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Hyperdimensional computing
with holographic and adaptive
encoder
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Switzerland, 2Department of Computer Science, University of California, Irvine, Irvine, CA, United States

Introduction: Brain-inspired computing has become an emerging field, where
a growing number of works focus on developing algorithms that bring machine
learning closer to human brains at the functional level. As one of the promising
directions, Hyperdimensional Computing (HDC) is centered around the idea of
having holographic and high-dimensional representation as the neural activities
in our brains. Such representation is the fundamental enabler for the efficiency
and robustness of HDC. However, existing HDC-based algorithms suffer from
limitations within the encoder. To some extent, they all rely on manually selected
encoders, meaning that the resulting representation is never adapted to the tasks
at hand.

Methods: In this paper, we propose FLASH, a novel hyperdimensional learning
method that incorporates an adaptive and learnable encoder design, aiming at
better overall learning performance while maintaining good properties of HDC
representation. Current HDC encoders leverage Random Fourier Features (RFF)
for kernel correspondence and enable locality-preserving encoding. We propose
to learn the encoder matrix distribution via gradient descent and effectively adapt
the kernel for a more suitable HDC encoding.

Results: Our experiments on various regression datasets show that tuning the
HDC encoder can significantly boost the accuracy, surpassing the current HDC-
based algorithm and providing faster inference than other baselines, including
RFF-based kernel ridge regression.

Discussion: The results indicate the importance of an adaptive encoder and
customized high-dimensional representation in HDC.

KEYWORDS

brain-inspired computing, hyperdimensional computing, holographic representation,
vector function architecture, efficient machine learning

1 Introduction

The human brain remains the most sophisticated yet effective learning module ever.
Running on similar power of light bulbs, our brains are in charge of almost every
learning and reasoning task in daily life with particularly great sample efficiency and
fault tolerance. On the contrary, many widely-applied Machine Learning (ML) algorithms
fail to be comparable in efficiency and robustness, despite their prolific advancement in
accomplishing practical tasks.

Therefore, research in biological vision, cognitive psychology, and neuroscience has
given rise to key concepts behind an emerging field, i.e., brain-inspired computing. In this
field, several novel computing paradigms have been developed during the last few years
that are either biologically plausible or closer to human brains at the functional level (Roy
etal., 2019; Karunaratne et al., 2020). In particular, HyperDimensional Computing (HDC)
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mimics human brain functionalities when learning and reasoning
in high-dimensional spaces (i.e., the hyperspace in HDC), which
is motivated by the observation that the human brain operates on
high-dimensional neural representations. Similarly in the brain-
inspired HDC, a high-dimensional vector-based representation is
designed to represent different atomic concepts such as letters,
objects, sensor readings, and general features. Typically, an HDC
encoder will encode inputs from the original lower-dimensional
space to very high-dimensional vectors (i.e., hypervectors in
HDC) with several thousand dimensions. Centered on the
hypervectors, HDC is also capable of describing the location of
objects, their relations, and the structured combination of several
individual concepts through a set of HDC operations designed for
hypervectors (more details in Section 2).

As the basic building block of HDC, hypervectors own several
unique properties that have been crucial for practical applications,
especially in terms of representing and manipulating atomic
symbols. Specifically, hypervector representation is (1) holographic,
that information is distributed evenly across components of the
hypervector (Kleyko et al., 2023), (2) robust, that hypervectors
are extremely noise tolerant as a natural result of hypervector
redundancy (Kanerva, 2009; Poduval et al, 2022b; Barkam
et al., 2023a), and (3) simple, that only lightweight operations
are needed to perform learning tasks (Hernandez-Cane et al,
20215 Ni et al, 2022b). In addition, the ability for hypervectors
to operate symbolically through simple arithmetic has granted
HDC the ability to perform cognitive tasks in a transparent
and compositional way, e.g., memorization, learning, and
association (Poduval et al., 2022a; Hersche et al., 2023). Given
the importance of the properties aforementioned, most HDC
frameworks have a dedicated and specially designed HDC encoder
for mapping original inputs to corresponding hypervectors. The
quality of encoded hyperdimensional representations can be
decisive for performance in learning and cognitive tasks.

While the HDC encoder has had many variants (Rachkovskij,
2015; Kleyko et al., 2018, 2021; Imani et al., 2019; Frady et al,,
2021), most of them innovate on the encoding scheme, i.e., the way
symbolically different entities are encoded together. One common
example is Position-ID encoding (Thomas et al., 2020): each
feature is assigned a (key) hypervector representing its position
in the vector, and the value of the feature is quantized to a set
of discrete levels and assigned the corresponding (level or value)
hypervector. The representation of a feature vector is thus a
bundling of several binding key-value pairs. Despite the success of
mentioned encoding, the quality of HDC representation of atomic
hypervectors is ambiguous: their design is barely discussed due
to the already competitive richness in representation (Park and
Sandberg, 1991) and performance in practice (Ge and Parhi, 2020).
In the case of Position-ID encoding, for example, key hypervectors
are assumed to be independent of each other, while value
hypervectors preserve a discrete linear similarity with each other.
Such manually selected similarity metrics, linear mapping, and
discrete atomic compositions naturally lack flexibility. Recognizing
this gap, we ask in this paper a fundamental question in improving
HDC learning: how can we generate good HDC representation for
atomic data? And also, how can we create an encoding scheme that
adapts to the problem at hand?
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Recent research proposes Vector Function
Architecture (Kleyko et al., 2021; Frady et al, 2022) (VFA)
that provides a general approach for better representation of
continuous data and functions in the hyperspace. Its encoder,
instead of presetting discrete levels of similarity for each feature
in the original space, directly targets a meaningful similarity in
the whole hyperspace such as the Gaussian radial basis function.
To do so, VFA relies on fractional power encoding and Random
Fourier Features (Rahimi and Recht, 2007) (RFF) parameterized
by a high-dimensional encoding matrix through a predefined
random distribution. The resulting hyperspace then holds a
high-dimensional and non-linear representation that maintains
the distance relationship in much finer granularity. We notice
that HDC representation quality relies heavily on the choice of
hyperspace mapping and similarity metric, which are manifested
directly via the distribution from which every component of the
encoding matrix is sampled. Recognizing this connection, we
expect that selecting a distribution well-adapted to the task will
essentially enhance the quality of the HDC encoder as well as
learning performance.

In this paper, we bring FLASH, to the best of our
knowledge, the first HDC representation that is Fast, Learnable,
Adaptive, and Stays Holographic. FLASH leads to an innovative
hyperdimensional regression algorithm featuring an optimizable
HDC encoder. Unlike all the previous algorithms that limit
themselves to either prefixed atomic hypervectors or static
encoding mechanisms, our method (1) generates atomic
hypervectors that truly adapt to the training data at hand, (2)
efficiently optimizes the HDC representation for downstream
tasks, and (3) maintains the major benefits of HDC, ie.,
holographic representation. We take inspiration from the prior
VFA work and propose a novel mechanism to enhance the
representation in hyperspace by finding the optimal distribution
from which the random matrix is drawn. Moreover, this approach
does not require us to use explicitly the kernel function nor the
probability density, nor to perform expensive Fourier transforms.
This allows the encoding process of FLASH to be as efficient
as the static one with the exception of a one-time overhead
for optimization.

Our experimental results show that FLASH is about 5.5x
faster in inference than RFF-based ridge regression while
providing comparable or better accuracy. We also test a variant
called “Accurate FLASH” that is optimized for accuracy, and
this approach consistently outperforms other ML baselines,
including the previous state-of-the-art HDC regression
algorithm (Herndndez-Cano et al, 2021) based on VFA. At
the same time, we observe a linear increase in our approach with
respect to the number of samples in the dataset, making this
proposal particularly well-suited for large-scale data.

The rest of this article is organized as follows. In the “HDC
Background” section, the basics of HDC are described. And the
prior arts VFA-based hyperdimensional regression algorithm is
analyzed in the “Regression” section. Our proposed FLASH is
formulated in the “Main Methods” section. The “Experimental
Results” section presents results for experiments carried out on
multiple regression datasets. Finally, the “Conclusion” section
concludes this article.
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2 Related works

In the past few years, prior HDC research works have applied
the brain-like functionalities of HDC to diverse applications,
for example, outlier detection (Wang et al, 2022), biosignal
processing (Rahimi et al., 2020; Ni et al., 2022¢; Pale et al., 2022),
speech recognition (Hernandez-Cane et al, 2021), and gesture
recognition (Rahimi et al., 2016). Apart from classification learning
tasks, it has also been applied to genomic sequencing (Zou et al.,
2022; Barkam et al, 2023b), nonlinear regression (Herndndez-
Cano et al,, 2021; Ni et al., 2023b), reinforcement learning (Chen
et al,, 2022; Issa et al.,, 2022; Ni et al., 2022a, 2023a), and graph
reasoning (Poduval et al., 2022a; Chen et al., 2023). With or without
hardware acceleration, these HDC algorithms bring a significant
efficiency benefit to each application, facilitating online training,
few-shot learning, and edge-friendly operation. However, their
performance is inevitably limited by a poorly-optimized encoding
process. The mapping to hyperspace is either manually devised for
a specific task or directly reuses a fixed design such as VFA (Rahimi
etal,, 2020; Hernandez-Cano et al., 2021). In this paper, we focus on
improving the HDC encoder design and thus learning performance
by proposing a novel encoder that is optimizable and adaptive.

3 Regression with vector function
architecture

In this section, we first briefly revisit the hyperdimensional
encoding technique proposed in VFA. As mentioned in the
introduction, the VFA encoding mounts to a well-defined and
continuous mapping to hyperspace. We then discuss its usage in
the current state-of-the-art HDC regression algorithm and point
out the limitation of this method due to the static encoding.

3.1 Hyperdimensional encoding in VFA

As a symbolic paradigm, many HDC algorithms operate on a
set of dissimilar atomic hypervectors that are randomly generated
and near-orthogonal, assuming that symbols are not related at all.
However, the assumption will not always be appropriate in practical
tasks. Therefore, we have seen HDC algorithms, when handling
bio-signals and images, explicitly manipulate the similarity among
atomic hypervectors such as maintaining a discrete set of similarity
levels. However, the manual assignment of these hypervectors can
be problematic, which inevitably causes information loss during
quantization, not to mention that such an arbitrarily assumed
similarity relationship may not be helpful for learning.

To explain how the VFA encoding captures the relation
between data, we note that this encoding coincides with
the Random Fourier Features (RFF) encoding, an efficient
approximation of kernel methods. The following theorem by
Salomon Bochner (1899-1982) serves as the foundation for this
well-defined similarity relationship (Rudin, 2017).

Theorem 1 (Bochner). For any continuous shift-invariant and
positive definite kernel K(x; — x3) :RM _ R, there must exist a
non-negative measure p(®) such that K is the Fourier transform of
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a non-negative measure p(w). Additionally, if K is properly scaled,
p(w) is a proper probability measure.

The proof of this theorem is provided in Rudin (2017). If we
assume ((x) = ej“’T", then Theorem 1 leads to the following
equation: K(x; — X3) = Jpu p(w)ej‘"T(X‘_XZ) = E, [{(xl)@]-
This means that, with the correspondence between kernel K and
measure p(x), we can transform original inputs to a space where
dot products are unbiased estimates of kernel similarities. In other
words, there exist sequences of transformations ¢p: R — CP
such that ¢p(x1)T¢p(x2) converges uniformly to the given kernel
Kx1 —x2):

o) P00) XL Ky — x2) (1)

Rahimi and Recht (2007) proposed an alternative set of
Random Fourier Features (RFF) such that the components of the
encoded vectors are real and the kernel approximation converges
equally fast. To construct a real-valued RFF, we can leverage this
high-dimensional mapping for HDC encoder as the following:

¢p(x; 2,b) = \/%cos.(ﬁx +b) (2)
where cos. represents the element-wise cosine function, 2 € RDxM
is a randomly generated encoding matrix, and b € RP is the
offset hypervector. Row vectors in € are generated by drawing
D iid. samples w;,...,wp from p(®w) and elements in b are
sampled from U[0,27]. The random distribution p is selected
through Theorem 1 given a preferred kernel K(A). In other words,
the probability density is calculated with a Fourier transform:
plw) = ﬁ flRM exp(—inA)K(A)dA. For example, previous HDC
work (Herndndez-Cano et al., 2021) uses Normal distribution
MN0,1) for p(w) since it wants to approximate the Gaussian RBF
kernel.

There are key lessons from the theory of VFA encoding
discussed above:

1. HDC encoding as in Equation (2) incorporates a high-
dimensional non-linear mapping through the cosine activation.

2. Due to RFE it supports a meaningful similarity metric in
hyperspace without quantizing individual features or generating
ambiguous correlated base hypervectors.

3. By Bochner’s theorem, there is a correspondence between kernel
K and measure p(x). This implies that we can leverage the
measure for the estimation of kernel similarities.

While the current VFA method brings many benefits, the
biggest drawback of this method is that ¢p(x) is essentially a static
mapping, which makes the encoding less adaptive. Our work aims
to leverage the insight from Bochner’s theorem to learn the kernel
adaptively through its random Fourier features.

3.2 Regression on a static HDC encoder
Ideally, we expect the HDC encoder to provide a useful high-

dimensional representation that helps separate the data points for

classification or linearize the inherent non-linear regression tasks.

Particularly in hyperdimensional regression, we are interested in
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finding the best hypervector w € RP such that the linear regression
after encoding y(x) = ¢(x)"w are, in average across the training
set, as close as possible to the true labels in terms of £, norm.
Additionally, we introduce an ¢, regularization coefficient X to get
more stable estimators. Thus the loss function is the dampened least
squares, which can be expressed as

LrW): = [|Zw —y|I* + Alwll?, 3)

wherey = (y1,52,. .., yN)N are the known response variables, and
Z = O(X; R,b) € RV*P are the encoded hypervectors of the input
data xq,...,xN:

P(x1; 2,b)"

O(X; 2,b) = = %cos.(XSlT—Fb). (4)

o (xn; 2.b)T

In previous approaches for HDC regression (Herndndez-Cano
etal,, 2021; Kleyko et al., 2021), the model hypervector w is learned
in an iterative fashion, where hypervectors are bundled together
guided by regression errors. However, they face issues with proper
hyperparameter selection to achieve the highest prediction quality.
On the other hand, the loss function in Equation (3) has a known
minimizer w which is known as the ridge estimator:

w=(2"z2+) 27 (5)

In this paper, we leverage this statistical approach to obtain
better stability during learning and more direct parameter tuning.

As we mentioned in the previous section, the encoding in
VFA, the closed solution in Equation (5) has an assumption that
the regression problem on Z is linearly solvable, as the result of
mapping to hyperspace. However, for an arbitrary regression task,
it is very likely that the static VFA encoding (due to the fixed K(A)
and p(w)) becomes sub-optimal. This work looks to address this
problem by presenting an adaptive HDC encoder design.

4 Main methods

In this paper, we proposeFLASH, a way to learn a good
encoding function ¢(x) before solving the regression task in
hyperdimensional space.

In Figure 1, we present an outline of our proposed FLASH,
including both HDC inference and encoder learning processes.
In the inference process, we start from a query data point x €
RM in the original space @), which is then passed through the
encoding module @ to obtain the encoded data point z €
RP in the hyperspace. Once we have this query hypervector,
getting the prediction y reduces to perform dot product with the
regression hypervector €. The overall inference process depicted
here is similar to VFA-based regression; what distinguishes FLASH
from prior algorithms is that the encoding module (£ matrix,
specifically) is obtained through a parameterized distribution py.
During the encoder learning @, parameters in py are updated
given the feedback from the regression loss defined in Equation (3).
In the following sections, we will introduce how to sample from this
parameterized distribution and learn its parameters.
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4.1 Generating the encoding matrix

Care must be taken when designing the HDC encoder, as it
needs to ensure that the appealing properties of the hypervectors
are sustained. To ensure the holographic representation, we require
the randomized instantiation of the encoder, and thus we cannot
directly perform gradient descent upon an instantiated encoding
matrix, as it may destroy both: information about the data may be
distributed locally and partially in the output vector, and the trained
encoder have minimum randomization.

To circumvent this, we take inspiration from the VFA
work that highlights the encoder-kernel correspondence and the
importance of selecting a proper distribution p(w). Recall from
Section 3.1 that there is a correspondence between kernel K and
measure p(x). In addition, it induces families of encoders {¢p}pen
parameterized by the samples from the distribution such that
the inner product between the encoded vectors approximates the
kernel. This approximation improves increasingly well with the
dimension of the encoder (codomain). By learning the distribution
from which we sample the encoding matrix, we will be able to
construct an adaptive HDC encoder that provides a more suitable
hyperdimensional representation, adding to existing appealing
HDC properties.

In FLASH, we define a parametric family of functions F =
(fo :fo : RM — RM, 9 ¢ ©}, which will be referred to as generators.
Upon receiving random inputs, it can be used to sample random
vectors @, . . ., wp required in the encoding function (Equation 4).
Compared to parameterized distributions such as the Gaussian
reparameterization approach, this approach encapsulates a more
expressive family of distributions. Because of Bochner’s theorem,
exploring F is equivalent to exploring a corresponding set of
continuous shift-invariant kernels, and thus the encoding family we
consider is expected to be rich as long as F is.

Inherited from the RFF methods, a key benefit of this
arrangement is that FLASH encoding does not require us to use
explicitly the kernel K(A) function, nor the probability density
p(w), nor to perform expensive Fourier transforms. Our goal is
to find f € F that, with a high probability, gives the optimal or
near-optimal encoding matrix of solving the regression problem at
hand; this ensures the quality and robustness of the encoder that it
generates.

4.2 Learning the encoder matrix
distribution

To learn the distribution efficiently, we restrict 7 to be a family
of fo : RM _ RM differentiable neural networks, i.e., the network
input size equals the output size. To sample ws using fy, we first
draw a random vector € ~ A{0,I) as the input, and then obtain
a transformed random vector using @ = fg(€). Sampling D i.i.d.
random noises and passing them through the generator can give
us a matrix of base hypervectors (i.e., 2), which can be used to
perform the encoding. This can be understood as a generalized
reparameterization, where we learn a surrogate function fy(e)
instead. Note that we chose to sample noise vectors from the
standard normal distribution for convenience, but different choices
can be made as well. This architecture gives us a very rich family
of generators F, which are cheap to evaluate and cheap to train,
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where we learn the distribution of the encoding matrix.

Overview of our proposed FLASH: the area with shade represents the inference process; the rest modules are related to adapting the HDC encoder,

as we will see in the next few sections. In addition, because € is a
random vector, @ = fy(€) is one too, which means that there exists
a probability density (or mass) function pg (@) for each generator fp.
In FLASH, we aim to maximize encoder performance in
generating a good HDC representation of our data for the
regression task. In particular, we opt to evaluate the learned encoder
using the loss function proposed in Equation (3). However, because
random sampling is involved at the moment of generating the
encoding, we chose to minimize the expected value instead. Note
that this expected value is taken with respect to all the possible
encoding ®, whose encoding matrix £ and offset hypervectors b
are randomly sampled. Thus, in Equation 6, we seek to find the
parameters in fp that minimize the following loss term for adapting

the HDC encoder:
Lg@) = E [min £R(w)] (6)

b [ weRP

where Lr(w) is the regression loss defined in Equation (3). In
Equation 7, using the ridge estimator w and the law of the
unconscious statistician, we can expand the previous expectation

term to:
E [Lr(W)] = [ O(X; 2,b ]
Elea@] =, E (1900265 I + W]
by..bp~U
. , 1 @D
= (100K fo (B, b)W = yI1* + 1]
€]1..€D"™.
by..bp~U
where E is the matrix containing the D random vectors €,. .., €p.

Thus, we can obtain an unbiased estimator of the encoding loss
using a simple Monte Carlo estimator with a single sample. That is,
if we sample E and b from their respective distributions, we obtain
an unbiased estimator of Lg(0):

L(9) = |9(X; fp(B), b)w —y|I* + [[w])? (8)

Note that it is possible to sample multiple noise matrices
ELE. ..
accelerate the computation we don’t explore this alternative.

to lower the variance of the estimator, but in order to
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4.3 Adapt the encoder via generator
training

We explore the parameter space of the generator fy using
stochastic gradient descent, where § <« 6 — anZZE(O). Its easy
to show that Vg 21(0) is an unbiased estimator of the true gradient
Vo L(0) because the expectation in Lg does not depend on the
parameters 6. It is important to note that Ly is differentiable
with respect to its parameters . Indeed, every operation shown in
Equation (8) is well behaved: & = fy (E) is clearly differentiable, and
sois Z = O(X; R,b) because ¢(x; 2,b) = \/%cos.(ﬂx +b).

Until here, we have covered how to parameterize and learn
the sampling distribution. This equips FLASH with an encoding
module well-adapted. Still, people may wonder if learning the
encoding matrix £ and offset b through gradient descent is a
good alternative. We acknowledge that this might be a more direct
measure, however, it will jeopardize the holographic property of
HDC since it cannot guarantee that the encoding matrix is i.i.d.
This means that the information in the encoded hypervector is
no longer evenly distributed, and errors or noise in the encoding
process will lead to higher performance loss due to the lack of
hyperdimensional redundancy. Our proposed measure will ensure
that FLASH will maintain the holographic HDC representation
after tuning the encoder.

4.4 Balance the cost in training

The training in FLASH is a two-stage process where we first
learn the generator fy(e), i.e., in place of sampling from py(w)).
Based on the first training stage, we then perform the model
training that gives the regression hypervector w. In the second
stage, the encoder will be generated using fp and remain static as
it has been optimized. Notice that the dimensionality D can be the
same or different in these two training stages. As mentioned in the

previous section, our optimization method for generator training

frontiersin.org



Hernandez-Cano et al.

is well-defined; but in practice, it can be further approximated
to obtain faster convergence. Several algorithms have been widely
used to accelerate the computation of ridge estimator (Paige and
Saunders, 1982; Defazio et al., 2014). However, computing Lr(8)
at every iteration for encoder learning ends up adding up the
overhead. Recall that in prior HDC algorithms (Hernandez-Cane
et al.,, 2021; Herndndez-Cano et al., 2021; Ni et al., 2022a), D is
supposed to be a high dimensionality such that model hypervectors
have a larger capacity. In FLASH, we instead propose to decouple
the high dimensionality requirement from the encoder/generator
training since the generator fp itself operates in R™. When training
fo, we encode data to RD instead, where D' < D in order
to accelerate the process. As for the regression process, we use
a slightly larger dimensionality D for better regression accuracy.
In fact, adapting the HDC encoder at first will also lower the
requirement for model hypervector dimensionality D and thus
reduce the training cost. Our results in the experiment show that
FLASH, with a lower dimensionality, has comparable regression
quality to the prior HDC method.

4.5 Time complexity

In this section, we discuss the time complexity of training our
proposed method. Below we describe at a high level the steps
required in our approach.

1. Train the surrogate sampling function fp.

2. Generate encoding matrix € using fy.
3. Encode data to D-dimensional with the adapted HDC encoder.
4. Learn the regressing hypervector w.

In the first step, the overhead of computing L is considered
minor as we encode data to D'-dimensional space, limiting the
cost of computing the estimator w. Generating random bases
®; = fg(e;) requires D forward passes of fy, which will give a
hyperdimensional mapping.

Encoding the data Z = ®o(X; 2,b) = \/%cos.(XﬂT + b),
requires O(NMD) operations, corresponding to the asymptotic of
the most taxing operation - matrix multiplication of the N x M
matrix X with a M x D matrix 7, where N is the number of
samples and M the number of features in original space.

The last step, computing w = (Z7Z + AI)_IZTy is, according
to experimental evaluation, the most time-consuming step in
our design. The theoretical time complexity is dominated by the
777 multiplication and the inverse operation, requiring O(ND?)
and O(D?) operations, respectively. Thankfully, the dampened
linear least squares loss, Equation 3), has been heavily studied
and several algorithms that approximate its solution exist such
as LSQR (Paige and Saunders, 1982). Moreover, the experimental
evaluation suggests that with relatively small values of D (500 <
D < 2000) we can obtain very accurate predictions (as shown in
Figure 5); with this configuration, we observe linear training time
in the number of samples.
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4.6 Formal derivation of encoding loss

In this section, we show that minimizing Lr with respect to 0
is equivalent to maximizing a lower bound of the log-likelihood of
the posterior distribution with joint parameters (6, w).

Recall that given a dataset of independent observations D,
random parameters § € ® with prior distribution 6 ~ p(6) the
posterior distribution is p(6 | D), which by Bayes’ Theorem can be
expressed as p(6 | D) o« p(D | 0)p(0), where p(D | 0) is called the
likelihood.

In regression analysis, we assume the relation y = Xw + &,
where e is a random unobserved noise. Ordinary least squares
regression sets the likelihood to be normally distributed y |
w ~ MZXw,o?I). As shown in Equation 9, maximizing the log-
likelihood is equivalent to minimizing the squared error loss:

_ 1 1 T 2p)~ !
mvslxlnp(y |w) = m‘iixln (E exp <7E(y —Xw) (¢°I) (y— Xw)))
1 _

= max |ln exp (—E(y — Xw)T(azl) l(y — Xw)) —1In Z} 9)

= min L(y — Xw)T(y — Xw) = min ||y — XwH2

w 202 w :
In order to work in the high-dimensional space, we must
add the encoding to the equation, or in this case the generator

Zw + &,
where Z = ®(X; 2,b). Because the regression coeflicients depend

parameters . We instead assume the relation y =

on € and b, we use the conditional likelihood y | 2,b,w ~
MZw, o*T). We add the independence assumption between # and
b. In Equation 10, the maximum log posterior is shown to be
bounded using Jensen’s inequality:

max {In p(6, w | y)} = max {In (p(y | 8, w)p(6)p(w)) }

=maxyn_ E_[p(y] 25 wp@)p(w)]
by..bp~U
> n;z‘al.vx wl.m%~pg Inp(y | 2,b,w) + Inp(w) +1np(9)
by..bp~U _Latw)
= rrbin mvin wl"wlj,)wpo [ER(W) - lnp(B)]
by..bp~U
“opn B 288+ O] =g 256)
by..bp~U

(10)

5 Experimental results

5.1 Experimental settings

We implement the proposed design using Python on the Intel
Core i7-12700K CPU platform. The core process of adapting the
encoder is implemented using Pytorch, and the regression process
is based on the implementation provided by Scikit-Learn. We
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evaluate the accuracy of our design on several practical regression
datasets listed in Table I, with up to 20,000 samples and 80
features. Table 2 describes the baseline models used to compare

TABLE 1 Various regression datasets available on OpenML (Vanschoren
etal, 2013).

10.3389/frai.2024.1371988

with our design, including ridge regression that also leverages
RFF approximation and the previous state-of-the-art HDC-based
regression algorithm RegHD. During the experiments, we test two
settings for our design (FLASH and A-FLASH), slightly different
in model size and dimensionality. The name of the second setting
stands for “Accurate FLASH,” which has larger dimensionality and
model size. In Table 3, we provide the hyperparameters used for the
different regression models in our experiments.

Dataset N M  Description ‘
kin8nm 8,192 9 Forward kinematics of an 8 link robot
arm
TABLE 3 Hyperparameters used for the regression models.
MiamiHousing2016 | 13,932 17 Sale price of houses
pol 15,000 49 Telecommunication problem ‘ Model Hyperparameter Value ‘
Houses 20,640 9 Predict house value FLASH
D 500 (resp. 2000)
Superconduct 21,263 82 Predict critical temperature of (A-FLASH)
superconductors |
D 75 (resp. 250)
N, Number of samples; M, number of features.
of 0.01 <o <0.1
TABLE 2 Regression models used in experiments: the last two are our fo layers [32, 32] (resp. [64, 64, 64, 64])
proposed design, and the rest are baseline methods.
fo activation tanh
Model Description ‘ fo learning rate” 0.001 < Ir < 0.01
SVR Support vector regression with RBF kernel *RegHD D 2000
Kernel Ridge Analytical solution of kernel regression with RBF kernel Number of models 1
Linear Regression | Ordinary least squares Learning rate 0.035
RFF + Ridge RFF approximation of RBF kernel, followed by ridge RFF + Ridge D 2000
regression
*SVR C 0.1 <C <100
RegHD HDC regression based on VFA (Hernandez-Cano et al.,
2021) & 00l <e<l1
FLASH Our design optimized for better inference runtime Y m
A-FLASH Our design optimized for better regression accuracy "This hyperparameter was tuned using grid search. *SVR means support vector regression
and RegHD is the name of a prior HDC-based regression framework.
fix) = 10x f(x) = 10x2 fix) =exp(x + 1) f(x) = 10sinx f(x) = 3signx
2| 1501} ] 0] H
25 \\ 1 ,' True f(x)
= 100 1 S| 1007 ,' e FLASH
s 0] 01 e SVR
50 50 1 © Train Data
_25 4
z T T T o L T T o L T T _10 A
-25 00 25 -25 0.0 25 -25 00 25
.75 A
31 044 075 0.75 4 0.3
37 0201 030 02 = S
o 0.2 1
11 0.251 0.25 1 0.11
0 T T 0.0 T T T 0.00 T T 0.00 T T 0.0 T T
=2 -1 0 =2 0 2 -2 0 0 1 =5 0
1.01 1.01 1.04 1.0 1.04
0.51 i
= 0.5 0.5 Encooed
S 0.51 0.5 — el |
0.0 A
0.0 0.09
_05 1 T T T 0-0 1 T T T T T 00 L T T T T T T
-5 5 =5 0 5 -5 5 =5 0 5 =5 0 5
FIGURE 2
The top row corresponds to the data created, in green is the training data, in orange is the prediction of FLASH, and in blue is the prediction of SVR.
The second row corresponds to the distribution pg(w) of the random bases in the encoder. The last row shows the (approximate) kernel associated
with the distribution as in Equation (1).
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kin8nm MiamiHousing2016 pol houses superconduct
Dataset
FIGURE 3
Comparison of our approach against other methods in several datasets. The top plot shows the prediction quality using the r> metric (larger is
better). The bottom plot shows the inference time. We exclude the linear regression runtime for better visualization since the value is relatively small.
Note that SVR performs poorly on the MiamiHousing dataset even after grid search (thus not visible in the figure) and the log scale is used in the
bottom plot. We report the £95% confidence interval and use the Nadeau and Bengio's corrected t-test (Nadeau and Bengio, 1999) for significance
in prediction quality comparison: **P < 0.001, **P < 0.01, *P < 0.05; NS, not significant.

5.2 Performance on synthetic data

In this section, we analyze the performance of the proposed
design in custom 1D regression problems of the form y =
f(x) + & with ¢ ~ NMN(0,1) and different choices of target
function f. In Figure 2, we also show the encoder’s probability
distribution pg(w) learnt in the process and the actual kernel
function K(A) = E[¢(x)T¢(0)]. For comparison, RBF kernel has
associated a Gaussian N0, %I) distribution.

From this experiment, we conclude that our optimization
proposal for the encoder loss L£r works well in practice and
the shapes of learned distributions are varied for each dataset.
Moreover, we observe that our proposal adapts to different scales in
the data making a clear distinction with SVR. For instance, the first
predicted function f(x) = 10x?, where SVR clearly underperforms
where |x| > 1.1.
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5.3 Regression quality and efficiency
comparison

In this section, we compare the performance of FLASH (as well
as A-FLASH) against several baseline regression algorithms using
multiple regression datasets. We perform 5 times repeated 5-fold
cross-validation in each dataset and report the average prediction
quality, confidence intervals, statistical tests for significance, and
runtime taken for each fold. We select the most important
hyperparameters in SVR and our design using grid search. Our
results are summarized in Figure 3.

We observe that our approach is always comparable in accuracy
with other state-of-the-art approaches. The accurate version of our
approach (A-FLASH) is consistently ranked at the top. Particularly,
because our encoder is learnable and well-adapted, we are generally
more accurate than other algorithms leveraging static encoder or
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FIGURE 4

The left graph plots the prediction quality (root MSE) against the number of samples in different regression models. The second and third plot
shows the time taken to train and do inference on a logarithmic scale, respectively. Note the slower growth rate of our approach compared with

Prediction Quality (r?)

Training Time (s)
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FIGURE 5

dimensionality and the approximately linear scale in the time measured.

T T T T 0
1000 2000 3000 4000 0
Dimensionality

Impact of dimensionality. Each graph shows the trade-off obtained when increasing the dimensionality D. The metrics measured are the coefficient
of determination (r?), training time, and inference time, respectively across the three plots. Notice the fast convergence of accuracy even with low

1000 2000 3000 4000

fixed kernel. In comparison with the prior HDC-based method, A-
FLASH achieves significantly better quality without adding notable
overhead for inference. In addition, the fast version of our approach
(FLASH) is generally among the fastest models. During inference,
it is faster than other baselines, including classical kernel-based
approaches such as SVR and Kernel Ridge. This is because our
prediction complexity is constant with respect to the number of
samples. On average, FLASH is about 3.7x faster inference than
the RegHD, 5.5x faster than kernel ridge/RFF ridge, and 13.75x
faster than SVR.

5.4 Scalability results

In this section, we create the Friedman regression
datasets (Friedman, 1991) with an increasing number of samples to
test the scalability of the proposed algorithm and compare it with

other approaches. We observe that our approach is well-suited

Frontiersin Artificial Intelligence

for large-scale data as we have a linear trend in the time taken to
train and also inference time. Meanwhile, the time taken to train
classical kernel approaches such as SVR and kernel ridge grows
noticeably faster due to their higher computational complexity.
Our results are summarized in Figure 4. The leftmost plot shows
that our approach is the fastest to achieve high prediction quality
even with a small number of samples; in fact, FLASH constantly
achieves better accuracy when the training set grows. In terms
of inference speed, FLASH is about twice as fast as the other
approaches with 5000 training samples, and the gap in between
continues to expand.

5.5 Impact of dimensionality
In this section, we explore the impact of dimensionality (D)

in our design for various datasets. Figure 5 displays our results in
terms of prediction quality (MSE) and time taken to train the model
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for different values of D. In the section on “Time Complexity,” we
derived the time complexity of our approach to be O(ND?), which
is consistent with our experimental results. However, it is worth
mentioning that even for relatively small dimensionality (e.g., D =
500) the gain of accuracy for further increasing dimensionality
is not significant. Thus, even if the theoretical complexity of the
approach is large, in practice, we can obtain acceptable results
rapidly.

6 Conclusion

In this paper, we present a novel HDC algorithm that features
an adaptive and learnable encoder design. Unlike previous HDC
works that solely focus on the learning of model hypervectors, our
work also aims at providing a hyperdimensional representation
that is more suitable to current tasks. Instead of learning the
encoder directly, we construct a parameterized distribution that
helps preserve the holographic property of HDC encoding. The
results of several regression tasks show that our proposed algorithm
can significantly boost the accuracy, surpassing the existing HDC-
based arts and providing lower inference time.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.openml.org/search?type=data.

Author contributions

AH-C: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Project administration, Software,
Supervision, Validation, Visualization, Writing - original draft,
Writing - review & editing. YN: Conceptualization, Data
curation, Formal analysis, Investigation, Methodology, Software,
Validation, Visualization, Writing - original draft, Writing
- review & editing. ZZ: Conceptualization, Formal analysis,
Investigation, Methodology, Validation, Writing - original draft,

References

Barkam, H. E., Jeon, S. E, Yun, S, Yeung, C, Zou, Z, Jiao, X, et
al. (2023a). “Hyperdimensional computing for resilient edge learning in 2023
IEEE/ACM International Conference on Computer Aided Design (ICCAD) (IEEE), 1-8.
doi: 10.1109/ICCAD57390.2023.10323671

Barkam, H. E., Yun, S., Genssler, P. R, Zou, Z., Liu, C.-K,, Amrouch,
H., et al. (2023b). “Hdgim: hyperdimensional genome sequence matching on
unreliable highly scaled fefet” in 2023 Design, Automation Test in Europe
Conference Exhibition (DATE) (IEEE), 1-6. doi: 10.23919/DATE56975.2023.101
37331

Chen, H., Issa, M., Ni, Y., and Imani, M. (2022). “Darl: distributed reconfigurable
accelerator for hyperdimensional reinforcement learning” in Proceedings of
the 41st IEEE/ACM International Conference on Computer-Aided Design, 1-9.
doi: 10.1145/3508352.3549437

Chen, H., Zakeri, A., Wen, F., Barkam, H. E., and Imani, M. (2023). “Hypergraf:
Hyperdimensional graph-based reasoning acceleration on fpga, in 2023 33rd
International Conference on Field-Programmable Logic and Applications (FPL) (IEEE),
34-41. doi: 10.1109/FPL60245.2023.00013

Frontiersin Artificial Intelligence

10.3389/frai.2024.1371988

Writing - review & editing. AZ: Data curation, Formal analysis,
Investigation, Methodology, Validation, Writing - original draft,
Writing - review & editing. MI: Conceptualization, Data curation,
Formal analysis, Funding acquisition, Investigation, Methodology,
Project administration, Resources, Software, Supervision,
Validation, Visualization, Writing - original draft, Writing -

review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported in part by DARPA Young Faculty Award, National
Science Foundation #2127780, #2319198, #2321840, #2312517, and
#2235472, Semiconductor Research Corporation (SRC), Office of
Naval Research through the Young Investigator Program Award,
and grants #N00014-21-1-2225 and #N00014-22-1-2067, the Air
Force Office of Scientific Research, grants #FA9550-22-1-0253, and
generous gifts from Cisco. This study received funding from SRC.
The funders were not involved in the study design, collection,
analysis, interpretation of data, the writing of this article or the
decision to submit it for publication.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). “Saga: a fast incremental gradient
method with support for non-strongly convex composite objectives,” in Advances in
Neural Information Processing Systems 27.

Frady, E. P., Kleyko, D., Kymn, C. J., Olshausen, B. A., and Sommer, F. T. (2022).
“Computing on functions using randomized vector representations (in brief),” in

Proceedings of the 2022 Annual Neuro-Inspired Computational Elements Conference
115-122. doi: 10.1145/3517343.3522597

Frady, E. P, Kleyko, D., and Sommer, F. T. (2021). Variable binding for sparse
distributed representations: theory and applications. IEEE Trans. Neural Netw. Learn.
Syst. 34, 2191-2204. doi: 10.1109/TNNLS.2021.3105949

Friedman, J. H. (1991). Multivariate adaptive regression splines. Ann. Statist. 19,
1-67. doi: 10.1214/a0s/1176347963

Ge, L., and Parhi, K. K. (2020). Classification using hyperdimensional computing: a
review. IEEE Circ. Syst. Magaz. 20, 30-47. doi: 10.1109/MCAS.2020.2988388

Hernandez-Cane, A., Matsumoto, N., Ping, E., and Imani, M. (2021). “Onlinehd:
robust, efficient, and single-pass online learning using hyperdimensional system,” in

frontiersin.org



Hernandez-Cano et al.

2021 Design, Automation Test in Europe Conference Exhibition (DATE) (IEEE), 56-61.
doi: 10.23919/DATE51398.2021.9474107

Hernandez-Cano, A., Zhuo, C., Yin, X, and Imani, M. (2021). “Reghd:
robust and efficient regression in hyper-dimensional learning system, in
2021 58th ACM/IEEE Design Automation Conference (DAC) (IEEE), 7-12.
doi: 10.1109/DAC18074.2021.9586284

Hersche, M., Zeqiri, M., Benini, L., Sebastian, A., and Rahimi, A. (2023). A neuro-

vector-symbolic architecture for solving ravenaAZs progressive matrices. Nat. Mach.
Intell. 5, 363-375. doi: 10.1038/s42256-023-00630-8

Imani, M., Morris, J., Messerly, J., Shu, H., Deng, Y., and Rosing, T. (2019).
“Bric: locality-based encoding for energy-efficient brain-inspired hyperdimensional
computing,” in Proceedings of the 56th Annual Design Automation Conference 2019,
1-6. doi: 10.1145/3316781.3317785

Issa, M., Shahhosseini, S., Ni, Y., Hu, T., Abraham, D., Rahmani, A. M., et al.
(2022). “Hyperdimensional hybrid learning on end-edge-cloud networks,” in 2022
IEEE 40th International Conference on Computer Design (ICCD) (IEEE), 652-655.
doi: 10.1109/ICCD56317.2022.00100

Kanerva, P. (2009). Hyperdimensional computing: an introduction to computing
in distributed representation with high-dimensional random vectors. Cogn. Comput. 1,
139-159. doi: 10.1007/s12559-009-9009-8

Karunaratne, G., Le Gallo, M., Cherubini, G., Benini, L., Rahimi, A., and
Sebastian, A. (2020). In-memory hyperdimensional computing. Nat. Electr. 3, 327-337.
doi: 10.1038/s41928-020-0410-3

Kleyko, D., Davies, M., Frady, E. P., Kanerva, P., Kent, S. J.,, Olshausen, B. A.,
et al. (2021). Vector symbolic architectures as a computing framework for nanoscale
hardware. arXiv preprint arXiv:2106.05268.

Kleyko, D., Rachkovskij, D., Osipov, E., and Rahimi, A. (2023). A survey on
hyperdimensional computing aka vector symbolic architectures, part ii: applications,
cognitive models, and challenges. ACM Comput. Surv. 55, 1-52. doi: 10.1145/3558000

Kleyko, D., Rahimi, A., Rachkovskij, D. A., Osipov, E., and Rabaey, J. M. (2018).
Classification and recall with binary hyperdimensional computing: tradeoffs in choice
of density and mapping characteristics. IEEE Trans. Neural Netw. Learn. Syst. 29,
5880-5898. doi: 10.1109/TNNLS.2018.2814400

Nadeau, C., and Bengio, Y. (1999). “Inference for the generalization error, in
Advances in Neural Information Processing Systems 12.

Ni, Y., Abraham, D., Issa, M., Kim, Y., Mercati, P., and Imani, M. (2023a). “Efficient
off-policy reinforcement learning via brain-inspired computing,” in Proceedings of the
Great Lakes Symposium on VLSI 2023, 449-453. doi: 10.1145/3583781.3590298

Ni, Y., Chen, H,, Poduval, P., Zou, Z., Mercati, P., and Imani, M. (2023b).
“Brain-inspired trustworthy hyperdimensional computing with efficient uncertainty
quantification,” in 2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD) (IEEE), 01-09. doi: 10.1109/ICCAD57390.2023.10323657

Ni, Y., Issa, M., Abraham, D., Imani, M., Yin, X., and Imani, M. (2022a). “Hdpg:
Hyperdimensional policy-based reinforcement learning for continuous control,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference 1141-1146.
doi: 10.1145/3489517.3530668

Ni, Y., Kim, Y., Rosing, T., and Imani, M. (2022b). “Algorithm-hardware co-
design for efficient brain-inspired hyperdimensional learning on edge,” in 2022
Design, Automation Test in Europe Conference Exhibition (DATE) (IEEE), 292-297.
doi: 10.23919/DATE54114.2022.9774524

Frontiersin Artificial Intelligence

11

10.3389/frai.2024.1371988

Ni, Y., Lesica, N., Zeng, F.-G., and Imani, M. (2022c). “Neurally-inspired
hyperdimensional classification for efficient and robust biosignal processing,” in
Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design
1-9. doi: 10.1145/3508352.3549477

Paige, C. C., and Saunders, M. A. (1982). Lsqr: an algorithm for sparse
linear equations and sparse least squares. ACM Trans. Mathem. Softw. 8, 43-71.
doi: 10.1145/355984.355989

Pale, U., Teijeiro, T., and Atienza, D. (2022). “Exg signal feature selection
using hyperdimensional computing encoding” in 2022 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM) (IEEE), 1688-1693.
doi: 10.1109/BIBM55620.2022.9995107

Park, J., and Sandberg, I. W. (1991). Universal approximation using radial-basis-
function networks. Neur. Comput. 3, 246-257. doi: 10.1162/neco.1991.3.2.246

Poduval, P., Alimohamadi, H., Zakeri, A., Imani, F., Najafi, M. H., Givargis, T.,
et al. (2022a). Graphd: Graph-based hyperdimensional memorization for brain-like
cognitive learning. Front. Neurosci. 16:757125. doi: 10.3389/fnins.2022.757125

Poduval, P, Ni, Y., Kim, Y, Ni, K, Kumar, R, Cammarota, R, et al
(2022b). “Adaptive neural recovery for highly robust brain-like representation,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference 367-372.
doi: 10.1145/3489517.3530659

Rachkovskij, ~D. (2015). Formation of similarity-reflecting  binary
vectors with random binary projections. Cybern. Syst. Analy. 51, 313-323.
doi: 10.1007/510559-015-9723-z

Rahimi, A., Benatti, S., Kanerva, P., Benini, L., and Rabaey, J. M. (2016).
“Hyperdimensional biosignal processing: a case study for emg-based hand gesture
recognition,” in 2016 IEEE International Conference on Rebooting Computing (ICRC)
(IEEE), 1-8. doi: 10.1109/ICRC.2016.7738683

Rahimi, A., and Recht, B. (2007). “Random features for large-scale kernel machines,”
in Advances in Neural Information Processing Systems 20.

Rahimi, A., Tchouprina, A., Kanerva, P., Millan, J. D. R, and Rabaey, J. M.
(2020). Hyperdimensional computing for blind and one-shot classification of EEG
error-related potentials. Mobile Netw. Applic. 25, 958-1969. doi: 10.1007/s11036-017-
0942-6

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine intelligence
with neuromorphic computing. Nature 575, 607-617. doi: 10.1038/s41586-019-
1677-2

Rudin, W. (2017). Fourier Analysis on Groups. Mineola, NY: Courier Dover
Publications.

Thomas, A., Dasgupta, S., and Rosing, T. (2020). Theoretical foundations of
hyperdimensional computing. arXiv preprint arXiv:2010.07426.

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo, L. (2013). Openml: networked
science in machine learning. SIGKDD Explor. 15, 49-60. doi: 10.1145/2641190.2641198

Wang, R, Jiao, X.,, and Hu, X. S. (2022). “Odhd: one-class brain-inspired
hyperdimensional computing for outlier detection,” in Proceedings of the 59th
ACMY/IEEE Design Automation Conference 43-48.

Zou, Z., Chen, H., Poduval, P., Kim, Y., Imani, M., Sadredini, E., et al. (2022).
“Biohd: an efficient genome sequence search platform using hyperdimensional
memorization,” in Proceedings of the 49th Annual International Symposium on
Computer Architecture 656-669. doi: 10.1145/3470496.3527422

frontiersin.org



	Hyperdimensional computing with holographic and adaptive encoder
	1 Introduction
	2 Related works
	3 Regression with vector function architecture
	3.1 Hyperdimensional encoding in VFA
	3.2 Regression on a static HDC encoder

	4 Main methods
	4.1 Generating the encoding matrix
	4.2 Learning the encoder matrix distribution
	4.3 Adapt the encoder via generator training
	4.4 Balance the cost in training
	4.5 Time complexity
	4.6 Formal derivation of encoding loss

	5 Experimental results
	5.1 Experimental settings
	5.2 Performance on synthetic data
	5.3 Regression quality and efficiency comparison
	5.4 Scalability results
	5.5 Impact of dimensionality

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


