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Infinitesimal structure of log canonical thresholds
Jihao Liu, Fanjun Meng, and Lingyao Xie

Abstract. We show that log canonical thresholds of fixed dimension are standardized. More pre-
cisely, we show that any sequence of log canonical thresholds in fixed dimension d accumulates
either (i) in a way which is similar to how standard and hyperstandard sets accumulate, or (ii) to log
canonical thresholds in dimension < d — 2. This provides an accurate description on the infinites-
imal structure of the set of log canonical thresholds. We also discuss similar behaviors of minimal
log discrepancies, canonical thresholds, and K-semistable thresholds.

1. Introduction

We work over the field of complex numbers C. For any set I' C R, we let dI" be the set
of accumulation points of I" and [ := ' U 3T the closure of I". We let 3°T := T, and
denote the set of k-th order accumulation points of I' by d¥T" for any k > 0. It is clear that
9KT" = KT for any non-negative integer k.

Log canonical thresholds. The log canonical threshold (Ict for short) is a fundamental
invariant in algebraic geometry. It originates from analysis which measures the integra-
bility of a holomorphic function. In birational geometry, the log canonical threshold mea-
sures the complexity of the singularities of a triple (X, B; D) where (X, B) is a pair and
D is an effective R-Cartier R-divisor.

Definition 1.1. Let (X, B) be a pair and D > 0 an R-Cartier R-divisor. We define
Ict(X, B; D) := sup {t > 0| (X, B + tD) is log canonical (lc)}

to be the Ict of D with respect to (X, B). The set of Icts in dimension d is defined as

Iet(d) := { Iet(X, B; D)

dim X = d, (X, B) islc, B is an effective Weil diVisor,}
and D is an effective Q-Cartier Weil divisor '
It is well known that the set of log canonical thresholds of fixed dimension satisfies

the ascending chain condition (ACC) [10, Theorem 1.1] and their accumulation points
are log canonical thresholds from lower dimension [10, Theorem 1.11]. The purpose of
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this paper is to discuss how Icts approach their accumulation points. More precisely, we
show that the sets of Icts of fixed dimension are standardized sets. Roughly speaking, this
says that the infinitesimal behavior of the sets of Icts is similar to the behavior of standard
and hyperstandard sets, especially near their first order accumulation points. We first give
definitions of standardized sets.

Definition 1.2 (Standardized sets). Let I' C R be a set and yy a real number. We say that
I is standardized near y if there exist a positive real number ¢, a positive integer m, and
real numbers by, ..., by, such that

b.
Fﬂ()’o—e,)’o—i-S)C{)/o—i-—l i,neNT, lfifm}.
n

We say that T is
(1) weakly standardized if T is standardized near any yo € I'\0T, and

(2) standardized if 9¥T is weakly standardized for any non-negative integer k and
9'T" = @ for some positive integer /.

By Lemma 2.16 below, I is weakly standardized (resp. standardized) if and only if
0°T" = T is weakly standardized (resp. standardized).
Roughly speaking, a standardized set I" has a filtration

F=0T>dr>0r---29r=90

which consists of weakly standardized sets. Note that when I" C [0, 1] and 1 is the only
possible accumulation point of I', a standardized set is always a subset of a hyperstandard
set [25, Section 3.2]. This is the reason why we adopt the word “standardized”.

The main theorem of our paper is as follows.

Theorem 1.3 (Main theorem). For any positive integer d, the set Ict(d) is standardized.

We remark that Theorem 1.3 also holds for pairs which allow more complicated
boundary coefficients. See Theorem 4.2 for more details.
To obtain a better understanding of Theorem 1.3, we provide several examples below.

Example 1.4. Let d,aq,...,ay be fixed positive integers. For any positive integer n, we
consider the “diagonal” polynomial f, = x7' + x5% + -+ + x;d + x7;,, and the divisor
Sy = (fy = 0) on X := C9+!_ Suppose that "¢ % < 1 and n > 0, then it is well
known that

_ _ TN T NN
vn = 1ct(X,0; Sp) = mm{l,;a—i + ;} = Z— + —.

a; n
i=1 "

Let yo :=Z?’=1 % Then yy is the accumulation point of { y,,};l" 21 Moreover, y, approaches

Yo in a “standardized way” as
1
Yn =Yoo+ —.
n
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In other words, {y, ;:i is standardized near yq, hence {y, ,T‘Z’ol is a standardized set. In
fact, it is not hard to check that the set of Icts of “diagonal” polynomials of dimension

d+1,
d+l1
5

i=1 '

Cly.. . Cdq1 € N+} n o, 1],
is a standardized set.
Example 1.5. Tt is known that the set of Icts on C? is

c1+ ¢
ci1cy +ajcy + arcq

wrs =

ap +c1 > max{2,as}, ar + ¢, > maX{Z,al},}

aip,dz,C1,C2 € N

and the set of Icts on C! is
HT | =let(l) = {% ‘k e N*} U {0}
(cf. [16, (15.5)]). We have
AHT > = HT\{1} = {% ( keN* k> 2} U {0}

and 3?>H T 5 = {0} (cf. [16, Theoerem 7). It is not hard to see that, for any k € N T and
any sequence

{Vn};::(i CHT >
such that

1 .
0<¢=voi= lim 'y,

possibly by passing to a subsequence and switching ¢; and c,, we have

Cin +C2
Ci,nC2 +aica +azcrp

Yn =

for some fixed a1, az, c» and strictly increasing sequence of integers ¢ ,, such that a; +
¢y = k and a; < k. Therefore, y, approaches y, in a “standardized way” as

ek —a 1 ek —a
Yn = Yo+ 2( 1)' S )/0+—2( 1)‘meN+.
k kcip +aica m

It is not hard to deduce that # T, is standardized near any yo € dH T ,\0*H T .

On the other hand, it is clear that the values in #J > may not approach 0 in a stan-
dardized way, hence T, is not standardized near 0. Nevertheless, 0 is a second order
accumulation point of T ,, hence H T, is still a weakly standardized set. Moreover,
since 0 is an accumulation point of # 7 ; and T ; is standardized near 0, we know that
JCT 5 is standardized.
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Theorem 1.3 could be potentially applied to the study on Han’s uniform bounded-
ness conjecture of minimal log discrepancies (cf. [11, Conjecture 7.2]), especially on its
weaker version for fixed germs (cf. [21, Conjecture 1.1]), as the accumulation points of
Icts naturally appear in the study of these conjectures.

We also expect Theorem 1.3 to be useful when estimating the precise values of log
canonical thresholds in high dimension, especially the 1-gap of Ic thresholds.

Nevertheless, with Theorem 1.3 settled, it will be interesting to ask whether other
invariants in birational geometry behave similarly, such as the minimal log discrepancy
and the canonical threshold. We will confirm that the sets of these invariants are standard-
ized in some special cases in the following.

Minimal log discrepancies. The minimal log discrepancy (mld for short) is another fun-
damental invariant in algebraic geometry, which measures how singular a variety is. The
smaller the mld is, the worse the singularity is.

Definition 1.6. Let (X > x) be an Ic singularity. We define
mld(X > x) := min {a(E, X)| Eisover X > x}
to be the mld of (X > x). The set of mlds for varieties of dimension d is defined as
mld(d) := {mld(X 5x)|dmX =d, X > xis lc}.

Similar to the sets of log canonical thresholds, the sets of minimal log discrepancies of
fixed dimension are also conjectured to satisfy the ACC [27, Problem 5], and its accumula-
tion points are expected to come from lower dimension (cf. [12, Version 1, Remark 1.2]).
Unfortunately, the ACC conjecture for mlds is open in dimension > 3, hence it will be
difficult to show the standardized behavior of this invariant. Nevertheless, we are able to
prove that the sets of mlds are standardized in some special cases.

Theorem 1.7. The following sets of minimal log discrepancies are standardized.

(1) The sets mld(1) and mld(2) are standardized.

(2) The set {mld(X) | dim X = 3, X is canonical} is standardized.

(3) For any positive integer d and positive real number ¢,
{mld(X 5 x)|dimX =d, X > x has an &-plt blow up}
is standardized. In particular,
{mld(X 5x)|dmX =d, X >xis exceptional}

is standardized.

We remark that Theorem 1.7 also holds for Ic pairs whose boundary coefficients
belong to a finite set. See Section 3 for more details.
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We also remark that Theorem 1.7 (3) is actually important in the proof of Theorem 1.3.
Note that the standardized behavior of mlds is very important due to the following exam-
ple, which shows that a conjectural standardized behavior is already very helpful in the
study of the ACC conjecture for mlds. In fact, the standardized behavior of Icts and mlds
was observed when the first author examined the following example in [19].

Example 1.8. A recent work of the first author and Luo shows that % is the second largest
accumulation point of global mlds in dimension 3 [19, Theorem 1.3]. An important ingre-
dient of the proof is [19, Theorem 3.5], which essentially uses the conjectural standardized
behavior of mld(3) in (%, 1). The idea is as follows.

For any real number a € (%, 1), we associate infinite equations to @ such that a €
mld(3) (almost) only if these equations have a common solution (cf. [19, Definition 3.4]).
Denote the set of these equations by & (a). For each fixed a, the equations in &(a) are
computable. As there are infinitely many equations, in practice, it is not hard to verify
that the equations in &(a) do not have any common solution by checking finitely many
of them, but it is difficult to verify that the equations in & (a) have a common solution.
Moreover, since there are uncountably many real numbers a in (%, 1), we cannot consider
all &(a) at the same time. To resolve these issues, a key idea is to decompose (%, 1)asa

disjoint union of subsets
5 ~
(g’ 1) = U r,ul

such that

D [ satisfies the ACC and only accumulates to % (hence these values will not influ-
ence the proof of [19, Theorem 3.5]), and

(2) for any fixed n, ['; is an open interval, and the equations in ("),cr, €(a) do not
have any common solution. This implies that I, N mld(3) = @.

The difficulty is that we need to guess what T is. Since the equations in &(a) have a
common solution (almost) whenever a € mld(3) N (%, 1) and mld(i) N (%, 1) is known to
be an infinite set, we need to find a regular pattern of the values in I'.

At this point, a key observation is that the equations in &(a) heavily rely on the
denominator of a. This is the reason why we conjectured that the denominator of a grows
standardly respect to a — % when a approaches %. With this conjecture in mind, an attempt
on setting

7 {5n+m

12
= )m,neNJr,lfme}U{ }
6n+m

13

is successful. In summary, the conjecture on the standardized behavior of the set of mlds
was essentially applied in the proof of [19, Theorem 3.5], in a way that we directly “guess
the set of mlds out”. Note that I' is standardized as the only accumulation point of I" is %
and

— =—-+ ——c
6n +m 6 36n+6m

5n+m 5 m {5 m
/

g—i——‘l,meN"’,lfme}.
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Similar strategies in [19] can be applied to further studies on mld(3), especially for

those values that are > % as % is the conjectured largest second order accumulation point

of threefold mlds. See [14, 20, 26] for related results.

Canonical thresholds. The canonical threshold is another important invariant in bira-
tional geometry. In particular, canonical thresholds in dimension 3 are deeply related to
Sarkisov links in dimension 3 (cf. [9, 24]). It is known that, in dimension < 3, the set of
canonical thresholds satisfies the ACC [7, 8, 11], and its accumulation points come from
lower dimension [7, 11]. We show that the set of canonical thresholds is also standardized
in dimension < 3, which actually follows from the proofs in [7, 11].

Theorem 1.9. The set of canonical thresholds ct(d) in dimension d is standardized when
d <3.

Further discussions. Yuchen Liu informed us that an invariant in K-stability and wall-
crossing theory, the K-semistable threshold (walls), may also behave in a standardized
way.

Example 1.10 ([2, Theorem 5.16]). The list of K-moduli walls of Efﬂf (the K-moduli
stack which parametrizes K-polystable log Fano pairs (X, ¢ D) admitting a Q-Gorenstein
smoothing to (P3, ¢S) where S is a quartic surface) is

4
{1 _Z ‘n € {6,8,10,12, 13, 14, 16, 18,22}},
n

which is a subset of a hyperstandard set (Definition 2.1). Although this is a very specific
example and the value of the walls are finite, using a hyperstandard set to describe the
thresholds is natural in this case, and it is possible that larger classes of K-semistable
thresholds also behave in a standardized way.

2. Preliminaries
We adopt the standard notation and definitions in [5, 17] and will freely use them.

2.1. Sets
Definition 2.1. Let I' C R be a set. We say that

(1) T satisfies the descending chain condition (DCC) if any decreasing sequence in I"
stabilizes,

(2) T satisfies the ascending chain condition (ACC) if any increasing sequence in I'
stabilizes,

(3) T is the standard set if T = {1 — 1 | n € N*T} U {1}, and

(4) ([25, Section 3.2], [3, Section 2.2]) I is a hyperstandard set if there exists a finite
set [op C Rxg suchthat0,1 € Toand T = {1 -2 |n e N*,y e [o} N[0, 1].
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2.2. Pairs and singularities

Definition 2.2 (Pairs, cf. [0, Definition 3.2]). A pair (X/Z > z, B) consists of a contrac-
tion w : X — Z, a (not necessarily closed) point z € Z, and an R-divisor B > 0 on X,
such that Ky + B is R-Cartier over a neighborhood of z. If 7 is the identity map and
z = x, then we may use (X > x, B) instead of (X/Z > z, B). In addition, if B = 0, then
we use X > x instead of (X > x,0). If (X > x, B) is a pair for any codimension > 1 point
x € X, then we call (X, B) a pair. A pair (X > x, B) is called a germ if x is a closed point.

Definition 2.3 (Singularities of pairs). Let (X > x, B) be a pair and E a prime divisor
over X such that x € centery E. Let f : Y — X be a log resolution of (X, B) such that
centery E is a divisor, and suppose that Ky + By = f*(Kx + B) over a neighborhood
of x. We define a(E, X, B) := 1 — multg By to be the log discrepancy of E with respect
to (X, B).

For any prime divisor E over X, we say that E is over X > x if centery E = x. We
define

mld(X > x, B) := inf{a(E, X, B) | E is over X > x}

to be the minimal log discrepancy (mld) of (X > x, B). We define
mld(X, B) := inf {a(E, X, B) | E is exceptional over X }.
We define
tmld(X, B) := inf {a(E, X, B) | E is over X}

to be the toral minimal log discrepancy (tmld) of (X, B).

Let ¢ be a non-negative real number. We say that (X > x, B) is lc (resp. klt, e-lc, e-kit)
if mld(X > x, B) > 0 (resp. > 0, > ¢, > ¢). We say that (X, B) is lc (resp. klt, &-lc, e-kit)
if tmld(X, B) > 0 (resp. > 0, > ¢, > ¢).

We say that (X, B) is canonical (resp. terminal, plt, e-plt) if mld(X, B) > 1 (resp. > 1,
>0, > ¢e).

Definition 2.4. Let a be a non-negative real number, (X > x, B) (resp. (X, B)) an Ic pair,
and D > 0 an R-Cartier R-divisor on X. We define

a-lct(X 2 x, B; D) := sup{ —00,t|t>0,(X>x,B+1tD)is a-lc}
(resp. a-let(X, B; D) := sup{ — oo, | t = 0, (X, B + D) is a-Ic})
to be the a-lc threshold of D with respect to (X 3 x, B) (resp. (X, B)). We define
ct(X 5x,B;D):=sup{—o0,t |1 >0, (X 5x,B+1tD)is l-Ic}
(resp. ct(X, B; D) :=sup{ — oo, | 1 = 0, (X, B 4 tD) is canonical})

to be the canonical threshold of D with respect to (X > x, B) (resp. (X, B)). We define
Iet(X > x, B; D) := 0-1ct(X > x, B; D) (resp. Ict(X, B; D) := 0-1ct(X, B; D)) to be
the lc threshold of D with respect to (X > x, B) (resp. (X, B)).
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Definition 2.5. Assume that X is a normal variety and B is an R-divisor on X. We write
B e T if the coefficients of B belong to I'. For any positive integer d, we define

mld(d,T) := {mld(X >x,B)|dimX =d, (X >x,B)islc, B € F},
let(d,T) := {lct(X,B;D) |dmX =d, (X,B)islc, BeT, D€ N+},
ct(d,T) := {ct(X, B; D) | dim X = d, (X, B) is canonical, B € I', D € N*}.

We let mld(0, ") = 1ct(0, I') = ct(0, ") := {0}. For any non-negative integer d, we
let mld(d) := mld(d, {0}), Ict(d) := lct(d, {0, 1}), and ct(d) := ct(d, {0, 1}).

2.3. Complements

Definition 2.6. Let n be a positive integer, 'y C (0, 1] a finite set, and (X/Z > z, B) and
(X/Z >z, B™) two pairs. We say that (X/Z >z, B™) is an R-complement of (X/Z >z, B)
if

s (X/Z>3z,BY)islc,

e BT > B, and

e Ky+ BT ~gOovera neighborhood of z.

We say that (X/Z > z, B) is an n-complement of (X/Z > z, B) if

e (X/Z>3z,BY)islc,

e nBT>|(n+1){B}| +n|B],and

* n(Kx + BT) ~ 0 over a neighborhood of z.

We say that (X/Z > z, B) is R-complementary if (X/Z > z, B) has an R-complement.
We say that (X/Z 5z, BT) is a monotonic n-complement of (X/Z 3z, B) if (X/Z >z,B™)
is an n-complement of (X/Z > z, B) and BT > B.

We say that (X/Z >z, B ") is an (n, Ty)-decomposable R-complement of (X/Z >z, B)
if there exist a positive integer k, ay, .. .,ax € Iy, and Q-divisors B+, R B,j on X, such
that
e ¥ ai=1landY*_ a;B} = BT,

* (X/Z > z,B%)is an R-complement of (X/Z > z, B), and

* (X/Z >z, B;") is an n-complement of itself for each i.

Theorem 2.7 ([12, Theorem 1.10]). Let d be a positive integer and T" C [0, 1] a DCC set.
Then there exist a positive integer n and a finite set Ty C (0, 1] depending only on d and
I satisfying the following.

Assume that (X/Z > z, B) is a pair of dimension d and B € T, such that X is of Fano
type over Z and (X/Z > z, B) is R-complementary. Then (X/Z > z, B) has an (n, T'p)-
decomposable R-complement. Moreover, if T C Q, then (X/Z > z, B) has a monotonic
n-complement.
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2.4. PIt blow-ups

Definition 2.8. Let (X > x, B) be a kit germ and ¢ a positive real number. A plf (resp. &-
plt) blow-up of (X > x, B) is a divisorial contraction f : Y — X with a prime exceptional
divisor E over X > x, such that (Y/X > x, f, ! B + E) is plt (resp. e-plt) and —E is ample
over X.

Lemma 2.9 ([28, Section 3.1], [23, Proposition 2.9], [18, Theorem 1.5], [29, Lemma 1]).
Assume that (X 3 x, B) is a kit germ such that dim X > 2. Then there exists a plt blow-up
of (X > x,B).

Definition 2.10. Let (X > x, B) be an Ic germ. We say that (X > x, B) is exceptional if
for any R-divisor G > 0 on X such that (X > x, B 4+ G) is Ic, there exists at most one Ic
place of (X > x, B + G).

2.5. Special sets

Definition 2.11. Let I" C [0, 1] be a set, d a positive integer, and ¢ a positive real number.
We define

Ty = <{O}U {Z)/,- | Y1ve ooV er}) N o, 1],
D(T) ={m_1+” ‘meNJr, )/GF+},
D(T,c) := {m_1+y+kc [ m. ke N, yer+}m[o,1],
N.T.c) = {(X B) (X, B) is projective Ic, Ky + B =0, dimX = d}’
B=L+C, LeD®),0#CeDT,c)
R(.T.c) = {( (X,B) e N(n, T, c), (X,B)is Q- factorlalklt}’
p(X)=1,1<n<d
N@d.T):={c|cel01], N(d.T,c) # 0},
K(d.T):={c|cel0,1], R(d.T.c) # 0}.

We define
N(0,T) = K(0,T) := {1;—” ‘ yely, ne N+} U {0y,
N(-1,T) = K(-1,T) := {0}.
The following results in [10] are used in the proof of the main theorem.

Theorem 2.12 ([10, Lemmas 11.2 and 11.4, Proposition 11.5, Theorem 1.11]). Let d be
a non-negative integer and I' C [0, 1] a set. Then

(1) 1et(d,T) C let(d + 1,T) and N(d — 1,T) C N(d,T),
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2) N(d,TU{l}) = K(,TI),
3) ifT' =Ty, thenlet(d,T) = N(d — 1,T), and
@ if1el, T =T4, and oT C {1}, then dlct(d + 1,T) = let(d, ") \{1}.

2.6. Basic properties of standardized sets

The behavior of standardized sets is generally similar to the behavior of DCC sets and
ACC sets. However, there are still some differences.

Example 2.13. It is clear that any subset of a DCC (resp. ACC) set is still DCC (resp.
ACC). However, a subset of a standardized set may no longer be standardized. Consider
the sets 'y := {725 | n eNTland T, =T U{%—}—% |n,m € N*}. Then I'y C I',.
It is not hard to check that I'; is a standardized set but I'; is not. This is because although
I'1 and T, are both not standardized near 0, 0 & 92Ty, but 0 € 9%T,.

We summarize the following properties on standardized sets below which we will use
in this paper.
Lemma 2.14. Let T be a set of real numbers and yqy a real number. Then:

(1) If yo & OT, then T is standardized near yy.

(2) Ifyo € 02T, then T is not standardized near yy.

(3) For any real number a, U is standardized near yg if and only if {y +a |y € I'}
is standardized near a + yy.

(4) For any non-zero number c, T is standardized near yq if and only if {cy | y € T'}
is standardized near cyy.

(5) Suppose that T’ = Ule I'i. Then T is standardized near yy if and only if each T';
is standardized near yy. In particular, I is standardized near yy if and only if any
subset of T is standardized near Y.

(6) T is standardized near yy if and only if T' 0 (Yo — €0, Yo + €0) is standardized
near Yo for some positive real number &.

) If{y —yo |y € T} CQ, then T is standardized near yy if and only if there exists
a positive integer 1 and a positive real number ¢, such that

F0Go=ero+9)C ot [0 €200} U ol

(8) T is standardized near yq if and only if T is standardized near .

Proof. For any yo ¢ dI", we may pick a positive real number ¢ such that

(Yo—¢&,v0+¢e)NT ={yo}or®.

This implies (1).
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Suppose that I is standardized near yg for some yo € 0>I". Then there exist a positive
real number ¢, a positive integer m, and real numbers b1, . . ., by, such that

FN(yo—eyo+e C {yo+l;—’ iineNT 1<i fm}.
Thus the only accumulation point of I' N (Yo — &, yo + €) is Yo, hence yo ¢ 0T, a con-
tradiction. This implies (2).

(3) (4) (6) are obvious.

We prove (5). If T is standardized near yy, then there exist a positive real number ¢, a
positive integer m, and non-zero real numbers by, . .., by,, such that

b
LiN(yo—evo+e) CN(yo—eyo+e) C {yo—f-n—" ‘ joneNt 1< §m}.
for each 1 <i <k, hence I'; is standardized near y, for each i. If I'; is standardized near

yo for each i, then there exist positive integers my, ..., mg, a finite set of real numbers
{bi,j }1<i<k, 1<j<m;> and real numbers €1, . .., &, such that

b‘.
HﬂWwwbm+a)Cbm+ff‘LneNﬂlsjfm}

for each i. Let ¢ := min{ey, ..., &}, then

b :
FN(yo—eyo+eC {yo+ﬂ i.jneNt 1<i<k 1<j Smi},
n
hence I is standardized.
We prove (7). The if part is obvious. Suppose that I" is standardized near yy, then there
exist a positive real number ¢, a positive integer m, and non-zero real numbers b1, . . ., by,
such that

b.
Fm()’o-&)’o-ﬁ-éf)c{)’o-i-—l i,neN+,1§i§m}.
n

Since {y —yo | y € '} C Q, we may assume that b; € Q for each i. We may let / be a
common denominator of the elements in {b_l, | b; # O}.

The if part of (8) follows from (5). Suppose that I is standardized near yy, then there
exist a positive real number ¢, a positive integer m, and non-zero real numbers b1, . . ., by,
such that

b.
Fﬂ()’o—8,)’0+8)c{)’0+—l i,neN+,1§i§m}.
n

Thus

— b
FD(VO—S,J/OWLS)CFﬂ()’o—&)’0+8)c{J/0+%l

iineNT, 1§isn}u{yo},

hence T is standardized near yy. ]
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Lemma 2.15. Let I' be a set of real numbers and yq a real number. Suppose that for any
sequence {y,-};of C TI' such that lim; _,  » y; = Yo, there exists an infinite subsequence
of {yi }l+=°f which is standardized near yo. Then U is standardized near vyy.

Proof. For any non-zero real number y, we let [y] be its Q-class under multiplication:
[y] = [y'] if and only if y = sy’ for some s € Q*. By Lemma 2.14 (3), possibly by
replacing yo with 0 and I" with {y — yo | y € '}, we may assume that yo = 0. For any
positive real number ¢, we consider I'g.¢ := {[y] | ¥ € (I' N (—¢, £))\{0}}.

Suppose that I'g . is an infinite set for any positive real number . Then we may pick a
sequence {)/,'}?‘zof C I" such that [y;] # [y;] forany i # j and lim; _, o y; = 0. By assump-
tion, there exists a strictly increasing sequence of integers {r;};-° such that {y,, }]-% is
standardized near 0, so there exist a positive integer m and real numbers b1, .. ., by, such
that

b.
{Vri ?:fC {ﬁ‘j,neN*, 1<j Sm}.

This is not possible as the QQ-classes of {% | j,n e NT, 1 < j <m)} are finite. Therefore,
I'g,s, 1s a finite set for some positive real number g9. By Lemma 2.14 (6), we may replace
I’ with I N (—e&g, &9) and write I = Ule I'; for some positive integer k, such that [y;] #
[y;] for any y; € I'; and y; € I'; and any i # j, and [o] = [B] for any «, B € I'; and
any i. By Lemma 2.14 (5), we only need to show that I'; is standardized near O for any 7.
Therefore, we may assume that k = 1. In particular, there exists a non-zero real number ¢
andaset ' C Qsuchthat ' = {cy’ |y’ € T'}. By Lemma 2.14 (4), possibly by replacing
I' with T/, we may assume that ' C Q.

Suppose that I" is not standardized near 0. By Lemma 2.14 (7), there exists a sequence

-y Foo
{2l cr
qi)i=1
such that ged(p;, ¢;) = 1, lim; oo | pi| = +00, and lim; 4 oo % = 0. It is clear that no
infinite subsequence of {%};;of is standardized near 0, a contradiction. ]

Lemma 2.16. Let T, T be two sets of real numbers. Then:

(1) T is weakly standardized (resp. standardized) if and only if T is weakly standard-
ized (resp. standardized).

(2) If T and T are weakly standardized (resp. standardized), then T U T is weakly
standardized (resp. standardized).

Proof. Since T\3?T" = I'\02T = T'\9?T and 9*T" = 9*T for any non-negative integer k,
(1) follows from Lemma 2.14 (8).

Since 3*(I' U T’) = 9¥T" U 9*T” for any non-negative integer k, (2) follows from
Lemma 2.14 (5). [ ]

We summarize some additional properties of standardized sets in the following lemma.
The lemma is interesting in its own right. However, we do not need this lemma in the rest
of this paper.
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Lemma 2.17. Let T', T be two sets of real numbers.
(1) T is weakly standardized if and only if T is standardized near any yy € dI'\9°T.
(2) If T, T are standardized and both satisfy the DCC (resp. ACC), then

T={y+y'lyel. y el
is standardized.
(3) If T is a finite set, then T is standardized if and only if T U T is standardized.

@) If TV is an interval, T is DCC or ACC, and T is standardized, then T N T is
standardized.

(5) If T C [0, 1] satisfies the DCC and is standardized, then Ty and D(T") are stan-
dardized.

(6) IfT C [0, 400) satisfies the ACC and is standardized, then {% | y € T',n € Nt}
is standardized.

Proof. (1) It follows from Lemma 2.14 (1).
(2) Since T" and T both satisfy the DCC (resp. ACC), we have

k
akl—w — U{y + y/ | y € aiF, )// c ak—il—v}.
i=0

Since T and I'’ are standardized, 9'T = @ and 8’ T’ = @ for some positive integers /, !’
Thus 3'+/'T” = @. By induction on / + !’ and Lemma 2.16(2), we only need to show
that T'” is weakly standardized. By Lemma 2.15 and (1), we only need to show that for
any yy € 9I'”\9*T"” and any sequence {yt 1729 such that lim,_>+oo Y/ = v, a subse-
quence of {y/’ l+°° is standardized near yj. We may write y;’ = y; + y/ where y; € I" and
y; € T''. Possibly by passing to a subsequence, we may assume that y;, y/ are increasing
(resp. decreasing), 1im; 400 ¥i = Yo, and lim;— 100 ¥ = y4. If {y;};25 and {y/}; both
have strictly increasing (resp. strictly decreasing) subsequences then possibly by passing
to subsequences, we may assume that {y; }l_1 and {yl ;o7 are strictly increasing (resp.
strictly decreasing). Since

4

vo = lim (yo+yj)= lim lim (yi+7y;),
Jj—>+oo

Jj—>tooi—>+

yq € 8°T”, a contradiction. Thus possibly by passing to a subsequence and switching
I, T/, we may assume that y; = yo for each i. By Lemma 2.14 (3), {;} 1% is standardized
near y, and we get (2).

(3) We have 9% (I" U T”) = 9*T for any positive integer k. For any real number y, and
non-negative integer k, since I'' is a finite set, by Lemma 2.14 (5), 9% T is standardized
near yo if and only if 3% (I" U I"') is standardized near y,. This implies (3).

(4) By Lemma 2.14 (4), possibly by replacing I" with {—y | y € '} and I’ with {—y’ |
y’ € T}, we may assume that I is DCC. Leta := infI’ € {—oco} UR and ¢ := supI"’ €
{400} UR. Since T satisfies the DCC, « is not an accumulation point of ' N I’ Thus
(I NI = T NT)\{a, c} or (KT N I"\{a}) U {c} for any positive integer k.
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By (3) and induction on the minimal non-negative integer / such that 9'T" = @, we only
need to show that I" N T is weakly standardized. By (1) and Lemma 2.14 (6), we only need
to show that I' N I' is standardized near ¢ when ¢ < +o0 and ¢ € d(I' N TV)\d>(I' N I).
Since T satisfies the DCC, ¢ € 9(I' N TY)\d?(I' N I'’) if and only if ¢ € d'\3?T", hence
I is standardized near ¢ when ¢ € 9(I' N T)\d?(I" N I'Y). Statement (4) follows from
Lemma 2.14 (5).

(5) Suppose that I C [0, 1] satisfies the DCC and is standardized. First we show that
Iy is standardized. We let 'y ;=T and let [y, :={y + ¥y |y € I, ¥ € T'y_;} for any
integer k > 2. Since T satisfies the DCC, we may let ¥ := min{l,y € T | y > 0}. By (2),
Iy is standardized for any positive integer k. Since 'y = (FL%J U {0}) N[0, 1], by (3) (4),
I'; is standardized.

Now we show that D(I") is standardized. We may replace I" with I'; and suppose that
I = I'y. Then (3¥T"); = 9¥T" U {0} for any non-negative integer k. We have

—1
D(F):{u ’meN+, yeF}.
m
Let ko be the minimal positive integer such that 9¥°T" # @. By induction, we have
—1
ok D(T) = {1} U {u [ment, ye akr}
m

forany 1 < k < ko, 3%0T1D(T") = {1}, and 9* D(T") = @ for any k > ko + 2. By (3) and
induction on kg, we only need to show that D(I") is weakly standardized. There are two
cases.

Case 1. The set I is a finite set. Then 1 is the only accumulation point of D(I"), and it is
clear that D(T") is standardized near 1. By (1), D(I") is weakly standardized.

Case 2. The set I is not a finite set. Then 1 € 3> D(T"). For any ¢ € [0, 1) and any sequence
{ci l+°‘f C D(T') such that lim; _, 4 oo ¢; = ¢, possibly by passing to a subsequence we have

m—1+y;
m
such that m is a constant and y; € I for eachi.If ¢ ¢ 32 D(T"), then by Lemma 2.14 (3) (4),
{c; }l.+=°f is standardized near ¢. By Lemma 2.15, D(T") is standardized near c, hence D(T")
is weakly standardized.
(6) Since I satisfies the ACC,

C; =

' C [0, M]

for some positive integer M. By Lemma 2.14 (4), possibly by replacing I" with {7 | y € T},
we may assume that M = 1. Let TV :={l —y | y € '}, then I C [0, 1] satisfies the DCC
and is standardized. By the same argument as in (5) and Lemma 2.14 (3) (4),

_1 /
{Z‘neNﬂyer}:{l_u meNT, V/ep/}
n m

is standardized. [
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3. Standardization of (some) log discrepancies

Theorem 3.1. Let I' C [0, 1] be a finite set. Then mld(1, ') and mld(2, I") are standard-
ized.

Proof. Since mld(1,T) ={1,1 —y | y € I'} is a finite set, mld(1, I') is standardized.

We first show that mld(2, I') is standardized near any aop > 0. Fix ap > 0 and let
{ai};':‘f C mld(2, I") be any sequence such that lim;_, y o a; = ao. Let (X; > x;, B;) be
a surface singularity such that B; € I" and mld(X; > x;, B;) = a;.

Claim 3.2. Possibly by passing to a subsequence, we have

_adi + B
YA+ 8

where o, § > 0 and B > 0 are constants such that § € Q, and A; € N7,

Proof. This essentially follows from [6, Lemma A.2] (see also [1, Lemma 3.3]), but since
the argument of [6, Lemma A.2] is very long, we provide a short proof here.

Let ¢ := min{ag, ['>o}. If the possibilities of the dual graphs of the minimal resolution
of X; € x; is finite, then there are only finitely many possibilities of ¢; = mld(X; € x;, B;),
which is not possible. Therefore, by [6, Lemma A.6], possibly by passing to a subse-
quence, we may assume that

a; = mld(X,- S X, Bi) = pld(Xi S Xj, B,‘).

Possibly by passing to a subsequence, we may assume that (X; 3 x;, B;) is of one of the
types as in [6, Lemma A.2 (1)] (§¢,r). [6, Lemma A.2 (2)] (€, ), or [6, Lemma A.2 (3)]
(Ter)- If (X; 2 x4, B;) is of type &, for each i, then there are finitely many possibilities
of the dual graph of the minimal resolution of X; > x;, which is again not possible. If
(Xi > x;, B;) is of type T, for each i, then [6, Lemma A.2 (3)] implies that

o

b
mi —{i

a; = pld(X; > x;, B;) =

2 . . ..
where q; < m; < I_%J L), q; and m; are integers, and ¢; belongs to a finite set as it is
constructed as in [6, p. 35, line 17] and T’ is a finite set. In this case, m_“_" 7 belongs to a
finite set, which is not possible. Therefore, we may assume that (X; > x;, B;) is of type

€, r foreachi. [6, Lemma A.2 (2)] implies that

(A‘ + ma,i ) o1, q1,i . %2,

! mai—qa,i/ mii—q,i mii—qi,i M2i—q2,

a; = pld(Xl > X, Bl) = A+ q1,i I ms; s
! mii—qu,i myi—qz,

2 2 .
where g;,; <my; < L%JLeJ and g ; <my; < L%JLSJ, q1,i-42,i.-M1,i, My, are integers,
and A; is a non-negative integers. Therefore, possibly passing to a subsequence, we may
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assume that q1,;,q2,;, m1,;, my; are constants, and 4; > 0. We may let

oy, L may,i o1, qi,i o2,
—dq1,i Mmai —dqz,; Mii—(q1, mii —q1,i Mai —{q2;

and q m
1,i 2,i
8= + . [
—q1i M2, —q2,

Proof of Theorem 3.1 continued. Let «, B,§ and A; be as in Claim 3.2. Then @ = ag, and

,3—6108
Ai +8°

a; =dag +

Therefore, {a; }l_1 is standardized near ay. By Lemma 2.15, mld(2, I) is standardized
near dy.
By [6, Lemma A.2] (see also [1, Lemma 3.3]), we have

1 —
{0,—(neN+}cam1d(2,r)c{o, Y ‘neNJr,yeFJr}
n

and

9> mld(2,T) = {0}.
Since T is a finite set, I+ is a finite set, hence {0, 1 Y |y eIy, n € NT} is standard-
ized near 0. By Lemma 2.14 (5), d mld(2, ") is standardlzed near 0. Since mld(2,T") C
[0, +00), mld(2, T") is standardized. L]

Theorem 3.3. Let I' C [0, 1] be a finite set. Then
I’:= {mld(X, B)|dimX =3, Be 1"} N [1, +00)
is standardized and its only accumulation point is 1.

Proof. By [22, Corollary 1.5], 1 is the only accumulation point of I/, so we only need
to show that I'’ is standardized near 1. By Lemma 2.15, we only need to show that for
any sequence of palrs {(Xi, Bi)} = +°° such that dim X; = 3, B; € ', and mld(X;, B;) > 1,

{mld(X;, B; )} | has a subsequence which is standardized near 1. Possibly by passing
toa subsequence and replacing each (X;, B;) with a Q-factorialization, we may assume
that each X; is Q-factorial. By [11, Theorem 6.12], possibly by passing to a subsequence,
we may find a positive integer / depending only on I', and prime divisors E; that are
exceptional over X;, such thata(E;, X;, B;) = mld(X;, B;) > 1anda(E;, X;,0) <1+ IL,-’
where I; is the Cartier index of Ky, near the generic point x; of centery; E;. By [15,
Corollary 5.2], for any prime divisor D on X;, I; D is Cartier near x;. Since I is a ﬁnite
set, possibly by passing to a subsequence, we may assume that a(E;, X;, B;) = 1 + ¥ T

where y € (0,/] is a constant. It is clear that {a (E;, X;, B,)}l_1 is standardized near 1 and
the theorem follows. u
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Lemma 3.4. Let d be a positive integer, € and c two positive real numbers, and I" C [0, 1]
and T C [0, +00) N Q two finite sets. Then there exist a finite set 'y C (0, +00) and
a finite set Ty C [0, +00) N Q depending only on d, e, c, T, and T’ which satisfy the
following.

Assume that (X 2 x, B) is an Ilc pair of dimension d, such that

(1) B=A+sSsuchthatAeTl,S eI, and

(2) (X>3x,A+cS) has an e-plt blow-up f : Y — X which extracts a prime divisor E.

Then a(E, X, B) = *=C=98 'yshere o € Ty, B € Ty, andn € N*,

Proof. Possibly by replacing ¢, s and I/, we may assume that S is a Weil divisor. By
cutting X by general hyperplane sections and applying induction on dimension, we may
assume that x is a closed point. Let Ay, By, and Sy be the strict transforms of A, B and
S on Y respectively, and a := a(E, X, B).

Ky + By +(1—a)E = f*(Kx + B).
Since (X 3 x,B)islc,a > 0. Let
Kg + Bg :=(Ky + By + E)|[g and Kg + BEE = (Ky + Ay + ¢Sy + E)|Eg.

Since @ > 0 and —F is ample/X, —(Kg + Bg) is nef. Since f is an e-plt blow-up of
(X>x,A+cS), (E, B}E) is an &-klt log Fano pair. By [4, Theorem 1.1], E belongs to a
bounded family. Thus there exist a positive integer M depending only on d and &, and a
very ample divisor H on E, such that

—Kg-H™2 <M.

By adjunction (cf. [12, Theorem 3.10]), we may write

Zmp—l-i-)/D-i-SkD
mp

mD—1+)/D+CkDD
mp

Bg = D and B%:Z

D

)

D

where the sums are taken over all prime divisors D on E, mp are positive integers, kp
are non-negative integers, and yp € I'y. Since (E, By) is e-kltand I" C [0, 1] is a finite
set, yp belongs to a finite set of non-negative real numbers, mp belongs to a finite set of
positive integers, and kp belongs to a finite set of non-negative integers.

Since 0 < —(Kg + BjE) He 2 <Mand D -H% 2isa positive integer for each D,
—(Kg + Bg) - H%72 is of the form o’ — (s — ¢)p’, where o’ = —(Kg + By) - H2
belongs to a finite set of positive real numbers and g := (3" Z—LL’)D) - H%72 belongs to
a finite set of non-negative rational numbers.

Let Hy, ..., Hj_, be general elements in |H|,C := ENH{ N Hy---N Hy_5, and
ri= L%J 1. Since (Y/X 2 x, By + E) is e-plt, by [12, Theorem 3.10], rE | g is a Q-Cartier
Weil divisor. In particular, —F - C belongs to the discrete set %NJF. Since

(Ky + By + 1-a)E)-C =0,
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we have
L —(Ky + By + E)-C _ —(Kg + Bg)-H?™?
- -E-C - -E-C
Thus a = r(o‘/_(fz—_c)ﬁ/), where n € NT. We may let o := ra’ and B := rp’. [

Lemma 3.5. Let d be a positive integer, € a positive real number, and T C [0, 1] a finite
set. Then

{a(E,X, B) (X > x, B) has an g-plt blow-up f : Y — X}

which extracts E, dimX =d,B €T’
is standardized and its only possible accumulation point is 0.
Proof. 1t follows from Lemma 3.4 by lettingc = s = 1 and S = 0. ]

Theorem 3.6. Let d be a positive integer, € a positive real number, and I' C [0, 1] a finite
set. Then

I'd,er):= {mld(X 5x,B)|dimX =d, (X > x, B) has an e-plt blow up}
is standardized and its only possible accumulation point is 0. In particular,
Id,T):= {mld(X 5x,B)|dimX =d, (X >x,B)is exceptional}
is standardized and its only possible accumulation point is 0.

Proof. By [12, Theorems 1.2, 1.3], the only possible accumulation point of I';(d, €, ')
and [';(d,T") is 0. By Lemma 2.14 (1), we only need to show that 'y (d,&,T") and I',(d, T)
are standardized near 0.

By [12, Lemma 3.22], there exists a positive real number &’ depending only on d and
', such that for any exceptional pair (X > x, B) of dimension d with B € T, (X > x, B)
has an &'-plt blow-up. In particular, I'>(d, ") C T'1(d, &', T).

By [12, Theorem 1.3] and Lemma 3.5,

I'(d,se,T)N[0,e] and Ty (d,&,T)N][0,¢€]

are standardized near 0. By Lemma 2.14 (6), 'y (d, &, T") and 'y (d, ¢/, T") are standardized
near 0. By Lemma 2.14 (5), I';(d, I') is standardized near 0, and we are done. [

Proof of Theorem 1.7. Tt follows from Theorems 3.1, 3.3, and 3.6 when I' = {0}. |

4. Standardization of log canonical thresholds

Lemma 4.1. Let d be a positive integer, ¢ a non-negative real number, and I' C [0, 1] a
set such that 1 € T'y. Suppose that (X, B) € N(d, T, c¢) is a pair such that (X, B) is not
kit. Thenc € N(d — 1,T).
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Proof. Possibly by replacing (X, B) with a dIt modification, we may assume that | B | # 0
and X is Q-factorial. We may assume that ¢ # 0. We may write B = L + C such that
LeDT)and0# C € D(I',¢). If |[C]| # 0, then

m—1+y+kc
m
for some m,k e N* andy€F+.ByTheorem2.12(1),c=I_TVGN(O,F)CN(d—l,F).

Thus we may assume that |C | = 0.
If |L]| = 0, then

=1

mp— 14y _I_m2—1+)’2+kc
mi moyp

=1

for some my,my, k € NT and yy, y» € T'4. Since ¢ # 0, either m; = 1 or my = 1. If
m; = 1, then

1_ —
c=lZrmmn oy e v -
and if m, = 1, then
1_ —
c=— MM o NoO,T) C Nd —1,T).
mlk

Thus we may assume that | L] # 0. We let T be an irreducible component of | L |. We run
a(Kxy + L)-MMP ¢ : X --> X’ which terminates with a Mori fiber space X’ — Z. Then
this MMP is C -positive, hence C is not contracted by this MMP.

If T is contracted by ¢, then there exists a step of the MMP v : X" — X" which is a
divisorial contraction and contracts the strict transform of 7 on X”. Let B”, L"”,C",T"
be the strict transforms of B, L, C, T on X" respectively. Since ¢ is C”-positive, T"
intersects C”. Since (X, L) is dlt, (X", L") is dlt, hence T" is normal. Let

KT// —I— BT// = (KX// —|— B//)|T”1

then (T”, By») € N(d — 1, T, ¢). Thus ¢ € N(d — 1, T"). Therefore, we may assume that
T is not contracted by ¢.

We let B’, L', C’, T’ be the strict transforms of B, L, C, T on X’ respectively. Note
that 7’ is normal as (X’, L’) is dlt. Since ¢ is C-positive, C’ dominates Z.

If dim Z > 0, then we let F be a very general fiber of X’ — Z, and let

Kr + Br := (Kx' + B')|F,

then (F,Br) € N(d —dim Z,T',¢). Thusc € N(d —dimZ,T") C N(d — 1,T). Thus we
may assume that dim Z = 0 and p(X’) = 1.
If d > 2, then T’ intersects C’. Let

Kr' + Br = (Kx' + B) |1,

then (T’, Brr) € W(d — 1,T,¢). Thus ¢ € N(d — 1,T) and we are done.
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If d = 1, then we have

I 2
imj_1+yj+inj—1+y;+kjc:1
m; nj

j=1 J j=1

forsome/; € N, l,,mj,nj,kj € N, and Vi, yj/. e I';. Since ¢ > 0, possibly by reordering
indices, either m; = 1 forevery j andn; = 1 forevery j > 2, orm; = 1 forevery j > 2
and n; = 1 for every j. Thus either

I I
_ 1 _nl(Zjlzl yi + ijzz VJ/) -7

. : € N(0,T') c N(d —1,T)
ki +n1 ),k
or 1 1
C_1—md2;ﬂﬁ+zﬁﬂﬁyﬁ“eNmIchM—lr)
= I ' ’
mi Zj:lkj
and we are done. )

Theorem 4.2. Let d be a non-negative integer and I' C [0, 1] a set, such that 1 € T,
I' = T4, 1 is the only possible accumulation point of I, and T is standardized. Then
Ict(d, I') is standardized.

Proof. The proof consists of eight steps.

Step 1. In this step, we reduce our theorem to the case when d > 2 and show that we only
need to prove that Ict(d, I') is standardized near any

¢ elet(d —1,T)\(let(d —2,T) U{1}).

Since 1 is the only possible accumulation point of I" and I' is standardized, there exists
a positive integer m and non-negative real numbers by, ..., by, such that

b
Fc{kniimeNﬂlgigm}
n

In particular, T satisfies the DCC. By [10, Theorem 1.1], Ict(d, I') satisfies the ACC for
any non-negative integer d.
If d = 0, then the theorem follows from the definition. If d = 1, then

- bi
MMJﬁz{—?Z’keNﬂyeF}C{T)LmkeNﬂ1§i§m}
n

b
c{—’
n

Thus the only possible accumulation point of Ict(d, I') is 0, and by Lemma 2.14 (5),
Ict(d, I') is standardized near 0. Thus Ict(d, I') is standardized and we are done.

uneNﬂlgigm}
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Therefore, we may assume that d >2. By induction on dimension and Theorem 2.12 (4),
we only need to show that Ict(d, I') is weakly standardized, that is, for any

¢ € dlet(d, T)\*let(d, T') = let(d — 1, T)\(let(d —2,T) U {1}),
Ict(d, T') is standardized near c.
Step 2. For any ¢ € Ict(d — 1, ")\ (ct(d —2,T") U {1}) and ¢; € lct(d, ") such that

lim ¢; =c,
i—+o00

we construct pairs (X;, B;) € R(d, T, ¢;) in this step.
For ¢ € let(d — 1, ")\ (Ict(d — 2,T") U {1}), we define
gc:=sup{r|0=<t =<1, (c.c+1)Nlet(d —1,T) = 0}.

Since ¢ € dlct(d — 1,T), & > 0. By Theorem 2.12 (4), c is the only accumulation point of
(c,c + &) Nlet(d,T). Since let(d, I') satisfies the ACC, by Lemma 2.14 (6), we only need
to show that (c, ¢ + &.) N lct(d, I') is standardized near c. By Lemma 2.15, we only need
to show that for any sequence {c; l+=°f C (c,c + ;) Nlct(d, T') such that lim; _, 4 oo ¢; =,
a subsequence of {c,-}?'zof is standardized near c. Possibly by passing to a subsequence,
we may assume that ¢; is strictly decreasing.

In the following, we will fix ¢ € let(d — 1, ")\ (Ict(d — 2, T") U {1}) and a sequence

{ci} 2 C (c.c +ec) Nlet(d, T')
such that lim; , 4 o, ¢; = c. In particular,
c¢i €lct(d —1,T)

for each i. By Theorem 2.12(2) (3), ¢; € K(d — 1,I')\K(d —2,T") for each i and ¢ €
K(d —2,T)\K(d —3,T).Sinced > 2and c & lct(d —2,T), ¢ # 0. Thus there exists a
sequence of pairs (X;, B; = L; + C;), such that

(1) dimX; =d —land p(X;) =1,

(2) Kx; + B; = 0and (X;, B;) is Q-factorial klt, and

(3) Ly e D(I")and 0 # C; € D(T, ¢;).
In particular, for each i, we may write

ij— 1 i i nij—l4+yl . +kijc
LiZZn’lz,j ‘|‘7/z,jLi’j and Cizz i,J Vi i,] lCl"j,

: mi,j : nij
j sJ j ]

such that m; ;,n; j, ki j € NT, Vi.j-Vi; € T and L; j, C; ; are prime divisors. We write
C; = R; + ¢; S; where

nij—1+vi, ki)
R,’ = ZTCi’j and Si = Z —C,’,]’.

- — ;i
j j L]

We leta; :=tmld(X;, L; + R; + ¢S;). Possibly by passing to a subsequence, we may
assume that g; is increasing or decreasing, and let a := lim; , 4 o @;.
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Step 3. In this step, we show thata = 0.

Suppose that @ is a positive real number. Then there exists a positive real number &
such that (X;, L; + R; + ¢S;) is e-Ic for each i, hence X; belongs to a bounded family
by [4, Theorem 1.1]. Thus there exist a positive integer M which does not depend on 7,
and very ample divisors H; on X;, such that — Ky, - Hl.“’_2 < M foreachi.

Since (X;, L; + R; + ¢S;) is e-Ic for each i,

/

mij— 147y nij—l+y; +kijc
5L~ B <1 ¢ and J
mi.j ni,j

<1—¢ foranyi,j.

Since 1 is the only possible accumulation point of I' and ¢ > 0, m; j, y; j, ni yi”j ki
belong to a finite set. Thus L; - Hi“’_2 >0,R; - Hid_2 >0, and S; - Hid_2 > 0 belong to
discrete sets. Since Ky, + B; = 0, we have

(Kx; + Li + Ri +¢;5:) - Hid_z =0.

Thus ¢; = %, where p; = —(Kx, + L; + R;) - Hl.“'_2 belongs to a finite set of positive

real numbers, and g; = S; - Hid_2 belongs to a discrete set of positive real numbers. Thus

the only possible accumulation point of {c; l+=°f is 0, which is not possible as ¢ # 0.
Thus a = 0. Let a; := tmld(X;, B;). Sincea = 0and 0 < a; < a;, lim; ;o a; = 0.

Possibly by passing to a subsequence, we may assume that a; is strictly decreasing.

Step 4. In this step, we find a positive integer N, a finite set Iy C (0, 1], a positive

real number &g, and divisors 7; over X;. We then construct (N, I'g)-decomposable R-

complements (X;, L; + R; 4+ ¢S; 4+ G;) and Mori fiber spaces (X/, B) — Z;, and reduce

our theorem to the case when dim Z; = 0 and p(X}) = 1.

By Theorem 2.7, there exist a positive integer N and a finite set 'y C (0, 1] depending
only on d, I" and ¢, such that for any R-complementary pair (X/Z > z, B) where X is of
Fano type over Z,dimX =d — 1, and B € D(I' U {c}), (X/Z > z, B) has an (N, T'y)-
decomposable R-complement. We let g := min{2%- | yo € To} > 0. Since 0 = a =
lim; 4 o a;, possibly by passing to a subsequence, we may assume that ¢; < min{eo, 1}
for each i. We let T; be a prime divisor over X; such that a(7;, X;, B;) = tmld(X;, B;)
=a;. Welet (X;, L; + R; + cS; + G;) be an (N, I'g)-decomposable R-complement of
(Xi, L;i + R; + ¢S;). By our construction, a(7T;, X;, L; + R; + ¢S; + G;) = 0.

We construct a pair (X/, B}) and a Mori fiber space X; — Z; in the following way:

* IfT;ison X;, welet Z; := {pt}, (X],B)) = (X;, B;), L, := L; — L; A Tj, Lg,j =
Lijj, Ci/ =C —C; £NT;, Ci/,j = Ci’j, R; =Ri—R; NT;, Si/ =S, - (multTi Si)Ti,
and G! := G; — G; ANT;. Welet T} :=T;.

» If T; is exceptional over X;, we let f; : ¥; — X; be a birational contraction which only
extracts T;, and let By,, Ly,, Ly,,;, Cy,, Cy,,j, Ry,, Sy;, Gy, be the strict transforms
of B;, L;, L; j, Ci, Cij, R;, Si, G; on Y; respectively. We run a (KY,- + B}'i)-MMP,
which terminates with a Mori fiber space X/ — Z;. We let L], L;jj, cl, Ci/,j, R},

S/, G}, T/ be the strict transforms of Ly,, Ly, ;, Cy,, Cy,,;, Ry, Sy;» Gy;, Ti on X]

respectively, and let B} := (1 —a/)T/ + L + C/.
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By our construction, 7/ # 0, T/ dominates Z;, B/ = (1 —a})T/ + L, + C/, and C/ =
R} + ¢; S}. Moreover, since

Ky, +L;+R +cSi+G;=0 and a(T;,X;,L;i +R; +cS; +G;)=0,

(Xi,Li + R +¢S; + G;) and (X/, T/ 4+ L} + R; + ¢S] + G]) are crepant. Since

1
Kx, +Li+Ri+¢Si=0 and a(Ti,Xi,L; + R +¢;iSi) = aj,

(X[, (1 =a)T + L; + R} + ¢;S]) and (X;, B;) are crepant. Thus Ky; + (1 —aj)T] +
L, + R} +¢;S =0and (X],(1 —a))T{ + L; + R} + ¢;S}) is klt. Since a; > 0 and
lim; 1 o0 a; = 0, by [10, Theorem 1.5], possibly by passing to a subsequence, we may
assume that S/ # 0.

Suppose that dim Z; > 0 for infinitely many i. Possibly by passing to a subsequence,
we may assume that dim Z; > 0 for each i and dim Z; =dim Z; foreachi and j. Let F; be
a general fiber of X/ — Z;, and B, := B/|F,, LF, := L}|F;, CF, :== C{|F;, RF, := R}|F;,
SF = S/|F;, and T, := T/|F,. Then

(Fi,Br;, = (1—a))Tr, + LF, + RF, + ¢iSF,)

iskltand K, + Bf, = 0. Since 7/ dominates Z;, Tf, # 0. Since a; > 0 and lim; , o @]
= 0, by [10, Theorem 1.5], possibly by passing to a subsequence, we may assume that
SF, # 0. Since dim F; < dimXi’ —1=d —2,by[10, Proposition 11.7],c € N(d —3,T").
By Theorem 2.12 (3), ¢ € Ict(d — 2, T"), a contradiction. Thus possibly by passing to a
subsequence, we may assume that dim Z; = 0 for each i. In particular, p(X/) = 1 for
eachi.

Step 5. We reduce our theorem to the case when G; = 0 and
¢, =1ct(X/,T/ + L; + R;;S]) > ¢;

in this step.

Since (X!, T/ + L} + R} + ¢S] + G}) is lc, (X/. T/ + L, + R} + ¢S]) is lc. We
consider ¢; := let(X], T/ + L} + R;}: S/), then ¢; > c. Possibly by passing to a subse-
quence, we may assume that either ¢ € [c, ¢;) for each i or ¢] > ¢; for each i. Suppose
that ¢] € [c, ¢;) for each i. Since (X/, (1 —a})T] + L} + R} + ¢;S}) is KIt, all Ic cen-
ters of (X, T/ 4+ L; + R} + ¢]S]) are contained in 7/, and there exists an Ic center
of (X],T] + L} + R} + c;S/) which is contained in 7} N Supp S;. In particular, there
exist general hyperplane sections H; 1, ..., H;;, C X/ for some integer /; > 0 and U; :=
X/ n (ﬂjf:l H;.;), such that

* (Ui, Ai :=Ty, + Ly, + Ry, + ¢;Sy;) is Ic, where Ty, := T/ |u;, Ly, := L}|u;,
Ry, = R”U,-’ and Sy, = S,'/|U,~a

+ alllc centers of (U;, A;) are contained in Ty,
 there exists an Ic center of (U;, A;) which is contained in Ty, N Supp Sy,, and

 alllc centers of (U;, A;) which are contained in Ty, N Supp Sy, have dimension 0.
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Possibly by passing to a subsequence, we may assume that /; = [y is a constant. Let g; :
W; — U; be a dlt modification of (U;, A;), and Sy, the strict transform of Sy, on W;. Note
that g;“ Sy, = Sw; + F; for some F; > 0 such that F; C Exc(g;). We show that Supp Sw;, N
F; # 0. Suppose that Supp Sw; N F; = @, then by the negativity lemma, F; = 0, hence
gi is the identity morphism near Supp Sy,. Thus (U;, A;) is dlt near Supp Sy,. Since
c; <c¢i <1, [A;i] = Ty, so (U;, A;) is plt near Supp Sy, . However, this is not possible
since there exists an lc center of (U;, A;) which is contained in Ty, N Supp Sy, .

Thus we can pick a g;-exceptional prime divisor E; such that E; N Supp Sw; # @
and E; C F;. Since E; is an Ic place of (U;, A;), centery, E; is contained in Ty,. Thus
V; := centery, E; is contained in Ty; N Supp Sy, , so V; is a point.

We denote the sum of all g;-exceptional prime divisors by Eg,. We let

Bw, := (g7 )«A; + E,, and Kg, + Bg, := (Kw, + Bw,)|E, .
Then Kg, + Bg; ~r Oas V; isapoint. Since dim E; =d —2 — [y and E; N Supp Sw; # 9,
(Ei, Bg;) € W(d —2—1o, T, ¢)).

Since V; € Ty,, (E;, Bg,) isnotklt. By Lemma 4.1, ¢, € N(d =3 —1p,T) C N(d —3,T).
By Theorem 2.12 (1) (3) (4), ¢ € N(d — 3,T), which is not possible.

Thus ¢/ > ¢; foreach i. Since p(X;) = 1, we may let ¢;’ be the unique real number such
that Ky: + 7/ + L} + R + ¢S/ =0.Since Kx/ + (1 —a))T/ + L} + R; +¢; S; =0and
Kx; + T/+ L, +R,+cS;+G]=0,c<c/ <c; <c;.ByLemma4.l,c/ e N(d —2,T).
Since ¢ € N(d — 3,T), by Theorem 2.12 (4), possibly by passing to a subsequence, we
may assume that ¢ = ¢ for each i. In particular, G; = 0 for each i.

Step 6. In this step, we reduce our theorem to the case when (X/, 7/ + L] + R} + ¢S])
is plt for each i.

Suppose that (X/, T/ + L] + R} + ¢S]) is not plt for infinitely many i. Possibly by
passing to a subsequence, we may assume that (X/, 7/ + L} + R} + cS]) is not plt for
each i. Since (X/,(1 —a))T/ + L; + R, + ¢S/) isklt, (X, T/ + L; + R} + cS]) is not
plt near 7}. Since let(X/, T/ + L, + R}: S}) = ¢ > ¢; > ¢, (X]. T/ + L + R} + cS])
is plt near the generic point of each irreducible component of 7/ N S7. Moreover, since
(X[, (1 =a))T/ + L; + R; + ¢;S]) is klt, any lc center of (X/, T/ + L; + R + cS]) is
contained in 77. Thus we may take a dlt modification

gi Wi — X]
of (X], T/ + L} + R} + ¢S]) which is an isomorphism near the generic point of each
irreducible component of 7; N S;. We denote the sum of all g;-exceptional prime divisors
by Eg,. We let Ty, and Sw; be the strict transforms of 7/ and S} on W; respectively.
Since T/ N S] # @ and g; is an isomorphism near the generic point of each irreducible
component of 7/ N S/, Tw, N Sw; # @. Let By, := (g7 )«(T/ + L + R, + ¢S!) + Eg,.
Since Ky; + T/ + Lj + R} + ¢S/ = 0, Kw, + Bw; = 0. Let

KTW,- + BTW,- = (KVVz + BVV,)|TW1,
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then
(Tw,, Bry,) € M(d —2,T,¢c)

and (Tw; . Bry, ) is not Klt since (X;, T/ + L} 4+ R; +cS]) is not plt near 7. By Lemma 4.1,

¢ € N(d —3,T), which is not possible.
Thus possibly by passing to a subsequence, we may assume that

(X, T/ + L; + R, +¢S/))

is plt for each i. Since G; =0, (X;, L; + R; +¢S; + G;) and (X/, T/ + L; + R} + ¢S])
are crepant. Since (X;, L; + R; + ¢S; + G;) is an (N, I'g)-decomposable R-complement
of (X, L; + R; +¢Si), a(E;i, Xi, Li + R; + ¢S; + G;) > 2¢¢ for any prime divisor

E; # T; over X.

Step 7. We prove the case when T; is on X; for each i in this step.

Suppose that 7; is on X; for each i. Then X; = Xl./ is go-klt, hence X; belongs to a
bounded family by [4, Theorem 1.1]. Moreover, since 1 is the only possible accumulation
point of T, the coefficients of L}, R;, S/ belong to a finite set and 1 —a; € D(T" U {c;}).
In particular, there exist a positive integer M which does not depend on i, and very ample
divisors H; on X;, such that —Ky, - H#~2 < M. Since

(Kx; + Ti + L + Rj + ¢S)) - H' > =0

andc >0, T; - Hl.d_2 >0and S/ - Hid_2 belong to a finite set. Since p(X;) = 1, possibly
by passing to a subsequence, we may assume that there exists a positive rational number
A= g, where p and g are coprime positive integers, such that 7; = AS; for each i. Since

Kx, +(1—a)T; + L} + R +¢;S] =0=Kx, + T; + L, + R, + ¢S/,

we have
a;AS; =a;T; = (c;i —c)S],
hence ¢; — ¢ = ajA. Since 1 —aj € D(T' U {¢;}),

0<d = L —yi —kici

m;
for some y; € I'\{1}, k; € N, and m; € N*. Since ¢; > ¢ > 0, possibly by passing to a
subsequence, we may assume that k; = k is a constant. Since

b
FC{]——"j,neNJr, 15j5m},
n
. . ’ n%_kci + .
possibly by passing to a subsequence, we have a; = o forn; e N™ and some fixed j.
Thus

i ke

ni

a=c+ m; + Ak ’
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_ _ Ab; Abj " +oo : .
Ifk =0,thenc; = ¢ + ;- € {c + =% | n € N7}, hence {c; };7 is standardized near
¢ and we are done. If k > 0, then since ¢; > ¢, possibly by passing to a subsequence, we
may assume that n; = ng is a constant, hence

2k
—q("o ) )neNJr},

C,‘G{C—I-
n

so {¢; }Z+=°f is standardized near ¢ and we are done.

Step 8. We conclude the proof in this step. By Step 7, possibly by passing to a subse-
quence, we may assume that 7; is exceptional over X; for each i. Then f; : ¥; — X; is
the birational contraction which only extracts 7;, and f; is an go-plt blow-up of (X; > x;,
L; + R; + ¢S;), where x; is the generic point of centery, ;. Moreover, the coefficients
of L;, R; belong to a finite set, and the coefficients of S; belong to a finite rational set.
By Lemma 3.4, possibly by passing to a subsequence, there exist a positive real number o
and a non-negative rational number § such that

’ a—(c;—c)B
n;
for some positive integer 7;.
Since (X], T/ + L; + R, + cS]) is pltand (X, T/ + L] + R; 4+ ¢S}) is an (N, I'¢)-
decomposable R-complement of itself, X/ is o-klt. Thus X/ belongs to a bounded family

by [4, Theorem 1.1], and there exist a positive integer M and very ample divisors H; on
X/ such that _KX{ . Hl-“’_2 < M. Since

(Kx + T/ + L + R} +¢S))- H' > =0

ande > 0,7/ H?~2 > 0and S} - H#~2 belong to a finite set. Since p(X/) = 1, possibly
by passing to a subsequence, we may assume that there exists a positive rational number
A such that T/ = AS] for each i. Since

Ky, + (1 —a)T/+ L;+ R, +¢;S;=0= Kx: + T/ + L} + R, + ¢S],
we have
a;AS; = a,T| = (¢; —¢)S],
hence ¢; — ¢ = ajA. Thus
aA
ni + /3/\
Let 1 be a positive integer such that ufA € N, then
A A
ci=c+Le{c+& ‘neNJr}.
uni + upi n

Thus {c¢; l+=°f is standardized near ¢, and we are done. ]

Ci —C =

Proof of Theorem 1.3. Tt follows from Theorem 4.2. ]
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5. Standardization of threefold canonical thresholds

Proof of Theorem 1.9. We only need to show that ct(3) is standardized since ct(1) = {0}
and ct(2) = {1 | n € N} U {0} by [13, Lemma 2.17]. By [11, Theorem 1.8] and [7,
Theorem 1.1], we know

dct(3) = {% ’k eN*t, k> 2} U {0}.

Thus we only need to show that ct(3) is standardized near % for any integer k > 2. By
Lemma 2.15, we only need to show that for any sequence {C,‘};;Of C ct(3) such that
limj 400 ;i = ]% a subsequence of {c,-}j:f is standardized near % In the following,
we fix k and {¢;} 1% C ct(3).
Possibly by passing to a subsequence, we may assume that ¢; € (% ﬁ) for each
i, ¢; is strictly decreasing, and ¢; = ct(X; > x;, 0; B;), where X; > x; is a threefold
terminal singularity and B; > 0 is Weil divisor on X;. Possibly by replacing X; with a Q-
factorialization, we may assume that X; is Q-factorial for each i. By [11, Theorem 4.8],
0 is the only accumulation point of canonical thresholds whose ambient variety is neither
smooth, nor of ¢ A-type or cA/n-type. Since lim;_, o, ¢; = % > 0, possibly by passing
to a subsequence, we may assume that X; > x; is either smooth, or a c A-type singularity,
or a cA/n;-type singularity for some positive integer n;. By [7, Propositions 2.1, 2.2],
we may assume that X; > x; is a cA/n;-type singularity for some positive integer n;.
By [8, Lemma 5.10], n; < 3k, so possibly by passing to a subsequence, we may assume
that n = n; is a constant.
By [7, Claims 2.4, 2.5, and 2.6] and [8, Lemma 5.2], we may assume that
¢ = ct(X;,0; By) = L
m;

and there exist positive integers d;, non-negative integers /» ;, [3,i, r1,i, r2,i, such that

* rii+r; =aidinandry; <ry; [7,Proof of Lemma 2.3, line 8],
e ifa;  m;, thenm; > % [8, Lemma 5.2],

o ifa; > 6k?, then d;n < 4k [7, Claim 2.4],

* max{ly;,/3;} < kandeither/5; > 0orl/3; > 0[7, Claim 2.5],
* dinly; +13; > k [7, Claim 2.6], and

. dic a;—n [7, Claim 2.6].

mi — (r2,;—din?)lp;+(ai—n)l3;
Possibly by passing to a subsequence, we may assume that [ := [ ; and /3 := [3; are
constant integers. Since lim; 4+ ¢; = %, lim; - 400 @; = lim; 4 oo m; = +00. There-
fore, possibly by passing to a subsequence, we have d;jn < 4k. Possibly by passing to a

— : : ai 1 1
subsequence, we may assume that d := d; is a constant. Since ;- € (¢, z=7), @i 1 mi.

i
1l i
> 1,i72,i
- dn2 ’

Thus m; SO

1 a; a;dn? n noo_ 2n

= )

kK my  ryirg riy ra T
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so r1,; < 2kn. Possibly by passing to a sequence, we may assume that r; = r;; is a
constant. Therefore,

a; < a; —n . a; —n
mi = (ra—dn?)ly + (a; —n)ls  (aidn —ry —dn?)l, + (a; —n)l3
-2
_ (ri+dn2?)lr+nls3 °
a;

" dnly + I

Since 1im; _ 1 oo r‘:l—’l = £.dnly + 13 = k.Let I := (ry +dn®)l, + nl3, then

[ b SIS
kK m; — —é ka; — 1
SO '
ka; > m; > kaj — ——(I —kn).
;| — N

Since lim;_, 4o @; = 400, possibly by passing to a subsequence, we may assume that
there exists a positive integer I’ such that m; = ka; — I’ for each i. Thus

a; a; 1 I 1 I’
=== =4 —— € {— + — €N+,
T T ka—1 k" k(kai =1 {k m |
so {c; }i+=°f is standardized near %, and we are done. |
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