

EXISTENCE OF GOOD MINIMAL MODELS FOR KÄHLER VARIETIES OF MAXIMAL ALBANESE DIMENSION

OMPROKASH DAS AND CHRISTOPHER HACON

ABSTRACT. In this short article we show that if (X, B) is a compact Kähler klt pair of maximal Albanese dimension, then it has a good minimal model, i.e. there is a bimeromorphic contraction $\phi : X \dashrightarrow X'$ such that $K_{X'} + B'$ is semi-ample.

1. INTRODUCTION

The main result of this article is the following

Theorem 1.1. *Let (X, B) be a compact Kähler klt pair of maximal Albanese dimension. Then (X, B) has a good minimal model.*

This generalizes the main result of [Fuj15] from the projective case to the Kähler case. The main idea is to observe that replacing X by an appropriate resolution, then the Albanese morphism $X \rightarrow A$ is projective and so by [DHP22] and [Fuj22a] we may run the relative MMP over A . Thus we may assume that $K_X + B$ is nef over A . If X is projective and $K_X + B$ is not nef, then by the cone theorem, X must contain a $K_X + B$ negative rational curve C . Since A contains no rational curves, then C is vertical over A , contradicting the fact that $K_X + B$ is nef over A [Fuj15]. Unluckily, the cone theorem is not known for Kähler varieties and so we pursue an different argument. It would be interesting to find an alternative proof based on the arguments of [CH20].

2. PRELIMINARIES

An *analytic variety* or simply a *variety* is a reduced irreducible complex space. Let X be a compact Kähler manifold and $\text{Alb}(X)$ is the *Albanese torus* (not necessarily an Abelian variety). Then by $a : X \rightarrow \text{Alb}(X)$ we will denote the *Albanese morphism*. This morphism can also be characterized via the following universal property: $a : X \rightarrow \text{Alb}(X)$ is the Albanese morphism if for every morphism $b : X \rightarrow T$ to a complex torus T there is a unique morphism $\phi : \text{Alb}(X) \rightarrow T$ such that $b = \phi \circ a$.

The Albanese dimension of X is defined as $\dim a(X)$. We say that X has maximal Albanese dimension if $\dim a(X) = \dim X$ or equivalently, the Albanese morphism $a : X \rightarrow \text{Alb}(X)$ is *generically finite* onto its image. For the

definition of *singular* Kähler space see [HP16] or [DH20].

A compact analytic variety X is said to be in *Fujiki's class \mathcal{C}* if X is bimeromorphic to a compact Kähler manifold Y . In particular, there is a resolution of singularities $f : Y \rightarrow X$ such that Y is a compact Kähler manifold.

Definition 2.1. Let X be a compact analytic variety in Fujiki's class \mathcal{C} . Assume that X has rational singularities. Choose a resolution of singularities $\mu : Y \rightarrow X$ such that Y is a Kähler manifold and let $a_Y : Y \rightarrow \text{Alb}(Y)$ be the Albanese morphism of Y . Then from the proof of [Kaw85, Lemma 8.1] it follows that $a_Y \circ \mu^{-1} : X \dashrightarrow \text{Alb}(Y)$ extends to a unique morphism $a : X \rightarrow \text{Alb}(X) := \text{Alb}(Y)$. We call this morphism the Albanese morphism of X . Observe that $a : X \rightarrow \text{Alb}(X)$ satisfies the universal property stated above. The Albanese dimension of X is defined as above. Note that if X is a compact analytic variety with rational singularities, bimeromorphic to a complex torus A , then $A \cong \text{Alb}(X)$ and $X \rightarrow A$ is a bimeromorphic morphism.

The following result is well known, however, for a lack of proper reference and convenience of the readers we give a complete proof here.

Lemma 2.2. *Let A be a complex torus and $X \subset A$ is an analytic subvariety. Then for any resolution of singularities $\mu : Y \rightarrow X$, $H^0(Y, \omega_Y) \neq \{0\}$.*

Proof. Let $\mu : Y \rightarrow X$ be a resolution of singularities of X . Choose a point $p \in X \setminus (X_{\text{sing}} \cup \mu(\text{Ex}(\mu)))$ and let (x_1, x_2, \dots, x_n) be a local coordinate on A near p , where $n = \dim A$. Since $p \in X$ is a smooth point, X is local complete intersection near p . Thus we may assume that $X = \text{Zero}(x_{d+1}, \dots, x_n)$ near p , where $d = \dim X$. Then $dx_1 \wedge dx_2 \wedge \dots \wedge dx_d$ is a local section of Ω_A^d near p whose restriction to X is a non-zero local section of Ω_X^d near $p \in X$. Since Ω_A^d is a trivial vector bundle, there is a non-zero global section $\Theta \in H^0(A, \Omega_A^d)$ which restricts to $dx_1 \wedge dx_2 \wedge \dots \wedge dx_d$ near p , and hence $\mu^* \Theta|_X$ is a non-zero global section of $\Omega_Y^d := \omega_Y$. In particular, $H^0(Y, \omega_Y) \neq \{0\}$. \square

Corollary 2.3. *Let X be a compact analytic variety in Fujiki's class \mathcal{C} with canonical singularities. If X has maximal Albanese dimension, then $\kappa(X) \geq 0$.*

Proof. First note that if $f : W \rightarrow X$ is a proper bimeromorphic morphism, then $\kappa(X) \geq 0$ if and only if $\kappa(W) \geq 0$, since X has canonical singularities. Now let $a : X \rightarrow \text{Alb}(X)$ be the Albanese morphism, $Y := a(X)$, and $\pi : Z \rightarrow Y$ is a resolution of singularities of Y . Then $\kappa(Z) \geq 0$ by Lemma 2.2. Note that there is a generically finite meromorphic map $\phi : X \dashrightarrow Z$; resolving the graph of ϕ we may assume that X is smooth and $\phi : X \rightarrow Z$ is a morphism. Then $K_X = \phi^* K_Z + E$, where $E \geq 0$ is an effective divisor. Therefore $\kappa(X) \geq 0$, since $\kappa(Z) \geq 0$. \square

2.1. Fourier-Mukai transform. Let T be a complex torus of dimension g and $\hat{T} = \text{Pic}^0(T)$ its dual torus. Let $p_T : T \times \hat{T} \rightarrow T$ and $p_{\hat{T}} : T \times \hat{T} \rightarrow \hat{T}$ be the projections, and \mathcal{P} the normalized Poincaré line bundle on $T \times \hat{T}$ so that $\mathcal{P}|_{T \times \{0\}} \cong \mathcal{O}_T$ and $\mathcal{P}|_{\{0\} \times \hat{T}} \cong \mathcal{O}_{\hat{T}}$. Let \hat{S} be the functor from the category of \mathcal{O}_T -sheaves to the category of $\mathcal{O}_{\hat{T}}$ -sheaves, defined by

$$\hat{S}(\mathcal{F}) := p_{\hat{T},*}(p_T^* \mathcal{F} \otimes \mathcal{P}),$$

where \mathcal{F} is a sheaf of \mathcal{O}_T -modules. Similarly, S is a functor from the category of $\mathcal{O}_{\hat{T}}$ -sheaves to the category of \mathcal{O}_T -sheaves, defined as

$$S(\mathcal{G}) := p_{T,*}(p_{\hat{T}}^* \mathcal{G} \otimes \mathcal{P}),$$

where \mathcal{G} is a sheaf of $\mathcal{O}_{\hat{T}}$ -modules.

The corresponding derived functors are

$$\mathbf{R}\hat{S}(\cdot) := \mathbf{R}p_{\hat{T},*}(p_T^*(\cdot) \otimes \mathcal{P}) \text{ and } \mathbf{R}S(\cdot) := \mathbf{R}p_{T,*}(p_{\hat{T}}^*(\cdot) \otimes \mathcal{P}).$$

Recall the following fundamental result of Mukai [Muk81, Theorem 2.2, and (3.8)], [PPS17, Theorem 13.1]

Theorem 2.4. *With notations and hypothesis as above, there are isomorphisms of functors (on the bounded derived category of coherent sheaves)*

$$\begin{aligned} \mathbf{R}\hat{S} \circ \mathbf{R}S &\cong (-1)_{\hat{T}}^*[-g], & \mathbf{R}S \circ \mathbf{R}\hat{S} &\cong (-1)_T^*[-g], \\ \Delta_T \circ \mathbf{R}S &= ((-1)_T^* \circ \mathbf{R}S \circ \Delta_{\hat{T}})[-g]. \end{aligned}$$

Recall that $\Delta_T(\cdot) := \mathbf{R}\mathcal{H}\text{om}(\cdot, \mathcal{O}_T)[g]$ is the dualizing functor.

Definition 2.5. Let A be a complex torus. For $a \in A$, let $t_a : A \rightarrow A$ be the usual translation morphism defined by a . A vector bundle \mathcal{E} on A is called *homogeneous*, if $t_a^* \mathcal{E} \cong \mathcal{E}$ for all $a \in A$.

Remark 2.6. Let A be a complex torus, \hat{A} the dual torus and $\dim A = \dim \hat{A} = g$. Then from the proof of [Muk81, Example 3.2] it follows that $R^g \hat{S}$ gives an equivalence of categories

$$\mathbf{H}_A := \{\text{Homogeneous vector bundles on } A\}, \quad \text{and}$$

$$\mathbf{C}_{\hat{A}}^f := \{\text{Coherent sheaves on } \hat{A} \text{ supported at finitely many points}\}.$$

Note that in [Muk81] the results are all stated for abelian varieties, however, we observe that in the proof of [Muk81, Example 3.2] the main arguments follow from Theorem 2.4 and the isomorphisms in [Muk81, (3.1), page 158], both of which hold over complex tori. In particular, [Muk81, Example 3.2] holds for complex tori.

We will need the following result on the rational singularity of (log) canonical models of klt pairs.

Proposition 2.7. *Let (X, B) be a klt pair, where X is a compact analytic variety in Fujiki's class \mathcal{C} . Assume that the Kodaira dimension $\kappa(X, K_X + B) \geq 0$. Then $R(X, K_X + B) := \bigoplus_{m \geq 0} H^0(X, m(K_X + B))$ is a finitely generated \mathbb{C} -algebra and*

$$\bar{Z} = \text{Proj } R(X, K_X + B)$$

has rational singularities.

Proof. The finite generation of $R(X, K_X + B)$ follows from [DHP22, Theorem 1.3] and [Fuj15, Theorem 5.1]. Let $f : X \dashrightarrow Z$ be the Iitaka fibration of $K_X + B$. Resolving Z , f and X , we may assume that X is a compact Kähler manifold, B has SNC support, Z is a smooth projective variety and f is a morphism. Then from the proof of [Fuj15, Theorem 5.1] it follows that there is a smooth projective variety Z' which is birational to Z and an effective \mathbb{Q} -divisor $B_{Z'} \geq 0$ such that $(Z', B_{Z'})$ is klt, $K_{Z'} + B_{Z'}$ is big and the following holds

$$R(X, K_X + B)^{(d)} \cong R(Z', K_{Z'} + B_{Z'})^{(d')},$$

where the superscripts d and d' represent the corresponding d and d' -Veronese subrings.

Thus $\bar{Z} = \text{Proj } R(X, K_X + B) \cong \text{Proj } R(Z', K_{Z'} + B_{Z'})$ is the log-canonical model of $(Z', B_{Z'})$. If $(Z'', B_{Z''})$ is a minimal model of $(Z', B_{Z'})$ as in [BCHM10, Theorem 1.2(2)], then by the base-point free theorem, there is a birational morphism $\phi : Z'' \rightarrow \bar{Z}$ such that $K_{Z''} + B_{Z''} = \phi^*(K_{\bar{Z}} + B_{\bar{Z}})$, where $B_{\bar{Z}} := \phi_* B_{Z''} \geq 0$. Thus $(\bar{Z}, B_{\bar{Z}})$ is a klt pair, and hence \bar{Z} has rational singularities. \square

3. MAIN THEOREM

In this section we will prove our main theorem. We begin with some preparation.

Definition 3.1. Let X be a smooth compact analytic variety. Then the m -th plurigenera of X is defined as

$$P_m(X) := \dim_{\mathbb{C}} H^0(X, \omega_X^m).$$

The next result is one of our main tools in the proof of the main theorem, it is also of independent interest. It follows immediately from the main results of [PPS17].

Theorem 3.2. *Let X be a compact Kähler variety with terminal singularities. Assume that X has maximal Albanese dimension and $\kappa(X) = 0$. Then X is bimeromorphic to a torus. Additionally, if K_X is also nef, then X is isomorphic to a torus.*

Remark 3.3. Note that the above result holds if we simply assume that X is in Fujiki's class \mathcal{C} . Indeed, if $X' \rightarrow X$ is a resolution of singularities such that X' is Kähler, then $\kappa(X') = 0$ and so $X' \rightarrow \text{Alb}(X')$ is bimeromorphic, and hence so is $X \rightarrow \text{Alb}(X')$. Note also that if X is a complex manifold of maximal Albanese dimension, then X is automatically in Fujiki's class \mathcal{C} . To see this, consider the Stein factorization $X' \rightarrow Y \rightarrow A$. Then $Y \rightarrow A$ is finite and so Y is also Kähler (see [Var89, Prop. 1.3.1(v) and (vi), page 24]). Let $X' \rightarrow X$ be a resolution of singularities such that $X' \rightarrow Y$ is projective, then X' is Kähler and so X is in Fujiki's class \mathcal{C} .

Proof of Theorem 3.2. Since X is terminal, it has rational singularities, and thus by Definition 2.1 the Albanese morphism $a : X \rightarrow \text{Alb}(X)$ exists. Let $\pi : \tilde{X} \rightarrow X$ be a resolution of singularities of X . Then $a \circ \pi : \tilde{X} \rightarrow \text{Alb}(X)$ is the Albanese morphism of \tilde{X} . Moreover, since X has terminal singularities, $\kappa(\tilde{X}) = \kappa(X) = 0$. Thus replacing X by \tilde{X} , we may assume that X is a compact Kähler manifold. Let $d = \dim X$ and pick a general element $\Theta \in H^0(\Omega_A^d)$, where $A = \text{Alb}(X)$. Then $0 \neq a^*\Theta \in H^0(\Omega_X^d)$ and so $P_1(X) > 0$. It follows that $P_k(X) = h^0(X, \omega_X^k) > 0$ for all $k > 0$. Since $\kappa(X) = 0$, we have $P_1(X) = P_2(X) = 1$. Thus by [PPS17, Theorem 19.1], $X \rightarrow A$ is surjective, and hence $\dim X = \dim A = h^{1,0}(X)$. Thus by [PPS17, Theorem B], X is bimeromorphic to a complex torus and so $a : X \rightarrow A$ is (surjective and) bimeromorphic.

Assume now that X has terminal singularities and K_X is nef. Let $a : X \rightarrow A$ be the Albanese morphism. By what we have seen above, this morphism is bimeromorphic.

Thus $K_X \equiv a^*K_A + E \equiv E$, where $E \geq 0$ is an effective Cartier divisor such that $\text{Supp}(E) = \text{Ex}(a)$ (since A is smooth). By the negativity lemma $E = 0$, and hence a is an isomorphism. \square

Corollary 3.4. *Let (X, B) be a compact Kähler klt pair. Assume that X has maximal Albanese dimension and $\kappa(X, K_X + B) = 0$. Then X is bimeromorphic to a torus. Additionally, if $K_X + B \sim_{\mathbb{Q}} 0$, then X is isomorphic to a torus.*

Proof. Passing to a terminalization by running an appropriate MMP over X (using [DHP22, Theorem 1.4]) we may assume that (X, B) has \mathbb{Q} -factorial terminal singularities. Now since $\kappa(X) \geq 0$ by Corollary 2.3, $\kappa(X, K_X + B) = 0$ implies that $\kappa(X, K_X) = 0$. Thus by Theorem 3.2, $a : X \rightarrow A := \text{Alb}(X)$ is a surjective bimeromorphic morphism. Now assume that $K_X + B$ is nef. Then $K_X + B = a^*K_A + E + B \sim_{\mathbb{Q}} B + E$, where $E \geq 0$ is an effective Cartier divisor such that $\text{Supp}(E) = \text{Ex}(a)$, since A is smooth. Thus $(B + E) \sim_{\mathbb{Q}} 0$,

as $K_X + B \sim_{\mathbb{Q}} 0$, and hence $B = E = 0$ (as X is Kähler). In particular, $a : X \rightarrow A$ is an isomorphism. \square

Now we are ready to prove our main theorem.

Proof of Theorem 1.1. Let $a : X \rightarrow A$ be the Albanese morphism. Since X has maximal Albanese dimension, a is generically finite over its image $a(X)$. By the relative Chow lemma (see [Hir75, Corollary 2] and [DH20, Theorem 2.12]) there is a log resolution $\mu : X' \rightarrow X$ of (X, B) such that the Albanese morphism $a' = a \circ \mu : X' \rightarrow A$ is projective. Let $K_{X'} + B' = \mu^*(K_X + B) + F$, where $F \geq 0$ such that $\text{Supp}(F) = \text{Ex}(\mu)$, and (X', B') has klt singularities. Note that if (X', B') has a good minimal model $\psi : X' \dashrightarrow X^m$, then ψ contracts every component of F and the induced bimeromorphic map $X \dashrightarrow X^m$ is a good minimal model of (X, B) (see [HX13, Lemmas 2.5 and 2.4] and their proofs). Thus, we may replace (X, B) by (X', B') and assume that (X, B) is a log smooth pair and $X \rightarrow A$ is a projective morphism. From Corollary 2.3 it follows that $\kappa(X) \geq 0$. In particular, $\kappa(X, K_X + B) \geq 0$. Now we split the proof into two parts. In Step 1 we deal with the $\kappa(X, K_X + B) = 0$ case, and the remaining cases are dealt with in Step 2.

Step 1. Suppose that $\kappa(X, K_X + B) = 0$. Then by Theorem 3.2, the Albanese morphism $a : X \rightarrow A := \text{Alb}(X)$ is bimeromorphic. Let D be an irreducible component of the unique effective divisor $G \in |m(K_X + B)|$ for $m > 0$ sufficiently divisible. We make the following claim.

Claim 3.5. D is a -exceptional; in particular, G is a -exceptional.

Proof. First passing to a higher model of X we may assume that D has SNC support. Consider the short exact sequence

$$0 \rightarrow \omega_X \rightarrow \omega_X(D) \rightarrow \omega_D \rightarrow 0.$$

Let $V^0(\omega_D) := \{P \in \text{Pic}^0(A) \mid h^0(D, \omega_D \otimes a^*P) \neq 0\}$. If $\dim V^0(\omega_D) > 0$, then it contains a subvariety $K + P$, where P is torsion in $\text{Pic}^0(A)$ and K is a subtorus of $\text{Pic}^0(A)$ with $\dim K > 0$ (see [PPS17, Corollary 17.1]). Since $a : X \rightarrow A$ is surjective and bimeromorphic, we have $H^i(X, a^*Q) = H^i(A, Q) = 0$ for any $\mathcal{O}_A \neq Q \in \text{Pic}^0(A)$; in particular, $H^1(X, \omega_X \otimes a^*Q) = H^{n-1}(X, a^*Q^{-1})^\vee = 0$, where $n = \dim X$. Thus $H^0(X, \omega_X(D) \otimes a^*Q) \rightarrow H^0(D, \omega_D \otimes a^*Q)$ is surjective for all $\mathcal{O}_A \neq Q \in \text{Pic}^0(A)$, and so $h^0(X, \omega_X(D) \otimes a^*Q) > 0$ for all $\mathcal{O}_A \neq Q \in P + K$. Since P is torsion, $\ell P = 0$ for some $\ell > 0$. Consider the morphism

$$(3.1) \quad |K_X + D + P + Q_1| \times \cdots \times |K_X + D + P + Q_\ell| \rightarrow |\ell(K_X + D)|,$$

where $Q_i \in K$ such that $\sum_{i=1}^{\ell} Q_i = 0$.

Since $\dim K > 0$, for $\ell \geq 2$, the Q_1, \dots, Q_{ℓ} vary in the subvariety $\mathcal{K} \subset K^{\times \ell}$ defined by the equation $\sum_{i=1}^{\ell} Q_i = 0$. Thus $\dim \mathcal{K} \geq \ell \cdot (\dim K) - 1 \geq \ell - 1 \geq 1$. Therefore $\dim |\ell(K_X + D)| > 0$, i.e. $h^0(X, \ell(K_X + D)) > 1$. Since D is contained in the support of G , we have $(r - \ell)G \geq \ell D$ for some $r > 0$. Then $h^0(X, rm(K_X + D)) \geq h^0(X, \ell(K_X + D)) > 1$, which is a contradiction. Therefore, $\dim V^0(\omega_D) \leq 0$. By [PPS17, Theorem A], $a_*\omega_D$ is a GV sheaf so that $\mathbf{R}\hat{S}\Delta_A(a_*\omega_D) = \mathbf{R}^0\hat{S}\Delta_A(a_*\omega_D)$. If $\dim V^0(\omega_D) = 0$, then $\mathbf{R}^0\hat{S}(\Delta_A(a_*\omega_D))$ is an Artinian sheaf of modules on A , and hence by Theorem 2.4 and Remark 2.6

$$\Delta_A(a_*\omega_D) = (-1_A)^* \mathbf{R}S(\mathbf{R}\hat{S}\Delta_A(a_*\omega_D))[g] = (-1_A)^* \mathbf{R}S(\mathbf{R}^0\hat{S}\Delta_A(a_*\omega_D))[g]$$

is a shift of a homogeneous vector bundle which we denote by \mathcal{E} (see Remark 2.6). But then

$$a_*\omega_D = \Delta_A(\Delta_A(a_*\omega_D)) = \mathcal{E}^{\vee}$$

is also a homogeneous vector bundle and hence its support is either empty or entire A . The latter is clearly impossible, since $\text{Supp}(a_*\omega_D) \neq A$, and hence $V^0(\omega_D) = \emptyset$. Thus by [PPS17, Proposition 13.6(b)], $a_*\omega_D = 0$; in particular D is a -exceptional.

□

Now by [DHP22, Theorem 1.4] and [Fuj22a, Theorem 1.1] we can run the relative minimal model program over A and hence may assume that $K_X + B$ is nef over A . From our claim above we know that $K_X + B \sim_{\mathbb{Q}} E \geq 0$ for some effective a -exceptional divisor $E \geq 0$. Then by the negativity lemma we have $E = 0$; thus $\mathcal{O}_X(m(K_X + B)) \cong \mathcal{O}_X$ for sufficiently divisible $m > 0$, and hence we have a good minimal model.

Step 2. Suppose now that $\kappa(X, K_X + B) \geq 1$ and let $f : X \dashrightarrow Z$ be the Iitaka fibration. Note that the ring $R(X, K_X + B) := \bigoplus_{m \geq 0} H^0(X, \mathcal{O}_X(\lfloor m(K_X + B) \rfloor))$ is a finitely generated \mathbb{C} -algebra by [DHP22, Theorem 1.3]. Define $\bar{Z} := \text{Proj } R(X, K_X + B)$. Then $Z \dashrightarrow \bar{Z}$ is a birational map of projective varieties. Resolving the graph of $Z \dashrightarrow \bar{Z}$ we may assume that Z is a smooth projective variety and $\nu : Z \rightarrow \bar{Z}$ is a birational morphism. Then passing to a resolution of X we may assume that f is a morphism and (X, B) is a log smooth pair. Write $K_F + B_F = (K_X + B)|_F$, where F is a very general fiber of f , so that $\kappa(F, K_F + B_F) = 0$. Note that $a|_F$ is also generically finite (as F is a very general fiber of f) and thus F has maximal Albanese dimension. In particular, (F, B_F) has a good minimal model by Step 1. Let $\psi : F \dashrightarrow F'$ be this minimal model; then $K_{F'} + B_{F'} \sim_{\mathbb{Q}} 0$. Thus by Corollary 3.4, F' is

a torus and $B_{F'} = 0$; in particular, $\psi : F \rightarrow F'$ is the Albanese morphism. Thus $a|_F : F \rightarrow A$ factors through $\psi : F \rightarrow F'$; let $\alpha : F' \rightarrow A$ be the induced morphism. Let $K := \alpha(F')$; then K is a torus, and α is étale over K , as F' and K are both homogeneous varieties. Now since A contains at most countably many subtori and F is a very general fiber, K is independent of the very general points $z \in Z$, and hence so is F' . Define $A' := A/K$, then A' is again a torus. Since the composite morphism $X \rightarrow A'$ contracts F and $\dim F = \dim K$, from the rigidity lemma (see [BS95, Lemma 4.1.13]) and dimension count it follows that there is a meromorphic map $Z \dashrightarrow A'$ generically finite onto its image. Since Z is smooth, we may assume that $Z \rightarrow A'$ is a morphism (see [Kaw85, Lemma 8.1]). Similarly, since \bar{Z} has rational singularities by Proposition 2.7, again from [Kaw85, Lemma 8.1] it follows that $\bar{Z} \rightarrow A'$ is a morphism.

Now choose an ample \mathbb{Q} -divisor \bar{H} on \bar{Z} . Let H_X be the pull-back of \bar{H} to X such that $K_X + B \sim_{\mathbb{Q}} H_X + E$ and $|k(K_X + B)| = |kH_X| + kE$ for any sufficiently large and divisible integer $k > 0$, where $E \geq 0$ is effective.

Now let $\bar{A} := \bar{Z} \times_{A'} A$. Observe that there is a unique morphism $\bar{a} : X \rightarrow \bar{A}$ determined by the universal property of fiber products. We claim that E is exceptional over \bar{A} . If not, then let D be a component of E which is not exceptional over \bar{A} . Let $h : X \rightarrow \bar{Z}$ be the composite morphism $X \rightarrow Z \rightarrow \bar{Z}$ and $W := h(D)$. Choose a sufficiently divisible and large positive integer $s > 0$ such that $s\bar{H}$ is very ample, $r(K_X + B)$ is Cartier, $rE \geq D$ and $|r(K_X + B)| = |rH_X| + rE$, where $r = (n+1)s$ and $n = \dim X$.

(3.2)

$$\begin{array}{ccccc}
 X & \xrightarrow{\quad a \quad} & & & \\
 \downarrow \bar{a} & & & & \\
 \bar{A} := \bar{Z} \times_{A'} A & \xrightarrow{\quad \quad} & A & & \\
 \downarrow & & \downarrow & & \\
 Z & \xrightarrow{\quad f \quad} & \bar{Z} & \xrightarrow{\quad \quad} & A' := A/K
 \end{array}$$

Claim 3.6. $|K_D + (n+1)sH_D| \neq \emptyset$, where $H_D = H_X|_D$.

Proof. Let $D_i = G_1 \cap \dots \cap G_i$ be the intersection of general divisors $G_1, \dots, G_m \in |sH_D|$, where $0 \leq i \leq m := \dim W$ and $D_0 := D$. Let $M := K_D + (n+1)sH_D$, then we have the short exact sequences

$$0 \rightarrow \mathcal{O}_{D_i}(M - G_{i+1}) \rightarrow \mathcal{O}_{D_i}(M) \rightarrow \mathcal{O}_{D_{i+1}}(M) \rightarrow 0.$$

Recall that $h : X \rightarrow \bar{Z}$ is the given morphism; let $h_i := h|_{D_i}$. Then

$$\begin{aligned} (M - G_{i+1})|_{D_i} &\sim (K_D + nsH_D)|_{D_i} \\ &\sim \left(K_D + \sum_{j=1}^i G_j + (n-i)sH_D \right)|_{D_i} \\ &\sim K_{D_i} + (n-i)sH_{D_i} \\ &\sim K_{D_i} + h_i^*(n-i)s\bar{H}, \end{aligned}$$

where $H_{D_i} := H_X|_{D_i}$. By [Fuj22b, Theorem 3.1(i)] the only associated subvarieties of

$$R^1h_{i,*}\mathcal{O}_{D_i}(M - G_{i+1}) = R^1h_{i,*}\mathcal{O}_{D_i}(K_{D_i}) \otimes \mathcal{O}_{\bar{Z}}((n-i)s\bar{H})$$

are $W_i := h(D_i) \subset \bar{Z}$, i.e. $R^1h_{i,*}\mathcal{O}_{D_i}(M - G_{i+1})$ is a torsion free sheaf on W_i .

Therefore, the induced homomorphism $h_{i,*}\mathcal{O}_{D_{i+1}}(M) \rightarrow R^1h_{i,*}\mathcal{O}_{D_i}(M - G_{i+1})$ is zero and we have the following exact sequence

$$0 \longrightarrow h_{i,*}\mathcal{O}_{D_i}(M - G_{i+1}) \longrightarrow h_{i,*}\mathcal{O}_{D_i}(M) \longrightarrow h_{i,*}\mathcal{O}_{D_{i+1}}(M) \longrightarrow 0.$$

By [Fuj22b, Theorem 3.1(ii)] we have

$$H^1(h_{i,*}\mathcal{O}_{D_i}(M - G_{i+1})) = H^1(h_{i,*}\mathcal{O}_{D_i}(K_{D_i}) \otimes \mathcal{O}_{\bar{Z}}((n-i)s\bar{H})) = 0,$$

and thus we have the following surjections

$$(3.3) \quad H^0(\mathcal{O}_D(M)) \rightarrow H^0(\mathcal{O}_{D_1}(M_{D_1})) \rightarrow \cdots \rightarrow H^0(\mathcal{O}_{D_m}(M_{D_m})) \rightarrow H^0(\mathcal{O}_G(M|_G)),$$

where G is a connected (and hence irreducible, as D_m is smooth) component of D_m . Note that G is a general fiber of $D \rightarrow W$, since H_D is a pullback from W and $m = \dim W$.

Let $w := h(G) \in W \subset \bar{Z}$. Then $G \rightarrow \bar{G} := \bar{a}(G)$ is generically finite (as so is $D \rightarrow \bar{a}(D)$ by our assumption), and $\bar{G} \rightarrow a(G)$ is an isomorphism, since $\bar{A}_w \rightarrow K \subset A$ is an isomorphism, as $\bar{A}_w = (A \times_{A'} \bar{Z})_w = A \times_{A'} \{w\} \cong K$. In particular, G has maximal Albanese dimension, and hence $h^0(G, K_G) > 0$ by Lemma 2.2. Now since $M|_G \sim K_G$, from the surjections in (3.3) it follows that $|M| = |K_D + (n+1)sH_D| \neq \emptyset$, and hence the claim follows. \square

Now consider the short exact sequence

$$0 \rightarrow \omega_X(L) \rightarrow \omega_X(L + D) \rightarrow \omega_D(L) \rightarrow 0,$$

where $L = rH_X$. Then by [Fuj22b, Theorem 3.1(i)], $R^1h_*\omega_X(L) = R^1h_*\omega_X \otimes \mathcal{O}_{\bar{Z}}(r\bar{H})$ is torsion free, and hence $h_*\omega_X(L + D) \rightarrow h_*\omega_D(L)$ is surjective.

Again by [Fuj22b, Theorem 3.1(ii)], $H^1(h_*\omega_X(L)) = H^1(h_*\omega_X \otimes \mathcal{O}_{\bar{Z}}(r\bar{H})) = 0$, and so $H^0(\omega_X(L+D)) \rightarrow H^0(\omega_D(L))$ is surjective. Since $|K_D + L|_D \neq 0$ by Claim 3.6, D is not contained in the base locus of $|K_X + L + D|$. Let $0 \leq b := \text{mult}_D(B) < 1$ and $e := \text{mult}_D(E) > 0$. Then $\sigma E + B - D \geq 0$ and $\text{mult}_D(\sigma E + B - D) = 0$ for $\sigma = \frac{1-b}{e} > 0$. We may assume that $\sigma \leq r$ (as r is sufficiently large and divisible). Adding $rE + B - D$ to a general divisor $G \in |K_X + L + D|$ we get

$$\Gamma := rE + B - D + G \sim_{\mathbb{Q}} (r+1)(K_X + B) \sim_{\mathbb{Q}} (r+1)(H_X + E).$$

Then for any sufficiently divisible $m > 0$ we have

$$\text{mult}_D(m\Gamma) = m(r - \sigma)\text{mult}_D(E) < m(r+1)\text{mult}_D(E),$$

which is a contradiction to the fact that $|k(K_X + B)| = |kH_X| + kE$ for sufficiently divisible $k = m(r+1) > 0$. Thus D is exceptional over \bar{A} .

Let $n = \dim X$. We will run a relative $(K_X + B + (2n+3)sH_X)$ -MMP over A . Note that since $|(2n+3)sH_X|$ is a base-point free linear system on a smooth compact variety X , by Sard's theorem there is an effective \mathbb{Q} -divisor $H' \geq 0$ such that $(2n+3)sH_X \sim_{\mathbb{Q}} H'$ and $(X, B + H')$ has klt singularities. Thus $K_X + B + (2n+3)sH_X \sim_{\mathbb{Q}} K_X + B + H'$ and we can run a $(K_X + B + (2n+3)sH_X)$ -MMP over A by [DHP22, Theorem 1.4], and obtain $X \dashrightarrow X'$ so that $K_{X'} + B' + (2n+3)sH_{X'} \sim_{\mathbb{Q}} ((2n+3)s+1)H_{X'} + E'$ is nef over A . Note that if R is a $(K_X + B + (2n+3)sH_X)$ -negative extremal ray over A , then it is also $(K_X + B)$ -negative and so it is spanned by a rational curve C such that $0 > (K_X + B) \cdot C \geq -2n$ (see [DHP22, Theorem 2.46]). But then C is vertical over \bar{Z} , otherwise $(K_X + B + (2n+3)sH_X) \cdot C > 0$, as H_X is the pullback of an ample divisor \bar{H} on \bar{Z} , this is a contradiction. Thus it follows that every step of this MMP is also a step of an MMP over \bar{Z} , and hence there is an induced morphism $\mu : X' \rightarrow \bar{A} := \bar{Z} \times_{A'} A$. It follows that

$$K_{X'} + B' \sim_{\mathbb{Q}} \mu^*H_{\bar{A}} + E' \sim_{\mathbb{Q}, \bar{A}} E' \geq 0,$$

where $H_{\bar{A}}$ is the pullback of the ample divisor \bar{H} by the projection $\bar{A} \rightarrow \bar{Z}$. Then E' is nef and exceptional over \bar{A} , and hence by the negativity lemma, $E' = 0$. But then $K_{X'} + B' \sim_{\mathbb{Q}} \mu^*H_{\bar{A}}$ and since $H_{\bar{A}}$ is semi-ample, so is $K_{X'} + B'$. □

Corollary 3.7. *Let (X, B) be a compact Kähler klt pair of maximal Albanese dimension such that $a : X \rightarrow A := \text{Alb}(X)$ is a projective morphism. Then we can run a $(K_X + B)$ -Minimal Model Program which ends with a good minimal model.*

Proof. Note that since $a : X \rightarrow A$ is generically finite over image, $K_X + B$ is relatively big over $a(X)$. Thus by [DHP22, Theorem 1.4] and [Fuj22a, Theorem 1.8], we can run a $(K_X + B)$ -Minimal Model Program over A . Notice that each step of this MMP is also a step of the $(K_X + B)$ -MMP. Therefore, we may assume that $K_X + B$ is nef over A and we must check that it is indeed nef on X . Let (\bar{X}, \bar{B}) be a good minimal model of (X, B) , which exists by Theorem 1.1. By what we have seen, (\bar{X}, \bar{B}) is also a minimal model over A . But then $\phi : (X, B) \dashrightarrow (\bar{X}, \bar{B})$ is an isomorphism in codimension 1. If $p : Y \rightarrow X$ and $q : Y \rightarrow \bar{X}$ is a common resolution, then from the negativity lemma it follows that $p^*(K_X + B) = q^*(K_{\bar{X}} + \bar{B})$. In particular, $p^*(K_X + B)$ is semi-ample, and hence so is $K_X + B$. Thus (X, B) is a good minimal model. \square

REFERENCES

- [BCHM10] C. Birkar, P. Cascini, C. D. Hacon and J. McKernan, *Existence of minimal models for varieties of log general type*, J. Amer. Math. Soc. **23**(2), 405–468 (2010).
- [BS95] M. C. Beltrametti and A. J. Sommese, *The adjunction theory of complex projective varieties*, volume 16 of *De Gruyter Expositions in Mathematics*, Walter de Gruyter & Co., Berlin, 1995.
- [CH20] J. Cao and A. Höring, *Rational curves on compact Kähler manifolds*, J. Differential Geom. **114**(1), 1–39 (2020).
- [DH20] O. Das and C. Hacon, *The log minimal model program for Kähler 3-folds*, arXiv e-prints , arXiv:2009.05924 (September 2020), 2009.05924.
- [DHP22] O. Das, C. Hacon and M. Păun, *On the 4-dimensional minimal model program for Kähler varieties*, arXiv e-prints , arXiv:2205.12205 (May 2022), 2205.12205.
- [Fuj15] O. Fujino, *Some Remarks on the Minimal Model Program for Log Canonical Pairs*, J. Math. Sci. Univ. Tokyo **22**, 149–192 (2015).
- [Fuj22a] O. Fujino, *Minimal model program for projective morphisms between complex analytic spaces*, (2022).
- [Fuj22b] O. Fujino, *Vanishing theorems for projective morphisms between complex analytic spaces*, arXiv e-prints , arXiv:2205.14801 (May 2022), 2205.14801.
- [Hir75] H. Hironaka, *Flattening theorem in complex-analytic geometry*, Amer. J. Math. **97**, 503–547 (1975).
- [HP16] A. Höring and T. Peternell, *Minimal models for Kähler threefolds*, Invent. Math. **203**(1), 217–264 (2016).
- [HX13] C. D. Hacon and C. Xu, *Existence of log canonical closures*, Invent. Math. **192**(1), 161–195 (2013).
- [Kaw85] Y. Kawamata, *Minimal models and the Kodaira dimension of algebraic fiber spaces*, J. Reine Angew. Math. **363**, 1–46 (1985).
- [Muk81] S. Mukai, *Duality between $D(X)$ and $D(\hat{X})$ with its application to Picard sheaves*, Nagoya math. J. **81**, 153–175 (1981).
- [PPS17] G. Pareschi, M. Popa and C. Schnell, *Hodge modules on complex tori and generic vanishing for compact Kähler manifolds*, Geom. Topol. **21**(4), 2419–2460 (2017).
- [Var89] J. Varouchas, *Kähler spaces and proper open morphisms*, Math. Ann. **283**(1), 13–52 (1989).

SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, HOMI BHABHA ROAD, NAVY NAGAR, COLABA, MUMBAI 400005

Email address: `omdas@math.tifr.res.in`

Email address: `omprokash@gmail.com`

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, 155 S 1400 E, SALT LAKE CITY, UTAH 84112

Email address: `hacon@math.utah.edu`