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Hyperdimensional computing (HDC) is a computing paradigm inspired by the mechanisms of human memory, characterizing
data through high-dimensional vector representations, known as hypervectors. Recent advancements in HDC have explored its
potential as a learning model, leveraging its straightforward arithmetic and high efficiency. The traditional HDC frameworks
are hampered by two primary static elements: randomly generated encoders and fixed learning rates. These static components
significantly limit model adaptability and accuracy. The static, randomly generated encoders;, while ensuring high-dimensional
representation, fail to adapt to evolving data relationships, thereby constraining the model’s ability to accurately capture and
learn from complex patterns. Similarly, the fixed nature of the learning rate does not account for the varying needs of the
training process over time, hindering efficient convergence and optimal performance. This paper introduces TrainableHD, a
novel HDC framework that enables dynamic training of the randomly generated encoder depending on the feedback of the
learning data, thereby addressing the static nature of conventional HDC encoders. TrainableHD also enhances the training
performance by incorporating adaptive optimizer algorithms in learning the hypervectors. We further refine TrainableHD
with effective quantization to enhance efficiency, allowing the execution of the inference phase in low-precision accelerators.
Our evaluations demonstrate that TrainableHD significantly improves HDC accuracy by up to 27.99% (averaging 7.02%)
without additional computational costs during inference, achieving a performance level comparable to state-of-the-art deep
learning models. Furthermore, TrainableHD is optimized for execution speed and energy efficiency. Compared to deep learning
on a low-power GPU platform like NVIDIA Jetson Xavier, TrainableHD is 56.4 times faster and 73 times more energy efficient.
This efficiency is further augmented through the use of Encoder Interval Training (EIT) and adaptive optimizer algorithms,
enhancing the training process without compromising the model’s accuracy.

CCS Concepts: » Theory of computation — Random projections and metric embeddings; - Computing methodologies
— Machine learning algorithms:.

1 Introduction

In today’s computing landscape, we are witnessing an unprecedented surge in the volume of data being generated
and processed. This exponential increase, emanating from a diverse array of sources and applications, poses
significant challenges but also opens new avenues for the field of computational science. Traditional data
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processing methods, despite their robustness, are finding it increasingly difficult to cope with this burgeoning
tide of data.

In response to these challenges, state-of-the-art solutions often turn to machine learning, with Neural Networks
(NNs) emerging as a prominent approach. NNs are lauded for their exceptional capacity to learn from and make
informed decisions based on extensive datasets. However, their reliance on substantial computational power
often necessitates the use of advanced systems or servers. This requirement renders NN less practical for a
wide range of smaller, resource-constrained devices that are frequently at the forefront of data generation. This
mismatch between the computational demands of NNs and computing capabilities has steered researchers towards
alternative learning methodologies.

Hyperdimensional computing (HDC), inspired by the complex processes of the human brain, represents a
novel computing paradigm that revolutionizes traditional data representation and processing methods. Utilizing
high-dimensional vectors, termed hypervectors, HDC enables parallel computations and noise-tolerant learning,
distinguishing it from conventional systems that rely on specific positions of elements, like 32/64-bit words [10].

The essence of HDC lies in its unique approach to data representation and processing. By encoding raw input
data into hypervectors and integrating them with HDC operations, the system mimics cognitive functions such as
memorization and information association. Then, during the subsequent model training, HDC culminates in the
development of new hypervectors that represent different data classes, with inference conducted by measuring
hyperspace distances between an input’s hypervector encoding and each class hypervector [21].

For over a decade, numerous endeavors have sought to enhance the learning efficacy of HDC-based method-
ologies. Despite these efforts, conventional HDC-based learning systems continue to exhibit relatively low
accuracy levels when compared with contemporary state-of-the-art learning mechanisms like deep learning.
This discrepancy predominantly stems from the static nature that pervades the learning process within HDC
frameworks for both the encoding phase and the model training phases. Each phase encounters its distinct
challenge, constraining the adaptability and overall efficacy of HDC systems.

First, the encoding phase, which is responsible for transforming raw data into high-dimensional representations,
is fundamental to achieving superior learning quality as it lays the groundwork for all subsequent learning
processes. Traditional methods employ a high-dimensional matrix of base hypervectors, which are randomly
generated before training [2, 36]. However, this approach also presents a significant limitation: once generated,
these encoders remain static for the most previous HDC studies [2, 7, 10, 13, 16, 18, 20, 21, 23, 26, 34, 36, 46] The
static nature of the encoding procedure prevents the system from dynamically adapting to evolving data feature
relationships, compelling the use of excessively large dimensions (e.g., D = 10, 000) to preserve accuracy. Such an
approach inevitably leads to learning inefficiencies and scalability issues.

The challenges extend into the model training phase, where the primary issue lies in the static nature of
learning rate adjustments. The introduction of an adaptive learning rate scheduler represents an important
advancement in addressing this limitation. Unlike static learning rates, which remain constant throughout the
training, we could employ an adaptive learning rate scheduler to dynamically adjust the rate in response to the
training’s progression. While there have been attempts to incorporate such adaptive mechanisms in HDC, these
efforts often rely on predefined scheduling policies, such as user-defined linear adjustments [12], which lack
the flexibility and responsiveness of truly adaptive systems. This discrepancy with modern learning algorithms
like deep learning hampers HDC models’ convergence and performance. This dynamic adjustment capability is
crucial for modernizing HDC systems to achieve higher learning quality akin to deep learning.

Addressing these challenges due to the static learning nature existing in both the encoding and model training
phases, we introduce the TrainableHD framework. Our approach is characterized by two contributions that
collectively enable dynamic and adaptive learning to modernize the HDC paradigm: the implementation of
a dynamic encoder and the integration of adaptive optimizer algorithms, all while incorporating an efficient
quantization method.
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The first major feature of the TrainableHD framework is its dynamic encoder. Unlike traditional HDC methods
that utilize static, randomly generated encoders, TrainableHD’s encoder is designed to adapt dynamically. It
allows for continuous updates to the base hypervectors during the training process. This dynamic adaptation
significantly enhances the model’s accuracy and efficiency by enabling a more nuanced understanding of
data feature relationships, as evidenced by related research [16, 18]. Importantly, TrainableHD achieves these
enhancements without introducing additional operations during inference, maintaining high performance and
efficiency.

Further extending the capabilities of TrainableHD, we leverage state-of-the-art adaptive optimizer algorithms
used in deep learning, such as Adam and Adagrad, to fine-tune the learning rate and the magnitude of hypervector
updates. This second innovation ensures that the training phase is optimized, facilitating faster convergence
and greater overall efficiency [23]. By integrating these adaptive optimizer algorithms, TrainableHD not only
surpasses traditional HDC methods in terms of adaptability and performance but also aligns HDC practices with
the sophistication observed in modern learning algorithms like deep learning.

The contributions of this paper are summarized as follows:

(1) Introduction of TrainableHD: We propose TrainableHD, a novel HDC framework that enables the learning
of a novel HDC encoder, dynamically updating it during training.

(2) Integration of Adaptive Optimizer: We extend TrainableHD by incorporating adaptive optimizer algo-
rithms that dynamically adjust the learning rate and updated hypervectors to optimize training efficiency
and accuracy.

(3) Optimization of Encoder Training: We present an optimization technique to reduce the overhead of
encoder training, ensuring that the encoder is updated only when necessary for improved performance.

(4) Efficient Inference through Quantization: TrainableHD supports quantization-aware training for HDC
learning to facilitate efficient inference across diverse platforms, including CPUs with SIMD, Tensor Cores
(GPU), and FPGA, while maintaining comparable accuracy:.

Our evaluation demonstrates that TrainableHD, enhanced with the adaptive optimizer algorithms, not only
surpasses the accuracy of existing HDC learning methods by up to 27.99% (average 7.02%) but also achieves this
without additional computational costs during inference. Furthermore, combined with quantization, TrainableHD
shows a significant increase in speed and energy efficiency, being 56.4x faster and 73X more energy-efficient
compared to deep learning on platforms like the NVIDIA Jetson Xavier.

2 Preliminary and Related Work
2.1 Hyperdimensional Computing

HDC is a paradigm where data is represented using high-dimensional vectors, known as hypervectors [15].
This section introduces foundational concepts of HDC and its learning mechanisms, which are essential for
understanding our proposed method, TrainableHD.

2.1.1 Holistic Representation HDC utilizes hypervectors, analogous to how the human brain employs neurons
and synapses to process stimuli. These hypervectors are high-dimensional, typically containing thousands of
dimensions, and distribute information equally across all components. Unlike traditional computing methods
where significance is often tied to specific bit indices of elements, as in 32/64-bit words, HDC ensures a more
holistic representation of data. To determine the similarity between two entities represented as hypervectors, the
dot product or cosine similarity is commonly used.!

The high dimensionality of these vectors (e.g., D > 1000) allows for quasi-orthogonality, meaning two randomly
generated hypervectors are likely to be near orthogonal, a crucial feature for HDC’s noise and error tolerance.

n this work, we use the dot product, denoted as &(-), for the similarity measure.
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For example, two bipolar hypervectors randomly generated will be near orthogonal if they have a zero dot
product, (X,Y) ~ 0, where dimension D is sufficiently high (D > 1000).2 This occurs because the two random
hypervectors X, Y are likely to have a D/2 overlap in bits with a standard deviation of \/D_/4 The independent
and identically distributed (i.i.d.) components and high dimensions of hypervectors allow significant noise and
errors to be added before they break orthogonality with other hypervectors. Additionally, the holistic nature of
hypervectors makes them error-tolerant.

2.1.2  HDC Arithmetic In HDC, hypervectors undergo specific arithmetic operations to achieve various cognitive
functionalities. For example, the bundling operation, denoted by @, combines hypervectors through bit-wise
addition, resulting in a composite hypervector reflective of its constituents and effectively mimicking the
memorization of different information. Meanwhile, binding, represented by ®, is a bit-wise matrix multiplication
operation that creates a new hypervector encapsulating the association of its factors, useful for associating two
different concepts and creating another near-orthogonal hypervector representing a new concept different from
their origins.

With these operations, diverse HDC-based learning tasks can be implemented where data points in hyperspace
are represented by hypervectors. For instance, through a series of binding or bundling operations applied to
related hypervectors, class hypervectors can be learned, signifying representative high-dimensional value patterns
in their classification category. During inference, the similarity between query hypervectors and the encoded,
trained class hypervectors is used to determine classification.

2.2 Existing Encoding Methods in HDC

Encoding significantly influences the accuracy and complexity of HDC learning models [23]. It involves mapping
original data points into hyperspace, ensuring proximity for similar vectors and pseudo-orthogonality for
unrelated ones. We briefly examine three state-of-the-art encoding methods: ID-level encoding [11], random
projection encoding [10], and nonlinear encoding [13].

ID-level encoding, first introduced for learning in speech recognition tasks, accounts for a data sample’s feature
values and their index with two different hypervectors: Level hypervectors (L), which quantize input feature
values, and ID hypervectors (I), randomly generated to represent unique positions of input features. The Level and
ID hypervectors for each feature value in a dataset sample are bound together (i.e., Lf ® I where f is the feature
index), and the resulting bound hypervectors corresponding to each feature are bundled together (3] Lf ® If) to
form an encoded hypervector.

Random projection encoding addresses the low accuracy of binary-based ID-level encoding by utilizing floating-
point operations during encoding. It generates F random bipolar base hypervectors of D dimensions, where F is
the number of features in a dataset sample. Each feature of a data sample is bound (i.e., ®) with the randomly
generated base hypervector matrix to produce the encoded hypervector by binding per-feature hypervectors.

Nonlinear encoding, one of the most advanced encodings, samples elements of base hypervectors from a
Gaussian distribution, creating floating-point hypervectors similarly to random projection, but also applies
nonlinear functions, such as the cosine function and/or sign function, to binarize hypervectors and amplify
nonlinearity in their element distributions.

To train HDC learning models, the transformation of data samples into hypervectors constitutes a critical
phase, exerting a substantial influence on both the accuracy and complexity of the model. Existing HDC learning
methods [2, 7, 10, 13, 16, 18, 20, 21, 23, 26, 34, 36, 46] still use the static encoders, potentially overlooking valuable
insights that can be gleaned from training samples. To mitigate this issue, the work presented in [47] introduced an
alternative method, ManiHD, which incorporates manifold projection prior to the static HDC encoder. However,

2In this work, we use Latin capitals for hypervectors.
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Fig. 1. An Overview of TrainableHD (a) Training, (b) Inference, and (c) ManiHD [47] Inference

ManiHD does not differentiate between class-specific characteristics and continues to rely on a static encoder,
which can lead to suboptimal accuracy levels. Our analysis across various datasets revealed that the manifold
projection process in ManiHD requires approximately 2.95 times longer for encoding, compared to other methods.

Addressing this challenge, this paper extends our prior study [17] to enable dynamic HDC encoder training
along with adaptive learning optimizers for high accuracy and efficiency. We focus on how to explicitly learn
the encoder itself by extracting and utilizing knowledge from training samples without introducing additional
overheads during the inference process. In particular, we adopt nonlinear encoding as our baseline, given its
demonstrated superiority in accuracy over other techniques. However, unlike the original nonlinear encoding
method outlined in [13], our strategy actively seeks to identify the most suitable, representative high-dimensional
patterns for each raw feature.

3  TrainableHD Overview

Figure 1 provides an illustrative overview of the TrainableHD learning framework. Our training methodology
learns the following two hypervector representations: (i) the base hypervectors of the encoder, initially generated
with random components from a Gaussian distribution, and (ii) the class hypervectors, which depict high-
dimensional patterns for each class, starting with zero-value components.

In the training phase, TrainableHD first encodes the training samples into feature hypervectors using the current
base hypervectors. The training process advances by evaluating the similarity between these feature hypervectors
and each class hypervector. The HDC module classifies the training data based on the class hypervector exhibiting
the highest similarity. Per-class errors, calculated using similarity values and ground-truth labels, guide the
update of class hypervectors, enhancing prediction accuracy in future iterations.

The innovation of TrainableHD lies in its encoder training technique, which efficiently translates per-class
scalar errors into per-feature hypervector errors, thus updating the base hypervectors. This process is detailed
in Section 5. TrainableHD also incorporates adaptive optimizer algorithms in the HDC contexts (Section 5.1),
traditionally used in deep learning, to optimize training performance. These algorithms, particularly valuable
given the added complexity of updating base hypervectors, significantly enhance both accuracy and efficiency.

We also introduce two optimization strategies in TrainableHD to improve the efficiency of acceleration
platforms. The first one is Encoder Interval Training (EIT) discussed in Section 6.1, an optimization technique
that dictates encoder training frequency based on necessity. This adaptive approach ensures that training occurs
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efficiently with a mini-batch over multiple epochs, effectively converging the accuracy of the model. Additionally,
we designed a method for training the model with low precision hypervector elements, such as 8-bit integers,
employing Quantization-Aware Training (QAT) detailed in Section 6.2. This approach enables the creation of
efficient, quantized models without compromising on the model’s inferential accuracy.

During the inference phase, fully accelerated by quantization, the trained encoder generates the query hyper-
vector from inference data, incurring no extra computational costs compared to existing HDC learning solutions.
The HDC model then performs similarity computation between the query hypervector and the class hypervectors
to determine the class of the sample (Figure 1b). As highlighted, ManiHD [47] (Figure 1c), which uses manifold
projection to mitigate the issue of static HDC encoders, incurs additional computational costs; TrainableHD does
not add any computational overhead during the encoding process even in the inference phase:

4 HDC Learning with Dynamic Encoder Training
4.1 Encoding Principle

Much like how the human brain with millions of neurons and synapses activates upon input stimuli, HDC leverages
high-dimensional space to representany entities. The high-dimensional vectors, or hypervectors, encapsulating a
holistic representation [15], distribute information uniformly across all components, ensuring a comprehensive
and integrated data representation. As discussed in Section 2.2, in HDC, the generation of base hypervectors,
which form the foundation of this encoding process, is typically achieved through random sampling from bipolar
values {-1,1} [10] or a Gaussian distribution N (g, 0®) [13] to attain higher accuracy.

However, a limitation arises in traditional HDC methods as they do not alter the base hypervectors post-
creation, leading to potential inaccuracies in representing correlated features. We here discuss the key properties
of the general encoding procedure exploited in our dynamic encoding approach.

Consider a vector of scalars, 3(€ R?), represented as vy, - - , vp), which needs to be encoded into hypervectors.
The codebook C(€ RP*P) = (Cy, -+, C,) contains D-dimensional hypervector representations for each element
in 0. State-of-the-art encoding methods, including random projection [10] and non-linear encoding [13], can be
expressed as a series of operations:

U]®C1@02®C2€B"'UP®CP

where ® represents the binding operation, associating different information through element-wise multiplication,
and & is the bundling operation, combining diverse information into a single hypervector through element-wise
addition. Post these operations, an activation function such as cos(-) or sign(-) is usually applied.

We can conceptualize HDC encoding as an interdimensional mapping that transcends various domains repre-
sented by different vector bases: We define the interdimensional mapping function as H = ¢é_)q(5). This process
maps information from a real coordinate space of p dimensions to another hyperspace, characterized by a set of
hypervectors, C. For example, the original static encoding can be interpreted as a function that transmits the
information stored in @ into a hypervector H(e R?), by referencing codewords in C.

In the TrainableHD framework, we apply this interdimensional mapping principle to encode the error values
in scalar vectors (observed during the tradining) to the domain of class hypervectors through another encoding
process, ¢]§HD (9), using the class hypervectors’ codebook, K. This approach allows us to utilize the inherent prop-
erties of HDC encoding to effectively translate per-class scalar errors into modifications of the base hypervector,
thereby enhancing accuracy and adaptability in HDC.

4.2 HDC Model Training

The training process of TrainableHD, detailed in Algorithm 1, commences with the encoding of the feature
hypervector, H, utilizing the sign(-) function for binarization (). It transforms the raw input data into a binary
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hypervector format, which is foundational for the subsequent learning phases. The ensuing stages include
updating (i) the class hypervectors, K (@), and (ii) the base hypervectors, B (@®).

Several methodologies exist for learning the class hypervectors K in HDC [11, 35]; in our work, we leverage
the state-of-the-art HDC learning process introduced in [21]. It refines K based on the amount of per-class
scalar errors € associated with each current class hypervector. In this paper, we exploit the same information
of the scalar errors € to update the base hypervectors by identifying the underlying reasons attributed to the
errors. This approach in TrainableHD contrasts with previous HDC encoding techniques, which do not train
the base hypervectors of the encoder, i.e., relying on static and randomly generated encoders. By dynamically
updating both the class and base hypervectors during training, TrainableHD addresses the key limitations of
static encoding—namely, the disregard for the relationships between input data features and the consequent
necessity for large dimensions.

Algorithm 1 Training procedure of TrainableHD

1: for f in training datasets do

2 /! @ Encoding

3 X q’){B?_)D(f_'); H « sign(X)
4 /I @ Updating class HVs

5: § «— softmax(5§(H,K)); € — -5
6 ©«—éexH

7 @ —Ax0

8 K—Koo©

9 // @ Updating base HVs
10: Fp, « I — tanh(X)?

11: Ferr — 57D (@)

12: E «— Ferr @Fp,

13: A« fx E

14: N — AxA

15: B—BoA’

16: end for

Figure 2 delineates the process through which TrainableHD updates the base hypervectors. In TrainableHD,
the training of base hypervectors, B, which initially encode scalar features into hypervectors, are strategically
directed to convert the magnitude of per-class errors into that of per-feature errors. TrainableHD accomplishes
this through a two-step methodology: (i) encoding the errors experienced by individual training samples into a
hypervector, called the sample error hypervector (E), and (ii) deducing the per-feature error hypervector from E.
Step 1: Encoding the sample-wise error in a hypervector: TrainableHD encodes the sample error hypervector,
E, which includes the hypervector-type information of how much error occurs for a single sample. The encoded
hypervector, X, eventually contributes to the scalar errors, €, through two following computations: (i) the
binarization, (i.e., due to H « sign(X) in @ of Algorithm 1) and (ii) the discrepancy with the class hypervectors,
(i.e., due to 6(H,K) in @). TrainableHD represents the two factors in a form of hypervectors, F;, and Fe,,.
Figure 2@ illustrates how we compute each factor.

e (@-a) The binarization factor, Fbz, is calculated using I — tanh(X)?, where I is a unit hypervector and tanh(-)
represents the hyperbolic tangent function. Since the binarization function, sign(-), amplifies the hypervector
element of X in the range of [—1,+1], an element value closer to 0 may create higher errors in the prediction,
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where the impact of each element on the error is bound within the same range. We exploit the square of tanh(-),
which is suitable to explain these impacts of the hypervector elements on the errors.

e (@-b) Next, we compute the second factor due to the class hypervectors, Fe;r. As discussed in Section 4.1, we
can treat the HDC encoding as an interdimensional mapping. Thus, we encode the per-class error of € by using
the class hypervectors K as the basis of the hyperspace of the encoded samples by F,,, = ¢H]§<_’D (€), meaning that
F.,» bundles all per-class error hypervectors scaled with the corresponding error value.

TrainableHD then synthesizes the sample-wise error hypervector E by binding these two encoded factors through
E « Ferr ® Fp,.

Step 2: Estimating the per-feature errors in hypervectors: In this phase (@), TrainableHD produces base
error hypervectors, referred to as A. These hypervectors estimate errors at the feature level arising from individual
base hypervectors. The sample error hypervector, representing the errors for each sample, is then utilized to
extrapolate these errors across the feature domain. This extrapolation, guided by the assumption that higher
feature values in the raw training samples correspond to more significant errors, is expressed as A = f x E.
Consequently, A comprises f hypervectors, each encapsulating the quantum of per-feature error. The final update

of the base hypervectors is then achieved by bundling these base error hypervectors, moderated by a learning
rate.

5 Dynamic HDC Training with Learning Rate Optimization
5.1 Integration of Learning Rate Optimization in HDC

In the field of HDC, traditional algorithms have generally bypassed the complexity of optimizing learning rates, as
noted in previous studies [12]. Such algorithms, only updating class hypervectors, have demonstrated relatively
quick convergence, especially when compared to the more intricate processes involved in deep learning. However,
TrainableHD represents a shift from these conventional HDC approaches. By introducing dynamic updates
not just to class hypervectors but also to base hypervectors, TrainableHD navigates a more expansive training
landscape. The base hypervectors, due to their broader scope — potentially encompassing a greater number of
features than the number of classes — suggest that adopting a more detailed, deep learning-like approach to
update the hypervectors with finer-grained scales could be advantageous. This refined strategy in TrainableHD
aims to cultivate high-quality models while maintaining expedient convergence rates.
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Table 1. Modification on Algorithm 1 to apply optimizer algorithms

Algorithm | Hypervector Update Notations
SGD (Alg. 1) | w; «— A X w;
0 — Q+w?
Adagrad W) — \/QLT X Wy A: Learning rate
€
w —yXQ+(1-y) X w? wy: Error hypervectors (8, A)
AdaDelta , N7 w}: Scaled error hypervectors (©’, A”)
wp = AX Vare @t , w;_,* Scaled error hypervectors on previous epoch
W —yXQ+(1-y) Xw; Q: Accumulated hypervector-type errors
RMSProp ' R
W = E= Xy €: Small term to avoid division in 0
Momentum | o} — AXw; —nXw,_, P Po, v: Decay rate
NAG wj — (=N XAXw—nxXw,_ | Momentum term
m = fime_q + (1= oy
Adam 0 = Povr_1+ (1 - ﬁz)wtz
W) — AX lr_"é], + 1ftﬁ§ +e

Incorporating state-of-the-art learning rate optimization algorithms into the HDC framework necessitates a
systematic modification for algorithmic integration. The TrainableHD framework identifies two primary steps
for the hypervector update process: the class hypervectors (©”) and the base hypervectors (A’), both modulated
by a learning rate (). In TrainableHD’s training framework, as detailed in Algorithm 1, two steps for the two
hypervector updates are defined: the updating of class hypervectors (©’, Line 7) and base hypervectors (A’,
Line 14) with A. For these update processes, we can adopt well-known learning rate optimization techniques
from the deep learning domain, such as Adagrad [4] and Adam [22], into our HDC training algorithm.

For example, applying the Adagrad algorithm to class hypervector updates involves modifying the procedure
to calculate the optimal update state: © e ¢ Ogec + 0% K — K @ ( \/ﬁ X ©). In this formula, ©,.. denotes
the accumulated squared errors for class hypervectors, and € is a small term added to avoid division by zero. We
can similarly apply the principle of learning rate adaptation to the process of updating the base hypervectors.
This integration allows HDC to enhance the training process for both class and base hypervectors, ultimately
contributing to the achievement of high accuracy in the model. This strategy is detailed in Table 1, highlighting
the modifications aligned with various optimization algorithms to foster a dynamic and efficient training process
within the HDC paradigm.

5.2 Implication of different optimization algorithms on HDC

The selection and integration of optimizer algorithms play a crucial role in enhancing the training efficiency and
overall performance of models. The TrainableHD framework incorporates a range of optimization algorithms;
each of these optimizers brings distinct characteristics and potential drawbacks to the HDC training process, In
this section, we present a comprehensive discussion on their expected behavior and compatibility with the HDC
learning.

SGD (Stochastic Gradient Descent) [40] SGD, known for its simplicity and widespread use in traditional HDC
studies, employs a fixed learning rate, providing a stable but potentially rigid learning process. While SGD has
demonstrated rapid convergence and comparable accuracy in many HDC applications, its fixed learning rate can
be a significant drawback in scenarios where data distributions evolve over time, limiting the model’s ability to
adapt to new information effectively.

Adagrad [4] It addresses the limitation of SGD by adapting the learning rate to each parameter, allowing for
more sophisticated updates based on the frequency of feature occurrence. In particular, it excels in environments
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with holistically represented data due to its unique mechanism of adapting the learning rate to the frequency of
features. This characteristic is particularly beneficial in HDC, where encoding often results in high-dimensional
vectors with significant holographic representation. The accumulator in Adagrad, which scales the learning
rate inversely proportional to the square root of the sum of all squared updates, ensures that infrequent but
informative features receive larger updates. This approach can significantly enhance learning in the early stages
by allowing rapid adaptation to the most informative features of the data.

AdaDelta [43] It designed to overcome the diminishing learning rate issue of Adagrad, focuses on using a
more recent update accumulation window to adjust the learning rates. While this approach mitigates some of
Adagrad’s limitations, it could lead to a decline in performance in HDC’s context, which often benefits from rapid
learning capabilities rather than prolonged iterative adjustments.

RMSProp [42] Similar to AdaDelta, it modifies Adagrad’s approach by employing a moving average to determine
the learning rate, thereby ensuring that the learning rate does not decrease too quickly. This optimizer is better
suited for non-stationary problems and can offer improvements over AdaDelta in HDC by maintaining an effective
pace of learning.

Momentum [37] and NAG (Nesterov Accelerated Gradient) [33] They introduce velocity components
to the optimization process, enabling the model to navigate the optimization landscape more smoothly and
potentially escape local minima more effectively. While these methods can accelerate convergence in HDC models
by incorporating past updates into the current update, they might also introduce oscillations during the training
process, particularly due to the high-dimensional spaces characteristic of HDC. This oscillations and subsequent
computation overheads would result in negative impacts on the learning performance, as the HDC usually aims
a fast learner as compared to other state-of-the-art learning algorithms like deep learning. Additionally, these
optimizer algorithms are known to be sensitive to hyperparameters such as the momentum coefficient and the
learning rate. This sensitivity can complicate the process of training the optimal model, often requiring numerous
iterations to identify the most effective parameter settings.

Adam [22] Combining the strengths of adaptive learning rates with momentum, it adjusts the learning rate
based on both the first and second moments of the updates makes it robust across a wide range of HDC tasks.
However, it would be slower at initial training epochs, which is potential drawbacks in the domain of HDC. Also,
its complexity and the need for careful hyperparameter tuning can be viewed as potential drawbacks, especially
in scenarios where computational resources are limited.

While each optimizer brings unique advantages to the HDC training process, their effectiveness can be
contingent upon the specific characteristics of the HDC task, including the stage of learning and the computational
constraints. The subsequent sections, especially Section 7.2, discuss the profound impacts of these optimization
techniques on the performance of TrainableHD to examine the potential of the integration for thje learning rate
optimization in the HDC domain.

6 Optimization Strategies for Acceleration

6.1 Encoder Interval Training

In TrainableHD’s training methodology, continuously encoding feature hypervectors with updated base hyper-
vectors for each iteration can significantly increase the complexity of HDC-based learning. To mitigate this issue,
we have implemented an optimization technique known as Encoder Interval Training (EIT). This technique is
specifically designed to streamline the training process of TrainableHD by reducing the frequency of encoding
operations.

As illustrated in Figure 3, EIT operates by storing the values of feature hypervectors in memory after their initial
encoding. In the initial iteration, TrainableHD conducts the standard procedure of encoding feature hypervectors.
Subsequently, for the following (n-1) iterations, where n represents a hyperparameter that defines the EIT cycle,
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Fig. 3. An example of Encoder Interval Training

the training process utilizes these previously stored feature hypervectors, bypassing the need for re-encoding at
each step.

It is important to note that while the reuse of feature hypervectors reduces the frequency of encoding,
the base hypervectors continue to undergo updates during these iterations. This ongoing refinement of base
hypervectors ensures that even with the reuse of feature hypervectors, the overall encoding quality remains high.
The inherent noise tolerance of HDC minimizes potential loss in learning quality, ensuring efficient updates of
feature hypervectors only when significant changes are observed.

This cyclical process of reusing and updating feature hypervectors continues throughout the training, with
a re-encoding operation performed at every n‘” iteration. This structured approach of EIT not only optimizes
the encoding process within TrainableHD but also contributes to an overall more efficient and effective training
regimen. The EIT cycle is repeated until the training reaches its done, ensuring a balance between computational
efficiency and the quality of learning.

6.2 Acceleration with Quantization

In TrainableHD, we adopt a quantization strategy to address the computational challenges associated with floating-
point operations. Contemporary HDC algorithms, notably those based on non-linear encoding [21], typically
operate with encoded binary hypervectors to achieve high accuracy. Yet, their internal mechanisms, including
encoding and similarity search procedures essential for class computation using learned class hypervectors,
also rely on floating-point computations. This reliance becomes a significant challenge when seeking efficient
acceleration, the primary issue that TrainableHD addresses through the application of quantization.

Quantization, widely used in deep learning for efficient inference, has been adapted in TrainableHD to address
the specific needs of HDC. In TrainableHD, quantization is utilized to streamline computations while ensuring
minimal impact on accuracy by leveraging the inherent robustness of HDC. The versatility of quantization is
further exemplified in TrainableHD by the variety of methodologies it accommodates. These methods range from
static uniform or logarithmic quantization to post-training quantization with dynamic range adjustments and
mixed-precision quantization approaches.

Specifically, TrainableHD employs an advanced Quantization-Aware Training (QAT) method [5, 24, 32, 45]
that adeptly transitions hypervectors from floating-point formats to quantized representations during training.
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Fig. 4. TrainableHD Quantization

That is, during the training process, it emulates the exact quantization procedure in software on GPGPU (or CPU)
platforms to train the quantized model, ensuring that the transition to the quantized states incurs minimal accuracy
loss. Upon completion of the training phase, the quantized model is primed for deployment on acceleration
platforms, e.g., CUDA Tensor Cores or FPGAs, which support quantized operations. This deployment performs
inference only with quantized representations, offering both high accuracy and efficiency.

While INT8 quantization is our primary focus in this paper, given its prevalence in modern hardware acceler-
ators like NVIDIA Tensor Cores, TrainableHD’s quantization framework is flexible enough to extend to other
precision levels with minimal adjustments. This adaptability is critical, allowing TrainableHD to be effectively
deployed across various hardware platforms, thereby enhancing its utility and efficiency in diverse hardware
platforms that support quantization.

6.2.1 Training Quantized Hypervectors The adaptation of QAT in TrainableHD, as illustrated in Figure 4a, enables
the modern quantization approaches to traditional HDC training methodologies. During training, TrainableHD
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subjects both the input features and the current base hypervectors to a quantization simulation process termed
fake quantization. This process calculates their elements to 8-bit integers (INT8) (i.e., by clamping and rounding
hypervector elements to produce the version of the inputs in 8-bit integers) while retaining their storage in the
floating-point (FLOAT32) format. The purpose of this approach is to model the effects of quantization on the
hypervectors without bearing the extensive computational costs typically associated with actual INT8 quantization
during iterative training updates. Class hypervectors are similarly processed through fake quantization.

Upon completing the training phase, we convert the trained base and class hypervectors into INT8 representa-
tions. This step allows the entire inference process to be conducted within the INT8 domain, effectively reducing
computational overhead, as depicted in Figure 4b.

The challenge in training with floating-point quantization lies in accurately setting the quantization parameters.
To tackle this, TrainableHD employs an affine transformation method, quantifying each input x using a scale
factor s and a zero-mapping value z:

quant(x) = min(max(round(s - x + z), 2b=1 _ 1), —2b71y)

Here, b = 8 for INT8 quantization. This method dynamically adapts to changing bounds of the input x, learning
the parameters s and z throughout the training iterations. We track the moving averages of the minimum (L) and
maximum (T) values of the hypervectors to be quantized (Figure 4a), with a decay rate empirically set at p = 0.01,
thereby evenly dividing the range [ L, T] into quantized points. Upon the completion of the QAT process, the final
quantized model is derived using the learned scale factors and zero points, enabling it to perform on inference
platforms through actual hardware quantization equivalently.

6.2.2 QAT Performance Optimization Our approach to Quantization-Aware Training (QAT) is tailored to enhance
inference efficiency, though it does introduce additional training overhead from the fake quantization process.
Given that HDC is discussed as a candidate for online learning solutions in resource-constrained environments [8-
10, 28-31, 44, 47], these added costs can become burdensome in certain deployment scenarios. To counteract
the additional overhead predominantly caused by fake quantization, we have developed a targeted optimization
technique named Drift-Aware Update (DAU). DAU is designed to strategically determine the most opportune
moments for implementing fake quantization, thereby optimizing the training process.

Let us recall Algorithm 1, which outlines the training methodology of TrainableHD. We adapt the base and
class hypervectors in response to hypervector-type errors (computed through the chosen learning optimizer),
namely ©’ and A’ as discussed in Section 4.2. Given HDC’s inherent tolerance to noise, minor discrepancies in
the base and class hypervectors are unlikely to substantially impact the overall training results, allowing us the
discretion to occasionally bypass the fake quantization step.

Consequently, DAU initiates fake quantization solely when it detects significant accumulations of changes,
termed as drift, in ©" and A’. More formally, DAU triggers the fake quantization process for class hypervectors if
the sum of changes, 3}, |©;|/|K|, exceeds a set threshold €. Similarly, for base hypervectors, fake quantization
occurs when 3 ; |A;.| /IB| > e. This threshold is empirically set at 0.01 (1%) in our implementation, a conservative
measure to ensure that QAT operates accurately and effectively across the majority of the training iterations.
This optimization not only enhances the efficiency of the training process but also aligns with the dynamic
requirements of various HDC applications.

7 Experimental Results

7.1 Experimental Setup

We have implemented the training procedure of the TrainableHD framework using PyTorch running on NVIDIA
GeForce RTX 3090. The inference procedure was implemented on various acceleration platforms that support
both floating-point and integer vector operations, including CPU (Intel Xeon Silver 4110), low-power GPU
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(Nvidia Jetson Xavier), and FPGA (Xilinx Zyng-7000). To evaluate the performance, we employed specific tools for
each platform: Intel RAPL was used for measuring execution time and power consumption on the CPU, Nvidia
Nsight was utilized for the GPU assessments, and the Xilinx Vitis toolkit was applied for evaluating the FPGA.
These tools provided comprehensive metrics to analyze the efficiency and effectiveness of the TrainableHD
framework across different hardware environments. Our training framework is open-sourced and available at
https://github.com/CELL-DGIST/HDZoo/trainableHD. This repository provides access to the resources necessary
for exploring and implementing our method, as well as benchmarking it with other representative HDC-based
learning strategies.

7.1.1  Implementation Methodologies for Inference Tasks For the CPU-based acceleration of inference, we leveraged
Facebook’s FBGEMM library, a state-of-the-art solution known for supporting optimized INT8 operations. This
library utilizes x86 SIMD instructions and multithreading capabilities. We further enhanced the FBGEMM library
to include support for the sign function. Given that the base and class hypervectors remain constant post-
deployment, once trained, we pre-arranged the storage order of hypermatrix elements. This pre-arrangement
ensured a fully sequential memory access pattern during General Matrix Multiply (GEMM) operations, optimizing
performance.

In the case of GPU acceleration, our focus was on exploiting the Tensor Cores within NVIDIA’s Jetson
Xavier. We extended XCelHD [16], the CUDA implementation of HDC; to facilitate the quantized execution
of the trainableHD framework. This extension involved mapping HDC operations to CUDA’s cuBLAS APIs.
Additionally, we developed an in-place element update function for intermediate results, allowing the support of
the sign function without encountering uncoalesced memory accesses.

For FPGA implementation, our proposed quantization method was designed to be both highly accurate and
efficient, circumventing the need for resource-intensive DSP units as seen in previous works [10]. Utilizing
the Xilinx Vitis framework, we implemented GEMM and reduction operations on a systolic array structure
primarily relying on Look-Up Tables (LUTs) for computation. This approach was further refined by pre-loading
invariant base and class hypervectors into the systolic array’s buffer, facilitating their reuse for multiple inputs
without necessitating additional host communications. This proactive loading strategy significantly enhances the
efficiency of our FPGA-based inference processes.

7.1.2  Baselines and Datasets For our comparative analysis, TrainableHD is benchmarked against three distinct
models: (i) a state-of-the-art HDC learning method (Baseline) that employs a static nonlinear encoder for retraining
class hypervectors [13], (if) ManiHD (ManiHD), which integrates manifold projection into HDC to overcome
the issue of the static HDC encoder [47], and (iii) deep learning models (DNN) that have been optimized using
Ray Tune for maximal accuracy. These deep learning models were configured with varying hyperparameters,
including batch sizes up to 64, architecture depths of 5 layers, and up to 512 neurons, trained over 50 epochs.

To conduct a fair evaluation, TrainableHD, Baseline, and ManiHD were each retrained for 50 epochs. We
empirically selected the learning rate (1) in the range [1073, 1072] with common hyperparameter search. The
datasets used for this evaluation, detailed in Table 2, encompass a broad spectrum of practical applications.
These range from IoT and edge systems [1, 3, 38, 39], such as ECG-based emotion detection and human activity
recognition, to image-based classification tasks typically used for benchmarking HDC learning [6, 19, 25, 27] like
face detection and character recognition.

7.2 Classification Accuracy

Figure 5 illustrates the accuracy comparison among various learning methods. For both Baseline and TrainableHD,
we conducted measurements using two different hypervector dimensions: 3K and 10K. The results demonstrated
that TrainableHD consistently achieves higher accuracy levels than Baseline, a state-of-the-art method employing
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Table 2. Evalution Datasets

Name Description Nirain | Niest | k f
EMOTION [1] | Emotion recognition from ECG signal 1705 427 3 | 1500
FACEA [19] Face recognition 22441 | 2494 | 2 512
FACE [19] Face recognition 22441 | 2494 | 2 608
HACT [3] Human activity recognition 7352 | 2947 | 6 | 1152
HEART [14] MIT-BIH Arrhythmia dataset 119560 | 4000 5 187
ISOLET [3] Voice recognition 6238 | 1559 | 26 | 617
MAR [27] Plant classification 1440 160 | 100 | 64
MNIST [25] Hand-written digit classification 60000 | 10000 | 10 | 784
PAMAP?2 [38] | Physical activity monitoring dataset 16384 | 16384 | 5 27
SA12 [39] Smartphone-based activity recognition | 6213 | 1554 | 12 | 561
TEX [27] Plant classification 1439 160 | 100 | 64
UCIHAR [3] | Human activity recognition 7352 | 2947 | 6 | 561
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Fig. 5. Accuracy Comparison

a nonlinear encoder. For instance, in the case of the HACT dataset, Baseline recorded classification accuracies of
57.28% and 59.35% for dimensions D = 3,000 and D = 10, 000, respectively. In contrast, TrainableHD achieved
significantly higher accuracies of 85.27% for D = 3, 000 and 86.16% for D = 10, 000. We observed that Quantization-
Aware Training (QAT) introduces only a relatively low accuracy loss, e.g., 0.69% for MNIST dataset, 2.68% on
average.

On average, when comparing the accuracies at the same hypervector dimensions, TrainableHD outperformed
Baseline by 7.02% and 4.86% for D = 3,000 and D = 10, 000, respectively. These results are on par with state-
of-the-art deep learning models that have been fine-tuned for optimal accuracy. In comparisons with ManiHD
at D = 3,000, TrainableHD surpassed ManiHD in all but one dataset, averaging an accuracy improvement of
9.68%. It is important to note, however, that ManiHD utilizes manifold projection, which introduces significant
overhead during inference.

To delve deeper into why TrainableHD surpasses other HDC learning methods, we analyzed the changes in
training and testing accuracy across epochs. A notable characteristic of HDC learning is its ability to learn a
high-quality model within a relatively small number of epochs. As demonstrated in Figure 6, both Baseline and
TrainableHD reached high levels of training accuracy in the initial epochs. While Baseline showed comparable
training accuracy (i.e., for the training dataset) to TrainableHD, TrainableHD exhibits higher testing accuracy
over the training epochs. This was attributed to the tendency of the baseline HDC-based learning to overfit the
training datasets. TrainableHD, on the other hand, avoided such overfitting in the early stages of training, leading
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to superior testing accuracy — a more accurate indicator of real-world prediction performance for robust online
learning.

7.3  Efficiency Evaluation

Training Efficiency The training efficiency of TrainableHD was assessed in comparison to traditional Deep
Neural Networks (DNNs). In Figure 7, we present the results from two versions of TrainableHD: one trained
without Quantization-Aware Training (QAT) and the other with QAT, set against a standard DNN model. Remark-
ably, TrainableHD without quantization shows an average training performance improvement of 24.48 times.
Incorporating quantization, which enables the generation of INT8-quantized models, further enhances efficiency
during inference deployment. Despite additional computational demands introduced by the fake quantization
simulation, TrainableHD with QAT still achieves a 12.13 times speedup compared to DNNs.

Inference Efficiency Figure 8 provides a comparative analysis® of speedup and energy efficiency improvements
of TrainableHD over DNN inference on the GPU. For this evaluation, a dimension of D = 3,000 was used for
TrainableHD; which still outperforms the learning quality of Baseline method with D = 10, 000. TrainableHD
shows significantly higher learning efficiency compared to DNNs. For instance, on the same GPU platform,
TrainableHD, even without utilizing quantization, is 56.4 times faster and 73 times more energy-efficient. When
quantization is enabled, TrainableHD’s performance improves by an additional 3.1 times without any loss in
accuracy.

3We do not compare with the computational costs of the Baseline since it is exactly the same with the TrainableHD, as no extra computational
procedures are added during the inference.
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Fig. 9. Impact of Dimension Reduction

It’s also noteworthy that TrainableHD’s lightweight framework enables high efficiency on CPUs, beneficial
for edge or cloud computing scenarios where on-device accelerators might not be available. With quantization,
TrainableHD offers a performance that is 20.7 times faster than DNNs on GPU. Additionally, when implemented
on the FPGA unit, TrainableHD can provide an impressive 180.8 times speedup and 167.8 times better energy
efficiency compared to DNNs.

TrainableHD with FP32 (and INT8) quantization demonstrates a 3.3 (and 16.1) times improvement over ManiHD.
This enhancement is particularly significant considering that ManiHD incurs notable overheads to achieve higher
accuracy, primarily due to the preprocessing CPU overhead of the manifold projection.
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Fig. 10. Learning Accuracy Changes via Optimizer Algorithms

7.4 Dimension Reduction

Figure 9 presents a comparison of inference accuracies for TrainableHD and Baseline across varying hypervector
dimensions. One of the key aspects of HDC is the potential for increased efficiency through dimension reduction,
although this often comes at the expense of reduced accuracy. A critical factor in HDC is maintaining an adequate
dimension size to accurately represent distances between the model and encoded hypervectors.

Even though the general trend of lower dimensions leads to a decline in accuracy and the minimal accuracy
variations over dimensions exists due to inherent stochastic elements akin to deep learning, TrainableHD
demonstrates a notable robustness to dimension reduction while still ensuring high accuracy. For instance, in
MNIST dataset, Baseline achieves 97.34% test accuracy at D = 10, 000, which is closely matched by TrainableHD’s
96.90% accuracy at a significantly reduced dimension of D = 1, 000. On average, the accuracy loss on D = 500
compared to D = 10, 000 is only 0.99% for TrainableHD. This finding is remarkable as it suggests that TrainableHD
can effectively operate with reduced dimensions without substantial accuracy loss. Moreover, TrainableHD with
a dimension of D = 500 surpasses the accuracy of BaselineHD even at D = 10, 000. This comparison underscores
TrainableHD’s capability to maintain high accuracy levels, even with a considerable reduction in hypervector
dimensions.

7.5 Optimizer Algorithm Evaluation

In assessing the effectiveness of various optimizer algorithms on TrainableHD, we implemented a range of
algorithms including Adagrad [4], Adam [22], RMSProp [42], Momentum [37], NAG [33], and SGD [40].* Figure 10

“Note that SGD, which employs a fixed learning rate for updating hypervectors, is the most widely used algorithm in HDC studies if they
introduced a learning rate, including our previous work [17].
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Table 3. Inference Accuracy Improvement Compared to SGD [17]

Dataset Epoch 5 Epoch 50
Adagrad | AdaDelta | RMSProp | Momentum | NAG | Adam | Adagrad | AdaDelta | RMSProp | Momentum | NAG | Adam
EMOTION 0.47% 1.64% -12.41% -1.17% 2.81% | 1.87% -1.17% -1.64% -1.41% -0.47% -1.87% | -0.23%
FACEA 1.12% 0.32% 0.52% -8.30% 0.12% | 0.64% 0.64% -0.16% 0.08% 0.04% 0.00% | 1.08%
FACE 2.81% 1.92% 2.85% 2.37% 2.33% | 1.60% 0.72% 0.12% 1.36% 0.36% -0.20% | 0.84%
HACT -3.12% -2.21% -7.43% -3.02% -2.27% | -1.29% 1.90% 3.36% 3.29% -1.70% -1.87% | 3.36%
HEART 0.12% -7.15% 1.90% -9.03% -2.55% | -0.15% 2.18% -5.72% 2.25% 1.73% 1.18% | 3.28%
ISOLET 2.69% -5.64% -1.09% 0.71% 1.48% | 1.60% 1.03% -1.92% 0.71% 0.13% 0.13% | 0.64%
MAR 2.50% -21.25% -8.75% 4.38% 4.38% | 0.00% 0.00% -0.62% 1.25% -1.25% -1.25% | 1.25%
MNIST 0.94% -1.78% -0.52% 0.21% -0.12% | 0.87% 0.00% -2.35% 1.13% 0.04% 0.03% | 0.68%
PAMAP2 0.54% 0.54% -3.33% 0.45% 0.45% | -0.07% 0.16% -0.07% 0.16% -0.01% -0.01% | 0.18%
SA12 1.67 -6.05% -0.26% 1.48% 1.93% | 0.13% -0.13% -2.25% 0.00% -0.06% 0.06% | 0.58%
TEX 0.00% -3.75% -6.25% -29.38% -1.88% | -2.50% 0.62% 1.25% 1.25% 1.25% 0.00% | 0.00%
UCIHAR 1.56% -4.38% -8.18% 0.03% -2.38% | 1.70% 1.39% 0.64% -0.17% 0.07% 0.51% | 1.09%
AVERAGE 0.94% -3.98% -3.58% -3.44% 0.36% | 0.37% 0.61% -0.78% 0.83% 0.01% -0.27% | 1.06%

illustrates the training and inference accuracy achieved across epochs with these optimizers. Our observation
indicates that the Adam algorithm yields the best overall performance for TrainableHD. Notably, compared to
our earlier version in [17], the application of the Adam algorithm resulted in an average accuracy improvement
of 1.06%. During training, the SGD optimizer conventionally used in the HDC domain demonstrated comparable
accuracy and rapid convergence with other sophisticated optimizers such as Adam and Adagrad. However, in
terms of inference performance, the Adam algorithm achieved highly accurate results generally for most datasets
in Table 3, consequently outperforming the traditional SGD approach.

Interestingly, the AdaDelta algorithm resulted in a notable decline in TrainableHD’s performance across both
the training and inference stages. This highlights the unique requirements for optimizers in HDC, contrasting with
those in DNN. AdaDelta was originally designed to mitigate the diminishing learning rate issue of Adagrad [41],
primarily by focusing on more recent training data for updates. Conversely, HDC is defined by its rapid learning
capabilities, as discussed in 7.2, potentially obviating the need for prolonged iterative training. Thus, we anticipated
that algorithms like Adagrad, which capitalize on insights for early training stages, would be more effective than
AdaDelta in HDC contexts.

In alignment with our discussion in Section 5.2, Adagrad demonstrates competitive inference accuracy, par-
ticularly when the number of retraining sessions is limited. For example, as illustrated in Table 3, Adagrad
outperforms other optimization algorithms in four out of twelve datasets during the initial stages of learning,
e.g., at the fifth epoch. This observation also points out the importance of selecting an appropriate optimizer for
specific datasets, with alternatives like RMSProp and NAG showing potential for superior accuracy under certain
conditions. Such findings emphasize the advantage of leveraging HDC’s rapid learning capabilities through
strategic optimizer selection tailored to each dataset’s unique characteristics. Nonetheless, extensive retraining
over many epochs reveals that the Adam optimizer consistently delivers high performance, presenting its efficacy
in enhancing the learning outcomes of HDC models over time.

We next examine the impact of the different optimization algorithms on the training execution time. As detailed
in Table 4, we compared the training time over the 50 epoch retraining for various optimization algorithms
against the baseline provided by SGD, which requires the least computation costs. Notably, applying the NAG
algorithm was observed to extend the training time by approximately fivefold on average. This observation
implies that we should consider the computational overhead introduced by some advanced optimizers to balance
training efficiency alongside learning accuracy. For example, for HDC models that only can undergo fewer
retraining cycles, the optimization algorithms such as Adagrad and RMSProp would be preferable choices as
they offer a balanced improvement in learning quality without significantly impacting the execution time. This
evaluation suggests a strategic selection of optimization algorithms based on the specific requirements of the
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Table 4. Training Time Increment Compared to SGD [17]

TrainableHD w/ EIT @ Encoding

O Similarity Search @ Model Update

B Base Update

Dataset | Adagrad | AdaDelta | RMSProp | Momentum | NAG | Adam
EMOTION 2.06X 2.82% 1.95% 7.49% 12.04x | 2.50%
FACEA 1.17X 1.84% 1.29% 3.60% 6.29x | 1.72X
FACE 1.25% 1.94% 1.43% 3.55% 6.17x | 1.80%
HACT 1.62X 2.78% 1.91x 5.95% 10.36X% | 2.54X
HEART 1.24% 1.55% 1.32% 2.05%x 3.02x | 1.43X
ISOLET 1.12x 1.88% 1.38% 3.89% 6.84x | 1.69%X
MAR 1.21X 1.56X 1.27X 1.89% 271X | 1.44X
MNIST 1.57X 2.51% 1.75% 4.75% 8.29X | 2.29X
PAMAP2 1.24% 1.58% 1.32x 1.41x 1.72x | 1.53%X
SA12 1.17% 1.83% 1.32% 3.32%x 5.58x | 1.68X
TEX 1.20x 1.62X 1.30% 1.85% 274X | 1.51X
UCIHAR 1.23% 1.92x 1.39% 3.45% 5.80X | 1.77X
AVERAGE 1.34% 1.99% 1.47x 3.60% 5.96X | 1.83%
TrainableHD mEncoding Similarity Search ®8Model Update  mBase Update
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Fig. 11. Impact of Encoder Interval Training

accuracy and training efficiency.

7.6
7.6.1

Impact of Acceleration Strategies
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Encoder Interval Training (EIT) The EIT strategy, as previously outlined in Section 6.1, involves conducting
encoder training at regular intervals rather than at every epoch. We evaluate this approach by measuring
inference times with and without the use of EIT. Figure 11 illustrates a breakdown of training times for each
scenario, using representative datasets. EIT has been found to substantially reduce the time required for both base
hypervector updates (labeled ‘Base Update’) and the repeated encoding process (labeled ‘Encoding’). Specifically,
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Table 5. Accuracy Loss on Applying EIT

Dataset Epoch 5 Epoch 50
SGD | Adagrad | AdaDelta | RMSProp | Mom. | NAG | Adam | SGD | Adagrad | AdaDelta | RMSProp | Mom. | NAG | Adam
EMOTION | 12.65% 8.20% 2.11% -13.82% -3.98% | -0.47% | 33.26% | 0.23% -0.23% -0.23% -2.11% 7.26% | 2.58% | 0.23%
FACEA 2.53% 0.40% 0.16% 0.40% -7.14% | 1.36% | -0.32% | 0.80% 0.52% -0.04% -0.04% -0.12% | -0.20% | 0.92%
FACE -2.57% 0.28% 0.04% 0.44% 0.92% | 0.08% | -0.84% | -0.88% 0.00% 0.16% 0.80% 0.56% | 0.04% | 0.44%
HACT 5.26% 3.80% -1.63% -7.50% -0.10% | -0.14% | 1.97% | 1.36% 1.93% 2.24% 3.02% 0.20% | 0.27% | 2.99%
HEART 16.20% 2.20% -1.17% 0.68% -6.63% | 1.73% | 2.85% | 4.30% 2.15% 2.35% 1.08% 10.33% | 1.78% | 0.95%
ISOLET 0.19% 0.38% 1.28% -1.41% -0.64% | 0.13% | 1.09% | 0.19% 0.13% 1.80% 0.38% 0.32% | 0.38% | -0.26%
MAR 0.00% 0.00% 0.00% 0.00% 0.00% | 0.00% | 0.00% | -0.63% | -0.63% 1.25% 0.62% 0.00% | 0.00% | 1.88%
MNIST 1.72% 0.31% 0.81% 0.60% 0.90% | 0.71% | 0.85% | -0.15% | -0.01% 0.98% 1.46% 0.12% | 0.41% | 1.04%
PAMAP2 0.00% -0.01% 0.98% 0.04% 0.00% | -0.01% | 0.15% | -0.01% -0.02% 0.02% 3.77% 0.01% | 0.01% | 0.05%
SA12 -0.06% 0.45% 0.06% -1.09% 0.13% | 0.32% | 0.97% | 0.32% 0.06% 0.39% 0.00% 0.39% | 0.39% | 0.64%
TEX 0.00% 0.63% 0.00% -1.25% 0.00% | 0.00% | -0.62% | 0.00% 0.62% 0.00% 0.62% 17.50% | 0.00% | 0.00%
UCIHAR | -0.17% 0.64% 0.24% 0.03% 0.00% | -1.26% | 0.71% | 0.44% 0.68% 0.85% 0.71% 0.64% | 4.68% | -0.14%
AVERAGE | 2.98% 1.44% 0.24% -1.91% -1.38% | 0.20% | 3.34% | 0.50% 0.43% 0.81% 0.86% 3.10% | 0.86% | 0.73%

our evaluations indicate that EIT decreases the time spent on base updates and encoding by 89.20% and 69.89%,
respectively. This demonstrates the significant efficiency gains achieved through the EIT technique.

The EIT strategy is devised to enhance the efficiency of the training process by selectively bypassing the
re-encoding of base hypervectors when non-critical. While this approach can significantly reduce the training
time, it potentially compromises accuracy since it layers the exact updates of the base hypervector representations.
In Table 5, we evaluate the impact of employing EIT on the accuracy of TrainableHD across different datasets,
setting the cycle number of n = 5 for a direct comparison to the non-EIT scenario. For consistency, we applied
the same learning rate for each combination of dataset and optimizer, which yielded the best inference accuracy
without EIT.

Our findings indicate that while the EIT technique largely preserves a satisfactory balance between accuracy
and efficiency in most evaluated cases, non-negligible accuracy degradation is observed for specific datasets
when coupled with the Momentum optimizer. It is attributed to the sensitivity of the Momentum optimizer to
the learning rate, as we discussed in Section 5.2, which would become critical under the EIT conditions. For
example, using the standard learning rate setting for each dataset, the performance of the Momentum optimizer
diminished, suggesting that its efficacy is contingent on optimal parameter configurations.

With further investigation into the role of the learning rate, the default settings optimal for most optimizers do
not necessarily translate to the optimal settings for Momentum. We observed that adapting the learning rate
for the Momentum optimizer significantly enhanced the accuracy. For instance, the TEX dataset experienced a
reduction in accuracy loss from 17.50% to 5.00% upon adjusting the learning rate from A = 0.035 to A = 0.001. It
presents that the adverse effects of EIT can be substantially mitigated through parameter optimizations.

On the other hand, our analysis also suggests that employing EIT with various optimizer algorithms generally
incurs minimal accuracy losses, for example, an average loss of 0.50% for SGD, 0.43% for Adagrad and 0.73% for
Adam. It indicates the potential for optimization algorithms to more effectively leverage EIT benefits through
careful tuning of the configuration parameters, suggesting that they could harness the efficiency gains of EIT
without significantly compromising model accuracy.

7.6.2  Drift-Aware Update (DAU) for QAT DAU, as detailed in Section 6.2, is another optimization technique
implemented in our framework. It selectively applies simulated quantization during hypervector updates only
when there are substantial changes, thus reducing unnecessary computational effort. To assess the effectiveness
of DAU, we compared scenarios where DAU was either enabled or disabled, the latter involving continuous QAT
and fake quantization at every update. As depicted in Figure 12, which examines ten representative datasets,
DAU is shown to reduce QAT overhead by an average of 84.50%. This reduction is crucial for maintaining high
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efficiency during training. Additionally, it is important to note that the use of DAU resulted in only minimal
changes in accuracy, a benefit attributable to the holistic nature of the representation used in HDC.

8 Conclusion

This paper presents TrainableHD, an innovative framework that revitalizes HDC by introducing dynamic training
capabilities for encoders and integrating adaptive optimizer algorithms. By moving beyond the constraints of
static, randomly generated encoders typically used in HDC, TrainableHD adapts and evolves based on learning
data feedback, marking a significant shift from traditional HDC methods. This dynamic approach to encoder
training is a key factor in enhancing the accuracy and efficiency of the HDC model. The introduction of adaptive
optimizer algorithms in the training process further refines TrainableHD, optimizing the training of hypervectors
and contributing to the framework’s overall efficiency. This enhancement ensures that TrainableHD not only
maintains but also elevates the inherent advantages of HDC, such as straightforward arithmetic and high
computational efficiency. Another advancement in TrainableHD is its implementation of effective quantization,
which enables the execution of the inference phase on low-precision accelerators. This feature significantly
boosts the framework’s applicability in real-world scenarios, particularly on low-power platforms like NVIDIA
Jetson Xavier, where TrainableHD outperforms state-of-the-art deep learning models in both speed and energy
efficiency. Our comprehensive evaluations have demonstrated that TrainableHD achieves up to a 27.99% increase
in accuracy (averaging 7.02%) compared to traditional HDC methods, without incurring additional computational
costs. Moreover, TrainableHD’s application of Encoder Interval Training (EIT) and adaptive optimizer algorithms
further augments its performance, realizing a balance between training efficiency and model accuracy.
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