomes more complicated in large-scale
MIMO systems which are main components in 5G, 6G, and
beyond. Going from nodes to networks, it becomes critical to
design multiple access approaches for networks of integrated
sensing and communication nodes. This requires accounting
for the possible interference between different nodes in both
the sensing and communication signals. With that, it be-
comes interesting to explore the tradeoff between coordination
performance gains and complexity in multiple access ISAC
networks. This results in a set of approaches that range from
no coordination to fully coherent ISAC operation where the
full network acts as one cell, leading to cell-free ISAC systems
[310]. How to design MA schemes in these coordinating
ISAC networks is an interesting research direction. Finally,
the fundamental tradeoff between sensing and communication
performance of general ISAC systems with MA has not been
fully understood. Only a few prior works have characterized
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Fig. 28. RSMA/SDMA-aided NOUM for SeCom.

the tradeoff for very basic channel models with small numbers
of users, e.g., [311]. Hence, to gain more insights into coding,
signaling, and waveform designs for more general channels,
it is also important to study the fundamental tradeoff in terms
of achievability and converse for these channels. Last but
not least, though RSMA-assisted ISAC has been shown to
outperform SDMA/NOMA-assisted ISAC thanks to RSMA
universality and flexibility advantages, it would be important
to explore how other MA domains could be exploited for ISAC
and get a complete picture of what UMA-assisted ISAC would
look like.

Using MA for assisting localization is a new research area.
In light of the above works, a number of challenges are identi-
fied. First, the above works assume static users. However, the
impacts of user movements and synchronization errors in MA-
assisted localization have not been fully investigated. Second,
the performance metric for measuring positioning accuracy is
generally based on the Cramér–Rao bound. Explicit designs of
practical localization estimators to achieve this bound are still
lacking. Third, the MA-assisted localization schemes based
on SIC could cause some decoding latency, which may not be
desirable for delay-sensitive applications. To fully exploit the
benefits of MA-assisted localization in wider communication
scenarios, these challenges need to be addressed in future
works. Additionally, it is crucial to understand how one can
exploit all MA dimensions in the design of MA-assisted
localization beyond the SDMA/NOMA/RSMA approaches
investigated so far and ultimately aim for a UMA-assisted
localization.

VI. MULTIPLE ACCESS FOR EMERGING INTELLIGENT
APPLICATIONS

A. Semantic Communications

Semantic communications (SeCom), regarded as an ad-
vancement beyond the Shannon paradigm, strives to success-
fully transmit semantic information from the source. Unlike
the conventional Shannon paradigm that focuses on precision
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in receiving individual symbols or bits regardless of the mean-
ing, SeCom greatly enhances the communication efficiency
and reliability by prioritizing the transmission of meaningful
information [312]–[315].

In SeCom, it is typical for both the transmitter and receiver
to possess a shared knowledge base. This shared knowledge
base enables the extraction of compact semantic information at
the transmitter and the reconstruction of the original informa-
tion from compressed semantic signal at the receiver [316].
To handle additional knowledge information, it is important
to design the communication system to smartly synergize
MA schemes and SeCom. Naturally, OMA, NOMA, SDMA,
RSMA, and others can be used for SeCom and the respective
performance benefits of the different schemes would still carry
on in SeCom. However, the presence of the knowledge base
brings some changes. Indeed in a multi-user setting, if the
knowledge base is the same for all users and is transmitted and
received in a unicast way at each user, a spectral efficiency
loss is incurred. A more efficient way is to use a NOUM
transmission for SeCom as illustrated in Fig. 28. Using mul-
ticast, the resource allocated for the knowledge base can be
greatly reduced and SDMA/RSMA-assisted NOUM of Fig.
7 can be leveraged to deliver SeCom to multiple users in a
natural and efficient way. Indeed, the knowledge base intended
to multiple users and parts of the user data can be encoded
into the common stream, while the remaining parts of the
individual data intended to a specific user are encoded into
respective private streams. As a result, RSMA-aided SeCom
outperforms NOMA and SDMA counterparts [317].

Future directions of MA schemes for SeCom should ex-
plore the integration of MA design in semantic information
extraction and resource allocation for RSMA and CD-MA,
and ultimately UMA to exploit all MA dimensions. Another
aspect to consider is energy efficiency of SeCom. Compared
to conventional communication, the total energy of SeCom
involves both computation and communication energy. The
total energy of SeCom can be optimized through optimizing
the semantic compression ratio, defined as the ratio of the
bits of the extracted semantic information to the bits of the
original information [318], [319]. Re-thinking MA scheme
design to maximize energy efficiency of SeCom is also of
much importance.

B. Virtual Reality

Three MA schemes are commonly used in the literature
for VR video streaming, namely OMA, NOMA, and RSMA.
OMA supports a number of users no larger than the number of
available time-frequency orthogonal radio resources. NOMA
cannot exploit the full potential offered by the multi-antenna
domain. RSMA manages multi-user interference by decoding
a part of the interference, considering it as the common
message of VR users, while treating the remaining part as
noise, representing the private messages of other VR users. As
expected, RSMA has been demonstrated to outperform other
MA schemes, such as OMA and NOMA, in VR applications
[320]–[323]. Examples of using RSMA for VR applications is
shown in Fig. 29. Two different schemes are illustrated. For
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both schemes, the video tiles corresponding to overlapping
field of view (FoV) between users are transmitted via the
common message. The video tiles with non-overlapping FoV
are sent exclusively via the private messages or partially via
common and private messages. Following RSMA principles,
the second approach has more flexibility to manage interfer-
ence among non-overlapping FoV video tiles.

Some potential research challenges in MA design for VR
streaming systems encompass several areas. Firstly, there is
a need to develop low-complexity receivers for VR users
that account for the characteristics of their head-mounted
displays (HMDs), including limited battery and computational
resources. Secondly, higher frequency bands, such as mmWave
and THz, can be employed in VR streaming systems to
fulfill the bitrate requirements of high-resolution 360-degree
videos [324], [325]. The use of RSMA in combination with
beamforming design in these high-frequency bands represents
an interesting research area. Thirdly, the integration of RSMA
with other MA schemes, such as OFDMA, has not yet
been thoroughly investigated to determine whether RSMA
performance can be further enhanced in VR video streaming
systems. Fourthly, in VR streaming systems, certain informa-
tion, such as users’ head movements, needs to be transmitted
from the users to the server. Utilizing RSMA, users can share
the uplink channel to send their information simultaneously.
Finally, FL can be applied within a VR streaming system
to obtain a viewport prediction model for the users [326],
[327]. RSMA can be incorporated into FL to facilitate model
aggregation without compromising model accuracy in such
systems. The high data rate and low latency requirements for
VR video streaming position it as one of the key FeMBB
services provided by 6G systems. RSMA is one of the potential
MA schemes that can meet the hybrid requirements of VR
users.
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C. Smart Radio and Reconfigurable Intelligent Surfaces

Reconfigurable intelligent surface (RIS) has garnered sig-
nificant recognition as a revolutionary technique for 6G. By
incorporating multiple passive reconfigurable elements with
tunable amplitudes and phases, RIS is capable of effectively
manipulating the direction and strength of the scattered signals,
thereby exerting a transformative impact on the propagation
environment. Thanks to its powerful capability for controlling
wireless propagation environments and manipulating signals
spatially, considerable research efforts have been dedicated to
RIS-assisted MA schemes.

RIS was initially explored in OMA for point-to-point
communication using one or more resource blocks [328]–
[333]. This was later expanded to multi-user scenarios, where
RIS assists in SDMA [334]–[338], NOMA [21], [339], and
RSMA [340]–[349]. Indeed, RIS can significantly improve
the performance of these MA schemes, offering benefits like
signal strength enhancement, multi-user interference reduction,
and improvements in spectral and energy efficiencies, as well
as coverage extension. It also reduces hardware complexities
in various MA schemes, enabling a reduction in the number of
antennas at transceivers without affecting system performance.
Moreover, for RSMA, integrating RIS empowers the use of
simplified schemes, i.e., 1-layer RS, to achieve performance
comparable to HRS/GRS without RIS [350]. RIS contributes
to reduce the receiver complexity of RSMA. Nevertheless, the
integration of RIS also brings unique research challenges that
must be tackled across different MA schemes.

In multi-user scenarios, unlike RIS-assisted OMA, maxi-
mizing the channel gain is not the only objective due to the
introduction of multi-user interference. This brings extra re-
search challenges regarding beamforming design and channel
estimation. To achieve objectives such as maximizing spec-
tral or energy efficiency or minimizing energy consumption,
transceiver design in RIS-assisted SDMA/NOMA/RSMA typ-
ically involves the joint optimization of passive beamforming
at the RIS and active beamforming at the transmitter. These
require tailored optimization methods for continuous or dis-
crete diagonal-RIS (D-RIS) phase shifts [334], [342], [346], or
for beyond diagonal-RIS (BD-RIS) [335]–[337], [348], [349].
However, this task becomes more complex for NOMA. RIS
introduces additional resource allocation challenges to NOMA
since the optimal SIC decoding order and user grouping
depend on both active beamforming at the transmitter and
passive beamforming at the RIS [21]. In terms for performance
comparison, an interesting observation from [339] is that in the
presence of RIS, NOMA is not always a better option than
OMA. Indeed the minimum power needed to achieve a target
rate may be lower for TDMA than NOMA, i.e., NOMA may
perform worse than TDMA. This contrasts with the non-RIS
deployment where NOMA is superior to TDMA.

Given the absence of an RF chain at RISs, channel estima-
tion has been a widely recognized challenge in RIS-assisted
links. Considering the resilience of RSMA to CSI inaccuracies
and user mobility as shown in many existing works, RIS-
assisted RSMA emerges as a promising new paradigm to
effectively address and compensate for the channel estimation

limitations inherent in RIS [341]. RIS-assisted RSMA there-
fore offers a mutually beneficial solution to both RSMA and
RIS. This advantage is distinctive to RIS-assisted RSMA, as
RSMA uniquely demonstrates robustness to CSI, which is not
shared by other conventional MA schemes.

VII. ROADMAP TO 6G STANDARDIZATION

3GPP is the standards body that introduced UMTS/W-
CDMA for 3G, LTE for 4G and NR for 5G. 3GPP also
introduced GSM for 2G even before being called 3GPP. While
6G work has not yet started in 3GPP, it is expected to quickly
intensify in the 2nd half of 2025.

At the highest conceptual level, 3GPP has delivered over
its history systems based on TDMA (2G GSM), CDMA
(3G UMTS) and (O)FDMA (4G LTE and 5G NR) closely
following any textbook description of basic MA schemes. In
this section we look ahead into what 3GPP may consider for
MA for 6G by looking back first into previous generations.

The work of 3GPP is structured in so-called Releases, the
first version of the 3G specifications was introduced in Release
99 towards the end of last millennium. Release 4 was the
subsequent Release after which Releases have been labeled
with increasing index. For example, the first version of 4G
LTE was introduced in Release 8 while the first version of
5G NR was introduced in Release 15. Release 18, the first
Release of 5G-Advanced, was finalized late 2023 and Release
19 started in early 2024. The study phase for 6G is expected
to launch in Release 20 in the second half of 2025. In turn,
the first 6G specifications are expected in Release 21 with a
completion date anticipated to be between the end of 2028
and the end of 2029 aiming at commercial 6G deployments
sometime around 2030.

MA is one of the main characteristics of any wireless
system. Indeed, it is one of the first decisions made when the
design of a new generation takes place as it relates closely to
the underlying waveform. It is important to note that, typically,
there is one main MA scheme which is supplemented by
other schemes for certain specific functions as we will discuss
shortly.

A. MA in 3G and 4G

In 3G systems, the MA scheme in the downlink is based
on CDMA with Hadamard or Walsh codes applied to coded
modulation symbols and orthogonally separating the various
channels in a given cell. Different codes can be used to
transmit data of different users and multiple codes can be used
to increase the data rate for a given user. The application of
these codes effectively expands the transmission bandwidth by
a factor called spreading factor. The spreading factor offers
the ability to boost the SINR at the receiver helping to cope
with multiple sources of interference, i.e., inter-cell, intra-
cell. However, the spreading factor decreased over time as the
target operating data rates increased. This trend increased the
need to use equalizers at the receiver, which, in turn, made
OFDM based transmissions more appealing as they would
not require equalization at the receiver. The application of a
cell-dependent scrambling based on long pseudo-noise (PN)
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sequences onto the aggregated transmissions of a given cell
makes it appear as noise when received at neighboring cells
in full frequency reuse deployments.

For 4G, OFDMA was introduced in the downlink main-
taining intra-cell orthogonality while being more resilient
to the inter-symbol interference (ISI) caused by the delay
spread of the channel. In full frequency reuse deployments,
transmissions from different cells are randomized through the
application of a cell-dependent scrambling based on long PN
sequences similar to 3G.

In the transition from 3G to 4G, for the uplink we went from
a non-orthogonal MA with CDMA in 3G to orthogonal MA
with DFT-spread OFDM (DFT-S-OFDM) in 4G. Transitions
are typically somewhat blurred with inroads into new schemes
by way of extensions of the current scheme before an entirely
new scheme is introduced. For example, in the second half
of 3G days we experienced the migration from circuit switch
(CS) to packet switch (PS) communications. With that mi-
gration, we also moved from continuous downlink and uplink
transmissions to packetized transmissions which would need to
be scheduled by the network. Therefore, Release 5 introduced
scheduled downlink with much lower multiplexing capability
in the code domain (lower spreading factor) and aiming
more at time-domain-multiplexing (TDM’ing) transmissions
to multiple users with the goal to increase the instantaneous
individual user data rate with the so-called high speed down-
link packet access (HSDPA). Similarly, Release 6 introduced at
the time scheduled UL with what was called enhanced uplink
(eUL) or high speed uplink packet access (HSUPA). Release 7,
in turn, introduced discontinuous uplink transmissions which,
for the first time, enabled uplink transmissions to be gated
in time and hence favoring TDM’ing of transmissions from
different users supplemented with the possibility of non-
orthogonally multiplexing multiple users’ transmissions in the
code domain (CDMA).

The main driver for the switch of MA from 3G to 4G
was the uplink performance for cell-edge users for which
the introduction of frequency domain multiplexing (FDM’ing)
brought important performance gains in terms of uplink user
throughput [351]. The realization of FDM in the uplink of
4G was done via the introduction of DFT-S-OFDM, which
due to its single carrier properties was key to reduce the user
transmissions’ peak-to-average-power-ratio (PAPR) which di-
rectly entails a coverage gain for the uplink. Also, because of
its underlying block-based construction of OFDM, subframe
transmissions of 1ms simply meant transmissions of 14 sym-
bols facilitating TDM’ing of transmissions with a built-in time-
domain gating function which did not exist in 3G days.

While FDMA/TDMA was the main MA scheme for the
uplink enabling orthogonal access for users with the same
serving cell, it is not the only MA scheme used in 4G LTE.

Indeed, random access is performed via the Physical Ran-
dom Access Channel (PRACH) which, while orthogonalized
in time and frequency with the other uplink Physical Layer
(PHY) channels, PRACH transmissions from different users
overlap with each other yielding a CDMA-like MA for this
physical channel with possibility of recoverable or unrecover-
able inter-user collisions.

Furthermore, SDMA was envisioned to enable MU-MIMO
operation from the start of 4G. In this scenario, the spatial
dimensionality of the channel is exploited by enabling data
transmissions from different users to overlap in time and
frequency with each other relying on spatially separating them
at the multi-antenna base-station receiver. As a result, while
the data portion of the uplink transmission is merely spatial-
division-multiplexed (SDM’d) across users, their reference
signal transmissions are orthogonalized by virtue of different
cyclic shifts of the underlying Zadoff-Chu sequences used
to modulate the demodulation reference signals (DMRS). In
turn, that orthogonalization enables the possibility to perform
channel estimation for each user’s transmission off cleaner
DMRS samples without inter-user interference.

Moreover, uplink control channel transmissions typically
bear few bits of information which attempting to orthogonalize
solely in the frequency domain would very rapidly run out of
dimensions in the frequency domain (resource limitation). In
order to alleviate that limitation, the possibility to orthogonally
multiplex within the same time/frequency resources via differ-
ent cyclic shifts of underlying Zadoff-Chu sequences (similar
to DMRS) or time-domain orthogonal covers applied to each
uplink symbol was also introduced to increase the capacity
of the uplink control channel. Release 10 introduced the
possibility for SU-MIMO in the uplink of LTE still resorting
to DFT-S-OFDM for each of the transmitted layers.

Towards the latter part of LTE, multi-user superposition
transmission (MUST) was standardized for the downlink of
LTE in Release 14 after the conclusion of the corresponding
study item in the preceding release. The project attempted to
jointly optimize multi-user operation from both transmitter and
receiver’s perspective to improve the MU system capacity even
if the transmission/precoding was non-orthogonal. The out-
come of the study is captured in the technical report (TR) for
MUST in [9]. Three MUST categories were identified during
the study: 1) MUST Category 1: Superposition transmission
with adaptive power ratio on component constellations and
non-Gray-mapped composite constellation; 2) MUST Cate-
gory 2: Superposition transmission with adaptive power ratio
on component constellations and Gray-mapped composite con-
stellation; MUST Category 3: Superposition transmission with
label-bit assignment on Gray-mapped composite constellation.

B. MA in 5G and 6G

With the exception of MUST, all the schemes mentioned for
4G LTE were also adopted for 5G NR. Indeed, for the uplink
data channel, the earlier mentioned DFT-S-OFDM is only used
for single layer transmissions, while multi-layer transmissions
always resort to OFDMA to improve link efficiency at the cost
of an increased PAPR. The DMRS of the uplink data channel
for different layers of the same user and from different users
in the same cell are orthogonalized in time/frequency domain
by corresponding orthogonal covers.

5G NR while introduced in Release 15, had a project in
Release 16 to study NOMA [352] as a follow up to the
discussions during the 5G NR study of Release 14 [353].
The TR for NOMA is a good reference [8] to review the
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schemes that were considered during the study with some of
them presented in this paper. The Release 16 NOMA study
investigated the application of NOMA techniques to mMTC,
URLLC, and eMBB communications.

The uplink NOMA transmitter was generalized so that it
would include all the different flavors being considered. Also,
different receivers were considered tailored to the different
schemes and incurring various levels of complexity.

The outcome of the Release 16 study was deemed to be
non-conclusive and a follow up work item was not approved
at the time. Part of the reason was the proliferation of schemes
during the study without a clear winner amongst them which
made it impossible to define the scope of a normative project
for only one scheme. Perhaps the scope of the project was too
broad aiming at NOMA for mMTC, URLLC and eMBB use
cases. Note that the mMTC use case of IMT-2020 is actually
served by LTE CatM (eMTC) and NBIOT originally developed
in Release 13 and evolved thereafter.

Indeed, it was discussed that NOMA could be enabled
in NR without specification impact provided that there was
adequate receiver processing. The possibility to expand the
number of orthogonal DMRS ports was discussed which, in
combination with multi-user detectors at the receiver, would
enable the possibility for processing fully overlapping data
transmissions from different users. Those transmissions from
multiple users could be resulting from dynamic scheduling
from the network (with individual grants to each of the users)
or from overlapping configured grants (pre-configured via L2
or L3 allocations).

In the absence of normative projects for NOMA specifica-
tion, a minor improvement to the Random Access procedure
which used to take 4-steps was approved with the goal to
shorten it to 2-steps [354]. It is, however, likely that the
investigations that took part during Release 16 will be revisited
when NOMA is considered again in 3GPP in the future.

Clearly, there is no universal MA (yet) that optimally
suits all applications and use cases. The MA scheme aiming
at optimizing individual user’s high throughput operation
(eMBB-like use case) is not the same as the one aiming at
maximizing multiplexing capability for low-rate applications
of many, many users (mMTC-like use case). To some extent,
that tradeoff is already seen by looking into the MA scheme
used today for random access, uplink control channels, uplink
data channels, etc.

6G will see a resurgence of MA discussions. Though
traditionally there is one main MA scheme supplemented
by other schemes for certain specific functions, it is unclear
whether this approach will still hold for 6G with the pro-
liferation of schemes to cope with eMBB and mMTC but
also and mainly to enable new use cases fueled by emerging
intelligent and multi-functional applications. Aside the ones
already discussed as part of 5G, more recent MA schemes
have made their way toward standardization. This is the
case of RSMA whose ”universal” capability has been found
attractive by various industries and recently been proposed
for the first time for 6G for various use cases such as 1) to
boost the performance of unicast transmissions beyond what
has been achieved traditionally in 4G and 5G by SDMA-

multi-user MIMO [355], and 2) to enable non-orthogonal
unicast and multicast transmissions where multicast traffic are
superimposed over unicast traffic instead of being served in
orthogonal resources as in 4G and 5G [43]. Though from a
theoretical point of view, a unifying MA scheme like RSMA
provides performance benefits (as discussed in Section II-E),
it will be interesting to see in the coming years whether
3GPP will favour a single unified and general MA scheme as
main MA scheme instead of a combination of multiple MA
schemes, each optimized for specific conditions.

C. AI/ML in 5G and 6G

A Study Item for AI/ML applied to the NR Air Interface was
agreed for Release 18 [356]. The TR for this study is available
at [357] and constitutes a good reference to review what is be-
ing studied (project completion planned for December 2023).
While AI/ML first appeared in 3GPP for the purpose of users’
data collection, this project is the first time in 3GPP where the
direct application of AI/ML is sought for some fundamental
air interface problems. In order to avoid too abstract, high
level conceptual discussions and to give some shape to the
project, a number of pilot use cases was identified to be
analyzed for this project. Namely, CSI enhancements, beam
management (BM) and positioning accuracy enhancements.
Each of those three use cases was further refined into two
sub-use cases. Namely, CSI (spatial-frequency) compression
and CSI (temporal) prediction for CSI enhancement, Spatial
beam prediction and Temporal beam prediction for BM, direct
AI/ML positioning and AI/ML assisted positioning for Posi-
tioning accuracy enhancements. All sub use cases but CSI
compression rely on single-sided models at the user terminal
or the network, while CSI compression resorts to two-sided
AI/ML models with one part of the model running at the
user terminal side and the other at the network side. For the
CSI compression sub use case, the user terminal side performs
the encoding or compression of the CSI information, and the
network side performs the decoder or decompression to obtain
the terminal’s CSI.

It is expected that normative work to address the specifica-
tion impact of these use cases will be carried out as part of
Release 19. Moreover, further use cases, for example Mobility
enhancements, may be additionally investigated.

As indicated by the ITU-R WP 5D framework document
for IMT-2030 [5], Integrated AI and communication has been
identified as one of the usage scenarios for IMT-2030. As a
result, it is expected that 6G will be AI/ML native.

While nobody knows precisely what that will imply from
3GPP perspective, the foundational work on AI/ML for NR air
interface that is underway will for sure play a very important
role on how native 6G will be specified [358] [359] [360]
[361] [362].

The application of AI/ML techniques to MA may be inves-
tigated for 6G with the aim at figuring out the optimal MA
scheme for the given application and use case. Indeed, channel
access policies that fluently transition from contention- to
schedule-based depending on the use case and environment
are deemed desirable [360].
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Similar to the Release 18 study where single-sided and two-
sided (or cross-node) models are being considered depending
on the use case, different AI/ML functions for 6G will require
one or another approach. In particular, how the AI/ML engines
running at the terminals and the network will figure out the
optimal MA scheme is subject of research and will for sure
open up new opportunities for improved system performance
and user experience. Adaptability of the models through
further offline or even online training will also play a key
role in the end-to-end performance optimization.

As a result, the current investigations on joint training
of two-sided models, as well as, their interoperability and
performance testing will be very relevant for the future native
AI work in 6G.

VIII. CONCLUSIONS

Wireless networks experience a paradigm shift with the
integration of multi-functionality and the rise of AI and ML.
6G and beyond will be AI-native and multi-functionality-
native, spurring the need to re-think multiple access techniques
to make use of the available time, frequency, space, power,
signal dimensions to serve users, devices, machines, services,
training nodes in the most efficient way and cope with those
new network advances. The paper highlighted that much work
is left for researchers in this area. Aside many other schemes,
RSMA has emerged in the past few years by providing a
unified and conceptually simple understanding of SDMA,
NOMA, physical layer multicasting, and uniquely shrinks
the knowledge tree of MA schemes based on space, power,
signal dimensions. Consequently RSMA has found numerous
applications for 6G.

Throughout the rich literature on MA schemes, reported
gains of RSMA over SDMA and NOMA range between a
few % to several hundreds of %. They depend on many
factors such as SNR, disparity of channel strengths, angle
between user channel directions, objective function (e.g. sum-
rate, weighted sum-rate, minimum rate), QoS rate constraints,
number of antennas at the nodes, number of users, underloaded
vs overloaded, CSI quality at the transmitters and the receivers,
presence of impairments (phase noise, mobility and latency,
subband feedback, etc), traffic types (unicast, multicast, mixed
unicast/multicast), Gaussian signaling vs finite constellations,
infinite vs finite block lengths, user deployment, and applica-
tions. Unsurprisingly, the scenario that leads to the smallest
gains for RSMA over SDMA is sum-rate maximization in
massively underloaded (many more antennas at the base sta-
tion than the number of transmitted streams) deployments with
accurate CSIT, Gaussian signaling, and infinite block lengths.
As we depart from this setting and increase the number of
users and streams/decrease the number of transmit antennas,
increase the interference level, bring in more fairness in the
objective function, impose a QoS rate constraint at each user,
and/or account for CSIT imperfections/impairments/finite con-
stellations/finite block lengths, gains of RSMA over SDMA
increase.

What is nevertheless missing in the literature is a consistent
performance evaluation methodology that enables a compre-
hensive performance comparison of MA schemes across all

dimensions. This is crucial to obtain a holistic understanding
of the performance benefits of MA schemes and the role
played by the various MA dimensions for both uplink and
downlink.

Moving next, research should move toward the direction
of the design of UMA. UMA should further shrink the
knowledge tree of MA schemes by unifying RSMA with all
other dimensions, such as code domain MAs, and ultimately
provide a unified and conceptually simple understanding of
the current and future morass of MA schemes. Such UMA
does not exist yet. It is hoped that the techniques and outlook
presented in this article will help inspiring future research in
this exciting and important area and pave the way for designing
and implementing efficient MA techniques in future wireless
systems.
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