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Abstract— Novel computer architectures like Compute-in-
Memory (CiM) merge the memory and processing units,
mimicking the human brain. Simultaneously, Hyperdimensional
Computing (HDC) is emerging as a brain-inspired machine
learning (ML) approach. Both developments hold promise for
the realm of AI and computing, especially for genome-matching
tasks, where large data movements overwhelm traditional von
Neumann architectures. FeFET is one of the up-and-coming
emerging technologies that promises to enable ultra-efficient and
compact CiM architectures. However, the adoption of FeFETs
is hindered by their 10 nm-thick Ferroelectric (FE) layer and
process variation. Thus, calculations with FeFETs have errors
(noise) that traditional ML genome-matching models cannot
tolerate. To overcome these challenges, this work is the first one
to i) present a reliable HDC framework (HDGIM) for highly-
scaled (down to merely 3nm), multi-bit FeFET technology, ii)
introduce temperature-thickness modeled noise from FeFET to
the HDC system, and iii) extensively define the memorization
capacity of HDC hyperparameters in order to evaluate the
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performance before deployment theoretically. Our novel HDC
learning framework iteratively uses two models: a full-precision
32-bit HDC model, an ideal model for training, and a reduced
bit-precision by a novel quantization method for validation and
inference. Our results demonstrate that highly-scaled FeFET,
realizing 3-bit and even 4-bit, can withstand any modeled noise
given high dimensionality during inference. Considering the noise
during model adjustment improves the inherent robustness by
almost 9% on the 4-bit case.

Index Terms— In-memory computing, ferroelectric, FeFET,
reliability, hyperdimensional computing.

I. INTRODUCTION

T
HIS work is an extension of work presented initially

in DATE [1], centered around genome sequence match-

ing, one of the fundamental algorithms in identifying and

analyzing genomic data with several applications in identi-

fying and curing diseases, including COVID-19. Sequence

matching analyzes essential biological characteristics such as

nucleotide or protein sequences and compares their similar-

ity [2]. In sequence matching, a DNA query is searched across

large-scale reference DNA strings, which typically comprise

over a hundred million DNA bases [3]. Unfortunately, running

genome sequence matching on existing hardware is signif-

icantly slow and inefficient as it demands significant data

movement between the memory and computing cores.

A Computing in-Memory (CiM) architecture is a promising

solution to address data movement issues. By integrating

basic processing capabilities, the CiM paradigm enables

operations directly on the data stored in memory. Hence,

CiM significantly reduces power consumption and enables

faster computations through less data movement. Non-volatile

memories (NVMs) are typically employed to build CiM archi-

tectures. However, CiM suffers from NVM’s device-to-device

variation and inaccuracy from its analog implementations [4],

thus degrading the application-level accuracy.

Among different NVM technologies, FeFET has emerged

as a promising candidate due to its full CMOS compati-

bility [5], low read/write energy [6], making its integration

into existing manufacturing technology straightforward [5].

However, FeFET devices are often designed with a 10nm-thick

ferroelectric layer in the gate stack of the transistor to main-

tain the state. Such a thick layer has several disadvantages.
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The ±4V write voltage is not available on modern ICs, requir-

ing a new dedicated power network inside the chip, incurring

a significant overhead. Further, the high write voltage is a

significant source of reliability and endurance challenges [7].

Nonetheless, if the write voltage could be reduced to the

typical I/O voltage of 1.8V, no additional power network

would be required, energy consumption would decrease, and

reliability increase. Those challenges can be solved by reduc-

ing the thickness of the FE layer. It enables technology scaling,

reduces energy consumption, and increases endurance [8], [9].

A 3nm FE-layer was explored in [8], and a write voltage

of ±1.85V was sufficient. However, a back gate was added

to the FeFET to overcome the high variation during a read

operation [9].

The efficient but noisy CiM technology, when combined

with high-precision computation that many sequence matching

algorithms require [10], [11], calls for a robust computational

model. Hyperdimensional computing (HDC) has emerged

as an alternative computational model and data represen-

tation that mimics important brain functionalities toward

high-efficiency and noise-tolerant computation [12]. Recent

works have exploited HDC data representation to revisit

genome sequence matching algorithms for memory-centric

computation [13], [14], [15]. These CiM approaches translate

sequencing matching to highly parallel search operations that

can be accelerated on content addressable memory (CAM).

However, most existing HDC-based genomic algorithms either

assume the CiM is ideal, do not work with multi-bit CiM,

or the noise modeling is non-faithful to the technology being

used. This paper presents a novel design that effectively deals

with the constraints of the FeFET-based CiM architecture for

the sequence matching problem and provides realistic model-

ing of the hardware non-idealities. Our work is fundamentally

novel and provides the following contributions:

• Faithful bridge between HDC algorithm and hard-

ware constraints: We employ physics-based FeFET

models to capture their noise and variation accurately.

Instead of the simple Gaussian distribution typically

employed in other works [16], our FeFET models provide

a realistic noise distribution for multi-bit precision, front,

and back gate read, and 3nm and 10nm thick ferroelectric

layers and temperature, which we take into consideration

to design our learning framework.

• Although HDC representation provides robustness to the

genome sequence matching process, the enhanced algo-

rithms are still susceptible to technology noise during

in-memory computation. Adapting to the non-idealities

will result in losing information compared to the ideal

case. With that, we propose a framework that

iteratively teaches HDC-based sequence matching

algorithms to operate over non-ideal and noisy devices

that exist in CiM architecture. In other words, our

framework teaches our HDC-based algorithms not to lose

accuracy even under extreme technology noise in CiM

architecture.

• Capacity of memorization tied to hardware char-

acteristics: To ensure scalability and best fit of an

algorithm into the CiM platform, we develop a theoretical

framework that expresses HDC memorization capacity as

a function of NVM bit precision and dimensionality. This

model is a useful measure to determine the best data

representation for the algorithm before actual deployment

in hardware in any hardware-defined task.

We extensively evaluate the effectiveness of our framework

in both theoretical and experimental settings. The evaluation

shows that our cross-layer FeFET reliability modeling accu-

rately captures the impact of FE scaling and temperature on

errors induced by process variation and inherent stochasticity

in multi-bit FeFETs. Our HDC learning framework iteratively

adapts using a full-precision, ideal model for training and

a quantized, noisy version for validation and inference. Our

results demonstrate that highly-scaled FeFET, realizing 3-bit

and even 4-bit, can withstand noise given high dimensionality

during inference. If we introduce the noise during model

adjustment, we can improve the inherent robustness compared

to only adding noise during the matching process.

The rest of the paper is structured as follows: Section II

illustrates an overview of genome sequence matching, its

current HDC-based solution, and gives a CiM background.

Section III introduces the FeFET basics and how our modeling

is implemented. Section IV explains our HDGIM framework

and section V theoretically defines the capacity of memoriza-

tion dependent on the HDC hyperparameters and hardware

constraints. Last, section VI evaluates the performance of our

solution and explores its hyperparameters. Section VII gives

an overview and conclusion of the work.

II. RELATED WORK

Most modern genome sequence machines can generate a

massive amount of data. Such effort is achieved by extracting

small random fragments called reads. From a biological stand-

point, a protein sequence is translated initially from an mRNA,

which can be considered a string over the four alphabets, A, C,

G, U. These reads are considered substrings that pass through

a computational process known as read mapping, which takes

each read, aligns it to one or more possible locations within the

reference genome, and finds the matches and differences (i.e.,

distance) between the read and the reference genome segment

at that location [17], [18]. Read mapping is the first critical

step in genome sequence analysis.

With the advances in non-volatile memories, several CiM

paradigms have been proposed. For instance, crossbars based

on FeFET have been employed in neural networks [19]

and nearest neighbor search [20]. On the other hand,

binary/ternary/analog content addressable memories (CAMs)

have been utilized in search-intensive tasks such as IP routers,

lookup tables, and associative searches [21], [22]. Specifically,

in conjunction with customized sense amplifiers (Fig. 1(c)),

2FeFET CAM (Fig. 1(d)) designs demonstrate great potential

as a high-density and energy-efficient associative memory with

Hamming and L2 distance [6], [23].

CiM based on NVM technology has been widely used to

accelerate genome sequence matching problems. For exam-

ple, PIM-Aligner [24] and RAPID [25] are two recent CiM

accelerators for alignment based on magnetic and resistive

devices. However, the genome sequencing algorithms are not
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memory-centric and often suffer from technology noise in CiM

architectures. HDC is introduced as a novel computational

model for robust and holographic data representation. Revisit-

ing genome sequencing algorithms based on HDC makes the

sequencing algorithms memory-centric and compatible with

CiM architectures [13], [15]. Recent work in [15] presented

a CAM architecture to accelerate a key functionality of

HDC-based genome sequence matching. However, the existing

platforms assume the CiM or CAM is ideal, do not work with

multi-bit CiM, or the noise modeling is non-accurate with the

technology being used. This paper presents a novel design that

effectively deals with the constraints of the FeFET-based CiM

architecture for the sequence matching problem and Provides

realistic modeling of the hardware non-idealities.

Important parameters of the implementation are its one-bit

precision and highly scalable architecture. HDC assigns a

hypervector corresponding to each mRNA base alphabet A,

C, G, U. Then, it generates a library of memory hypervectors

that save multiple reads. The number of substrings stored

on every memory hypervector is tied to the capacity, which

is theoretically defined for 1 bit and dimension D. This

implementation, however, is limited to one-bit precision CAM

architecture. In contrast, FeFET-based CiM needs multi-bit

precision to produce effective performance considering the

noise.

III. COMPUTE-IN-MEMORY WITH FEFET TECHNOLOGY

Despite much research and progress at the device level,

FeFET is still in the prototype stages and has not yet reached

the mass market. Currently, the high write voltage is a lim-

iting factor that makes dense integration with logic difficult.

Therefore, the addition of the back gate to reduce the write

voltage is a promising direction [26]. At the same time,

FeFET devices inherently operate with a limited level of

precision, traditionally limited to one bit (single level cell).

This would require many FeFETs to present high-precison data

which increases area consumption and integration complexity.

A multi-bit FeFET can alleviate this complexity but introduces

its own challenges such as reduced reliability.

A. FeFET Basics

HfO2-based FeFET is a competitive candidate in low-power

and high-speed edge-computing applications due to its CMOS

compatibility [5], comparatively low read/write energy, and

short read latency [6]. A FeFET is based on a regular

CMOS MOSFET with only one modification to the gate

stack depicted in Fig. 1(a). A typically 10nm thick ferro-

electric (FE) HfO2 layer is added, which can be polarized by

applying a write voltage pulse to the gate terminal. Applying

a positive voltage pulse sets FeFET to the down polarization

state; the ID − VG current is then high at the read voltage

of about 1V as shown in Fig. 1(b). If the polarization is

flipped, the ID − VG current is low at the read voltage. The

difference between the two currents represents two different

states, making a FeFET a single device memory. The FE

layer contains individual domains, symbolically represented

as green and red boxes in Fig. 3, which are flipped by the

write pulse. Depending on their direction, the FE-layer exhibits

Fig. 1. (a) FeFET operation schematic. (b) SPICE simulation of FeFET
ID − VG curve for storing 1 and 0. (c) CAM array. (d) Single 2FeFET CAM.

(e) Ultra-compact 1 FeFET CAM [27].

Fig. 2. A back gate is added for the read operation. Although it increases
the impact of variability, it increases the memory window even more and thus
allows for a reduction in the thickness of the ferroelectric layer.

a different polarization. However, the domains do not flip

all simultaneously but are individually based on stochastic

processes. Hence, the polarization is not purely binary but

an analog value. Consequently, the ID − VG current is also

between the two end states. By applying a short or lower

voltage pulse, only a portion of domains is flipped, resulting

in an intermediate ID − VG current. Such a property can be

exploited to create a multi-stage cell to store multiple bits

of information [9]. Scaling the thickness of the FE layer

down reduces the number of domains. Thus, each domain

becomes more impactful on the overall polarization of the

device. Because the domain’s polarization change is a stochas-

tic process, the variability increases for highly-scaled FeFET

devices with fewer domains [9]. This results in a much noisier

device with a ferroelectric layer of just 3nm.

To counteract the increase in variation, the typical single

access gate can be split into a front and back gate [26] as

shown in Fig. 2. The state of the FeFET is written through the

front gate, while the read operation is performed through the

back gate. However, because of the increased distance between

the back gate and the ferroelectric layer, the impact of varia-

tion is increased. Nevertheless, the memory window (MW),

the difference between the most and least polarized state,

is increased. A larger MW provides higher margins against

design-time and run-time variation. This increase of the MW

is stronger than the additional impact of variation from the

back gate. Hence, the overall robustness of the read operation
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Fig. 3. Our FeFET modeling considers the inherent stochasticity of the
domains in the ferroelectric layer. Their up/down polarization determines the
electron density of the channel and thus the drain-source current ID − VG .
Adding a back gate to the device allows for disturb-free reading and shrinking
of the HfO2 layer from 10 nm to 3 nm.

is increased. The improved robustness opens the door for
highly-scaled FeFET devices, which otherwise would be too
noisy [9].

B. Our FeFET Modeling

In this work, we perform accurate cross-layer reliabil-
ity modeling with the multi-physics simulator technology
CAD (TCAD). We start from the underlying device physics,
as follows: First, the FDOSI transistor is carefully calibrated
to reproduce experimental measurements of commercial 22 nm
FDSOI [28]. The device is a ferroelectric capacitor built
from the same materials as a transistor. The parameters of
the TCAD models for the incorporated FE layer (remnant
polarization, saturation polarization, and coercive field) are
calibrated against these measurements [9]. We then replace the
HfO2 layer of an FDSOI transistor model with our calibrated
model of the FE material. Although the underlying device
is different (capacitor vs. transistor), the model captures the
properties of the ferroelectric material itself and thus can be
applied to FDSOI transistors. The approach of extracting the
FE material properties from a capacitor and applying them
to a transistor has been demonstrated in previous work for
other technologies and has been validated by experimental
measurements [29]. This methodology is applied analogously
for different operating conditions to include the temperature
impact.

To capture the behavior of a computing system at idle,
27◦ C is selected, and 80◦ C for a system under load. Then, the
model mentioned above parameters are calibrated to capture
different temperatures. Existing TCAD models can capture the
impact of temperature in the underlying transistor but not of
the ferroelectric material. Hence, our additional modeling is
indispensable to account for the degradation in the FE layer
induced by an increased temperature. After the calibration, the
ID − VG characteristic is swept, and different FeFET states
are derived from that. Our models have been validated against
experimental measurements, and Fig. 4 shows excellent agree-
ment. Monte Carlo simulations are performed to capture
variability from FeFET (inherent stochasticity of polarization)
and conventional sources (process variation) similar to our

Fig. 4. Our modeling approach matches with experimental measurements
from [26] for the 10 nm FE layer.

Fig. 5. Layout for an optimized SRAM-based CAM on the right and
an FDSOI-base CAM cell that mimics our FE-FDSOI on the left. In this
commercial 22 nm FDSOI technology, the back gate requires a large clearance,
which increases the area by 1.2x compared to the SRAM-based CAM.
However, the FE-FDSOI can store three and four bits per cell, resulting in an
area/bit decrease of 2.5x and 3.3x, respectively.

previous work [9]. The output is a VT distribution for each
stage of the cell (e.g., eight distributions for a 3-bit cell). The
mean and variance are extracted and provided to the HDGIM
framework for further circuit-level modeling.

C. FeFET-Based Content-Addressable Memory (CAM)

FeFET-based CAMs comprise two FeFETs in contrast to
ten CMOS transistors in an SRAM-based design [30]. Thus,
significant area reduction is possible, especially for multi-bit
FeFET-based CAMs. For a design with 28 nm technology, a
22.6x area reduction per bit compared to an SRAM-based
design was reported [30]. At 45 nm, a 7.5x reduction was
demonstrated for single-bit TCAM designs [6]. The employed
commercial 22 nm FDSOI technology supports the back gate
enabling a realistic area assessment. We have performed the
layout for an optimized SRAM-based CAM cell and the
proposed FE-FDSOI CAM cell under the assumption that the
same DRC rules from the baseline FDSOI process apply to
the FE-FDSOI. Fig. 5 demonstrates that FE-FDSOI actually
increases the area by 1.2x because the back gate requires a
large clearance. However, the FE-FDSOI can store three and
four bits per cell, resulting in an area/bit decrease of 2.5x and
3.3x, respectively. Future changes in the fabrication process
could lead to further reductions.

Regarding power, a FeFET-based multi-bit CAM designs
with two FeFETs and one CMOS transistor was manufactured
in [30]. They compare against an SRAM-based baseline and
report a reduction in energy from 4.13 pJ to 0.87 pJ (4.7x)
and area savings of 22.6x per bit. In [31], they manufactured
a 2-FeFET CAM cell in a NAND array and report a similar
reduction from 4.01 pJ to 0.63 pJ (6.4x) against an SRAM
baseline. In our previous work [32], we calibrated our models
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Fig. 6. (a) Circuit-level diagram for the HDGIM framework. (b) Controller
signals for all the required operations in HDGIM.

to reproduce measurements from Intel’s 14 nm FinFET pro-
cess. We then modeled a 2-FeFET and a 16-T SRAM-based
TCAM cell and connected multiple with a joined match line
for Hamming distance computation. In contrast to the other
works, we obtained a 0.07x increase in energy because of
the higher latency of the FeFET-based TCAM. The major
difference of this work to previous works is the addition of
the back gate. The back gate enables the reduction of the FE
layer, which enables the reduction of the write voltage and,
therefore, a reduction in energy [9].

In this work, a CAM is employed to identify the stored
sequence that exactly matches the query [6]. With the
FeFET-based CAM approach, given a query sequence, one
can efficiently search across all the stored sequences in terms
of Hamming distance. Specifically, the reference DNA strings
are written into CAMs during the writing phase by high/low
voltages representing the nucleotides. Then, when a query
DNA comes, the high/low voltages are again applied to the
FeFET gate terminal to form a high/low ID current. In this
work, by leveraging the above accurate FeFET modeling,
we can characterize the non-idealities of CAMs.

D. Threshold Matching With CAMs

We propose HDGIM, a hyperdimensional genome sequence
matching framework that adapts to the non-idealities of FeFET
CAMs. An area-efficient three to four-bit ultra-compact CAM
that performs Hamming distance, i.e., bit-wise XOR oper-
ation, is highly desired. In HDGIM, we propose to use
the binary CAM (BCAM) from [27]. Unlike conventional
single-bit CAM with 2 FeFETs (Fig. 1(d)) and single-step
search, single-bit ultra-compact CAM shown in Fig. 1(e)
necessitates 1 FeFET with 2 step searches. As the FSDOI-
based FeFET CAM is able to handle 4-bit per cell, an N-bit
CAM only requires N/4 FeFETs. Specifically, it can be seen
that in step one, the “store0search1” (st0sr1) cell is detected,
and in step two, the “store1search0” (st1sr0) cell is then
detected. Since the total Hamming distance (HD) between
the query and a stored vector is simply the number of
“store0search1” and “store1search0” cells. By the fact that
IS1M L = IO N Nst0sr1 and IS2M L = IO N (Ntotal − Nst1sr0),
we obtain [27]:

Ham.dist. = Nst0sr1 + Nst1sr0 ∝ IS2M L − IS1M L (1)

Then, by changing the reference of the sense amplifier
for detecting rows exceeding the threshold, the HDGIM
framework is able to handle multi-bit CiM genome sequence
matching. Here, we further discuss the required peripherals

of the in-memory HDGIM array. Specifically, we choose to
leverage a current-based sensing scheme for the multi-bit
HDGIM CAM, which bypasses the time-sensitive voltage drop
sensing [6]. Unlike previous CAM sensing circuits built with
analog-to-digital converters [33], HDGIM only necessitates a
threshold-adjustable comparator that outputs the CAM row’s
label with the highest similarity. As discussed in Section I,
with the write voltage of the FDSOI-based FeFET reduced
to I/O-compatible ±1.85V, high-cost level shifters [34] and
isolation sensing path [35] comprised of high-voltage-tolerant
MOSFETs are eliminated. Trans-impedance amplifier (TIA)
and comparator serve as the sense amplifiers (SAs), where
TIA provides high-resolution current-to-voltage conversion
for HD current from a CAM row [36], and the compara-
tor compares the voltage-based HD value with the HDGIM
threshold value T [37]. Fig. 6(b) describes the required control
signals for the HDGIM array (obtained from system verilog),
which comprises the voltage biasing (Volt), column selection
(Col_Sel), write from FDSOI-based FeFET front gate (WR),
row selection (Row_Sel), step-one search from the back gate
(RD1), step-two search from the back gate (RD2), and register
enable (Reg).

IV. HDGIM FRAMEWORK

Fig. 7 shows an overview of genome sequence search in
the high-dimensional space. The first step is to encode the
genome sequence into a high-dimensional space. It assigns
a hypervector corresponding to each base alphabet in 6 =
{A, C, G, T } for DNA. The encoding module depends on
the data type and the genomics task [14]. We aggregate all
encoded sequences to generate a reference genome, called
HDC Library that we will consider as our model. An HDC
library consists of several reference hypervectors, where each
hypervector memorizes thousands of genome sequences in
high-dimensional space. During the sequence searching, HDC
uses the same encoding to map a query sequence into a
hypervector. We perform a similarity computation between a
query and each reference hypervector. By searching for an
exact or approximate match, it identifies a query’s similarity
with thousands of memorized patterns stored in each HDC
library hypervector.

Our framework consists of two models: the full-precision
ideal model and the deployed model, which will be the one that
has been adapted in bit-precision and receives the noise effects,
in order to be used in a FeFET-based CAM. The framework
hyperparameters for initialization consist of the bit-precision
for the deployed model B, the number of dimensions in every
hypervector D, the chunk size n, and the discharge current
matrix Mc, containing mapping values to compute similarities
since we do not have available dot product as a similarity
function. The mapping values are the current discharges given
two symbols being compared.

A. HDGIM Encoding

In this step 1 , the model encodes the given DNA sequence
into high-dimensional space. To achieve this, the model first
samples D−dimensional vectors H⃗Ã ∈ {x ∈ R| − Ã <

x < Ã}D uniformly randomly for each Ã ∈ {A, C, G, T }.
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Fig. 7. Overview of HDGIM sequence matching in the hyperdimensional space.

Fig. 8. Overview of model projection where B = 2.

Next, the model splits DNA sequence R into small over-
lapping chunks R j with length n by window sliding. For
example, if we have R =< A, C, G, G, T > with n = 3,
resulting small chunks would be < A, C, G >, < C, G, G >,
< G, G, T >. After this, each chunk is encoded by binding
the base hypervectors into high-dimensional space S⃗i = H⃗R j

∗
Ä H⃗R j+1 ∗ Ä2 H⃗R j+2 ∗ · · · ∗ Än−1 H⃗R j+n−1 , where Ä represents a
rotational shift. Lastly, the encoded hypervector of the DNA
sequence S is computed by bundling all its chunk hypervectors
Si , S =∑

i Si 2 .

B. Hardware Adaptation Components

Before we describe the learning model, we proceed to
describe the adaptation of the hardware modeling to our frame-
work, which consists of a modified similarity function based
on our designed CAM, bit-precision quantization, to convert
our full-precision model to an N-bit precision that fits the
FeFET-based CiM used and the noise introduction to the
model.

1) Quantization: The quantization is conducted on the
query and on the model projection step 4 , where we adapt
the ideal model to the bit-precision constraint. It quantizes
the components of the hypervector to B bit symbols. Since
feature values do not follow uniform distribution in general,
it calculates scores of the HDC components and uses the
cumulative normal distribution function to quantize feature
values. Fig. 8 shows model projection on 2-bits.

2) Noise Modeling: In order for the model to simulate
a FeFET-based CiM we use the noise modeling explained
in Section III. We use the experiment parameters to generate
the distribution. It causes a symbol v to increase or decrease
to v+1 or v−1. Each value in the quantized hypervector has a
certain probability of stochastic variation. For instance, if ran-
dom changing probability is p, a value v in the hypervector

TABLE I

PROABLISTIC ERROR MODEL AS THE INTERFACE

BETWEEN HARDWARE AND SOFTWARE

will be changed to the value of v + 1 with probability p
right
v

and v− 1 with probability p
le f t
v where

∑2B−1
i=0 v

le f t
i +v

right
i

2B = p.
If v − 1 is less than 0 or v + 1 is greater than 2B − 1, only
an increase or decrease will be applied with probability p

respectively. An example is given in Tab. I. We then apply the
noise during inference on the model projection step 3 . The
values remain unchanged until the next model projection step.

3) Similarity Function: Given two DB-bit(s) hypervectors
H1 and H2, current similarity ¶(H1, H2) is computed using
d⃗ = |H1 − H2| and Mc indicating current matrix containing
mapping values for computing similarities 5 . Now, the simi-
larity is computed as follows:

¶(H1, H2) =
D−1
∑

i=0

Mc

d⃗i

Note that 0 f d⃗i < |Mc| = 2B .

C. Iterative Training

For each training step, training data with labels are given to
the full-precision model. Each data has a query DNA sequence
of n size, which is equal to the size of each chunk used in the
encoding step, with a label value indicating whether the query
DNA sequence is contained in the model’s DNA sequence R

or not. Once we reach the validation phase of our training,
instead of testing it with the full-precision model, we use
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the quantized model. Since this is not a classification but a
detection task, the model requires threshold value T in order
to decide if a sequence pertains to the HDC library. Once the
evaluations are done, we test for multiple threshold values and
pick the value with the best accuracy, which is dependent on
the dimensionality of the hypervector and error probability.

For each query DNA sequence Q⃗ with label value, the
full-precision model is updated as follows 6 :

{

S⃗← S⃗ − ³ Q⃗ if ¶(S⃗q , Q⃗q)/D g T and Q /∈ R

S⃗← S⃗ + ³ Q⃗ if ¶(S⃗q , Q⃗q)/D < T and Q ∈ R

where ³ indicates the learning rate and T indicates the
threshold value. Q⃗q and S⃗q are quantized Q⃗ and S⃗ to B-bit(s)
respectively. Mc is used in ¶ which is computing similarity
between the given hypervectors. Finally, S⃗q is computed from
updated S⃗ by a model projection that repeats the quantization
step 4 .

V. CAPACITY OF HARDWARE-BASED HDC

In this section, we evaluate the memory capacity of our
classifier. The notion of capacity in HDC measures the ability
of the HDC model to represent and approximate complex
functions for learning tasks. Specifically for our matching
tasks, it serves as a measure of HDC memorization and
establishes some analytical relation between the parameters of
the model, the data, and the performance of the model through
the lens of information theory. This knowledge facilitates many
model deployment tasks, including scaling models for larger
datasets, tuning hyperparameters for desired performance,
and comparing our model with other ones, including neural
networks. In particular, we provide an analysis where the
information capacity is evaluated with subsets of symbolic
input as memory entries (since each sequence is a bundling of
seed hypervectors as opposed to a single one). The analysis
consists of four parts:

1) Deriving the distributions of the similarity between a
class hypervector and a query DNA hypervector for
cases where the DNA is in the class and where is it not.

2) Inferring detection accuracy of the model from said dis-
tribution and model parameters, including the threshold.

3) Evaluating the information-theoretic memory capacity of
the model based on previous metrics.

4) Discussing the information loss from quantization.

A. Setup

We use dot product as the similarity metric: ¶(Q⃗, C⃗l) =
Q⃗T C⃗l . In addition to the notation in Section IV, we assume a
fixed number of chunks per DNA sequence m, the number
of entries in the classifier V , and the alphabet size a =
|{A, C, G, T }| = 4. In particular, the number of chunks m is
introduced to make the analysis more general, where the stride
of the encoding can be tuned. In our encoding, stride s = 1,
meaning that consecutive chunks are displaced by 1 symbol;
in this case, m = l−n+1

s
= l−n+1. In addition, we assume a

static model for memorization, where model S⃗ is the bundling
of all encoded DNA hypervector S⃗(i): S⃗ =∑V

i=1 S⃗(i).

B. Sequence Signal

We first characterize the distribution of similarity between
a query and a class hypervector. To do so, we begin by
estimating the signal (similarity evaluation with a class hyper-
vector) of each chunk of the query, denoted Q⃗k for the kth

chunk. If Q belongs to the class, then Q = S(o) for some
o ∈ [1, V ]. Applying the linearity of the dot product twice
(to the granularity of sequences and then to that of chunks),

¶(Q⃗k, S⃗)

=
∑

i∈Cl

¶(Q⃗k, S⃗
(i)) = ¶(Q⃗k, S⃗

(o))+
∑

o ̸=i∈Cl

¶(Q⃗k, S⃗
(i))

= ¶(Q⃗k, S⃗
(o)
k )+

∑

j ̸=k

¶(Q⃗k, S⃗
(o)
j )+

∑

o ̸=i∈Cl

m
∑

j=1

¶(Q⃗k, S⃗
(i)
j )

The first term in (V) is clearly D. As for the other (m−1)+
(V − 1)m = V m − 1 terms, we notice that if the chunk
underlying the hypervector happens to be the same, then a
“spurious”, or false positive, the signal of D will be generated;
otherwise, the noise follows the normal distribution N (0, Ã 2)

for some Ã . While it is certainly the case that consecutive
chunks are correlated and their similarity hence depends on the
exact sequence of alphabets within the chunk, the total number
of chunks within S⃗ is high enough that this approximation
is reasonable. In the case of bipolar hypervector, Ã =

√
D.

Assuming a uniform random distribution of alphabets within
DNA sequences, the probability of a false positive chunk
is A−n . Thus,

¶(Q⃗k, S⃗)

≈ D +
V

∑

i=1

m
∑

j=1
(i, j )̸=(o,k)

(Pr(Q⃗k ̸= S⃗
(i)
j )N (0, Ã 2)+ Pr(Q⃗k = S⃗

(i)
j )D

= (1+ (mV − 1)A−n)D + (1− A−n)N (0, (mV − 1)Ã 2)

Collectively, a query signal consists of the signal from m

chunks. Hence,

¶(Q⃗, S⃗) ∼ m(1+ (mV − 1)A−n)D

+(1− A−n)N (0, m(mV − 1)Ã 2)

Similarly, the similarity between Q⃗′, a sequence not in the
class, and S⃗ is

¶(Q⃗′, S⃗) ≈ m2V A−n D + (1− A−n)N (0, m2V Ã 2)

To further simplify the analysis, we consider appropriate
parameter settings. In practice, we would like to memorize
as many DNA sequences as we can. This means V k 1;
in addition, we would like the probability of a false positive
chunk to be low, so An k 1. Finally, This leads to much
simpler distributions:

¶(Q⃗, S⃗) ∼ N (m(1+ mV A−n)D, m2V Ã 2)

¶(Q⃗′, S⃗) ∼ N (m2V A−n D, m2V Ã 2)
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C. Detection Accuracy

From the signal and noise distributions derived above,
we can estimate the detection accuracy given a threshold,
which implies the quality of the memorization (per item).
More precisely, we care about both true positive rate and false
positive rate, T P R¹ and F P R¹ :

T P R¹ = Pr(¶(Q, S) > ¹ |Q ∈ S)

= 8(
m(1+ mV A−n)D − ¹

mÃ
√

V
)

F P R¹ = Pr(¶(Q, S) > ¹ |Q /∈ S)

= 8(
m2V A−n D − ¹

mÃ
√

V
)

where 8 is the cumulative distribution function (cdf) of
the standard normal distribution. The rates can be simplified
further as we rescale the threshold; namely, we set ¹ ′ such that
¹ = m¹ ′ + m2V A−n D. We thus derive the true positive rate
and false positive rate function tp, f p with respect to scaled
threshold ¹ ′:

tp(¹ ′) = 8(
m(D − ¹ ′)

mÃ
√

V
) = 8(

D − ¹ ′

Ã
√

V
) (2)

f p(¹ ′) = 8(
¹ ′

Ã
√

V
) (3)

The detection accuracy Acc can then be derived from the
two, with an additional parameter ps on the probability that a
query belongs to the class:

Accps (¹ ′) = ps8(
D − ¹ ′

Ã
√

V
)+ (1− ps)(1−8(

¹ ′

Ã
√

V
)) (4)

D. Memory Capacity

Following the methodology in [38]. we define the memory
capacity as its information content: the mutual information
between true inputs and the inputs retrievable from the
model S⃗. Notice that because the model is only for detec-
tion, the analysis for the mutual information collapse to an
analysis over the distribution with respect to the membership
of DNA sequences instead of over that of DNA sequences
themselves. Let ŝ be the random variable of the detector
output and s be the membership of a query. For simplicity,
let the support of ŝ, s be {0, 1}, indicating undetected/detected
for ŝ and not present/present for s, respectively. Therefore,
under fixed parameter ps and threshold ¹ ′, the mutual infor-
mation between the set of DNA sequences {S⃗(i)} and the
model S⃗ is

I ({S⃗(i)}, S⃗) = DK L(Pr(ŝ, s)||Pr(ŝ) Pr(s))

=
∑

i, j∈{0,1}
Pr(ŝ = i, s = j) log2

Pr(ŝ= i, s= j)

Pr(ŝ = i) Pr(s = j)

where DK L is the KL divergence [39]. By definition, Pr(s) is
described succinctly by ps (Pr(s = 1) = ps). Pr(ŝ = 1) =
tp · ps + f p · (1 − ps) is the marginal probability with
which the detector outputs “detected”. The joint probabil-
ity Pr(ŝ, s) can be computed by the conditional probability
Pr(ŝ|s) = Pr(ŝ, s)/ Pr(s), whose values are the true/false

positive/negative rates of the detector. The memory capacity
is simplified as

I ({S⃗(i)}, S⃗)

= ps(tp log tp + (1− tp) log(1− tp)− log Z)

+ (1− ps)( f p log f p+(1− f p) log(1− f p)−log(1− Z))

where Z = Pr(ŝ = 1) = tp · ps + f p · (1 − ps), and ¹ ′ is
implicit.

E. Effect of Quantization

We now discuss the effect of quantization on our model.
Due to the lack of theoretical work on low-fidelity quan-
tization, which would be more proper for our case of
quantizing each component to 3 ∼ 4 bits, we analyze
the impact of quantization using high-resolution quantization
theory.

As mentioned previously, during quantization, we fit a Gaus-
sian distribution over the collection of hypervector components
and quantize each bit according to its percentile. As this
quantization method takes into account the statistics of all
hypervector components (D of them), and each component
is quantized to the same amount of bits (encoding rate is
fixed), it is classified as a fixed-rate D−dimensional quantizer.
As a result, the quality of the quantizer ¶D(R) has an upper
bound of

¶D(R) ∼= MD´DÃ 22−2R

where ¶D(R) is the operational rate-distortion function of
the quantizer, and MSE measures the distortion. R is the

bit rate, MD
D→0−−−→ (2Ãe)−1 is Gersho’s constant [40]

that accounts for the least normalized moment of inertia of
D−dimensional tessellating polytopes, ´D

D→0−−−→ (2Ãe) is
Zador’s factor [41], and Ã is the standard deviation of the
source (assumed gaussian). As suggested in [42], the high
dimensionality of the quantizer allows close approximation
of the constants. Furthermore, the performance of the D-
dimentional quantization method converges to that of the
optimal D-dimentional quantizer as D approaches infinity.
This is the result of Asymptotic Equipartition Property [43],
a standard assumption in information theory, which states
that when the dimension is large, the dimensional probability
density for a stationary, ergodic source with continuous ran-
dom variables is approximately constant with overwhelming
probability. This results in both our HDC quantizer and the
optimal quantizer collapsing to a uniform quantizer over the
support of the source distribution [42].

One thing worth mentioning is a scalar quantization method
typically used for the HDC model: instead of evening out
the percentile for each quantization level based on component
distribution, this method even out the length for each level
based on the range of the components. While the scalar
quantization is clearly more efficient, it incurs a space-filling
loss of Ãe

6 ≈ 1.53d B1 [42].

1Which is the ratio of the normalized moment of inertia of a cube to that
of a high-dimensional sphere.
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VI. EVALUATION

A. Experimental Setup

The proposed framework has been executed with a software
framework. Our software framework is implemented using
Pytorch and supports HDC encoding and classification.

Our dataset comprises extensive DNA strings randomly
selected from an E. coli [44] dataset to simulate a patient’s
genome library. Regarding preprocessing, we refrain from
applying any modifications to the dataset sequence. Instead,
we employ our HDC’s sequential encoding algorithm to
generate hypervectors, a key design component described
in section IV-A. We study the effectiveness of our technique
over a randomly selected DNA sequence with 1,000 lengths.
To test our model, we have a positive set of 50 samples
generated as substrings of DNA sequence and a negative set,
which consisted of 50 random queries that did not pertain to
the DNA sequence. Each test sequence has a size of 10, and
negative samples were sampled from a uniform distribution.

To meticulously assess the efficacy of our algorithm’s learn-
ing capabilities, we have strategically chosen to emphasize
accuracy as our primary evaluation metric, which consists
of the percentage of sequences properly tagged either as
pertaining or non-pertaining to the DNA library. This choice
enables us to maintain a consistent and equitable assessment
across various scenarios and environmental settings, all of
which are influenced by different configurations of the FeFET
circuits. In each evaluation, we executed 10 epochs on the
iterative training with a learning rate ³ of 1.0. Also, to have
maximum performance for each evaluation, we evaluated with
100 different threshold values T .

We evaluate our framework with a FeFET model of 3nm and
10nm thickness at 27 ◦C and 80 ◦C, where each configuration
yields different noise probability distributions. Subsequently,
we study the effect of bit-precision, which affects the informa-
tion loss and is a configuration hyperparameter to the modeling
of the noise, dimension of hypervectors, which for HDC,
is known to be a main hyperparameter to define accuracy
and noise quality. Finally, we compare the effect of adding
noise during training and inference in the hopes of proving that
introducing the noise during training will allow the model to
learn to adapt to the non-idealities of the device. In hardware,
we implement and test our method on CiM using TCAD
for FeFET device analysis modeling, HSpice for circuit level
evaluation, and our in-house cycle-accurate simulator to verify
HDGIM functionality in architecture and application levels.
All reported results are end-to-end, including the overhead
of codebook generation, encoding, HDC library generation,
iterative quantization, noise modeling, and model update. Our
simulator is connected to PyTorch for easy programmability
and maximum efficiency.

In terms of comparison, in the field of genome sequencing,
the only significant effort where hyperdimensional computing
was used in conjunction with Computing in Memory (CiM)
can be found in [15], showing promising results for a 1-bit
circuit. However, there was a problem: the CiM circuit they
used didn’t consider the non-idealities we consider, such as
noise during inference or training, and as a result, the device
was not realistically accurate.

Fig. 9. Performance of HDGIM and the adapted works in [15] and [45] by
applying our modeled noise.

Another tried to adapt the same hyperdimensional comput-
ing idea for CiM, but they were using it for classification, not
matching genome sequences [45]. Additionally, they didn’t
need to use the same advanced model structure that we
used for our application, which consists of two models:
one full-precision model that contains the information and a
simulated version of the deployed model, with quantization
and noise application.

We used both HDC models and applied them to the
genome-matching task with our considered non-idealities that
can happen in the CiM device we used. Our results, as shown
in 9, reveal that our approach performs better than previous
attempts. By addressing the imperfections in the CiM device
and optimizing the HDC model for genome matching, we’ve
made significant progress in improving the accuracy and effec-
tiveness of this critical task in genomics research, showing
improvements for up to 42% against the original work of
BioHD and 27%.

Our reference baseline aims for peak precision on a
noise-free GPU model, ideal for generating our Computing
in Memory (CiM) deployed model, which can be found
in Figure 5 2 . However, it neglects real-world device noise,
notably CiM’s inherent noise, due to factors like temperature
fluctuations and bit-level limitations. This omission maintains
model accuracy even after quantization for CiM adaptation,
favoring uniform quantization, which handles information loss
without noise.

In our unique situation, we lack comparable models for
fair analysis. The closest approximation is the HDGIM model,
configured with 3nm thickness at a 27Â◦C base temperature
and a 10nm thickness variation (representing only 0.04% noise
probability). Surprisingly, this modest noise consideration sus-
tains our model’s 32-bit precision performance, as shown
in Figure 8. Subsequent experiments aim to closely mimic
this desirable scenario in achieving high accuracies.

B. Highly-Scaled FeFET Performance

In this experiment, we evaluate HDGIM using the
highly-scaled FeFET of 3nm thickness and compare it to the
10nm thick one. The exploration was done through several
dimensionalities. The noise modeling applied had a 39.7%
error probability for the 3nm one and 1.03% for the 10nm.
The noise can shift one symbol to a neighboring one and the
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Fig. 10. Performance of HDGIM modeling a 10nm and 3nm thick FeFET.

TABLE II

NOISE LEVELS FOR DIFFERENT THICKNESSES OF THE FERROELECTRIC

LAYER, BIT PRECISION, AND TEMPERATURES

probability is not equal for each side contrary to the experi-
ment for the noise exploration where it has equal probability
for each side. The noise was only considered during inference.
Fig. 10 demonstrates the high accuracy of our framework
even for the noisy 3nm cases, only requiring a hypervec-
tor dimension of 6000 to achieve perfect performance. This
confirms that our framework when deployed to the FeFET-
based CiM, will offer great capabilities for a genome sequence
task and thus takes full advantage of a computing-in-memory
architecture. The results further show that highly-scaled 3nm
FeFET can be employed for actual application tasks despite
their high variation.

C. High-Temperature FeFET Performance

In this subsection, we extend the study of the performance
of HDGIM using the different temperatures on the baseline
FeFET and its highly-scaled counterpart. The exploration is
structurally the same as the previous experiment, only chang-
ing the noise modeling values depending on the temperature.
The modeling resulted in Tab. II.

Fig. 12 demonstrates the high accuracy of our framework
even for the noisy 3nm cases, only requiring a hypervector
dimension of 6000 to achieve perfect performance. This con-
firms that our framework, when deployed to the FeFET-based
CiM, will offer great capabilities for a genome sequence
task and thus take full advantage of a computing-in-memory
architecture. The results further show that highly-scaled 3nm
FeFET can be employed for actual application tasks despite
their high variation.

D. Noise Effect on Bit-Precision and Dimension

of Hypervectors

Given the results achieved in the previous section,
we decided to analyze the impact of manipulating several
parameters on the model. We generated multiple instances
of HDGIM with different bit-precision and dimensions and
applied a probability of noise ranging from 0 to 60%. Fig. 14
shows the results of the exploration.

The results indicate that without noise HDGIM works
accurately at any bit-precision. It is able to memorize all the
patterns and not lose accuracy, compared to the full-precision
model. However, a probability of error in the range of 20-60%
impacts the accuracy of all the models. They require higher
dimensional hypervectors to maintain the same performance
as the full precision model. An exception is a 1-bit model,
which fails to improve with higher dimensions for more than
20% error probability.

We observe that a 4-bit precision FeFET-based CAM with
at least a dimension of 6000 is able to perform almost
as well as the full-precision model. Even though the error
probabilities can be high, since the hypervector patterns are
highly separated in the hyperspace and the changes are only
done to neighboring symbols, these effects are not enough
when we have enough representations of values. This is the
reason that the 4-bit precision is the only one to successfully
surpass the severe error constraint.

Considering that the smallest thickness of our FeFET
model is 3nm for 3-bit precision and that the probability of
error consists of 39.71%, this shows that we can work with
any bit-precision FeFET-based CiM, except the 1-bit, which
was considered in the previous implementation for Genome
Sequence Matching on CiM [15], and in this case, would be
unable to perform under these circumstances.

E. Comparison of Noise During Training and Inference

The next step is considering the impact of adding the
noise perturbations during iterative training, to observe if the
model is able to learn to adapt to the effect of the noise.
We considered only the cases from 2 to 4-bit precision.
Fig. 13(a) corresponds to the noise added during inference
and (b) during iterative training.

The results show that introducing noise before inference
results in better performance overall for the same dimen-
sionality. Most importantly, the 3-bit precision can achieve
higher accuracy (lighter zones shown in Fig. 13b) at lower
dimensions. The highlighted zones show that for the same
area dependent on the dimension and noise values, introducing
noise during the model adjustment increases accuracy by 8.4%
on average. The 2-bit case starts to perform better for smaller
noises but the improvements are smaller for higher pertur-
bations (range 60-100%). Lastly, 4-bit was already robust,
and introducing noise during training does not significantly
improve the accuracy.

F. Energy and Speedup Hardware Comparison

In this section, we provide an assessment of the energy
and speedup costs associated with implementing our algorithm
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Fig. 11. Performance of HDGIM modeling the temperature for 10nm and 3nm thick on the Front gate FeFET configuration.

Fig. 12. Performance of HDGIM modeling the temperature for 10nm and 3nm thick on the Back gate FeFET configuration.

Fig. 13. Heatmap of accuracies for (a) noise introduced during inference and (b) training for 2, 3, and 4 bits.

on cutting-edge hardware designs, comparing it with our
FeFET design. While there are various implementations for
genome sequence matching using different machine learning
algorithms, none involve in-memory computation with the
ability to achieve the bit precisions we address. Compar-
ing our work to these other algorithmic implementations
would be inappropriate and beyond the scope of this study.
Additionally, existing works in this field often neglect to

incorporate variability effects due to process variation and
temperature into the model from emerging technologies,
which is a vulnerability in Deep Neural Network imple-
mentations that we have demonstrated in prior work. Our
evaluation, previously presented in this section and depicted
in Figure 9, illustrates the performance disparities of the
algorithm across various Computing Memory FeFET cell
configurations.
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Fig. 14. Exploration of multi-bit HDGIM for different noise probabilities.

Fig. 15. Speedup and Energy efficiency of HDGIM on different Com-
pute-in-Memory hardware frameworks for 1-bit precision, using GPU on GPU
as the baseline.

For a comprehensive analysis, we compared only hardware
setups regarding energy and speedup using our algorithm.
Our study includes a thorough comparison of speedup
and energy efficiency for different state-of-the-art Comput-
ing in Memory architectures implementing our HDGIM
algorithm. The benchmark for this comparison is a GPU with
NVBIO [46], a GPU-accelerated C++ framework designed
for High-Throughput Sequence Analysis. We focused our
evaluation solely on 1-bit precision since it is not the
main emphasis of our work. The evaluation incorporates
distinct hardware acceleration technologies, such as Compute-
dRAM [47] and Newtown [48] as DRAM-based accelerators,
RAPID [25], a recent PIM accelerator for genome tasks based
on magnetic and resistive devices, and FloatPIM [49], a Deep
Neural Network Compute in Memory Accelerator.

In Figure 15, our CiM architecture, being FeFET-based,
demonstrates the most energy-efficient performance, with
improvements of up to 95× compared to the GPU baseline and
up to 7.2× when contrasted with RAPID. Regarding speedup,
our hardware circuit outperforms others, showcasing speedups
of up to 110× compared to the GPU baseline and up to 7.3×
compared to Newtown. Overall, our results indicate that our
architecture using HDC is highly superior to other hardware
accelerators used for genomic tasks. If we combine these

results and the results of Figure 9, we can prove consistent
HDGIM’s superiority.

VII. CONCLUSION

In this paper extension, we revisit genome sequence match-
ing and introduce a framework capable of FeFET-based
Computing in Memory. Specifically designed to optimize
performance with FeFET non-idealities and in-memory archi-
tecture, our results demonstrate equivalent performance to the
full-precision model on a highly-scaled FeFET-based CiM.
Notably, our approach proves resilient to noise, even at
highly-scaled FeFET levels of 3-bit and 4-bit, maintaining
robustness with high dimensionality during inference.

Our study thoroughly assesses our framework’s performance
on advanced hardware, considering often overlooked factors in
genomic tasks with compute-in-memory hardware. Focusing
on intricacies like temperature and scaling size in FeFET
computing, we offer reliable insights for future deployment.
Addressing variability from FeFET, including polarization and
process variation, enhances fundamental reliability. While not
exploring transistor aging in this paper, we acknowledge it as a
distinct consideration, actively addressing reliability concerns.

A significant strength is our comprehensive examination of
FeFET cell scalability, addressing concerns in the computing-
in-memory community. We highlight the model’s efficacy,
particularly at higher bit-precisions and with elevated tem-
peratures common in handling large genomic datasets. Our
research uncovers a trade-off between thickness, scalability,
and the required HDC model hyperparameters.
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